Project Orleans

Distributed Virtual Actors for
Programmability and Scalability

Philip A. Bernstein

Microsoft Research
Joint work with Sergey Bykov, Alan Geller, Gabriel Kliot, Michael Roberts, Jorgen Thelin

October 12, 2014
Presented at DISC 2014, Austin, TX

© 2014 Microsoft Corporation = M iCI"OSOft



Project “Orleans” is a programming model and runtime
for building cloud native services



What is Project “Orleans”?

* Oversimplifying it: “Distributed C#”

e Orleans runs your .NET objects on a cluster as if within a single process
* Define .NET interfaces and classes, deploy to Azure, send requests to them

* Practically: “Toolset for building cloud-native services”

* Encapsulates best practices for building scalable, reliable, elastic services
* Framework for stateful near-real-time backends
* 3-5x less and simpler code to write, scalability by default

* Academically: “Distributed virtual actor model”

* Adaptation of the Actor Model for challenges of the Cloud
* Actors that exist eternally and never fail



Motivation

* Developer Productivity

* Concurrency, distribution, fault tolerance, resource management...
 Modern workloads are even ‘worse’

Domain of distributed systems experts

Help desktop developers [and experts] succeed

Write less code

* Scalability by default

* Designs and architectures break at scale
 Failure to scale may be fatal for business
e Code must be scale-proof — must scale out without rewriting



Actor Model as Stateful Middle Tier

Frontends Actor Middle Tier
( )
i,« j Storage
_ >
}\Ill @ «:M
= @ bw SN~————
P ®
A\ 4
' |l |l u




Orleans Programming Model

* Each class has a key, whose values identify instances
* Game, player, phone, device, scoreboard, location, etc.

* To invoke an actor A, the caller passes the key to its local class factory
and gets back an actor reference R,

* The actor invokes a method on R,

 Method invocations are asynchronous

e Return a “task” (i.e., a promise)
* An attempt to reference a task’s result blocks the caller until the task completes

e .NET has language support for this (Task-Await)



Invoking a method on actor A

3. await R,.method()
>

v Orleans Runtime

Find A

If exist(A) { Task = await R,A.method }
Constructor else {choose a server S and

invoke A.new at S }




Key Innovation: Virtual actors

1. Actor instances always exist, virtually
* Application neither creates nor deletes them. They never fail.
* Code can always call methods on an actor

2. Activations are created on-demand
* |f there is no existing activation, a message sent to it triggers instantiation
* Transparent recovery from server failures

e Lifecycle is managed by the runtime
* Runtime can create multiple activations of stateless actors (for performance)

3. Location transparency
* Actors can pass around references to one another or persist them
e These are logical (virtual) references, always valid, not tied to a specific activation



Actor State Management

* The runtime instantiates an actor by invoking the actor’s constructor
* The constructor typically reads the actor’s state based on its key
* Usually from storage, but possibly from a device (e.g. phone, game console, sensor)

* The actor saves its state to storage whenever it wants

* Typically before returning from a method call that mutates its state
e Or could be after n seconds, or after n calls, etc.

* Orleans does not support transactions (yet)

* Declarative persistence
 Attach all state variables to an interface that inherits from IState
* Declare a persistence provider for the class (Azure Table, Azure SQL DB, Redis...)
* Invoke “WriteState” to save the state to the persistent store



Scalability

Test Lab Numbers

* Near linear scaling to hundreds of 500,000/
thousands of requests per second 2
: S 400,000
* Also scalable in number of actors o
* Multiplexed resources for efficiency  3300.000
()
* Location transparency simplifies 5 200,000
scaling up or down 5
. . © 100,000+
* Elastic —transparently adjusts to <
adding or removing servers 0

25 50 75 100 125
Number of Servers

Request: Client 2 Actor 1 = Actor 2



Orleans was built for...

Scenarios Common characteristics

* Social graphs * Large numbers of independent actors
* Mobile backend * Free-form relations between actors

* Internet of things * High throughput/low latency

e Real-time analytics * Fine-grained partitioning is natural

* ‘Intelligent’ cache * Cloud-based scale-out & elasticity

e Interactive entertainment * Broad range of developer experience

= Not good for a service where different requests span different
combinations of records over a large database



Other features

e Exceptions are automatically propagated
* Timers that live as long as the hosting activation

* Fault-tolerant timers, for infrequent events



Production usage

e Halo 4 - all back end services

* Players, games, weapon caches, regions, scoreboards, ....
* Dozens of services, 10s to 100s of machines each
* 100Ks of requests per second

* Bursty load (evenings, weekends) and peak load at product launch

* Back end services of many other game studios
e About ten other Microsoft services run on Orleans

* Examples: intelligent cache, telemetry.

* Public preview since April 2014



Near real-time analytics

* Devices send telemetry to the Cloud

* Per-device actors process and
pre-aggregate incoming data

* Grouping by location, category, etc.

e Statistics, predictive analytics, fraud
detection, etc.

e Control channel back to devices

* Elastically scales with number of devices
and groupings




Intelligent cache

e Actors hold cache values
* Semantic operations on values
* Function shipping (method calls)

e Coordination across multiple values

* Automatic LRU eviction
* Transparent on-demand reactivation

* Write-through cache with optional batching




Outline

v'Orleans Overview

* Runtime Library

* Cluster Membership
* Actor Directory



Actors in Orleans

’
PR ,/
-7

—————
'q N

-
- ~s
SO VNt ——

il TR

-
)
\\N
~

~
~~~~~~~

Game Actor Type

Actor Type

Game Actor (Instance)
#2,548,308

O_O o
oo’

Game Actor (Instance)
#2,031,769

Actor (Instance)

Game Actor #2,548,308
Activation #1 @ 192.168.1.1

Game Actor #2,031,769
Activation #1 @ 192.168.1.5

Actor Activation

17



Actor execution model

* Activations are single-threaded
e Optionally re-entrant
* Runtime schedules execution of methods
* Multiplexed across threads

* No shared state
* Avoid races
* No need for locks

* Cooperative multitasking
* Everything must be asynchronous



Distributed Runtime

Scheduler

Actor
Directory

Actor Activations
ooooPO@
ooooooPoPO@
oocoooo®o®@
oocoooo®o®@
oocoooo®@®
ooooPO@
ooooooPoP@

tivation Catalog oocoooo®@

istence.
fanager
Ac catal

| Dispatcher |

Membership

Actor

L, 00000000
c 00000000

.O 00000000

a 00000000
2 = 00000000
< 00000000
.:::.

Persistence

Manager
Activations
Manager

Messaging/Serialization

19



Achieving Efficiency and Scalability

* Cooperative multitasking

* Multiplexed Communication
* Balanced placement

* Custom Serialization

e Support for Immutability



Outline

v'Orleans Overview
v'Runtime Library

* Cluster Membership
* Actor Directory



Cluster Membership

e A cluster is a set of servers

e Each server must know the identity of every other available server
in its cluster

* Orleans uses reliable storage to store the consensus view
* A table, with one row per server describing the server’s state

 We use Microsoft Azure Table service

e Supports optimistic concurrency control via http ETags.
Read returns a row’s ETag.
Write only if the row’s ETag is unchanged.

e Supports transactions over rows with the same partition key



Cluster membership protocol

* The servers form a ring using consistent hashing
* Each server pings the next 3 in the ring, every few seconds.

* If a server S gets N successive failures to ping server T,
S writes its timestamped suspicion into T's row

* If T has more than M suspicions within K seconds, then
* S writes that T is dead into T’s row, using an Etag to avoid lost updates

* and broadcasts a request for all servers to re-read the membership table
(which they’ll do anyway periodically)

T kills itself upon learning it is dead.
System infrastructure will restart it with a new name



It’s useful to totally order membership states

* Avoids two servers killing two other servers, and neither of
them knowing right away about the other one’s actions.

* Serializes the joining of new servers to the cluster

* Allows a new joining server to validate two-way connectivity to every
other server that has already started.

 Ensures that at least when a server starts, there is full connectivity
between all servers in the cluster.

24



Totally ordering membership states

* So we add a membership-version row that tracks state changes

 Within a transaction, S writes that T is dead and,
if S’s membership-version is still fresh, S increments the version
number in the membership-version row, else S aborts.

* If S’'s membership-version was stale, it re-reads the membership state and re-
runs the transaction

* That way the membership configurations are totally ordered with
increasing version number



Algorithm properties

* Our algorithm can handle any number of failures.
* |.e., does not require quorum.

* We have seen production situations when over half of the servers
were down.

* Our algorithm can handle thousands and probably even tens of
thousands of servers

* Paxos-based solutions generally do not scale beyond tens of servers

26



Outline

v'Orleans Overview
v'Runtime Library
v'Cluster Membership
* Actor Directory



Actor Directory: ActorID =2 ServerlD

» Stored In a DHT, spread across all active servers

* Each server owns a partition of the key space

 Each actor Is assigned to a partition by consistent hashing
* Directory enforces the single-activation constraint
* Each server caches recently used actor-to-server mappings

* A mapping entry can be wrong (stale cache, failed unregister)
* Recipient of a misdirected message reroutes it or returns an exception

» Sender and receiver correct the error by invalidating a cache entry or
updating the directory entry

28



Server failures

* When a server F fails, its directory partition is lost

* When server S, learns of F's failure

* It purges its directory partition of actor entries that map to F
* It kills local actor activations that were mapped by F

* While resolving a failure, the directory might be inconsistent
« We favor availability over consistency

* This "eventual single-activation consistency” semantics has been the
right tradeoff for most applications

29



Eventual single-activation consistency

* Single Instancing may be compromised during recovery
* Suppose actor a was mapped by F to server S,

* If S, is slow at learning of F’s failure, a server with a cached entry for a may
invoke a at S,

* Meanwhile, if S, invokes q, it will create a new directory entry for it at (say)
server S; and activate it at (say) S,

® So now there are two activations of a, at S, and at S,

* Eventually, S, will learn of F's failure and kill a

* a at S, might save its state during its rundown, which might conflict with
state saved by a at S,

* If so, a at S, will have to merge its state with the one saved by a at §,

30



Geo-distributed Actor Directory (prototype)

* Suppose an application is distributed in many clusters

* To ensure single-instancing, a request to activate actor ain
cluster C, triggers a consensus protocol with other clusters
* C, asks other clusters if they have a copy.

* If all clusters reply “no”, then C, can safely instantiate a
* If C, says “yes” at server SC,, then C, maps a to SC,

* If a cluster C; doesn’t reply, then C, instantiates a anyway,
favoring availability over consistency

e Optimistic consensus: instantiate a and then run consensus, if it’s very unlikely
another cluster will instantiate a.

* When C, reunites with C,, they run a reconciliation protocol for actors they
created when they were disconnected.

31



Geo-distributed directory reconciliation

* When server membership changes, servers exchange lists of in-doubt actors.

e If 22 servers have instantiated an actor with at least one in-doubt
* Then use a fixed precedence relation over server ID’s to choose a winner.
* Precedence could be global, per class, or per class+key



Conclusion

* Orleans Benefits
* Significantly improved developer productivity
* Makes cloud-scale programming attainable to desktop developers
* Scalability by default. Excellent performance
* Proven in multiple production services

* Main innovation: Virtual actor programming model

* Runtime algorithms
* Cluster membership
* Actor Directory

* Future work: transactions, streams, dynamic optimization



Website

http://research.microsoft.com/en-us/projects/orleans/

Get the public Community Preview:
http://aka.ms/orleans

Get the Samples:
https://orleans.codeplex.com/

34


http://research.microsoft.com/en-us/projects/orleans/
http://aka.ms/orleans
https://orleans.codeplex.com/

== Microsoft

2014 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

35



