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Project “Orleans” is a programming model and runtime
for building cloud native services



What is Project “Orleans”?

* Oversimplifying it: “Distributed C#”

e Orleans runs your .NET objects on a cluster as if within a single process
* Define .NET interfaces and classes, deploy to Azure, send requests to them

* Practically: “Toolset for building cloud-native services”

* Encapsulates best practices for building scalable, reliable, elastic services
* Framework for stateful near-real-time backends
* 3-5x less and simpler code to write, scalability by default

* Academically: “Distributed virtual actor model”

* Adaptation of the Actor Model for challenges of the Cloud
* Actors that exist eternally and never fail



Motivation

* Developer Productivity

* Concurrency, distribution, fault tolerance, resource management...
 Modern workloads are even ‘worse’

Domain of distributed systems experts

Help desktop developers [and experts] succeed

Write less code

* Scalability by default

* Designs and architectures break at scale
 Failure to scale may be fatal for business
e Code must be scale-proof — must scale out without rewriting



Actor Model as Stateful Middle Tier
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Orleans Programming Model

* Each class has a key, whose values identify instances
* Game, player, phone, device, scoreboard, location, etc.

* To invoke an actor A, the caller passes the key to its local class factory
and gets back an actor reference R,

* The actor invokes a method on R,

 Method invocations are asynchronous

e Return a “task” (i.e., a promise)
* An attempt to reference a task’s result blocks the caller until the task completes

e .NET has language support for this (Task-Await)



Invoking a method on actor A

3. await R,.method()
>

v Orleans Runtime

Find A

If exist(A) { Task = await R,A.method }
Constructor else {choose a server S and

invoke A.new at S }




Key Innovation: Virtual actors

1. Actor instances always exist, virtually
* Application neither creates nor deletes them. They never fail.
* Code can always call methods on an actor

2. Activations are created on-demand
* |f there is no existing activation, a message sent to it triggers instantiation
* Transparent recovery from server failures

e Lifecycle is managed by the runtime
* Runtime can create multiple activations of stateless actors (for performance)

3. Location transparency
* Actors can pass around references to one another or persist them
e These are logical (virtual) references, always valid, not tied to a specific activation



Actor State Management

* The runtime instantiates an actor by invoking the actor’s constructor
* The constructor typically reads the actor’s state based on its key
* Usually from storage, but possibly from a device (e.g. phone, game console, sensor)

* The actor saves its state to storage whenever it wants

* Typically before returning from a method call that mutates its state
e Or could be after n seconds, or after n calls, etc.

* Orleans does not support transactions (yet)

* Declarative persistence
 Attach all state variables to an interface that inherits from IState
* Declare a persistence provider for the class (Azure Table, Azure SQL DB, Redis...)
* Invoke “WriteState” to save the state to the persistent store



Scalability

Test Lab Numbers

* Near linear scaling to hundreds of 500,000/
thousands of requests per second 2
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Orleans was built for...

Scenarios Common characteristics

* Social graphs * Large numbers of independent actors
* Mobile backend * Free-form relations between actors

* Internet of things * High throughput/low latency

e Real-time analytics * Fine-grained partitioning is natural

* ‘Intelligent’ cache * Cloud-based scale-out & elasticity

e Interactive entertainment * Broad range of developer experience

= Not good for a service where different requests span different
combinations of records over a large database



Other features

e Exceptions are automatically propagated
* Timers that live as long as the hosting activation

* Fault-tolerant timers, for infrequent events



Production usage

e Halo 4 - all back end services

* Players, games, weapon caches, regions, scoreboards, ....
* Dozens of services, 10s to 100s of machines each
* 100Ks of requests per second

* Bursty load (evenings, weekends) and peak load at product launch

* Back end services of many other game studios
e About ten other Microsoft services run on Orleans

* Examples: intelligent cache, telemetry.

* Public preview since April 2014



Near real-time analytics

* Devices send telemetry to the Cloud

* Per-device actors process and
pre-aggregate incoming data

* Grouping by location, category, etc.

e Statistics, predictive analytics, fraud
detection, etc.

e Control channel back to devices

* Elastically scales with number of devices
and groupings




Intelligent cache

e Actors hold cache values
* Semantic operations on values
* Function shipping (method calls)

e Coordination across multiple values

* Automatic LRU eviction
* Transparent on-demand reactivation

* Write-through cache with optional batching




Outline

v'Orleans Overview

* Runtime Library

* Cluster Membership
* Actor Directory



Actors in Orleans
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Actor execution model

* Activations are single-threaded
e Optionally re-entrant
* Runtime schedules execution of methods
* Multiplexed across threads

* No shared state
* Avoid races
* No need for locks

* Cooperative multitasking
* Everything must be asynchronous



Distributed Runtime
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Achieving Efficiency and Scalability

* Cooperative multitasking

* Multiplexed Communication
* Balanced placement

* Custom Serialization

e Support for Immutability



Outline

v'Orleans Overview
v'Runtime Library

* Cluster Membership
* Actor Directory



Cluster Membership

e A cluster is a set of servers

e Each server must know the identity of every other available server
in its cluster

* Orleans uses reliable storage to store the consensus view
* A table, with one row per server describing the server’s state

 We use Microsoft Azure Table service

e Supports optimistic concurrency control via http ETags.
Read returns a row’s ETag.
Write only if the row’s ETag is unchanged.

e Supports transactions over rows with the same partition key



Cluster membership protocol

* The servers form a ring using consistent hashing
* Each server pings the next 3 in the ring, every few seconds.

* If a server S gets N successive failures to ping server T,
S writes its timestamped suspicion into T's row

* If T has more than M suspicions within K seconds, then
* S writes that T is dead into T’s row, using an Etag to avoid lost updates

* and broadcasts a request for all servers to re-read the membership table
(which they’ll do anyway periodically)

T kills itself upon learning it is dead.
System infrastructure will restart it with a new name



It’s useful to totally order membership states

* Avoids two servers killing two other servers, and neither of
them knowing right away about the other one’s actions.

* Serializes the joining of new servers to the cluster

* Allows a new joining server to validate two-way connectivity to every
other server that has already started.

 Ensures that at least when a server starts, there is full connectivity
between all servers in the cluster.
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Totally ordering membership states

* So we add a membership-version row that tracks state changes

 Within a transaction, S writes that T is dead and,
if S’s membership-version is still fresh, S increments the version
number in the membership-version row, else S aborts.

* If S’'s membership-version was stale, it re-reads the membership state and re-
runs the transaction

* That way the membership configurations are totally ordered with
increasing version number



Algorithm properties

* Our algorithm can handle any number of failures.
* |.e., does not require quorum.

* We have seen production situations when over half of the servers
were down.

* Our algorithm can handle thousands and probably even tens of
thousands of servers

* Paxos-based solutions generally do not scale beyond tens of servers
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Outline

v'Orleans Overview
v'Runtime Library
v'Cluster Membership
* Actor Directory



Actor Directory: ActorID =2 ServerlD

» Stored In a DHT, spread across all active servers

* Each server owns a partition of the key space

 Each actor Is assigned to a partition by consistent hashing
* Directory enforces the single-activation constraint
* Each server caches recently used actor-to-server mappings

* A mapping entry can be wrong (stale cache, failed unregister)
* Recipient of a misdirected message reroutes it or returns an exception

» Sender and receiver correct the error by invalidating a cache entry or
updating the directory entry
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Server failures

* When a server F fails, its directory partition is lost

* When server S, learns of F's failure

* It purges its directory partition of actor entries that map to F
* It kills local actor activations that were mapped by F

* While resolving a failure, the directory might be inconsistent
« We favor availability over consistency

* This "eventual single-activation consistency” semantics has been the
right tradeoff for most applications
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Eventual single-activation consistency

* Single Instancing may be compromised during recovery
* Suppose actor a was mapped by F to server S,

* If S, is slow at learning of F’s failure, a server with a cached entry for a may
invoke a at S,

* Meanwhile, if S, invokes q, it will create a new directory entry for it at (say)
server S; and activate it at (say) S,

® So now there are two activations of a, at S, and at S,

* Eventually, S, will learn of F's failure and kill a

* a at S, might save its state during its rundown, which might conflict with
state saved by a at S,

* If so, a at S, will have to merge its state with the one saved by a at §,

30



Geo-distributed Actor Directory (prototype)

* Suppose an application is distributed in many clusters

* To ensure single-instancing, a request to activate actor ain
cluster C, triggers a consensus protocol with other clusters
* C, asks other clusters if they have a copy.

* If all clusters reply “no”, then C, can safely instantiate a
* If C, says “yes” at server SC,, then C, maps a to SC,

* If a cluster C; doesn’t reply, then C, instantiates a anyway,
favoring availability over consistency

e Optimistic consensus: instantiate a and then run consensus, if it’s very unlikely
another cluster will instantiate a.

* When C, reunites with C,, they run a reconciliation protocol for actors they
created when they were disconnected.
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Geo-distributed directory reconciliation

* When server membership changes, servers exchange lists of in-doubt actors.

e If 22 servers have instantiated an actor with at least one in-doubt
* Then use a fixed precedence relation over server ID’s to choose a winner.
* Precedence could be global, per class, or per class+key



Conclusion

* Orleans Benefits
* Significantly improved developer productivity
* Makes cloud-scale programming attainable to desktop developers
* Scalability by default. Excellent performance
* Proven in multiple production services

* Main innovation: Virtual actor programming model

* Runtime algorithms
* Cluster membership
* Actor Directory

* Future work: transactions, streams, dynamic optimization



Website

http://research.microsoft.com/en-us/projects/orleans/

Get the public Community Preview:
http://aka.ms/orleans

Get the Samples:
https://orleans.codeplex.com/
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