
Understanding and Improving Software Build Teams

Shaun Phillips
University of Calgary

Calgary, Alberta, Canada
phillist@ucalgary.ca

Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

Christian Bird
Microsoft Research
Redmond, WA, USA

cbird@microsoft.com

ABSTRACT
Build, creating software from source code, is a fundamental activity
in software development. Build teams manage this process and en-
sure builds are produced reliably and efficiently. This paper presents
an exploration into the nature of build teams—how they form, work,
and relate to other teams—through three multi-method studies con-
ducted at Microsoft. We also consider build team effectiveness and
find that many challenges are social, not technical: role ambiguity,
knowledge sharing, communication, trust, and conflict. Our findings
validate theories from group dynamics and organization science, and
using a cross-discipline approach, we apply learnings from these
fields to inform the design of engineering tools and practices to
improve build team effectiveness.

Categories and Subject Descriptors
H.5.3. [Group and Organization Interfaces]: Computer-supported
cooperative work

General Terms
Human Factors; Management.

Keywords
Software; build; teams; effectiveness; group dynamics; organization
science; communication; conflict; trust.

1. INTRODUCTION
Build, the process of creating software from source code, is

an essential part of software development. Generally speaking, a
build process consists of three phases: configuration, where various
compile-time options are selected, platform capabilities are verified,
and the existence and location of build tools (e.g. the linker) are
determined compilation, where source code written in high-level
computer languages (e.g., C++) is transformed into machine code
that can be executed by a computer, and packaging, where the ma-
chine code is bundled into an installation package so that it can be
deployed to users.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

In real-world scenarios, a build process will likely consist of
many more complex tasks. For instance, there may be scheduling
of build machines, build metric collection (such as time or power
consumption), security checks, so-called “smoke” tests to ensure
some baseline level of quality, language localization, reporting of
build results, and triaging of build problems. All together, the
collection of scripts, programs, and services that comprise and
automate a build process is called a build system.

The build process is cyclical. Development teams write code
which at some point is processed by the build system. The output,
the build, is deployed back to the development teams to verify the
changes [19] and the cycle begins again. This cycle is critical to
delivering high-quality software on-time and on-budget [9, 22]. As
stated by one of our interview participants, build is “the heartbeat of
an organization.” However, the cycle is fragile: building will fail if
developers write incorrect code, and developers are unable to verify
their work unless their code is built.

While building the quintessential “Hello World” program can
be done in seconds, in large-scale software development building
can be very complex and take many hours to complete [28]; at
Microsoft, some large projects require up to six hours of build-
time. If a long build process fails (e.g., from a compilation error),
developers must wait much longer than expected for the build to be
available, which delays their change verification and puts pressure
on the development schedule. An unreliable, failure-prone build
process is analogous to an irregular organizational heartbeat.

1.1 The Formation of Build Teams
Build systems change at about the same rate as the source code

they build [31], and over time build systems can become very com-
plex. Our studies show that the “builder” role can arise in an orga-
nization when it is inefficient to have many developers learn and
manage a complex build process. As one interview participant
quipped, builders are a “response to irritation.” To illustrate how
complicated build systems can become, one senior builder noted that
new build team members need “about three months of experience
before they can confidently manage the build process on their own.”

Build teams tend to form organically in response to changes in or-
ganization size and build complexity—they are emergent groups [12].
This formation is different than other teams in a software devel-
opment organization, which usually have their work scoped and
staffing needs met before the development process begins. In our
studies, we found that early builders at Microsoft were developers
thrust into the role by necessity and the perception that they under-
stood the build system better than others. While the role is now
more formalized, how build teams form has led to role ambiguity, a
weakness that leads to additional problems, which we discuss in our
findings.

It is difficult to estimate how many organizations have build teams
as they are not a traditional topic of study. However, based on infor-
mation on their blogs and websites we know that build teams exist in
Microsoft [9], Facebook1, Google2, Gentoo Linux3, and Eclipse4. In
addition, at the 2013 International Workshop on Release Engineer-
ing [2] (see proceedings for individual papers and talk abstracts),
presentations from NetFlix, Mozilla, LinkedIn, and GNOME (as
well as workshop attendees from companies including Qualcomm
and VMWare) all indicated that build was a complicated, evolving,
and time consuming process that required dedicated teams in their
organizations. Thus, we can reasonably assume that build teams are
not uncommon in large software development organizations.

The formation of a build team creates an environment where
those who primarily write source code are distinct from those who
primarily build source code. Build complexity is abstracted away
from other teams and onto the build team. For example, developers
may build a part of the project on their own machines, but rely on a
build team to build the entire project, for all supported languages,
hardware architectures, platforms, and SKUs on multiple machines
in parallel.

1.2 Build Team Effectiveness
We define build team effectiveness as how reliably and efficiently

the team produces builds. To frame our initial explorations into
build team effectiveness, we used Cohen and Bailey’s framework
for analyzing team effectiveness [7], which gives four characteristics
to consider: environment, task design, internal processes, and group
psychological traits. Our interviews, discussed in the Section 3,
were divided into four parts to examine each characteristic, albiet in
the context of build.

Our findings show that many impediments to build team effective-
ness are social rather than technical. The challenges are similar to
problems studied in group dynamics and organization science: role
ambiguity, knowledge sharing, and intergroup communication, trust,
and conflict [12]. Subsequently, we use theories from these fields to
help explain our findings and drive our analysis. A primary contribu-
tion of this paper is the validation and application of these theories,
not typically seen in software engineering research, to inform the
design of tools and practices that can improve team effectiveness in
software development organizations.

This paper is organized in the following manner: Section 2 dis-
cusses relevant software engineering, organization science, and
group dynamics research; Section 3 describes our three studies con-
ducted at Microsoft; Section 4 reports on our study observations;
Section 5 synthesizes our findings into tools and practices and pro-
vides practitioner feedback; in Section 6 we examine the broader
context of our work; and finally, the Section 7 highlights the main
contributions this paper.

2. RELATED WORK
There is a large body of work on the technologies underlying

the build process. Software compilation tools and processes, as
well as parallel and distributed application development, have many
dedicated international venues. For software deployment, technolo-
gies to make builds available for use (e.g., setup packages), Dearle
provides a high-level overview of current work, approaches, and
challenges [10].

1http://www.facebook.com/Engineering
2http://google-engtools.blogspot.com/
3http://www.gentoo.org/proj/en/releng/
4http://www.eclipse.org/eclipse/platform-releng/

Studies on the overall build process and its organizational impact
are less common, but there has been recent progress. Suvorov et
al. examined successful and failed migrations of build processes in
Linux and KDE and outlined four main challenges faced by projects
attempting to migrate from one build process to another [40]. McIn-
tosh et al. looked at the effort required to maintain build systems
by mining and creating models from the source control histories of
software projects [31]. Phillips et al. addressed the topic in their
study on integration decisions [33]. In their work, failures in the
build process are an outcome of failed or poorly-planned source
code integrations (also referred to as merges between branches), and
they are shown to be a contributing factor to release delays.

To proactively detect these integration-related build failures, Brun
et al. developed a tool to continuously build and provide desktop
alerts to developers [6]. In terms of predicting build failures, Hassan
and Zhang created predictive models from historic project informa-
tion [15]. Similarly, Wolf et al. looked at predicting build failures
through social factors, e.g., by who commented on work items in a
source code repository [44]. Our work is complementary to these
studies by examining the people who would use the information and
tools they propose.

Team effectiveness is a central concept in management science. In
the introduction we discussed Cohen and Bailey’s highly-influential
analysis framework [7]. In 2008, Mathieu et al. produced a review
of team effectiveness research, highlighting major work and trends
from “literally hundreds of primary studies” [30]. Of these studies,
the work of Levesque et al. is probably most relevant to this paper,
where they examine shared mental models, e.g., knowledge struc-
tures all team member possess, in software developments teams [26].
Essentially, the authors found that divergence in mental models can
lead to conflict and loss of efficiency—a scenario that can occur
between build and development teams, as discussed in the Section
4.

In this paper, we address concepts common to the field of group
dynamics: communication, trust, and conflict. These concepts also
have a rich history in software engineering research, particularly
in the Computer Supported Cooperative Work and CHI communi-
ties. Often, research studies will include more than one of these
concepts. For example, Bos et al. examined the effects of computer-
mediated communication on trust [5], which we observed as the
preferred communication method between development and build
teams, even when co-located. Wilson et al. also conducted a study
on computer-mediated communication [43], where the authors show
that computer-mediated relationships can achieve the same levels of
trust as in-person communication, albeit at a slower rate.

Jarvenpaa and Leider’s paper on the challenges of maintaining
trust in global distributed teams [21] and Bird et al.’s discussion
on the dynamics of the distributed teams in Windows Vista [4] are
particularly relevant to our work, as many Microsoft build teams are
globally distributed themselves, or must collaborate with develop-
ment teams in different countries. Similar challenges are described
in Herbsleb and Grinter’s work on coordination problems in soft-
ware development [17] and in Hinds and Mortensen’s paper on
conflicts in geographically distributed teams [20], both of which dis-
cuss how conflicts can occur when communication channels break
down between teams.

Many studies have looked at how to manage conflict between
teams. For example, Rocco discussed how in-person communication
can potentially both repair and prevent trust breakdown [37]. This
phenomenon is more deeply examined in Gaertner et al.’s work on
reducing intergroup conflict [13], which is itself an analysis of Sherif
et al.’s classic Robbers Cave study on conflict and cooperation [38].

http://www.facebook.com/Engineering
http://google-engtools.blogspot.com/
http://www.gentoo.org/proj/en/releng/
http://www.eclipse.org/eclipse/platform-releng/

We integrate findings from these studies into our analysis to help
prevent the conflicts that can occur between builders and developers.

3. METHODOLOGY
This paper reports on three studies into build team effectiveness:

interview, survey, and focus group. The studies were conducted
sequentially at the Microsoft Redmond campus.

The first study, builder interviews, derived its structure from
Cohen and Bailey’s effectiveness framework [7]. The second study,
a survey of the Microsoft build population, explored key themes
discovered in the interviews. The third study, a focus group, refined
and evaluated our proposed tools and practices that were designed
using the analysis of the two preceding studies. A companion Tech
Report [35] contains additional information such as the complete
survey, interview guide, codes and categories used in analysis, etc.

3.1 Interviews
Seven engineers (P1...P7), with build engineering experience at

Microsoft ranging from 8 to 16 years, participated in our interview
study. Participants were recruited through contacts in the Microsoft
Office, Windows, Visual Studio, and Xbox product groups, each
of which have build teams of non-trivial size. Our intent was to
capture a diverse set of experiences as these groups develop very
different products and employ their own, often differing, engineering
practices and policies. Moreover, four of the participants have also
worked as developers, giving them a dual perspective. Table 1
shows the current product group and Microsoft build experience of
the participants.

Table 1: Interview participant demographics. Experience is
measured in the number of years on build teams at Microsoft.
Ranges are used to help protect participant anonymity.

Identifier Product Group MS Exp. (yrs)

P1 Visual Studio 15–20
P2 Windows 10–15
P3 Office 10–15
P4 Visual Studio 5–10
P5 Office 10–15
P6 Office 5–10
P7 XBox 15–20

The interviews were semi-structured, audio-recorded, and 1-2
hours in length. The questions were designed to be consistent with
the characteristics from Cohen and Bailey’s often-referenced effec-
tiveness framework, which allows our findings to be comparable to
other team effectiveness studies in management science. The first
author’s three years of enterprise build experience helped ensure the
questions were phrased appropriately.

The exploratory nature of this study prompted the use of grounded
theory as the methodological approach [8]. The interviews were
transcribed verbatim and open-coded to identify key concepts of
build team effectiveness; 50 codes were organized into 12 categories,
and the categories into four themes:

• Role ambiguity: diverse builder tasks and responsibilities
and the impact on performance evaluation.

• Knowledge sharing: the transfer of information and experi-
ence within build teams and to development teams.

• Intergroup dynamics: communication, trust, and conflict
between build and development teams.

• Build failure management: investigating build failures and
the decisions around resolving the failures.

The themes are discussed at-depth in Section 4. The exception
is build failure management, which has a large amount of data on
build-specific tooling (e.g., source control tools) and is somewhat
disparate from the human-aspects of build engineering epitomized
by the other themes. Thus, we intend to present our findings on
build failure management in a separate paper.

3.2 Survey
Themes from the interview study raised several questions that

required a broader set of data to answer:

• What activities are builders involved in?

• What information do builders need to share?

• What problems are perceived to be in the build process?

The first and second questions were intended to complement
and refine the themes of role ambiguity and knowledge sharing,
respectively. The two questions had both scaled (with predefined
lists generated from the interviews) and open-ended components.
The third question, which was solely open-ended, was used to verify
that the interviews captured the major build-related concerns. To
collect this data, we engaged the build population at Microsoft
through an online survey study.

Recruitment emails were sent to the 367 employees who work,
in some capacity, in the build-space at Microsoft; 132 responses
were received (S1...S132), a 36% response rate. Our results are
thus generally representative of those working in the build-space at
Microsoft, and quantitative results are accurate within ±5.2% with
95% confidence (computed by way of a binomial confidence inter-
val). Table 2 illustrates the distribution of respondents by primary
working division.

Table 2: Survey respondents by primary Microsoft division.

Microsoft Division # Respondents

Business 25
Entertainment and Devices 13
Online Services 11
Server and Tools 35
Windows and Windows Live 33
Other 15

Responses to the “build problems” question were coded in the
same manner as the interview transcripts. No additional codes were
identified, increasing our confidence that the interviews identified
the significant build issues. The results from the survey are re-
ported alongside the interview findings, either in tabular form or as
supporting quotations, in the Section 4.

3.3 Focus Group
We synthesized the findings from the interviews and survey to

suggest preliminary design tools and practices that can be used to
improve build team effectiveness. A focus group study enabled us
to refine and gather feedback on the ideas in a time-efficient manner.

4 FINDINGS
Role ambiguity
Knowledge sharing
Intergroup dynamics
Build failure management

FRAMEWORK
COHEN AND BAILEY
Environment
Task design
Internal processes
Group psychological traits

Survey
132 responses

Focus Group
8 participants

Interviews
7 engineers

4 IMPLICATIONS
Role redefinition
Social knowledge sharing
Intergroup process transparency
Reduce intergroup conflict

Figure 1: Summary of our research process.

The focus group was intended to be analytical, to gather practi-
tioner feedback and test initial feasibility, and evaluative, to support
our interpretation of the findings [24]. The study design was based
on recommended practices in sociology [25], namely, we had 8 par-
ticipants, used audio-recording devices, had two researchers present
(moderator and note-taker), and used short, clear, and conversational
questions.

The focus group participants were selected from a pool of 64
Microsoft employees that was created from an opt-in at the end of
the survey. We reduced the candidate pool to 20 by examining their
responses to the open-ended survey questions, and selecting those
who provided insightful answers. In an effort to obtain feedback
from a diverse sample of builders [32], we then selected 8 partici-
pants (F1...F8) under the criteria of representing several divisions
at Microsoft, having both build and development experience, and
having worked for various amounts of time at Microsoft. Table 3
depicts the participant demographics.

Table 3: Focus group participant demographics. Experience
is measured by the number of years working at Microsoft.
Ranges are used to help protect participant anonymity.

Identifier Microsoft Division MS Exp. (yrs)

F1 Business 25–30
F2 Server and Tools 5–10
F3 Entertainment and Devices 10–15
F4 Windows and Windows Live 10–15
F5 Server and Tools 10–15
F6 Business 5–10
F7 Windows and Windows Live 5–10
F8 Windows and Windows Live 10–15

The focus group was conducted as follows: present a challenge
identified in the earlier studies along with some supporting data
(usually quotations from the interviews or survey); facilitate a dis-
cussion on the problem; present our potential solution to the problem
through a mock-up or descriptive slide; and then continue the dis-
cussion with an emphasis on refining and evaluating the idea. The
proposed tools and practices, and the results from the focus group,
are discussed in Section 5.

3.4 Limitations and Threats
Efforts were made to increase the validity of our findings in the

broader scope of “team effectiveness” by shaping the interviews
with an established and well-accepted framework. Additionally, our
studies captured the experiences of a diverse set of participants from
a variety of product groups; however, the participants are still bound
by the same overarching Microsoft organizational culture.

While focus groups provide several advantages, such as the ability
to get feedback quickly on proposed ideas, the opportunity for deep
interaction, and the ability to pick up on non-verbal cues, limitations

also exist. Respondents can feel pressure to give similar answers as
the others. We attempted to mitigate this by limiting the size of the
group.

As noted in previous research (e.g., [3, 4]), there is a great amount
of functional diversity between Microsoft product groups, for ex-
ample, in their size, engineering practices, and release processes
which mitigates some of the bias associated with conducting re-
search at a single company. Nevertheless, there is a possibility that
the challenges faced by build teams at Microsoft do not occur in
other organizations, or do not occur to the same degree.

4. FINDINGS
In this section, our findings are partitioned by the themes iden-

tified in the interview study: role ambiguity, knowledge sharing,
and intergroup dynamics. The themes represent factors that can
influence the effectiveness of build teams. We use these findings to
inform the design of tools and practices in the following section.

4.1 Role Ambiguity
Build teams “generally grow organically” (P6) in response to

organizational growth, either in the number of developers or the size
of the codebase, and evolving build requirements, such as supporting
additional languages, hardware architectures, platforms, or SKUs.
In group dynamics, build teams are classified as emergent [12] as
they are a reaction to a changing environment and not pre-planned
for a fixed amount of work, as are many development teams.

Emergence can cause each builder to “have a different shape”
(P6)—their roles are molded to fit the changing needs of their or-
ganization. All of the interview participants noted this diversity,
calling builders “generalists” (P1) or “jack-of-all-trades” (P2). For
example, we found that some builders write and maintain build
verification tests, while others do no testing at all.

Thus, the role “builder” has different definitions in different orga-
nizations. Furthermore, there is uncertainty around whether builders
should be evaluated as “developers, testers, or project managers”
(P2). For example, coordinating code flow (i.e., source code integra-
tions) between teams is a project management task; maintaining a
build system a development task; and testing falls in the domain of
quality assurance.

To more broadly understand and quantify the builder role, we
asked the survey respondents what frequency they perform the tasks
mentioned during the interviews. The task descriptions and propor-
tion of respondents that frequently perform the tasks, derived from
response dichotomization [23], are listed in Table 4. Our results
confirm that builders perform as testers, and more frequently, as
developers and project managers.

A particular concern among interview participants was “unrealis-
tic expectations” (P4). Builders may be involved in different types
of tasks, but will likely not perform as well as a specialist in those
tasks. Moreover, we found that “the jack-of-all-trades mentality can
be abused, especially on smaller teams” (P2), where builders will
likely to do a variety of tasks outside of the build-space.

Table 4: Survey results of builder task frequency. The questions were scaled from 1–5 (a response of 1 was “never” and 5 was
“very frequently”). Responses were dichotomized and the frequency percentage is the proportion of respondents that answered “4,
frequently” or “5, very frequently”

Task Examples % Frequent

Run build operations Start and monitor build processes; manage build failures 71%
Develop build automation Create and maintain distributed and parallel build scripts 68%
Manage code flow Coordinate integrations between teams; resolve conflicting changes 52%
Desktop build support Assisting developers with their local build failures 49%
Develop desktop build tools Change verification or check-in system development 47%
Product development Feature development; fixing bugs in product code 30%
Hardware management Purchase and maintain build machines; configure networks 18%
Testing Create build verification tests; maintain test execution scripts 9%

Thus, the “builder” role is somewhat ambiguous, both in job
responsibility and evaluation. Prior research has shown that role
ambiguity is negatively correlated with job satisfaction and perfor-
mance [1, 41], although weakly in the latter case. We found similar
results; there was no indication of decreased job performance, but
there were concerns about retention. Several participants noted
that dissatisfaction with “how to quantify their contributions” (P1)
has led some builders to move to purely development or project
management roles.

4.2 Knowledge Sharing
Build teams are not “tied to a specific feature [under development]”

(P4) and thus have a “200 ft. view” of the project (P1). This view
gives them a broad perspective on the different development teams’
current tasks, schedules, and challenges. This perspective is unique
because builders are also deeply involved with the codebase and can
still “pick out all the low-level details” (P1).

The build team’s perspective makes them particularly well-suited
to coordinating code flow between teams and at performing the
actual source code integrations. Indeed, as shown in Table 4, man-
aging code flow is a task likely to fall under the scope of build team
responsibilities.

Working with development teams across their organization, cou-
pled with their build expertise, gives build teams context on project-
wide, best practices for building. For example, how to avoid changes
that cause “build problems that can be routed back to some decision
that looked like a good idea to a particular team in isolation” (P1).
The interviews highlighted the importance of sharing this knowl-
edge both intragroup, within build teams, and intergroup, to the
development teams.

4.3 Intragroup Knowledge Sharing
Concerns about intragroup knowledge sharing tended to involve

branching and the speed at which knowledge is transferred. Branch-
ing is a common engineering practice [34] where development
teams use “copies” of the codebase until they are ready to integrate
their work. Nondeterministic build problems can propagate be-
tween branches during integrations before being identified and fixed.
However, “duplicate investigations” (S27) may occur in different
branches until it is discovered that certain problems have the same
root cause, which may not be readily apparent.

To better understand what information builders are using during
these failure investigations, we asked survey respondents how useful,
and how frequently they accessed, different information sources
that were discussed in the interviews. The results are displayed in
Table 5.

So-called “tribal knowledge” (P3), i.e., undocumented build ex-
periences, was indicated as one of the most useful and frequently ac-
cessed information sources. Thus, because internalized information
is important to builders when managing failures, team effectiveness
is influenced by how well senior builders communicate their experi-
ences with new team members. A survey respondent described how
build automation created by senior builders, intended to simplify
the build process, can be a barrier to this information flow:

“As awesome as automation is, it isolates the builder
from the easy tasks that help them understand the build
process...when the senior builder moves on and the dif-
ficult tasks break, the rookie is at a huge disadvantage
while they try to gain tribal knowledge.” (S28)

4.4 Intergroup Knowledge Sharing
When sharing knowledge across group boundaries, a major chal-

lenge is the large amount of build information to communicate:

“If I was to put together a document that described
every do and do-not of [building] source code across
a 40GB codebase, you would never find the pebble of
information that is pertinent to what you are trying to
do at this moment.” (P4)

There were no reported problems with incentives [39] for inter-
group knowledge sharing; on the contrary, the interview participants
spoke of how preventing bad practices as far “upstream” (P6) as
possible, e.g., on the developer desktop, greatly reduced their work-
load. Rather, the concern was how to make the best practices easily
discoverable.

Wikis were described as a common approach to knowledge shar-
ing with developers; however, the general attitude was that, as noted
above, there is a large amount of information and “developers were
expected to pull that information” (P4) without knowing what was
applicable to their current task. The lack of perceived benefit has
led to the abandonment of many build wikis, a situation similar to
what has been reported in earlier research [14].

An alternative to wikis is to “have information pushed to devel-
opers” (P4), where they do not have to actively seek details on best
practices. Push approaches have had mixed success:

“You need somebody saying that ‘this is a best practice.’
But I tried telling people about them, I tried yelling, I
tried emailing...the only thing that has made a differ-
ence was putting a warning when they compile.” (P1)

Table 5: Survey results on the usefulness and access frequency of information sources when investigating build failures. The questions
were scaled from 1–5 (e.g., a response of 5 was “very useful” or “very frequently”). Responses were dichotomized and the usefulness
and frequency percentages are the proportion of respondents that answered “4, useful” or “5, very useful,” and “4, frequently” or
“5, very frequently,” respectively.

Information Source Description % Useful % Frequent

Build logs Output from build processes 92% 92%
Tribal knowledge Undocumented team/personal experiences 89% 81%
Source control Change history of source code files 82% 78%
New changes List of new changes in broken builds 74% 67%
Check-in systems Results from change verification 43% 26%
External context Email, hallway conversations, etc. 42% 32%
Loop/rolling builds Results from continuous compilation 40% 25%

The participant’s successful experience involved writing rules
into a desktop build tool that displays warnings when a developer
compiles non-conforming code. The goal is to push targeted infor-
mation from the build team at relevant times. It was noted that the
warning does not necessarily have to explain how to implement the
best practice, it can be sufficient to simply initiate a conversation,
“that is the biggest thing” (P1).

4.5 Intergroup Dynamics
How an emerged build team fits socially within its organization,

and in particular, how it relates with development teams, will in-
fluence how well it operates. The term “organic” (P6) was often
used to describe how these relationships formed, and there was little
mention of any explicit actions to guide their growth. Our find-
ings from both the interviews and survey, presented in this section,
reveal much about the nature of the intergroup builder/developer
relationship as well as the areas that can be improved to promote
team effectiveness.

4.6 Communication
The “email culture” [42] that exists within Microsoft makes

computer-mediated interactions the norm. We found this culture
accentuated in build teams. All interview participants preferred to
communicate with developers through email, even when co-located.
Many build tasks are managed entirely in a virtual-space: from the
“you have broken the build” (P6) messages to the end-of-day sum-
mary and status updates, “it is all kept track in emails” (P3). Many
products developed at Microsoft have globally distributed develop-
ment teams—an increasingly common industry practice [16]. These
global development environments have made computer-mediated
communication even more likely between builders and developers.

Most of our participants had experienced difficulties using these
computer-mediated, global communication channels [17, 5], such
as accommodating cultural and language differences through text.
One participant discussed how they accounted for these differences
by “send[ing] emails that have been worded by project managers”
so that they “are very gentle” when giving negative feedback (P6).

4.7 Conflict and Trust
A frequent point of discussion in the conducted interviews was

the builder/developer relationship. In many cases, build problems
were attributed to the dynamics of the two groups: their perceptions,
motivations, and interactions. The notions of trust and conflict tend
to be central to these discussions.

The emergence of a build team promotes organizational efficiency
by abstracting the complexity of the build process. In other words, to

“present what is a very complicated system” (P2) in a simplified man-
ner. This simplification, somewhat ironically, was often perceived
to be a significant problem. Of the 97 responses to the open-ended
survey question on “build problems,” 27 included some variation
of “developer misunderstanding of overall build engineering” (S30).
As stated by an interview participant:

“Developers have their own opinion of what build is;
‘you compile and copy, that is all you do’...they do not
see the whole picture.” (P7)

Conflict can occur when developers fail to understand that their
desktop build experience is different than the build team’s expe-
rience. Builders view the codebase holistically and build for all
supported platforms, hardware architectures, SKUs, and languages.
This type of misunderstanding can erode trust and cause a “suspi-
cion that builders are breaking your build” (P6) because “it worked
on my machine” (S19).

There are situations, however, where conflict is not rooted in
process misunderstanding, but in competing motivations. Intuitively,
build and development teams are working towards the same goal—
the release of their software product. While this goal is superordi-
nate, the individual group motivations can differ; for example:

“Developers get forced into the position where they feel
they need to cut corners or cheat to avoid processes that
are there for a good reason.” (P4)

“Some teams are behind so they feel a sense of urgency
and cut corners...but they are taking a huge risk and
can introduce a failure rate that slows everyone down.”
(P3)

These experiences describe situations where developers, due to
time constraints, attempt to have a greater code velocity at the
expense of confidence that the build will not fail—the overhead of
fully vetting changes for build-stability “outweighs the perceived
benefit” (P4). In these situations, developers believe that it will take
less time to fix the build if it happens to break, than to go through a
full change verification prior to submitting their changes. However,
a build team is likely more concerned with build reliability for the
entire organization, and when it feels a subset of the organization
is not appropriately verifying its changes, it can be a source of
frustration. The problem is not with developers needing more agility,
but builders feeling not “in the loop” (P7) when the requirements
change and are not communicated.

4.8 Peer Monitoring
Although each interview participant could recall conflicts between

builders and developers, it was generally felt that “most people feel
bad when they break the build and they do not want to do it again”
(P6). Yet, for repeat offenders, a question that generated a lot of
discussion was how they can be “incentivized [sic] to not do it again,”
because “you do not want to let them off the hook” (P6).

Historical approaches to build-break accountability varied from
the humourous, such as wearing a funny hat for the day, to the
somber, reporting to “ship room” (P7) and account for the break in
front of one’s peers. Today, accountability tends to be computer-
mediated, e.g., broadcasts to email distribution lists describing what
changes broke the build. Recent work has called these types of
actions peer monitoring [27], where coworkers attempt to deter
disruptive behaviour. The term one participant used was “public
shaming” (P4).

The feeling was that public shaming does promote caution as
it makes people “petrified of breaking the build” (P7); however,
there was no evidence that it reduced the overall number of build
failures. On the contrary, some felt that the “same amount of failures
still occur” (P6), which indicates that careless submissions, while
frustrating, may not be very common.

Nevertheless, all participants stated that computer-mediated pub-
lic shaming is something they have used, and will likely use in the
future—it was described as “a valuable tool...but you need to know
when to use it” (P1). The variance stemmed from frequency: use
it often, occasionally, or only as a “last resort for the most severe
offenses” (P4).

5. IMPLICATIONS FOR ORGANIZATIONS
In the previous section, we presented our findings on the char-

acteristics and dynamics of build teams that can influence their
effectiveness. In this section, we synthesize the findings into tools
and practices that can potentially be used to improve build team
effectiveness. As the challenges we have described are mostly social,
we leverage theories from group dynamics and organization science,
some of which have decades of supporting research, in our designs.

While the ideas we present here are grounded in qualitative data
and established theories, there is a risk that they are impractical,
ineffective, or otherwise have little value to practitioners. To mit-
igate this risk, we conducted a focus group study with Microsoft
employees to evaluate, refine, and assess the feasibility and value of
the ideas.

This section is structured around our four ideas: role redefini-
tion, social knowledge sharing, intergroup process transparency,
and reducing intergroup conflict. After each idea is described, the
feedback from the focus group is presented.

5.1 Role Redefinition
Use empirical data to reduce role ambiguity.
Our findings indicate that the role of “builder” is ambiguous

and the definition can vary between organizations. There is some
evidence based on interviews and the focus group that this ambi-
guity can lead to job dissatisfaction and movement out of the build
discipline. To prevent the loss of talented builders, our idea is to
redefine the role with clear responsibilities, as recommended in
other work [21, 41], but to do so based on empirical data.

Our survey data in Table 4 shows the general shape of the build
role after years of organic growth. The two most frequent tasks,
build operations and build automation, are different in that opera-
tions is closely aligned with project management, while automation
is aligned with development. To reduce ambiguity, we propose a
bucketing approach where build operations and build automation

are the buckets, and the remaining tasks are sorted based on whether
they primarily involve management or development duties.

Based on the bucketing, the builder role should be partitioned
into the roles of build operator and build engineer. Build operators
will manage the build operations and team coordination, while build
engineers will create and maintain build automation and tools as
specialized developers. This measured approach to role definition
accounts for an organization’s actual needs by broadly examining
how an ambiguous role has evolved over time.

Feedback: The focus group confirmed our findings of role am-
biguity by describing a builder as “whatever it needs to be” (F5)
and that “you cannot have one definition for a place as diverse as
Microsoft” (F6). Support for redefining the builder role along our
proposed boundaries was strong, as there was agreement that build
engineering and build operations are “separate disciplines” (F8).

It was felt that, under our proposal, build engineers could be
more fairly evaluated against developers as they would have a clear
focus on development tasks. A limitation, however, was that build
operators might not receive the same benefit:

“There are huge amounts of obfuscation in the build
process. If you are good, no one ever knows about it.”
(F1)

That is, a skilled build operator is able to understand and manage
the “obfuscation” while shielding others from it such that they are
unaware that it even exists. The concern is that build operators
would lose visibility if they were no longer involved in development
tasks (i.e. if the build is successful, people don’t spend time thinking
about the build operator), so they should have some avenue to report
their achievements.

5.2 Social Knowledge Sharing
Promote intergroup communication with social build tools.
Our interview participants discussed several challenges with shar-

ing knowledge across group boundaries; in particular, the large
amount data to share and the discoverability of relevant information.
A solution from the Microsoft Visual Studio build team had the
most enthusiastic support, where custom build rules are verified
at desktop compilation; for example, when a developer creates a
dependency between two projects that, while technically correct,
crosses an architectural boundary that could break parallelism in the
build system. In this case, a warning or error message is displayed
to the developer.

Our idea is to enhance this solution by incorporating a social
component. Majchrzak et al.’s findings also show the value of
transferring data “fragments,” but they additionally advocate for
continual intergroup engagement [29]. Applying their findings to
our context, each build best practice will have an owner and their
contact information will be included in the corresponding error
message. Developers will then know exactly who to contact on
the build team for guidance, and will be encouraged, or possibly
required, to do so.

Feedback: The focus group, before being presented with our idea,
discussed how they have written documents about build best prac-
tices, but “developers do not know what to search for in them” (F2),
supporting our earlier findings on intergroup knowledge sharing.

The group suggested two refinements to improve the likelihood
of our idea being adopted. First, it was noted that “tribal knowledge”
can vary “between branches" (F4) and not just at the product level.
In other words, certain rules will apply to some branches, but not to
others (e.g., branches that contain user interface work vs. branches
for database changes). The knowledge sharing tool will need to be
aware of what branch the developer is working in.

Second, it was noted that the tool will probably not be able to
detect all violated best practices:

“You can never write a system that will work 100% of
the time. An automated system cannot look at a bad
build configuration file and say ‘oh, I think this is what
you meant to do.”’ (F3)

When automatically verifying best practices is not possible, it may
be sufficient to examine which files the developer has changed, and
display warnings if those files are related to particular best practices.
Moreover, builder contact information will still be displayed for
when the developer is unsure if they are violating the best practice
in question.

5.3 Intergroup Process Transparency
Do not make the build process a black box.
We found that some build failures are perceived to be caused by

developers misunderstanding the build process, or not understanding
the benefit of following the process and they avoid it or cut-corners.
The problem appears to be the abstraction of build system com-
plexity away from development teams. If the build team provides a
view of the build process that is too simple, trust can erode between
the two groups. Our idea is to balance abstraction with process
transparency.

This idea is grounded in Pirson and Malhotra’s analysis, where
perceptions of transparency were the only significant predictors of
trust for deeply interdependent relationships [36], which is the case
for build and development teams. We propose providing developers
with a desktop tool that clearly describes build process requirements
based on changes they are currently making. For example, what
parts of the project they must build, what tests they need to run,
or whether they should perform any special verification. But most
importantly, the tool will clearly describe why they are being asked
to perform each task as well as the benefits.

The goal is to give developers a glimpse into the “200 ft. view”
held by the build team and allow them to see that their time is not
being wasted with ineffectual overhead, and that the build team has
their best interests in mind.

Feedback: Of our four ideas, process transparency received the
most negative reaction. It was felt that the idea “would work” (F4) by
preventing some failures, but there were concerns about underlying
concept of transparency:

“They will care less about when things break—they will
say, ‘I followed your process, why did it not prevent
me from breaking the build?” (F3)

There was a reluctance among the participants to lower group
boundaries and offer process transparency out of concern that the
tool would be used against them. In other words, that the tool would
lower accountability for build breaks and require them to establish
a perfect set of build process requirements, which would not be
possible.

To implement this tool, it is clear that the descriptions of the tasks,
justifications, and benefits should be carefully worded. For example,
it should be made clear that the requirements are guidelines provided
by the build team to decrease the likelihood of build breaks, but they
are not complete and do not remove personal accountability.

5.4 Reduce Intergroup Conflict
Meet early to establish trust before conflicts occur.
The categorization of build and development teams is evident by

the frequent use of the term “they” when referring to developers [13],

which can be observed in the quotations we have throughout this
paper. In the Section 4, we identified several situations where
conflict can occur between build and development teams, such as
impeding goals and with public shaming. We have also shown these
conflicts are similar to those observed in other studies, often in
fields outside of software engineering, such as group dynamics and
organization science. Our idea is to use results from these studies,
altered to fit the build engineering context, to prevent or reduce the
likelihood of conflicts between builders and developers.

Rocco found that early face-to-face contact can establish trust in
computer-mediated relationships [37]. Similarly, we propose that
builders and developers meet twice, in-person, at the beginning of a
product release cycle.

The first meeting (i.e., the “hand-shake” meeting) should not
focus on upcoming work, but on personal interests to promote decat-
egorization [13]. The second meeting, held shortly afterward, will
revolve around mutual intergroup differentiation—the appreciation
of their differences [13]. The build team can talk about changes to
the build process, which also aids transparency, and the development
teams can talk about their upcoming features and general time-lines.

Our idea is relatively simple, but there is a large body of research
supporting these methods of reducing intergroup conflict. In terms
of improving build team effectiveness, ensuring a healthy relation-
ship between build and development teams facilitates the smooth
operation of interdependent tasks.

Feedback: Support for the idea was strong among the focus group
participants. One participant shared a similar practice that they have
found to be effective:

“Every time I join a new organization, I meet with all of
the development leads and talk about best practices...‘if
you do this then I’ll provide you good builds in a timely
manner.’ You have to be proactive.” (F8)

Our approach differs in that it has the individual builders and
developers meet, and not just the team leads. Although, the scale of
our idea scale was questioned:

“Shaking hands...is a little unreasonable. In Windows,
5000 people cannot meet with 30 builders.” (F7)

However, we do not see the approach as all-or-nothing. The
build team can selectively meet with development teams; in partic-
ular, those that are planning changes that could be disruptive and
potentially cause intergroup conflict.

6. DISCUSSION
To many practitioners, software build is an uninteresting step

in the development process. Academically, build is a niche topic
when compared to understanding, writing, and testing code. To
our surprise, however, research into the understudied “build team”
uncovered rich experiences and useful insight that can be applied
outside the context of our work.

We found that build teams are created in response to project
growth and mounting build inefficiency. In other words, they are
not planned (and in some cases, are unwanted), but nevertheless
emerge and grow organically. An interesting facet is that these ad
hoc groups are given sole responsibility of a critical resource needed
by much larger development teams.

A particularly noteworthy finding is process transparency. Partici-
pants in both the interviews and survey felt that exposing elements of
the build process would reduce developer frustration and potential
conflict. However, when we proposed our simple transparency-
promoting tool to the focus group, it evoked strong negative reac-
tions. When confronted with actually giving up some control of the

important resource, the small group fiercely defended their domain.
Anticipating this reaction can help ease the implementation of new
tools and practices for these types of groups.

A critique of our ideas may be that they are too simplistic (or for
some, obvious). But in practice, we found many product groups and
practitioners have not attempted, or are not aware, of these types of
solutions. Academically, our findings provide validation of existing
social theories that have been developed through many different
contexts over the last 60 years; for example, with adolescents [38],
between different races [18], and in the workplace [11]. However,
we are applying these theories in a software development context—a
multidisciplinary approach not often seen in software engineering
literature.

Simplicity also facilitates future work in the build space. Chang-
ing a build process within a company is non-trivial and can impact a
very large number of developers [40] (e.g., in Windows, there are
over 2000 developers who would be affected) and implementation
problems can have serious financial repercussions. Research ideas
that are easy to implement and carry minimal risk are much more
likely to be adopted in such environments. In this regard, our use of
a focus group serves to minimize risk in future work by providing
initial evaluation by subject matter experts and current practitioners.

7. SUMMARY
The goal of our research was to understand and propose solutions

to issues faced by software build teams. Success in this area can have
a positive impact on an organization’s ability to release software
on-time and on-budget.

We used an established team effectiveness framework from man-
agement science to structure our initial explorations, where we
found that many impediments to build team effectiveness are social,
brought about by their relationships with interdependent teams.

Further, we demonstrated how theories from the social sciences
can inform the design of tools and practices for software engineering.
We proposed and solicited feedback on four such ideas to address
the social challenges that can impede build team effectiveness. We
also discussed how our approach can benefit other groups with
interdependent relationships both inside and outside of software
organizations.

8. ACKNOWLEDGMENTS
This work was done during a summer internship at Microsoft

Research and was sponsored by Microsoft Engineering Excellence.
We would like to thank our study participants for sharing their time
and experience, and to Jonathan Sillito and Jeff Huang for their
valuable feedback on this paper.

9. REFERENCES
[1] D. J. Abramis. Work role ambiguity, job satisfaction, and job

performance: meta-analyses and review. Psychological
Reports, 75(3f):1411–1433, 1994.

[2] B. Adams, C. Bird, F. Khomh, and K. Moir. 1st international
workshop on release engineering (releng 2013). In
Proceedings of the 35th International Conference on Software
Engineering. IEEE / ACM, 2013.

[3] C. Bird, B. Murphy, N. Nagappan, and T. Zimmermann.
Empirical software engineering at microsoft research. In
Proceedings of the 2011 ACM Conference on Computer
Supported Cooperative Work ’11, pages 143–150. ACM,
2011.

[4] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy.
Does distributed development affect software quality?: an

empirical case study of windows vista. Commununications of
the ACM, 52(8):85–93, 2009.

[5] N. Bos, J. Olson, D. Gergle, G. Olson, and Z. Wright. Effects
of four computer-mediated communications channels on trust
development. In Proceedings of the ACM CHI 2002
Conference on Human Factors in Computing Systems (CHI),
pages 135–140. ACM, 2002.

[6] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive
detection of collaboration conflicts. In Proceedings of the
2011 joint meeting of the European Software Engineering
Conference and SigSoft Symposium on Foundations of
Software Engineering, pages 168–178. ACM, 2011.

[7] S. G. Cohen and D. E. Bailey. What makes teams work:
Group effectiveness research from the shop floor to the
executive suite. Journal of Management, 23(3):239–290,
1997.

[8] J. Corbin and A. Strauss. Basics of Qualitative Research.
SAGE Publications, 3rd edition, 2008.

[9] M. A. Cusumano and R. W. Selby. How microsoft builds
software. Communication of the ACM, 40(6):53–61, 1997.

[10] A. Dearle. Software deployment, past, present and future. In
Future of Software Engineering, pages 269–284. IEEE
Computer Society, 2007.

[11] C. DeDreu, C. De Dreu, and M. Gelfand. The Psychology of
Conflict and Conflict Management Organizations. Taylor &
Francis, 2007.

[12] D. Forsyth. Group Dynamics. Cengage Learning, 2009.
[13] S. L. Gaertner, J. F. Dovidio, B. S. Banker, M. Houlette, K. M.

Johnson, and E. A. McGlynn. Reducing intergroup conflict:
From superordinate goals to decategorization,
recategorization, and mutual differentiation. Group Dynamics:
Theory, Research, and Practice, 4(1):98–114, 2000.

[14] J. Grudin and E. S. Poole. Wikis at work: success factors and
challenges for sustainability of enterprise wikis. In
Proceedings of the 2010 International Symposium on Wikis
and Open Collaboration (WikiSym), pages 5:1–5:8. ACM,
2010.

[15] A. E. Hassan and K. Zhang. Using decision trees to predict
the certification result of a build. In Proceedings of the 2006
IEEE/ACM Conference on Automated Software Engineering.
IEEE Computer Society, 2006.

[16] J. D. Herbsleb. Global software engineering: The future of
socio-technical coordination. In Future of Software
Engineering, pages 188–198. IEEE Computer Society, 2007.

[17] J. D. Herbsleb and R. E. Grinter. Splitting the organization
and integrating the code: Conway’s law revisited. In
Proceedings of the International Conference on Software
Engineering, pages 85–95. ACM, 1999.

[18] M. Hewstone and R. Brown. Contact and conflict in
intergroup encounters. Basil Blackwell, 1986.

[19] J. Highsmith and A. Cockburn. Agile software development:
the business of innovation. Computer, 34(9):120 –127, 2001.

[20] P. J. Hinds and M. Mortensen. Understanding conflict in
geographically distributed teams: The moderating effects of
shared identity, shared context, and spontaneous
communication. Organizational Science, 16(3):290–307,
2005.

[21] S. L. Jarvenpaa and D. E. Leidner. Communication and trust
in global virtual teams. Journal of Computer-Mediated
Communication, 3(4), 1998.

[22] E.-A. Karlsson, L.-G. Andersson, and P. Leion. Daily build
and feature development in large distributed projects. In

Proceedings of the 2000 International Conference on
Software Engineering, pages 649–658. ACM, 2000.

[23] B. Kitchenham and S. Pfleeger. Personal opinion surveys. In
F. Shull, J. Singer, and D. SjÃÿberg, editors, Guide to
Advanced Empirical Software Engineering, pages 63–92.
Springer London, 2008.

[24] J. Kontio, L. Lehtola, and J. Bragge. Using the focus group
method in software engineering: Obtaining practitioner and
user experiences. In Proceedings of the International
Symposium on Empirical Software Engineering. IEEE
Computer Society, 2004.

[25] R. Krueger and M. Casey. Focus Groups: A Practical Guide
for Applied Research. Sage, 2009.

[26] L. L. Levesque, J. M. Wilson, and D. R. Wholey. Cognitive
divergence and shared mental models in software
development project teams. Journal of Organizational
Behavior, 22(2):135–144, 2001.

[27] M. L. Loughry and H. L. Tosi. Performance implications of
peer monitoring. Organization Science, 19(6):876–890, 2008.

[28] A. MacCormack. How internet companies build software.
MIT Sloan Management Review, 42(2):75–85, 2001.

[29] A. Majchrzak and P. H. More. Transcending knowledge
differences in cross-functional teams. Organization Science,
23(4):951–970, 2012.

[30] J. Mathieu, M. T. Maynard, T. Rapp, and L. Gilson. Team
effectiveness 1997-2007: A review of recent advancements
and a glimpse into the future. Journal of Management,
34(3):410–476, June 2008.

[31] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E.
Hassan. An empirical study of build maintenance effort. In
Proceedings of the 2011 International Conference on
Software Engineering, pages 141–150. ACM, 2011.

[32] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in
software engineering research. In Proceedings of the the joint
meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC/FSE), pages 466–476. ACM,
2013.

[33] S. Phillips, G. Ruhe, and J. Sillito. Information needs for
integration decisions in the release process of large-scale
parallel development. In Proceedings of the 2012 ACM
Conference on Computer Supported Cooperative Work, pages
1371–1380. ACM, 2012.

[34] S. Phillips, J. Sillito, and R. Walker. Branching and merging:
an investigation into current version control practices. In
Proceedings of the International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), pages
9–15. ACM, 2011.

[35] S. Phillips, T. Zimmermann, and C. Bird. Appendix to
understanding and improving software build teams. Technical
Report MSR-TR-2014-28, Microsoft Research, 2014.
http://research.microsoft.com/apps/pubs/?id=209991.

[36] M. Pirson and D. Malhotra. Foundations of organizational
trust: What matters to different stakeholders? Organization
Science, 22(4):1087–1104, 2011.

[37] E. Rocco. Trust breaks down in electronic contexts but can be
repaired by some initial face-to-face contact. In Proceedings
of the ACM CHI 1998 Conference on Human Factors in
Computing Systems (CHI), pages 496–502. ACM
Press/Addison-Wesley Publishing Co., 1998.

[38] M. Sherif. The Robbers Cave Experiment: Intergroup Conflict
and Cooperation. Wesleyan University Press, 1988.

[39] E. Siemsen, S. Balasubramanian, and A. V. Roth. Incentives
that induce task-related effort, helping, and knowledge sharing
in workgroups. Management Science, 53(10):1533–1550,
2007.

[40] R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and
B. Adams. An empirical study of build system migrations in
practice: Case studies on kde and the linux kernel. In
Proceedings of the International Conference on Software
Maintenance, pages 160–169, 2012.

[41] T. C. Tubre and J. M. Collins. Jackson and schuler (1985)
revisited: A meta-analysis of the relationships between role
ambiguity, role conflict, and job performance. Journal of
Management, 26(1):155–169, 2000.

[42] G. D. Venolia, L. Dabbish, J. Cadiz, and A. Gupta. Supporting
email workflow. Technical Report MSR-TR-2001-88,
Microsoft Research, 2001.

[43] J. M. Wilson, S. G. Straus, and B. McEvily. All in due time:
The development of trust in computer-mediated and
face-to-face teams. Organizational Behavior and Human
Decision Processes, 99(1):16 –33, 2006.

[44] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting
build failures using social network analysis on developer
communication. In Proceedings of the 2009 International
Conference on Software Engineering ’09, pages 1–11. IEEE
Computer Society, 2009.

	1 Introduction
	1.1 The Formation of Build Teams
	1.2 Build Team Effectiveness

	2 Related Work
	3 Methodology
	3.1 Interviews
	3.2 Survey
	3.3 Focus Group
	3.4 Limitations and Threats

	4 Findings
	4.1 Role Ambiguity
	4.2 Knowledge Sharing
	4.3 Intragroup Knowledge Sharing
	4.4 Intergroup Knowledge Sharing
	4.5 Intergroup Dynamics
	4.6 Communication
	4.7 Conflict and Trust
	4.8 Peer Monitoring

	5 Implications for Organizations
	5.1 Role Redefinition
	5.2 Social Knowledge Sharing
	5.3 Intergroup Process Transparency
	5.4 Reduce Intergroup Conflict

	6 Discussion
	7 Summary
	8 Acknowledgments
	9 References

