

Project “Orleans” is a programming model and runtime

for building cloud native services

2

•Oversimplifying it: “Distributed C#”
• Orleans runs your .NET objects on a cluster as if within a single process

• Define .NET interfaces and classes, deploy to Azure, send requests to them

• Practically: “Toolset for building cloud-native services”
• Encapsulates best practices for building scalable, reliable, elastic services

• Framework for stateful near-real-time backends

• 3-5x less and simpler code to write, scalability by default

•Academically: “Distributed virtual actor model”
• Adaptation of the Actor Model for challenges of the Cloud

• Actors that exist eternally and never fail

What is Project “Orleans”?

3

•Developer Productivity
• Concurrency, distribution, fault tolerance, resource management…

• Modern workloads are even ‘worse’

• Domain of distributed systems experts

• Help desktop developers [and experts] succeed

• Write less code

Motivation

4

• Scalability by default
• Designs and architectures break at scale

• Failure to scale may be fatal for business

• Code must be scale-proof – must scale out without rewriting

Actor Model as Stateful Middle Tier
Frontends

Storage

Actor Middle Tier

5

Orleans Programming Model

• Each class has a key, whose values identify instances
• Game, player, phone, device, scoreboard, location, etc.

• To invoke an actor A, the caller passes the key to its local class factory
and gets back an actor reference RA

• The actor invokes a method on RA

• Method invocations are asynchronous
• Return a “task” (i.e., a promise)

• An attempt to reference a task’s result blocks the caller until the task completes

• .NET has language support for this (Task-Await)

6

Invoking a method on actor A

Class

Class
Factory

Methods

Constructor

Client
3. await RA.method()

Find A
If exist(A) { Task = await RAA.method }
else { choose a server S and

invoke A.new at S }

Actor A

Orleans Runtime

7

1. Actor instances always exist, virtually
• Application neither creates nor deletes them. They never fail.

• Code can always call methods on an actor

2. Activations are created on-demand
• If there is no existing activation, a message sent to it triggers instantiation

• Transparent recovery from server failures

• Lifecycle is managed by the runtime

• Runtime can create multiple activations of stateless actors (for performance)

3. Location transparency
• Actors can pass around references to one another or persist them

• These are logical (virtual) references, always valid, not tied to a specific activation

Key Innovation: Virtual actors

8

Actor State Management
• The runtime instantiates an actor by invoking the actor’s constructor

• The constructor typically reads the actor’s state based on its key

• Usually from storage, but possibly from a device (e.g. phone, game console, sensor)

• The actor saves its state to storage whenever it wants
• Typically before returning from a method call that mutates its state

• Or could be after n seconds, or after n calls, etc.

• Orleans does not support transactions (yet)

• Declarative persistence
• Attach all state variables to an interface that inherits from IState

• Declare a persistence provider for the class (Azure Table, Azure SQL DB, Redis…)

• Invoke “WriteState” to save the state to the persistent store
9

Scalability

• Near linear scaling to hundreds of
thousands of requests per second

• Also scalable in number of actors

• Multiplexed resources for efficiency

• Location transparency simplifies
scaling up or down

• Elastic – transparently adjusts to
adding or removing servers

10

Test Lab Numbers

Request: Client  Actor 1  Actor 2

Common characteristics

• Large numbers of independent actors

• Free-form relations between actors

• High throughput/low latency

• Fine-grained partitioning is natural

• Cloud-based scale-out & elasticity

• Broad range of developer experience

Orleans was built for…



11

Other features

• Exceptions are automatically propagated

• Timers that live as long as the hosting activation

• Fault-tolerant timers, for infrequent events

12

• Halo 4 - all back end services
• Players, games, weapon caches, regions, scoreboards, ….

• Dozens of services, 10s to 100s of machines each

• 100Ks of requests per second

• Bursty load (evenings, weekends) and peak load at product launch

• Back end services of many other game studios

• About ten other Microsoft services run on Orleans
• Examples: intelligent cache, telemetry.

• Public preview since April 2014

Production usage

13

• Devices send telemetry to the Cloud

• Per-device actors process and
pre-aggregate incoming data

• Grouping by location, category, etc.

• Statistics, predictive analytics, fraud
detection, etc.

• Control channel back to devices

• Elastically scales with number of devices
and groupings

Near real-time analytics

• Actors hold cache values

• Semantic operations on values

• Function shipping (method calls)

• Coordination across multiple values

• Automatic LRU eviction

• Transparent on-demand reactivation

• Write-through cache with optional batching

Intelligent cache

Outline

Orleans Overview

• Runtime Library

• Cluster Membership

• Actor Directory

16

Actors in Orleans

#2,548,308

#2,031,769

Activation #1 @ 192.168.1.1

Activation #1 @ 192.168.1.5

17

• Activations are single-threaded
• Optionally re-entrant

• Runtime schedules execution of methods

• Multiplexed across threads

• No shared state
• Avoid races

• No need for locks

• Cooperative multitasking
• Everything must be asynchronous

Actor execution model

18

Distributed Runtime

Client
Gateway

Messaging/Serialization

Cluster
Membership

Actor Directory

Activation Catalog

Dispatcher

Scheduler

Actor ActivationsPersistence
Manager

Client
Gateway

Cluster
Membership

Actor
Directory

Activations
Manager

Scheduler

Actor
Activations

Persistence
Manager

Messaging/Serialization

Client
Gateway

Messaging/Serialization

Cluster
Membership

Actor Directory

Activation Catalog

Dispatcher

Scheduler

Actor ActivationsPersistence
Manager

Client
Gateway

Messaging/Serialization

Cluster
Membership

Actor Directory

Activation Catalog

Dispatcher

Scheduler

Actor ActivationsPersistence
Manager

19

• Cooperative multitasking

• Multiplexed Communication

• Balanced placement

• Custom Serialization

• Support for Immutability

Achieving Efficiency and Scalability

20

Outline

Orleans Overview

Runtime Library

• Cluster Membership

• Actor Directory

21

• A cluster is a set of servers

• Each server must know the identity of every other available server
in its cluster

• Orleans uses reliable storage to store the consensus view
• A table, with one row per server describing the server’s state

• We use Microsoft Azure Table service
• Supports optimistic concurrency control via http ETags.

Read returns a row’s ETag.
Write only if the row’s ETag is unchanged.

• Supports transactions over rows with the same partition key

Cluster Membership

22

• The servers form a ring using consistent hashing

• Each server pings the next 3 in the ring, every few seconds.

• If a server S gets N successive failures to ping server T,
S writes its timestamped suspicion into T’s row

• If T has more than M suspicions within K seconds, then
• S writes that T is dead into T’s row, using an Etag to avoid lost updates

• and broadcasts a request for all servers to re-read the membership table
(which they’ll do anyway periodically)

• T kills itself upon learning it is dead.
System infrastructure will restart it with a new name

Cluster membership protocol

23

•

•

•

•

It’s useful to totally order membership states

24

• So we add a membership-version row that tracks state changes

• Within a transaction, S writes that T is dead and,
if S’s membership-version is still fresh, S increments the version
number in the membership-version row, else S aborts.
• If S’s membership-version was stale, it re-reads the membership state and re-

runs the transaction

• That way the membership configurations are totally ordered with
increasing version number

Totally ordering membership states

25

Algorithm properties

26

Outline

Orleans Overview

Runtime Library

Cluster Membership

• Actor Directory

27

Actor Directory: ActorID ServerID

28

Server failures

29

•

Eventual single-activation consistency

30

Geo-distributed Actor Directory (prototype)

31

• When server membership changes, servers exchange lists of in-doubt actors.

• If ≥2 servers have instantiated an actor with at least one in-doubt
• Then use a fixed precedence relation over server ID’s to choose a winner.

• Precedence could be global, per class, or per class+key

Geo-distributed directory reconciliation

32

Conclusion

• Orleans Benefits
• Significantly improved developer productivity

• Makes cloud-scale programming attainable to desktop developers

• Scalability by default. Excellent performance

• Proven in multiple production services

• Main innovation: Virtual actor programming model

• Runtime algorithms
• Cluster membership

• Actor Directory

• Future work: transactions, streams, dynamic optimization

Website
http://research.microsoft.com/en-us/projects/orleans/

Get the public Community Preview:
http://aka.ms/orleans

Get the Samples:
https://orleans.codeplex.com/

34

http://research.microsoft.com/en-us/projects/orleans/
http://aka.ms/orleans
https://orleans.codeplex.com/

35

