
Unifying Views of Tail-Biting Trellises for Linear Block Codes

A Thesis

Submitted For the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Aditya Vithal Nori

Department of Computer Science and Automation
Indian Institute of Science

Bangalore – 560 012

SEPTEMBER 2005

Abstract

This thesis presents new techniques for the construction and specification of linear tail-biting

trellises. Tail-biting trellises for linear block codes are combinatorial descriptions in the form

of layered graphs, that are somewhat more compact than the corresponding conventional

trellis descriptions. Conventional trellises for block codes have a well understood underlying

theory. On the other hand, the theory of tail-biting trellises appears to be somewhat more

involved, though several advances in the understanding of the structure and properties of

such trellises have been made in recent years. Of fundamental importance is the observation

that a linear tail-biting trellis for a block code corresponds to a coset decomposition of the

code with respect to a subcode. All constructions seem to use this property in some way; in

other words, this is the unifying factor in all our constructions. The constructions yield the

conventional trellis when the subcode is the whole code. We list the main contributions of

this thesis.

(i) We generalize the well known Bahl-Cocke-Jelinek-Raviv construction for conventional

trellises to obtain tail-biting trellises. We show that a linear tail-biting trellis for a

linear block code C with block length n and dimension k over a finite field Fq, can

be constructed by specifying an arbitrary parity check matrix H for C along with a

displacement matrix D ∈ F(n−k)×k
q .

(ii) We show that the displacement matrix D yields a coset decomposition of the code.

We present a dynamic algorithm that starts with a generator matrix for the code C in

trellis-oriented form, and computes the displacement matrix D for a minimal trellis in

time O(nk).

(iii) Forney has given an elegant algebraic characterization of a conventional trellis in terms

of a quotient group of the code with respect to a special subgroup. Given a coset

decomposition of the code, we propose a natural extension for tail-biting trellises, which

considers a circular time axis instead of a linear one. The quotient group of interest is

formed by judiciously using the properties of coset leaders.

(iv) There is an interesting connection between algebraic and combinatorial duality. For

conventional trellises, it is known that the primal and dual trellises have the same

i

state-complexity profile. We give a simple and direct construction for a dual trellis

in terms of the generator matrix G , the parity check matrix H and the displacement

matrix D, and prove that the same property is true for tail-biting trellises.

(v) We give a new characterization of linear tail-biting trellises in terms of of an equiva-

lence relation defined on a language derived from the code under consideration. The

equivalence relation is intimately tied up with the coset decomposition of the code with

respect to a subcode. In the context of formal language theory, this interpretation is

an adaptation of the Myhill-Nerode theorem for regular languages.

ii

Papers based on this Thesis

(i) Aditya Nori and Priti Shankar, Insights into compact graph descriptions of block codes,

SIAM Conference on Discrete Mathematics, San Diego, USA, July 2002.

(ii) Aditya Nori and Priti Shankar, A BCJR-like labeling algorithm for tail-biting trellises,

IEEE International Symposium on Information Theory (ISIT), Yokohama, Japan, July

2003.

(iii) Aditya Nori and Priti Shankar, Tail-biting trellises for linear codes and their duals,

Forty-First Annual Allerton Conference on Communication, Control and Computing,

Allerton, IL, USA, October 2003.

(iv) Aditya Nori and Priti Shankar, A coset construction for tail-biting trellises, Interna-

tional Symposium on Information Theory and its Applications (ISITA), Parma, Italy,

October 2004.

(v) Aditya Nori and Priti Shankar, Unifying views of tail-biting trellis constructions for lin-

ear block codes, IEEE Transactions on Information Theory (accepted pending revision),

July 2005.

iii

To my wife, Sarada

my daughter, Madhavi

my parents, Govind and Asha

Contents

Abstract i

Papers based on this Thesis iii

1 Introduction 1
1.1 Overview of the Thesis . 2

2 Preliminaries 4
2.1 An Introduction to Error-Correcting Codes . 4

2.1.1 Linear Block Codes . 6
2.1.2 Coset Decomposition of a Linear Block Code . 7
2.1.3 Decoding an Error-Correcting Code . 8

2.2 The Trellis Structure of Linear Block Codes . 10
2.2.1 The Bahl,Cocke, Jelinek, Raviv Construction . 13
2.2.2 The Massey Construction . 15
2.2.3 The Forney Construction . 16
2.2.4 The Kschischang-Sorokine Construction . 18
2.2.5 Upper Bounds on Trellis Complexity . 21

2.3 Tail-Biting Trellises for Linear Block Codes . 22

3 Linear Tail-Biting Trellises 25
3.1 Introduction . 25
3.2 Definition and Properties of Linear Trellises . 26
3.3 Computing Minimal Tail-Biting Trellises . 30

3.3.1 Definitions and Notation . 30
3.3.2 The Characteristic Matrix . 32

3.4 Overlayed Structure of Linear Tail-Biting Trellises . 34

4 The Tail-Biting BCJR Trellis 39
4.1 The Tail-biting BCJR Trellis . 39
4.2 Construction of Minimal Trellises . 47

5 The Tail-Biting Forney Trellis 53
5.1 Introduction . 53
5.2 The Tail-Biting Forney Trellis . 54

6 The Tail-Biting Dual Trellis 59
6.1 The Intersection Product . 59
6.2 The Tail-Biting Dual Trellis . 63

7 Abstract Characterization of Tail-Biting Trellises 67
7.1 The Myhill-Nerode Theorem for Regular Languages . 67
7.2 An Abstract Characterization of Linear Tail-Biting Trellises 70

v

8 Conclusions 74

Bibliography 76

vi

List of Figures

2.1 Shannon’s schematic of a communication system. 5
2.2 The minimal conventional trellis for the (7, 4)2 Hamming code. 12
2.3 The minimal conventional BCJR trellis for the (4, 2)2 code. 14
2.4 The minimal conventional Forney trellis for the (4, 2)2 code. 18
2.5 The elementary trellis for (0110) with span [2, 3]. 20
2.6 The elementary trellis for (1001) with span [1, 4]. 20
2.7 The minimal Kschischang-Sorokine product trellis for the (4, 2)2 code. 20
2.8 A non-biproper Kschischang-Sorokine product trellis for the (4, 2)2 code. 21
2.9 A tail-biting trellis for the (7, 4)2 Hamming code. 24

3.1 A non-linear tail-biting trellis for the (6, 2)2 code. 26
3.2 A mergeable tail-biting trellis for the (3, 2)2 code. 27
3.3 Elementary trellis for (0110) with span [2, 3]. 28
3.4 Elementary trellis for (1001) with span [4, 1]. 28
3.5 The KV product trellis for the (4, 2)2 linear code. 29
3.6 A non-minimal tail-biting trellis for the (4, 2)2 code. 30
3.7 A minimal trellis representing the code C0 = {0000, 0110}. 35
3.8 A minimal trellis representing the coset C1 = {1001, 1111}. 35
3.9 An overlayed trellis for the (4, 2)2 code. 36
3.10 A minimal trellis representing the code C0 = {0000000, 1000110, 0010111, 1010001}. 37
3.11 A minimal trellis representing the coset C1 = {0100011, 1100101, 0110100, 1110010}. 37
3.12 A minimal trellis representing the coset C2 = {0111001, 1111111, 0101110, 1101000}. 37
3.13 A minimal trellis representing the coset C3 = {0011010, 1011100, 0001101, 1001011}. 38
3.14 An overlayed trellis for the (7, 4)2 Hamming code. 38

4.1 A T–BCJR trellis for the (4, 2)2 code. 43
4.2 A minimal T–BCJR trellis for the (7, 4)2 Hamming code. 44
4.3 A trellis for the (3, 2)2 code not computable by a T–BCJR construction. 46
4.4 A non one-to-one non-mergeable T–BCJR trellis for the (3, 2)2 code. 46
4.5 A mergeable T–BCJR trellis for the (4, 2)2 code. 47

5.1 A T–Forney trellis for the (4, 2)2 code. 56
5.2 A T–Forney trellis for the (7, 4)2 Hamming code. 57

6.1 An elementary dual trellis for the vector (0110) with span [2, 3]. 61
6.2 An elementary dual trellis for the vector (1001) with span [4, 1]. 61
6.3 A dual trellis for the (4, 2)2 code computed by an intersection product. 62
6.4 A non-minimal trellis for the (4, 2)2 code in Example 6.6. 62
6.5 An elementary trellis for the code 〈1110〉⊥. 62
6.6 An elementary trellis for the code 〈1011〉⊥. 63
6.7 A dual trellis for the dual code in Example 6.6 that is not reduced. 63
6.8 A T–BCJR⊥ trellis for the (4, 2)2 code. 64
6.9 A T–BCJR⊥ trellis for the (7, 4)2 Hamming code. 65

vii

7.1 A DFA for the language in Example 7.4. 68
7.2 δ(q, a) for the DFA in Figure 7.1. 69
7.3 A reduced one-to-one non-mergeable tail-biting trellis for the (3, 2)2 code. 72

viii

Chapter 1

Introduction

Our difficulty is not in the proofs, but in learning what to prove.

Emil Artin

Trellis decoding is the most pragmatic and well researched method of performing soft-decision

decoding. The trellis was first introduced by Forney [For67] in 1967 as a conceptual device

to explain the Viterbi algorithm for decoding convolutional codes. While the trellis has been

studied in the context of convolutional codes for the first two decades since its inception,

recent times have seen a significant amount of research devoted to the study of the trellis

structure of linear block codes [Var98]. In 1974, Bahl, Cocke, Jelinek and Raviv [BCJR74]

worked on a maximum aposteriori decoding algorithm for convolutional codes, and showed

that linear block codes have combinatorial descriptions in the form of trellises. They proposed

a labeling scheme that directly yielded the minimal conventional trellis for a linear block code.

Solomon and van Tilborg [SvT79] introduced tail-biting trellises to construct block codes from

convolutional codes.

Tail-biting trellises for linear block codes [CFV99] are combinatorial descriptions that are

somewhat more compact than the corresponding conventional trellis descriptions. While

conventional trellises for block codes have a well understood underlying theory [BCJR74,

For88, KS95, Ksc96, Mas78, Mud88, Var98], the theory of tail-biting trellises appears to be

somewhat more involved, though several advances in the understanding of the structure and

properties of such trellises have been made in recent years [CFV99, KV02, KV03, RB99,

1

SKSR01, SDDR03, SB00].

Given a block code, it is known that there exists a unique minimal conventional trellis

representing the code [McE96, Mud88], and there are several different algorithms for the

construction of such a trellis [BCJR74, For88, KS95, Mas78]. The trellis simultaneously

minimizes all measures of minimality. However, it is known that tail-biting trellises do not

have such a property. Kötter and Vardy [KV02, KV03] have made a detailed study of the

structure of linear tail-biting trellises and have also defined several measures of minimality.

For tail-biting trellises, it is shown that different measures of minimality correspond to dif-

ferent partial orders on the set of linear trellises for a block code. An interesting property

that is known for conventional trellises is that the minimal conventional trellis for a linear

block code and its dual have identical state-complexity profiles [For88]. Kötter and Vardy

have suggested a dual trellis construction using an intersection product operation [KV03].

They prove that the resulting dual trellis has a state-complexity profile identical to its pri-

mal counterpart only if the primal trellis is ≺Θ-minimal. We will now review the general

organization of the thesis, and provide a road map to our main results.

1.1 Overview of the Thesis

In Chapter 2, we review the basic notions of error-correcting codes starting with the descrip-

tion of linear codes. In Section 2.2, we introduce the notion of a conventional trellis and then

describe in chronological order the various constructions for minimal conventional trellises.

We also define tail-biting trellises in this chapter.

In Chapter 3, we give a detailed introduction to the theory of linear tail-biting trellises.

We first review various notions of trellis minimality and then describe Kötter and Vardy’s

characteristic matrix formulation for the minimal trellis problem. We present the overlayed

structure of linear tail-biting trellises, where a linear tail-biting trellis for a linear block code

C may be constructed by overlaying subtrellises obtained from a coset decomposition of C.

The coset decomposition in fact is the unifying property in all the constructions.

In Chapter 4, we generalize the BCJR construction for conventional trellises to obtain

linear tail-biting trellises. We show that a linear tail-biting trellis for a linear block code

C of length n and dimension k, can be constructed by specifying an arbitrary parity check

2

matrix H for C along with an (n−k)×k displacement matrix D. We also present a dynamic

algorithm that starts with a generator matrix for C in trellis-oriented form, and computes D

for a minimal trellis in time O(nk).

In Chapter 5, we generalize the Forney construction for conventional trellises to obtain

tail-biting trellises. Specifically, we show that a linear tail-biting trellis for a linear block

code can be computed from a certain coset decomposition of the code with respect to a

subcode of the code.

In Chapter 6, we give a new construction for computing dual tail-biting trellises. We

begin by describing Kötter and Vardy’s intersection product to construct a linear tail-biting

dual trellis directly from a generator matrix for the primal code. This results in a linear tail-

biting trellis T⊥ for the dual code that has the same state-complexity profile as the primal

trellis T , only if T is ≺Θ-minimal. We next describe our construction of dual trellises that is

based on the BCJR specification. This results in a linear tail-biting trellis for the dual code

that has the same state-complexity profile as the primal trellis. Using this construction, we

prove that given any minimal trellis T for a primal code, there exists a dual trellis T⊥ for

the dual code, such that T and T⊥ have identical state-complexity profiles.

Finally, in Chapter 7, we describe an abstract characterization for linear tail-biting trellises

in terms of an equivalence relation defined on a certain language derived from the code. In

the context of formal language theory, this characterization is similar to the Myhill-Nerode

theorem for regular languages.

We conclude our work in Chapter 8 with a summarization of our results. We also propose

avenues of study for future research in this area.

3

Chapter 2

Preliminaries

In this chapter the basic notions of error-correcting codes will be reviewed, starting with the

concept of linear block codes. We will then introduce the theory of trellises and constructions

of trellises that will be used in this thesis.

2.1 An Introduction to Error-Correcting Codes

The purpose of this section is to provide the reader with a convenient reference for basic

definitions and concepts from coding theory that we will use in this thesis. These definitions

may be found in any textbook on coding theory [McE04, vL99].

The fundamental problem in communication is to deal with distortions that occur in mes-

sages that are sent from one place to another. Error-correcting codes provide a systematic

means of padding a message carrying information with extra symbols, so that a receiver

can retrieve the sent message even if part of the message is corrupted in transmission. In

his seminal 1948 paper A Mathematical Theory of Communication, Shannon [Sha48] proved

tight lower bounds on the amount of redundancy required to tolerate a prescribed amount

of distortion introduced by discrete communication channels. Shannon modeled the commu-

nication problem as a situation in which a sender is trying to send information from a source

to a destination over a channel that is noisy. He also described a coding scheme in which the

original message is divided into blocks, and each block is padded with redundant information

to form a codeword that is transmitted over the noisy channel. A receiver collects the possi-

bly distorted transmitted word and if this is not too different from the sent codeword, it will

4

be able to pass on the correct message to the destination. This is illustrated in Figure 2.1.

Remarkably, Shannon demonstrated that there exists a coding scheme that enables one to

reliably communicate across a channel at rates lower than a quantity which he termed the

capacity of the channel.

encoder

channel

receiverdecodersender
message codeword received word message

noise

Figure 2.1: Shannon’s schematic of a communication system.

The important components of a coding scheme are as follows.

• The information word m is a block of symbols that the sender wishes to transmit. For

our purposes, m is an arbitrary word of k symbols from the finite field Fq of size q.

• The encoder is an algorithm that the sender uses to pad the information word m with

redundant information. It can be looked upon as a function enc : Fkq → F
n
q that

transforms an information word of k symbols to a codeword of n symbols.

• The code C is the set of all possible codewords. That is, C = {enc(m) : m ∈ Fkq}.

• Three important parameters of a code are

(i) The block length of the code which is the length n of the codewords output by

the encoder.

(ii) The dimension k of the code which is the length of an information word. This

term is typically used for linear codes when the code forms a vector space. These codes

are described in Section 2.1.1.

(iii) The rate R of a code is the ratio of its dimension and block length, or R = k/n.

• The channel is the communication medium over which the codeword is transmitted.

There are many channel models in the literature, and the reader is referred to [CT91]

for descriptions of some well known models.

5

• The received word y is the output of the channel and possibly corrupted version of the

codeword c.

• The decoder is an algorithm that the receiver uses to recover the original information

word m from the received word y. It can be looked upon as a function dec : Fnq → F
k
q

that computes an information word of k symbols from the received word y of n symbols.

The primary objective in coding theory is to design coding schemes with the best possible

parameters and efficient encoding/decoding algorithms. It is often convenient to restrict

codes to a certain structure and this is the topic of the next section.

2.1.1 Linear Block Codes

A code with block length n is any set of M vectors over a finite field Fq. A code C with

block length n over an alphabet Fq is a linear block code if it is a linear subspace of Fnq . If C

has dimension k, we will call such a code an (n, k)q linear block code. There are two natural

ways of specifying an (n, k)q code C.

The first consists of specifying a basis for C, in the form of a generator matrix. A generator

matrix G for C is a k × n matrix whose rows are the basis vectors for the subspace C. The

encoder for C simply multiplies the information word m with the generator matrix G . In

other words, enc(m) = mG , and therefore

C = {mG : m ∈ Fkq} (2.1)

The second way of specifying C is by listing out the linear constraints that each codeword

in C must obey. This is done by specifying a parity check matrix for C. A parity check matrix

H for C is an (n− k)× n matrix whose rows are the basis vectors for the dual code C⊥. The

dual code C⊥ is the set of all words in Fnq that are orthogonal to words in C. Therefore C

may also be defined as

C = {x ∈ Fnq : H xt = 0} (2.2)

Example 2.1 As an example of a linear block code, consider a (7, 4)2 Hamming code C,

with block length n = 7, dimension k = 4 and rate R = 4/7. A generator matrix and parity

6

check matrix for this code are

G =


0 0 0 1 1 0 1

1 1 0 1 0 0 0

0 0 1 1 0 1 0

1 0 1 0 0 0 1

 and H =


1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

 .

A matrix over a field F is said to be in row reduced echelon (RRE) form if it satisfies the

following properties:

(a) The leftmost nonzero entry in each row is 1.

(b) Every column containing such a leftmost 1 has all its other entries 0.

(c) If the leftmost entry in row i occurs in column ti, then t1 < t2 < · · · tr.

Definition 2.2 An (n, k)q code is said to be a systematic code if every codeword has the

information symbols in its first k components. In other words, its generator matrix can be

written as G = [Ik A].

Example 2.3 The following is a generator matrix for a (7, 4)2 Hamming code in systematic

form.

G =


1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1



Definition 2.4 Let C be an (n, k)q code with parity check matrix H = [h1h2 · · ·hn] , where

hi ∈ F(n−k)×n
q , 1 ≤ i ≤ n are the columns of H . Given a codeword c = (c1, c2, . . . , cn) ∈ C,

the ith partial syndrome of c is defined as
∑i

j=1 cjhj.

2.1.2 Coset Decomposition of a Linear Block Code

Let C be an (n, k)q code with generator matrix G . A subset of qk1 codewords C0 in C,

0 ≤ k1 ≤ k, is called a linear subcode of C if this subset C0 is a k1-dimensional subspace of

7

C. Any k1 rows of the generator matrix G span an (n, k1)q linear subcode C, and they form

a generator matrix for the subcode.

Let C0 be an (n, k1)q subcode of C. Then C can be partitioned into qk−k1 cosets {Ci}q
k−k1−1
i=0

of C0, where

Ci
def
= vi + C0 = {vi + y : y ∈ C0}, 1 ≤ i ≤ qk−k1 − 1 (2.3)

with vi ∈ C\C0. This partition of C with respect to C0 is denoted by C/C0, and the codewords

vi, 1 ≤ i ≤ qk−k1 − 1, are called the coset representatives. Any codeword in a coset can be

used as the coset representative without changing the coset.

Example 2.5 For the (7, 4)2 Hamming code from Example 2.3, choosing k1 = 2, the subcode

C0 as the space spanned by the first two rows of G, v1 = 0010111, v2 = 0001101 and

v3 = 0011010, we obtain the following coset decomposition C/C0.

C0 = {0000000, 1000110, 0100011, 1100101}

C1 = {0010111, 1010001, 0110100, 1110010}

C2 = {0001101, 1001011, 0101110, 1101000}

C3 = {0011010, 1011101, 0111001, 1111111}

2.1.3 Decoding an Error-Correcting Code

Suppose an (n, k)2 linear block code C is used for error-correction over an Additive White

Gaussian Noise (AWGN) channel [CT91].

Definition 2.6 The Additive While Gaussian Noise (AWGN) channel has real input x ∈ R

and real output y ∈ R. The conditional distribution of y given x is a Gaussian distribution.

Pr(y|x) =
1√

2πσ2
exp

[
−(y − x)2

2σ2

]
(2.4)

This channel has inputs and outputs that are from a continuous space, but is discrete in time.

Let x = (x1, x2, . . . , xn) be the transmitted codeword. Before transmission, a modulator

maps each codeword component into an elementary signal waveform. The resulting signal

sequence is then transmitted over the channel and is possibly distorted by noise. At the

8

receiver, the received signal sequence is processed by a demodulator and this results in a

received sequence of real numbers r = (r1, r2, . . . , rn). Each component of r is the sum of a

fixed real number c and a Gaussian random variable of zero mean and variance σ2, where c

corresponds to a transmitted codeword bit. In one scheme, the demodulator can be used to

make hard-decisions on whether each transmitted codeword bit is a ‘0’ or a ‘1’. This results

in a binary received sequence y = (y1, y2, . . . , yn), which may contain transmission errors,

that is, for some i, yi 6= xi. This sequence y is then fed to the decoder which attempts

recover the original transmitted codeword x. Since the decoder operates on hard-decisions

made by the demodulator, the decoding process is called hard-decision decoding.

Another scheme uses the unquantized outputs from the demodulator and feeds them

directly to the decoder, and this decoding process is called soft-decision decoding. Since

the decoder makes use of the additional information contained in the unquantized received

samples to recover the transmitted codeword, soft-decision decoding provides better error-

performance than hard-decision decoding. However, hard-decision decoding algorithms are

easier to implement. Various hard-decision decoding algorithms based on the algebraic struc-

ture of linear block codes have been devised [McE04]. More recently, effective soft-decision

decoding algorithms have been devised and they achieve either optimum error performance

or suboptimum error performance with reduced decoding complexity [Wib96].

Let x̂ be the estimate of the transmitted codeword x output by the decoder. A decoding

error occurs if and only if x̂ 6= x. Given that r is received, the conditional error probability

of the decoder is defined as

Pr(E|r)
def
= Pr(x̂ 6= x|r) (2.5)

The error probability of the decoder is then given by

Pr(E) =
∑
r

Pr(E|r)Pr(r) (2.6)

An optimum decoding rule is one that minimizes Pr(E|r) for all r. This translates to

choosing a codeword x̂ that maximizes

Pr(x̂|r) =
Pr(r|x̂)Pr(x̂)

Pr(x̂)
(2.7)

9

that is, x̂ is chosen as the most likely codeword conditional on the received sequence r. If

all codewords are equally likely, maximizing (2.7) is equivalent to maximizing Pr(r|x). For

a memoryless channel1 we have,

Pr(r|x) =
n∏
i=1

Pr(ri|xi) (2.8)

A decoder that chooses its estimate so as to maximize (2.8) is called a maximum-likelihood

decoder, and the decoding process is called Maximum-Likelihood (ML) decoding.

The problem of maximum-likelihood decoding (hard-decision and soft-decision) in coding

theory is known to be an NP-hard problem [BMvT78]. Nevertheless, it is possible to achieve

maximum-likelihood soft-decision decoding of linear codes with a complexity exponent that

is much smaller than nmin{R, 1 − R} (where n and R are the length and rate of the code

under consideration) [LKFF98]. Despite their exponential complexity, these algorithms are

of significant interest in coding theory due to the significant gap that exists between the per-

formance of hard-decision bounded distance decoding and soft-decision maximum-likelihood

decoding. Trellis decoding is the most pragmatic and well researched method of perform-

ing soft-decision decoding of this nature [LKFF98]. Therefore, the construction of minimal

trellises is of interest as the decoding algorithm reduces to a shortest path algorithm (the

Viterbi algorithm [For73, Var98]) on the trellis.

2.2 The Trellis Structure of Linear Block Codes

The trellis was first introduced by Forney [For67] in 1967 as a conceptual device to explain

the Viterbi algorithm for decoding convolutional codes. While the trellis has been studied

in the context of convolutional codes for the first two decades since its inception, recent

times have seen a significant amount of research devoted to the study of the trellis structure

of linear block codes [Var98]. In 1974, Bahl, Cocke, Jelinek and Raviv [BCJR74] worked on

various aspects of convolutional codes, and showed that linear block codes have combinatorial

descriptions in the form of trellises, thus uncovering an important connection between block

codes and convolutional codes. We will first define conventional trellises (and introduce

1A channel is memoryless if the output ri at time i depends only on the input xi at time i.

10

tail-biting trellises later), and then describe several constructions for minimal conventional

trellises. An excellent survey of the theory of conventional trellises for linear block codes

is [Var98].

Definition 2.7 A conventional trellis T = (V,E,Σ) of depth n is an edge-labeled directed

graph with the property that the set V can be partitioned into n+1 vertex classes

V = V0 ∪ V1 ∪ · · · ∪ Vn (2.9)

where |V0| = |Vn| = 1, such that every edge in T is labeled with a symbol from the alphabet

Σ, and begins at a vertex of Vi and ends at a vertex of Vi+1, for some i ∈ {0, 1, . . . , n− 1}.

A conventional trellis is just the transition diagram for a finite automaton defined below.

Definition 2.8 A nondeterministic finite automaton (NFA) M is a 5-tuple (Q,Σ, δ, q0.F),

where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial state, F ⊆ Q

is the set of final states, and δ : Q × Σ → 2Q is the transition function. That is, δ(q, a) is a

set of states for each state q ∈ Q and input symbol a ∈ Σ. If for all q ∈ Q, a ∈ Σ, δ(q, a) is

a unique state q′ ∈ Q, then the finite automaton is said to be a deterministic finite automaton

(DFA).

Formal definitions related to automata theory are given in Chapter 7. It is easily seen

that a trellis T can be represented by a finite automaton M (either deterministic or nonde-

terministic), where each vertex of T is a state of M .

The length of a path (in edges) from the root to any vertex is unique and the set of indices

I = {0, 1, . . . , n} for the partition in (2.9) are the time indices. Therefore, log|Σ| |Vi| is the

state-complexity of the trellis at time index i and the sequence
{

log|Σ| |Vi| , 0 ≤ i ≤ n
}

defines

the state-complexity profile (SCP) of the trellis. We will denote by smax(T) the maximum

state-complexity of T over all time indices. The trellis T is said to represent a block code

C over Σ if the set of all edge-label sequences in T is equal to C. Let C(T) denote the code

represented by the trellis T .

Definition 2.9 ([HU77]) A finite automaton M accepting a set L is said to be minimal if

the total number of states in M is minimized.

11

There can be an exponential gap between the size of the minimal DFA and the size of the

minimal NFA recognizing a language. That is, there are finite state languages for which the

minimal DFA is exponentially larger than the corresponding minimal NFA. An example of

such a language is L = Σ∗0Σn, where Σ = {0, 1} and n is a fixed positive integer (definitions

related to formal language theory may be found in Chapter 7).

However, this is not true for trellises for linear block codes. The minimal trellis (Defini-

tion 2.10) for a linear block code is the minimal deterministic automaton. The measure of

trellis complexity commonly used by coding theorists has to do with the SCP. The following

definition of trellis minimality is due to Muder [Mud88].

Definition 2.10 A trellis T for a code C of length n is minimal if it satisfies the following

property: for each i = 0, 1, . . . , n, the number of vertices in T at time i is less than or equal

to the number of vertices at time i in any other trellis for C.

Note that this is a stronger definition of minimality than that for finite automata.

0

1

0

1

0

1

1

0

0

1

1

0

0

1

1

0

1
0

1

0

1
0

0

1

1

0

0

1

1

0

1

0

1

1

0

0

0

0

1

1

1

0

1

0

Figure 2.2: The minimal conventional trellis for the (7, 4)2 Hamming code.

Other measures are the maximum number of states at any time index, total number of

states, the total number of edges, the maximum number of edges at any time index and the

12

product of the state cardinalities over all time indices.

Theorem 2.11 ([HU77]) The minimal state deterministic automaton accepting a set L is

unique up to an isomorphism (that is, a renaming of the states).

Theorem 2.12 ([McE96, Mud88]) Minimal trellises for linear block codes are unique, and

simultaneously satisfy all definitions of minimality.

While the first part of the theorem is a direct consequence of linearity and Theorem 2.11,

the second part is not obvious.

Definition 2.13 A trellis is said to be biproper if any pair of edges directed towards a vertex

has distinct labels (co-proper), and so also any pair of edges leaving a vertex (proper).

All biproper conventional trellises are minimal and vice versa [Var98]. Figure 2.2 illus-

trates the minimal conventional trellis representing the (7, 4)2 Hamming code defined in

Example 2.1. However, all biproper conventional trellises are not necessarily linear [KS95].

We will now briefly survey some well-known constructions of minimal conventional trellises

for linear block codes. Although the constructions are different, the fact that the minimal

trellis is unique implies that they all produce the same trellis up to an isomorphism. We will

describe the constructions due to Bahl, Cocke, Jelinek and Raviv [BCJR74], Massey [Mas78],

Forney [For88], and Kschischang and Sorokine [KS95].

2.2.1 The Bahl,Cocke, Jelinek, Raviv Construction

Let H be an (n − k)×n parity check matrix for an (n, k) linear block code C over Fq, and

let H = [h1h2 · · ·hn] , hi ∈ F(n−k)×n
q , 1 ≤ i ≤ n be the columns of H . Every codeword

c = (c1, c2, . . . , cn) ∈ C induces a sequence of states {si}ni=0, each state being labeled by a

vector in F
(n−k)×1
q as follows.

si =

 0 if i = 0

si−1 + cihi otherwise.
(2.10)

Clearly, there will be a single state at time index n as H ct = 0, for all codewords c ∈ C.

13

There is an edge labeled a ∈ Fq from state si−1 to state si, 1 ≤ i ≤ n−1, if and only if

si = si−1 + ahi (2.11)

We refer to such a labeling as a BCJR labeling of the trellis, and will refer to the labeled

sequences in the BCJR label code as the BCJR labeled words.

Lemma 2.14 (State-Space Lemma [McE96]) The set of vectors that are labels at each time

index form a vector space whose dimension is the state-complexity at that time index.

Lemma 2.15 Let Hi (resp. Gi) denote the matrix consisting of the first i columns of H

(resp. G), where H (resp. G) is the parity check (resp. generator) matrix for an (n, k)q

code C. Then the BCJR trellis T = (V,E,Fq) has vertex space Vi at time index i defined as

follows.

Vi = column−space(HiG t
i) (2.12)

)(0
0)(0

0

)(0
0

)(0
0

)(0
0

)(0
1)(0

1

)(0
1

)(1
0

)(1
1

0

1 1

00

0 0

1

11

0

1

Figure 2.3: The minimal conventional BCJR trellis for the (4, 2)2 code.

Example 2.16 Consider a self dual (4, 2)2 code with parity check matrix H defined as

H =

 0 1 1 0

1 0 0 1


The minimal conventional trellis resulting from the BCJR construction for this code is

shown in Figure 2.3.

14

There are a number of interesting connections between the minimal trellis for a linear code

C and the minimal trellis for its dual code C⊥. The following theorem was first established

by Forney [For88], and the proof follows easily from the properties of the BCJR construction.

Theorem 2.17 The minimal trellis T = (V,E,Fq) for a linear code C of length n and

the minimal trellis T⊥ =
(
V ⊥, E⊥,Fq

)
for its dual code C⊥ have identical state-complexity

profiles.

Proof: Let H and G respectively, be the parity check and generator matrices for C. From

Lemma 2.15, we have Vi = HiG t
i and V ⊥i = GiH t

i . Therefore Vi = V ⊥i
t
, and the theorem

follows.

The code in Example 2.16 is self dual and therefore the trellis for the dual code is identical

to the trellis for the primal code.

2.2.2 The Massey Construction

In contrast to the BCJR construction which uses codeword symbols that have appeared

at past time indices, the Massey construction uses parity check symbols that have yet to

be observed after the current time index to label states. To achieve this the construction

requires that the generator matrix for the code be in systematic form defined earlier, and

this is the starting point for the Massey algorithm.

Given a word x = (x1, x2, . . . , xn) ∈ Fnq , let �(x) denote the smallest integer i such that

xi 6= 0. Since G is in RRE form

�(g1) < �(g2) < · · · < �(gk)

where {gi}ki=1 are the rows of G . The columns of G corresponding to positions {�(gi)}ki=1

are all of Hamming weight equal to one.

The Massey trellis T = (V,E,Fq) for an (n, k)q linear block code C with generator matrix

G (in RRE form) is computed by associating the vertices Vi at time index i with parity

symbols that are determined by information symbols that have already been observed at

time i, with the remaining information symbols being treated as zeros. Let j be the largest

15

integer such that �(gj) ≤ i. Then

Vi = {(ci+1, . . . , cn) : (c1, . . . , cn) = (u1, . . . , uj, 0, . . . , 0)G} (2.13)

where (u1, . . . , uj) ∈ Fjq. By convention, we have V0 = {0} and Vn = {ε}, where ε is the

empty string.

The set of edges E in T is defined as follows. If i > �(gj), there is an edge e ∈ Ei

labeled ci from a vertex v ∈ Vi−1 to a vertex v′ ∈ Vi if and only if there exists a codeword

c = (c1, c2, . . . , cn) such that

(ci, ci+1 . . . , cn) = v,

(ci+1, . . . , cn) = v′.

On the other hand if i = �(gj), there is an edge e ∈ Ei labeled c′i from a vertex v ∈ Vi−1

to a vertex v′ ∈ Vi, if and only if there exists a pair of codewords c = (c1, c2, . . . , cn) and

c′ = (c′1, c
′
2, . . . , c

′
n) such that

(ci, ci+1 . . . , cn) = v,(
c′i+1, . . . , c

′
n

)
= v′,

and either c = c′ or β(c′ − c) equals gj for some β ∈ Fq. The resulting trellis is isomorphic

to the minimal conventional trellis [Var98].

Example 2.18 Consider again the self dual (4, 2)2 code with an RRE form generator matrix

G defined as

G =

 1 0 0 1

0 1 1 0


The minimal conventional trellis resulting from the Massey construction for this code is the

same as the trellis in Figure 2.3, with transposed vertex labels.

2.2.3 The Forney Construction

Forney [For88] has an elegant algebraic characterization of conventional trellises in terms of a

coset decomposition of the linear block code. He has shown that when the code C is a group

16

code, there is a natural definition of the state spaces of C as quotient groups such that C has

a minimal realization with these state spaces. Since the state spaces are unique there is a

unique quotient group defined by C. We briefly review his characterization here. Let C be

an (n, k)q linear code with generator matrix G and parity check matrix H = [h1h2 · · ·hn].

Let πi : C → πi(C) be a map defined by c = (c1, . . . , cn) 7→ c1h1 + · · · + cihi. The map πi

thus effectively maps a codeword to its ith partial syndrome. Define the past projection

Pi = {(c1, . . . , ci) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ C, πi(c) = 0} (2.14)

These are projections of codewords that share an all-zero suffix with the all-zero codeword,

from index i+ 1 to index n. Define the future projection

Fi = {(ci+1, . . . , cn) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ C, πi(c) = 0} (2.15)

These are projections of codewords that share an all zero-prefix with the all-zero codeword,

from index 1 to index i.

Definition 2.19 Let C1 and C2 be projections of Fnq . Then the product of C1 and C2, denoted

by C1 × C2, is defined as

C1 × C2
def
= {(c1, c2) : c1 ∈ C1, c2 ∈ C2} (2.16)

It is easy to see that the product (Pi×Fi) is a linear subcode of C. Therefore C/(Pi×Fi)

forms a quotient space. The Forney trellis T = (V,E,Fq) for C is constructed by identifying

vertices in Vi with the quotient group corresponding to cosets of C modulo (Pi × Fi), that

is,

Vi
def
= C/(Pi ×Fi) for i ∈ {1, . . . , n} . (2.17)

There is an edge from e ∈ Ei labeled ci from a vertex u ∈ Vi−1 to a vertex v ∈ Vi, if and

only if there exists a codeword c = (c1, . . . , cn) ∈ C such that c ∈ u∩v. The resulting trellis

is isomorphic to the minimal conventional trellis [Var98].

Example 2.20 Consider again the self dual (4, 2)2 code C from Example 2.16 and Exam-

ple 2.18. The past projections are P0 = P1 = {0}, P2 = {00}, P3 = {000, 011}, P4 = C. The

future projections are F0 = C, F1 = {000, 110}, F2 = {00}, F3 = F4 = {0}. The subcodes

17

0

1 1

00

0 0

1

11

0

<0000>

<1001>

<0000>

<1111>

<0000>

<1001>

<0000>

<0000>

<1001>

<0110>

1

Figure 2.4: The minimal conventional Forney trellis for the (4, 2)2 code.

Pi ×Fi are thus given by

P1 ×F1 = {0000, 0110}

P2 ×F2 = {0000}

P3 ×F3 = {0000, 0110}

The minimal conventional trellis for C resulting from the Forney construction is shown in

Figure 2.4. The vertices in Figure 2.4 are labeled by the coset representatives in C/(P ×F).

For example, the vertex {1001, 1111} ∈ V1 is labeled by 〈1001〉.

This determines the quotient space C/(Pi ×Fi) at all time indices. Therefore we have

V1 = {{0000, 0110}, {1001, 1111}}

V2 = {{0000}, {0110}, {1001}, {1111}}

V3 = {{0000, 0110}, {1001, 1111}}

2.2.4 The Kschischang-Sorokine Construction

The main idea in this construction is to represent C as a sum of certain elementary subcodes

and then construct a trellis for C as a product of trellises for these subcodes. This construction

differs from the previous three in that it specifies a number of trellises for C, only one of

which is minimal.

Define a trellis product operator as follows. This operator is a binary operator on trellises

18

T1, T2 of the same depth, and computes a product trellis T = T1 × T2 such that

C(T) = C(T1) + C(T2)
def
= {c1 + c2 : c1 ∈ C(T1), c2 ∈ C(T2)} (2.18)

Let T1 = (V ′, E ′,Fq) and T2 = (V ′′, E ′′,Fq) be two trellises on depth n. Then the set of

vertices at time index i in T = (V,E,Fq) is the Cartesian product

Vi = V ′i × V ′′i
def
= {(v′, v′′) : v′ ∈ V ′i , v′′ ∈ V ′′i } (2.19)

There is an edge e ∈ Ei in T labeled a ∈ Fq, from a vertex (v′i−1, v
′′
i−1) ∈ Vi−1 to a vertex

(v′i, v
′′
i) ∈ Vi, if and only if (v′i−1, a

′, v′i) ∈ E ′i, (v′′i−1, a
′′, v′′i) ∈ E ′′i and a = a′ + a′′. However,

the product trellis T is not necessarily the minimal trellis for C(T), even if the trellises T1

and T2 are minimal trellises for C(T1) and C(T2) respectively. The trellis product operator is

both associative and commutative.

Let C be an (n, k)q code and let G be its generator matrix. Each row gi, 1 ≤ i ≤ k, in G

generates a one-dimensional subcode of C which we will denote by 〈gi〉. Therefore

C = 〈g1〉+ 〈g2〉+ · · ·+ 〈gk〉 (2.20)

Therefore, if T1, T2, . . . , Tk are trellises for 〈g1〉, 〈g2〉, . . . , 〈gk〉 respectively, then their prod-

uct represents C. Denote by Tgi the minimal trellis for 〈gi〉 and define

TG
def
=

k∏
i=1

Tgi (2.21)

The trellis TG is called the Kschischang-Sorokine (KS) trellis for C. Given a codeword

c ∈ C, the structure of Tc depends critically on the notion of a span. The span of c, denoted

by [c], is the nonempty interval [i, j], i ≤ j that contains all the nonzero positions of c. The

span of 0 ∈ C is defined to be the empty interval []. The minimal trellis Tc for a codeword

c with span [i, j] is called an elementary trellis. The elementary trellis Tc has q vertices at

times i, i + 1, . . . , j − 1, corresponding to the q different multiples of the word c, with each

vertex having degree equal to two.

Definition 2.21 A generator matrix G is said to be in minimal-span form (also called a

19

trellis-oriented form (TOF)) if and only if it does not contain rows that have spans that start

at the same position or end at the same position.

Given two generator matrices G1 and G2 in minimal-span form, it is not necessary that

the rows of G1 are a permutation of the rows of G2. On the other hand, the set of spans in

G1 is equal to the set of spans in G2. That is, the set of spans for a matrix in minimal-span

form are uniquely determined by the code [KS95, McE96].

Lemma 2.22 ([KS95]) Any generator matrix G ∈ Fk×nq can be transformed to a minimal-

span form in time O(k2).

a b c e f

d

0 0 0 0

1 1

Figure 2.5: The elementary trellis for (0110) with span [2, 3].

0 0 0 0

1 1

1 1

a’ b’ c’ e’ f’

h’ d’ g’

Figure 2.6: The elementary trellis for (1001) with span [1, 4].

0

1 1

00

0 0

1 1

11

0

(a,a’)

(b,h’)

(b,b’)

(c,d’)

(d,d’)

(c,c’)

(d,c’)

(e,g’)

(f,f’)

(e,e’)

Figure 2.7: The minimal Kschischang-Sorokine product trellis for the (4, 2)2 code.

Kschischang and Sorokine prove the following result concerning the minimal product trel-

lis [KS95].

20

Theorem 2.23 The KS trellis TG is a minimal trellis if and only if G is in minimal-span

form.

1

1

1

1

1

1

1 1

0

0 0

0

0 0

0 0

Figure 2.8: A non-biproper Kschischang-Sorokine product trellis for the (4, 2)2 code.

Example 2.24 We will return to the (4, 2)2 code C with generator matrix G in minimal

span form. The spans are adjacent to the rows of G.

G =

 0 1 1 0

1 0 0 1

 [2, 3]

[1, 4]

The elementary trellises for the generators in G are shown in Figures 2.5 and 2.6, and the

minimal KS product trellis for C is shown in Figure 2.7. Consider a generator matrix that

is not in minimal-span form as given below.

G =

 1 1 1 1

1 0 0 1

 [1, 4]

[1, 4]

The product trellis for C is shown in Figure 2.8, and this trellis is not biproper. Note that

this trellis cannot be computed by the BCJR, Massey and Forney constructions.

2.2.5 Upper Bounds on Trellis Complexity

For an (n, k)q code C, the state-complexity of the minimal trellis T = (V,E,Fq) representing

C is measured by its SCP
(
logq |V0|, logq |V1|, . . . , logq |Vn|

)
. Define the state-complexity of C,

smax(C) as follows.

smax(C) def
= smax(T) = max

0≤i≤n
logq |Vi| (2.22)

21

The following upper bound on the state-complexity of linear codes was first observed by

Wolf [Wol78].

Theorem 2.25 (Wolf bound) Let C be an (n, k)q code. Then the state-complexity of C is

upper bounded by

smax(C) ≤ min{k, n− k} (2.23)

In general, the above bound is quite loose. However for cyclic codes [KTFL93] and MDS

codes [Mud88, For94], this bound is tight. If the Viterbi algorithm [For73, Var98] (a shortest

path decoding algorithm on a trellis) is applied to the minimal trellis of a code C, then the

amount of space required is O(qsmax(C)). Therefore, the parameter smax(C) is a key measure

of trellis/decoding complexity.

Another variant of the Wolf bound extends it to an upper bound on the entire SCP of the

minimal trellis for a code.

Theorem 2.26 Let C be an (n, k)q code, and let T = (V,E,Fq) be the minimal trellis for C.

Then ∀i ∈ {0, 1, . . . , n}

logq |Vi| ≤ min{i, k, n− k, n− i} (2.24)

2.3 Tail-Biting Trellises for Linear Block Codes

Tail-biting trellises were originally introduced by Solomon and van Tilborg [SvT79] in 1979.

The development of the theory of tail-biting trellises for linear block codes started with the

work of Calderbank, Forney and Vardy [CFV99], in which efficient constructions of tail-biting

trellises for several short codes were computed. Several advances in the understanding of the

structure and properties of such trellises have been made in recent years [KV02, KV03, RB99,

SB00, SKSR01] primarily due to the growing interest in the subject of codes on graphs [For01,

Wib96]. Tail-biting trellises for linear block codes are combinatorial descriptions that are

somewhat more compact than the corresponding conventional trellis descriptions. Though

conventional trellises for block codes have a well understood underlying theory, the theory

of tail-biting trellises appears to be somewhat more involved.

22

Definition 2.27 A tail-biting trellis T = (V,E,Σ) of depth n is an edge-labeled directed graph

with the property that the set V can be partitioned into n vertex classes

V = V0 ∪ V1 ∪ · · · ∪ Vn−1 (2.25)

such that every edge in T is labeled with a symbol from the alphabet Σ, and begins at a vertex

of Vi and ends at a vertex of Vi+1, for some i ∈ {0, 1, . . . , n− 1}.

Tail-biting trellises may be viewed as graphs obtained by splitting the finite automaton corre-

sponding to the conventional trellis for the code into identically structured sub-automata and

“overlaying” them. The overlayed structure of tail-biting trellises is discussed in Section 3.4.

As in the case with conventional trellises, the set of indices I = {0, 1, . . . , n− 1} for the

partition (2.25) are the time indices. We identify I with Zn, the residue classes of integers

modulo n. An interval of indices [i, j] represents the sequence {i, i+1, . . . j} if i < j, and the

sequence {i, i+ 1, . . . n− 1, 0, . . . j} if i > j. Every cycle of length n in T starting at a vertex

of V0 defines a vector (a1, a2, . . . , an) ∈ Σn which is an edge-label sequence. We assume that

every vertex and every edge in the tail-biting trellis lies on some cycle. The trellis T is said

to represent a block code C over Σ if the set of all edge-label sequences in T is equal to C.

Let C(T) denote the code represented by the trellis T .

Definition 2.28 A trellis T representing a code C is said to be one-to-one if there is a one-

to-one correspondence between the cycles in T and the codewords in C(T), and it is reduced

if every vertex and every edge in T belongs to at least one cycle.

In addition to the labeling of edges, each vertex in the set Vi is labeled by a sequence of

length li ≥ dlog|Σ| |Vi|e of elements in Σ , all vertex labels at a given depth being distinct.

Thus every cycle in this labeled trellis defines a sequence of length n+ l (where l = l1 + l2 +

· · ·+ ln) over Σ, consisting of alternating labels of vertices and edges in T . This sequence is

called the label sequence of a cycle in T .

Definition 2.29 The set of all label sequences in a labeled tail-biting trellis T denoted S(T),

is called the label code represented by T .

Figure 2.9 shows a tail-biting trellis for the (7, 4)2 Hamming code defined in Example 2.1.

23

0

1

1

0

0

1

0

1

1 1

0

0

0

1

0

1

0
0

1

0
1

11

0

1

0

1

0

0

1

0

1

1

0

Figure 2.9: A tail-biting trellis for the (7, 4)2 Hamming code.

A number of examples are known where the complexity of a tail-biting trellis for a given

code is much lower than the minimal conventional trellis for that code [CFV99, SB00,

SKSR01]. A result of Wiberg, Loeliger and Kötter [WLK95] implies that the maximum

number of states at any time index in a tail-biting trellis could be as low as the square root

of the number of states in a conventional trellis at its midpoint.

Lemma 2.30 Let C be a code and let smid be the minimum possible state-complexity of a

conventional trellis for C at its midpoint, under any coordinate ordering. Then

smax ≥
⌈smid

2

⌉
where smax is the maximum state-complexity of any tail-biting trellis for C.

The proof of Lemma 2.30 may be found in [CFV99]. We also state a variant of this lower

bound due to Reuven and Be’ery [RB99].

Lemma 2.31 (The Square root bound) Let T be a minimal tail-biting trellis representing

linear block code C. Then

smax(T) ≥
⌈
smax(C)

2

⌉
(2.26)

While we have seen that there exists a unique minimal conventional trellis representing

any linear block code code [Mud88], this property is not true for tail-biting trellises. A general

theory of linear tail-biting trellises has been developed by Kötter and Vardy [KV02, KV03],

and this is the primary focus of the next chapter.

24

Chapter 3

Linear Tail-Biting Trellises

The structural and algorithmic results in this thesis pertain to the class of linear tail-biting

trellises. The efficient construction of minimal linear tail-biting trellis is as yet an open

problem. In this chapter we describe the structure and properties of linear tail-biting trellises.

We also review Kötter and Vardy’s characteristic matrix formulation for the minimal trellis

problem. Finally, we describe the overlayed structure of linear tail-biting trellises, where a

linear tail-biting trellis for a linear block code C may be constructed by overlaying subtrellises

obtained from a coset decomposition of C.

3.1 Introduction

In 1996 McEliece [McE96] introduced the class of simple linear trellises, which is the class of

trellises computed by the BCJR construction. He thus distinguished between trellises that

possess certain linearity properties and those that do not. The class of tail-biting trellises

which contains the class of conventional trellises is so broad that nothing much can be said

about tail-biting trellises in general. Therefore we restrict ourselves to a study of the class of

linear tail-biting trellises which have a rich and beautiful theory [KV02], and this also lays

the foundation for the study of minimal linear tail-biting trellises [KV03].

25

3.2 Definition and Properties of Linear Trellises

We will now develop some definitions and notation [KV02, KV03]. The reader might find it

useful to recall the definition of a tail-biting trellis from Section 2.3.

Definition 3.1 A trellis T = (V,E,Fq) is said to be linear if it is reduced, and there exists

a vertex labeling of T such that the label code S(T) is a vector space.

0

1

0

0

1

0

0

0

1

0

1

0

0

1

1

0

1

1

Figure 3.1: A non-linear tail-biting trellis for the (6, 2)2 code.

Note that a necessary condition for a trellis T = (V,E,Fq) to be linear, is that for every

i ∈ {0, 1, . . . , n− 1}, |Vi| must be a power of q.

Example 3.2 Let C be a (6, 2)2 code with generator matrix

G =

 1 1 1 1 0 0

0 0 1 1 1 1


A nonlinear trellis for C is shown in Figure 3.1.

The notion of non-mergeability [Ksc96, VK96, Var98] will also be useful to us.

Definition 3.3 A trellis T is non-mergeable if there do not exist vertices in the same vertex

class of T that can be replaced by a single vertex, while retaining the edges incident on the

original vertices, without modifying C(T).

Example 3.4 Consider a (3, 2)2 code with generator matrix G defined as follows.

G =

 1 0 1

1 1 0


A mergeable linear tail-biting trellis for this code is shown in Figure 3.2 – the mergeable

vertices are enclosed by dashed ellipses.

26

0

1

0

1

0

1

1

0

0

1

0

1

Figure 3.2: A mergeable tail-biting trellis for the (3, 2)2 code.

Kötter and Vardy [KV02] have shown that if a linear trellis is non-mergeable, then it is

also biproper. However, though the converse is true for conventional trellises, it is not true

in general for tail-biting trellises as illustrated by Figure 3.2. They show that

{linear trellises} ⊃ {biproper linear trellises} ⊃ {non−mergeable linear trellises} (3.1)

Kötter and Vardy have extended the product construction for conventional trellises de-

scribed in Section 2.2.4 to tail-biting trellises [KV02]. In particular, they prove that any

linear trellis, conventional or tail-biting, for an (n, k)q linear code C can be constructed as a

trellis product of the representation of the individual trellises corresponding to the k rows of

the generator matrix G for C. The definition of the trellis product operator is the same as

that described in Section 2.2.4. We recall this definition below.

Definition 3.5 Let T1 = (V ′, E ′,Fq) and T2 = (V ′′, E ′′,Fq) be two trellises (either conven-

tional or tail-biting) of depth n. Then the product trellis T ′× T ′′ is the trellis T = (V,E,Fq)

of depth n whose vertex and edge classes are Cartesian products defined as follows.

Vi
def
= {(v′, v′′) : v′ ∈ V ′i , v′′ ∈ V ′′i }

Ei
def
= {(v′i−1, v

′′
i−1), a′ + a′′, (v′i, v

′′
i) : (v′i−1, a

′, v′i) ∈ E ′i, (v′′i−1, a
′′, v′′i) ∈ E ′′i }

T represents the code C defined as

C = C(T1) + C(T2)
def
= {c1 + c2 : c1 ∈ C(T1), c2 ∈ C(T2)}

27

Let C be an (n, k)q code and let G be its generator matrix. Each row gi, 1 ≤ i ≤ k, in G

generates a one-dimensional subcode of C which we will denote by 〈gi〉. Therefore

C = 〈g1〉+ 〈g2〉+ · · ·+ 〈gk〉

Thus, if T1, T2, . . . , Tk are trellises for 〈g1〉, 〈g2〉, . . . , 〈gk〉 respectively, then their product

represents C. Denote by Tgi the minimal trellis for 〈gi〉 and define

TG
def
=

k∏
i=1

Tgi (3.2)

To specify the component trellises in the trellis product above, we will need to introduce

the notions of linear and circular spans, and elementary trellises [KV02]. The primary

difference here from the KS product construction is that we allow spans of the form [i, j]

such that i > j. Given a codeword c ∈ C, the linear span of c is the smallest interval [i, j],

i, j ∈ {1, 2, . . . , n}, i < j, that contains all the non-zero positions of c. A circular span

has exactly the same definition with i > j. Note that for a given vector, the linear span is

unique, but circular spans are not – they depend on the runs of consecutive zeros chosen for

the complement of the span with respect to the index set I. For a vector x = (x1, . . . , xn)

over the field Fq with span [a, b] (either linear or circular), there is a unique elementary trellis

representing 〈x〉 [KV02]. This trellis has q vertices at those positions that belong to [a, b),

and a single vertex at other positions. Consequently, Ti in (3.2) is the elementary trellis

representing 〈gi〉 for some choice of span (either linear or circular).

00 0 0

d

1 1

a b c e f

Figure 3.3: Elementary trellis for (0110) with span [2, 3].

c’ d’ e’ f’

1

0 0 0

1

0

a’ g’

b’

Figure 3.4: Elementary trellis for (1001) with span [4, 1].

28

(a,a’)

(a,b’)

(d,d’)

(b,c’)

(c,d’)

(e,e’)

(f,g’)

(f,f’)

1

0

1

0 0

1 1

0

Figure 3.5: The KV product trellis for the (4, 2)2 linear code.

The following lemma is due to Kötter and Vardy [KV02].

Lemma 3.6 A trellis is linear if and only if it factors into a product of elementary trellises.

Kötter and Vardy [KV02] have also shown that any linear trellis, conventional or tail-biting

can be constructed from a generator matrix whose rows can be partitioned into two sets,

those that have linear span, and those taken to have circular span. The trellis T representing

the code is formed as a product of the elementary trellises corresponding to these rows. We

will represent such a generator matrix as

GKV =

 Gl

Gc

 (3.3)

where Gl is the submatrix consisting of rows with linear span, and Gc the submatrix of rows

with circular span. We will henceforth refer to this product trellis T as the KV trellis.

Example 3.7 Consider a (4, 2)2 linear block code whose KV generator matrix is

GKV =

 0 1 1 0

1 0 0 1

 [2, 3]

[4, 1]

The spans and elementary trellises for the rows 0110 and 1001 are shown in Figures 3.3 and

3.4 respectively. The resulting KV product trellis is shown in Figure 3.5.

Even though a minimal-span form generator matrix for a linear code yields the minimal

conventional product trellis, this is not so for tail-biting trellises. Therefore, the computation

of minimal product tail-biting trellises also entails the problem of choosing appropriate spans

for the rows of the generator matrix.

29

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Figure 3.6: A non-minimal tail-biting trellis for the (4, 2)2 code.

Example 3.8 For the (4, 2)2 code with product generator matrix

G =

 1 0 0 1

0 1 1 0

 [1, 4]

[3, 2]

we obtain the non-minimal product trellis shown in Figure 3.6.

As the matrices that we consider in this thesis are full rank matrices, we will specify each

matrix as a set, with elements being the rows of the matrix. Therefore all set operators apply

to these matrices as well. For example, let M ∈ Fm×nq – then M ∪ {g}, g ∈ F1×n
q , denotes

the (m+1)×n matrix formed by adding a row g to M .

3.3 Computing Minimal Tail-Biting Trellises

Kötter and Vardy [KV03] define various notions of minimality for linear trellises and show that

these minimal trellises are all computable from a certain characteristic matrix for the code

under consideration. We will first present various definitions of minimality for tail-biting

trellises and then describe the computation of the characteristic matrix.

3.3.1 Definitions and Notation

Let T = (V,E,Fq) be a trellis, either conventional or tail-biting for an (n, k)q linear block

code C. Let Θ(C) denote the SCP of T . The SCP’s of all possible trellises for C form a

partially ordered set under the operation of component-wise comparison. We say that a

trellis T1 = (V ′, E ′,Fq) is smaller than or equal to a trellis T2 = (V ′′, E ′′,Fq), denoted by

30

T1 �Θ T2, if

|V ′i | ≤ |V ′′i |, ∀i ∈ {1, 2, . . . , n− 1} (3.4)

If equality does not hold for any i in Equation (3.4), then we write T1 ≺Θ T2.

Definition 3.9 A trellis T is said to be ≺Θ-minimal, if there does not exist a trellis T ′ such

that T ′ ≺Θ T .

In contrast to Muder’s notion of minimality (see Definition 2.10), this is a rather weak

notion of minimality. For a given code C, there may be several ≺Θ-minimal trellises repre-

senting C.

Example 3.10 For the (4, 2)2 code, the trellises in Figure 2.3 and Figure 3.5 are both ≺Θ-

minimal.

In fact, any trellis with a state-complexity of zero at any time index is ≺Θ-minimal. There

are also other measures of minimality for tail-biting trellises [KV03], which we will now

present.

Definition 3.11 A total order ≺O on a set S is an order under which any two elements of

S are comparable.

For example, the ordering induced by ≺Θ on the set of trellises is not a total order,

since for every linear code there are many ≺Θ-minimal trellises that are incomparable. Let

T = (V,E,Fq) and T ′ = (V ′, E ′,Fq) be trellises of depth n. Kötter and Vardy define the

following total orders.

product order: T �Π T ′ if
∏n−1

i=0 |Vi| ≤
∏

i=0 |V ′i |.

max order: T �max T
′ if maxi |Vi| ≤ maxi |V ′i |.

vertex sum order: T �Σ T
′ if
∑n−1

i=0 |Vi| ≤
∑n−1

i=0 |V ′i |.

edge-product order: T �ΠE T
′ if
∏n−1

i=0 |Ei| ≤
∏n−1

i=0 |E ′i|.

edge max order: T �max E T
′ if maxi |Ei| ≤ maxi |E ′i|.

edge sum order: T �ΣE T
′ if
∑n−1

i=0 |Ei| ≤
∑n−1

i=0 |E ′i|.

31

Definition 3.12 A trellis T is ≺Π-minimal if there does not exist a trellis T ′ such that

T ′ ≺Π T . A trellis T is ≺max-minimal if there is no trellis T ′ such that either T ′ ≺max T , or

smax(T ′) = smax(T) and T ′ ≺Θ T .

Definition 3.13 An order ≺O preserves the order described by ≺Θ, if T �Θ T ′ implies that

T ≺O T ′.

The orders ≺Π, ≺max, ≺Σ and ≺ΠE preserve ≺Θ, while the orders ≺max E and ≺ΣE do

not [KV03].

Proposition 3.14 ([KV03]) The set of ≺Π-minimal trellises and the set of ≺max-minimal

trellises for a given code are subsets of the set of ≺Θ-minimal trellises.

3.3.2 The Characteristic Matrix

Given an (n, k)q code C, whether there exists a polynomial time computation of a generator

matrix yielding a ≺max-minimal trellis representing C is still an open question. The feasible

space of linear trellises representing C has cardinality equal to O(qk
2
nk) [KV03]. Kötter and

Vardy [KV03] reduce the size of this search space for minimal trellises to O(nk). Specifically,

they prove that every ≺Θ-minimal linear trellis for an (n, k)q code C can be computed from

an n × n characteristic matrix for C. They also describe an O(k2) procedure to compute

a product generator matrix for a ≺Π-minimal trellis for C. Further, they formulate the

problem of computing an ≺max-minimal trellis as a linear program (LP), and propose an

algorithm to solve this LP that is efficient in practice. The worst case complexity of their

algorithm is O(nk). The description of this algorithm may be found in [KV03]. It turns out

that polynomial time algorithms to compute minimal trellises for certain subclasses of linear

block codes, for example, a subclass of cyclic codes, exist [SKSR01].

Some properties of ≺Θ-minimal trellises will be stated before we give the description of

the characteristic matrix computation for a code. Let TG be a ≺Θ-minimal KV trellis for an

(n, k)q code C with generator matrix GKV .

The following lemma characterizes the structure of the generator matrix for ≺Θ-minimal

tail-biting trellises analogous to that given in Lemma 2.23 for conventional trellises.

Lemma 3.15 ([KV03]) The KV trellis TG is a ≺Θ-minimal trellis only if GKV does not have

rows with spans that start at the same position or end at the same position.

32

For all x ∈ Fnq , let σi(x) (ρi(x)) denote a cyclic shift to the left (right) i times of x ,

where i ∈ {0, 1, 2, . . . , n − 1}. Given a matrix M , let M∗
i denote a minimal-span form (see

Section 2.23) basis for the vector space σi(〈M〉).

Definition 3.16 A characteristic generator for an (n, k)q code C with generator matrix G is

a pair is a pair (c, [i, j]), where c ∈ C, and [i, j] is either a linear or circular span for c

defined as follows. The set X of characteristic generators for C is given by

X
def
= G∗0 ∪ ρ1(G∗1) ∪ · · · ∪ ρn−1(G∗n−1) (3.5)

where each x ∈ ρi(G∗i) has span [(a + i) mod n, (b + i) mod n], [a, b] being the linear span

of the vector σi(x). The characteristic matrix χ(C) for C is the |X| × n matrix having the

elements of X as its rows. When taking the union in (3.5), if two vectors have the same

span (either linear or circular), only one of them is chosen.

Example 3.17 Consider a (4, 2)2 code C with generator matrix

G =

 0 1 1 0

1 0 0 1


The characteristic matrix χ(C) for C is a 4× 4 matrix given by

χ(C) =


0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 1


[2, 3]

[1, 4]

[3, 2]

[4, 1]

The trellis in Figure 3.5 is a ≺Θ-minimal trellis computed by the trellis product of ele-

mentary trellises representing the characteristic generators (0110, [2, 3]) and (1001, [4, 1]).

We state without proof some properties of the characteristic matrix [KV02].

Lemma 3.18 The spans of any two characteristic generators start at different positions and

also end at different positions.

Lemma 3.19 The cardinality of the set X of characteristic generators for an (n, k)q code

is equal to n. Therefore the characteristic matrix χ(C) is an n× n matrix.

33

Lemma 3.20 Every ≺Θ-minimal linear tail-biting trellis for an (n, k)q code C can be con-

structed as a trellis product of k linearly independent characteristic generators for C.

Given an (n, k)q code C, the computation of χ(C) can be performed in time O(n2) [KV03].

Moreover, from Lemma 3.20, it follows that the feasible space for the computation of a ≺Θ-

minimal trellis has cardinality O(nk).

3.4 Overlayed Structure of Linear Tail-Biting Trellises

We will now examine the overlayed structure of linear tail-biting trellises. The main idea

here is to view a tail-biting trellis T = (V,E,Fq) as a collection of conventional trellises, each

corresponding to a different initial vertex in V0. In particular, we will see that every linear

tail-biting trellis always has an overlayed structure [DSDR00, LS00, SB00, SDDR03, SvT79].

Definition 3.21 Let T = (V,E,Fq) be a tail-biting trellis. The subgraph of T induced by all

cycles containing a fixed vertex of V0 is called a subtrellis of T .

By definition, a subtrellis is a conventional trellis. If T is the set of all subtrellises of T ,

then

C(T) =
⋃
T ′∈T

C(T ′) (3.6)

For the special case of linear tail-biting trellises, the subtrellises are isomorphic (upto the

labeling of vertices) as indicated in the following lemma [SB00].

Lemma 3.22 Let T be a linear tail-biting trellis for a linear code C. Then every subtrellis

represents a coset of a fixed subcode of C. Moreover, all subtrellises of T are isomorphic.

Given a trellis T , we will refer to any trellis that is structurally isomorphic to T as

a copy of T . We will now establish a connection between the KV construction and the

overlayed structure of ≺max-minimal tail-biting trellises. The following property follows

from Propositions 3 and 4 of [SB00].

Lemma 3.23 (Intersection Property) Let G be a KV generator matrix for a ≺max-minimal

trellis. Define a zero-run of a circular span generator in G to be the complement of its span.

Then every pair of circular span generators in G has intersecting zero-runs.

34

The following lemma follows from Theorem 3.2 in [DSDR00].

Lemma 3.24 Let T be a biproper linear tail-biting trellis for a linear block code C over Fq

computed by a KV construction using the matrix G =

 Gl

Gc

, with Gl having l rows and Gc

having c rows. Let Tl be the minimal conventional trellis for the generators in Gl. Then T

has the following properties.

(i) The trellis T has qc start and final states. It has qc subtrellises that are copies

of Tl. Each subtrellis represents a coset in the coset decomposition of C over the subcode

generated by Gl.

(ii) Let ti be the number of zero-runs in Gc that contain time index i. Then there are

qc−ti groups of subtrellises, each containing qti trellises at time index i. Each subtrellis has

qli states at time index i, li being the state-complexity of Tl at that time index.

Definition 3.25 Every pair of subtrellises T and T ′ whose coset leaders1 have a maximum

zero-run intersection equal to [i, j], share all states in [i, j] and no states outside [i, j]. We

will refer to [i, j] as the merging interval of T and T ′. If [i, j] is the zero-run of a coset

leader vl of the coset Cl, we will refer to [i, j] as the merging interval of vl. Note that this

corresponds to the merging interval of the subtrellises T (Cl) and T (C0).

0 0

0
1 1

0

Figure 3.7: A minimal trellis representing the code C0 = {0000, 0110}.

0 0

1
1 1

1

Figure 3.8: A minimal trellis representing the coset C1 = {1001, 1111}.

Examples 3.26 and 3.27 illustrate the trellis overlaying technique.

1if Ci = C0 + vi is a coset in C/C0, then vi is the coset leader for Ci.

35

1

0

1

0 0

1 1

0

Figure 3.9: An overlayed trellis for the (4, 2)2 code.

Example 3.26 Consider a (4, 2)2 code C with a KV generator matrix G defined as

GKV =

 0 1 1 0

1 0 0 1

 [2, 3]

[4, 1]

The linear subcode C0 representing 〈Gl〉 is C0 = {0000, 0110}, and the coset C1 in C/C0

is C1 = {1001, 1111}. The vector 1001 is the coset leader for coset C1 with merging interval

[2, 3]. The overlayed trellis representing C shown in Figure 3.9 is obtained by overlaying the

trellises in Figures 3.7 and 3.8. The overlayed portions are enclosed by the dashed boxes.

Example 3.27 Let C be a (7, 4)2 Hamming code a product generator matrix GKV defined as

GKV =


1 0 0 0 1 1 0

0 0 1 0 1 1 1

0 1 0 0 0 1 1

0 1 1 1 0 0 1


[1, 6]

[3, 7]

[6, 2]

[7, 4]

The linear subcode C0 representing 〈Gl〉 is C0 = {0000000, 1000110, 0010111, 1010001},

and the cosets in C/C0 are

C1 = {0100011, 1100101, 0110100, 1110010}

C2 = {0111001, 1111111, 0101110, 1101000}

C3 = {0011010, 1011100, 0001101, 1001011}

The vector 0100011 is the coset leader for coset C1 with merging interval [3, 5], and the vector

0111001 is the coset leader for coset C2 with merging interval [5, 6]. The overlayed trellis rep-

resenting C shown in Figure 3.14 is obtained by overlaying the trellises in Figures 3.10, 3.11,

3.11 and 3.12.

36

We note here that defining an overlayed structure needs a specification of cosets, as well as

coset leaders.

0

1

0

0

1

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

Figure 3.10: A minimal trellis representing the code C0 = {0000000, 1000110, 0010111, 1010001}.

0

1

1

1

1

0

0

0

0

0

0

1

0

1

1

0

1

0

1

0

0

1

Figure 3.11: A minimal trellis representing the coset C1 = {0100011, 1100101, 0110100, 1110010}.

0

1

1

1

0

1

1

1

1

1

0

1

0

1

0

1

0

1

1

0

1

0

Figure 3.12: A minimal trellis representing the coset C2 = {0111001, 1111111, 0101110, 1101000}.

37

0

1

0

0

0

1

1

1

1

1

0

1

0

1

1

0

1

0

0

1

1

0

Figure 3.13: A minimal trellis representing the coset C3 = {0011010, 1011100, 0001101, 1001011}.

0

0

1

0

0

0

0

0

0

1

0

1

0

1

00

1

1

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

1 0

1

0

1

1

1

1

1

1

0

1

1

0 0

0
0

1

0

Figure 3.14: An overlayed trellis for the (7, 4)2 Hamming code.

38

Chapter 4

The Tail-Biting BCJR Trellis

In this chapter we generalize the BCJR construction for conventional trellises described in

Section 2.2.1 to obtain tail-biting trellises. We show that a linear tail-biting trellis for an

(n, k)q code C can be constructed by specifying an arbitrary parity check matrix H for C

along with an (n−k)×k displacement matrix D, with coefficients from Fq. The set of BCJR

labels is computed from H and D. Finally, we present a dynamic algorithm that starts with

a generator matrix for an (n, k)q code in trellis-oriented form, and computes D for a minimal

trellis in time O(nk).

4.1 The Tail-biting BCJR Trellis

The BCJR algorithm described in Section 2.2.1 is now generalized to construct labeled tail-

biting trellises for any linear code with the resultant trellis satisfying the following two

properties.

(i) The trellis formed is biproper and linear.

(ii) The state labels at each time index form a vector space.

Let C be an (n, k)q linear block code with generator matrix G = {g1, g2, . . . , gk}, where

gi ∈ F1×n
q , 1 ≤ i ≤ k, are the k rows of G , and parity check matrix H = [h1h2 · · ·hn], with

columns hi ∈ F(n−k)×1
q , 1 ≤ i ≤ n.

The tail-biting BCJR specification includes an (n−k)×1 displacement vector dg with every

generator row g ∈ G . Specifically, the set of displacement vectors for an k × n generator

39

matrix G is an arbitrary set of k vectors from F
(n−k)×k
q , which could be linearly independent

or dependent, with repetitions allowed. The displacement vector dc for any codeword c ∈ C

is defined as follows.

dc =
k∑
i=1

αidgi , where c =
k∑
i=1

αigi, αi ∈ Fq, gi ∈ G . (4.1)

Definition 4.1 Given an (n, k)q linear code C with generator matrix G and displacement

vectors {dg}g∈G , the (n−k)×k matrix D whose ith column is equal to dgi, where gi is the

ith row of G, 1 ≤ i ≤ k, is called a displacement matrix for C.

The following lemma elucidates the structure imposed by the displacement matrix on the

code.

Lemma 4.2 Let C be an (n, k)q linear code with generator matrix G and displacement matrix

D. Then D specifies a coset decomposition C/C0 of the code C, where C0 = {c ∈ C : dc = 0}.

Proof: It is easily seen that C0 = {c ∈ C : dc = 0} is a linear subcode of C. Consider a

coset Ci = C0 + vi,vi ∈ C \ C0. Since every codeword x ∈ Ci takes the form x = c + vi for

some c ∈ C0, it follows that dx = dvi (since dc = 0). Therefore, every coset is associated

with a unique displacement vector and the lemma follows.

It should be noted that corresponding to any coset decomposition of a code C, there can

be many displacement matrices inducing that decomposition.

Example 4.3 Let C be a self dual (4, 2)2 code with generator matrix G as follows.

G =

 0 1 1 0

1 0 0 1



Let the displacement matrix D =

 0 0

0 1

. Therefore d0110 =
(

0
0

)
and d1001 =

(
0
1

)
, and from

Equation 4.1, we have d0000 =
(

0
0

)
and d1111 =

(
0
1

)
. The matrix D ′ =

 0 1

0 1

 also induces

the same coset decomposition as the matrix D.

40

Definition 4.4 (T–BCJR labeling) Every codeword c = (c1, c2, . . . , cn) ∈ C induces a se-

quence of states {si}n−1
i=0 , each state being labeled by a vector in F

(n−k)×1
q as follows.

si =

 dc if i = 0

si−1 + cihi otherwise
(4.2)

There is an edge labeled a ∈ Fq from state si−1 to state si, 1 ≤ i ≤ n−2, if and only if

si = si−1 + ahi (4.3)

We refer to such a labeling as a Tail-biting BCJR (T–BCJR) trellis.

Definition 4.5 Let C be an (n, k)q code with parity check matrix H , generator matrix G

and a displacement matrix D. The label generator matrix GH ,D is defined to be the matrix

consisting of BCJR label rows of G formed with respect to H and D.

Let C be an (n, k)q code with generator matrix G and parity check matrix H . The T–BCJR

trellis T constructed with respect to H , G and some arbitrary D ∈ F(n−k)×k
q is thus given by

T = 〈GH ,D〉 (4.4)

where we recall that 〈GH ,D〉 is the vector space generated by the rows of 〈GH ,D〉.

Example 4.6 For the (4, 2)2 code from Example 4.10,

GH ,D =

 (0
0

)
0
(

0
0

)
1
(

1
0

)
1
(

0
0

)
0
(

0
0

)(
0
1

)
1
(

0
0

)
0
(

0
0

)
0
(

0
0

)
1
(

0
1

)


and 〈GH ,D〉 is the T–BCJR trellis shown in Figure 4.1.

Let T be a T–BCJR trellis constructed for C. The properties of T are elucidated by the

following lemmas.

Lemma 4.7 The trellis T is linear and represents C.

Proof: We first prove that C(T) = C. Assume to the contrary that ∃x = (x1, . . . , xn) ∈ C(T)

such that x /∈ C. Let dx be the start vertex of the cycle representing the word x. The

41

invariant maintained by the algorithm for every edge e = (vi−1, a,vi) ∈ Vi−1 × Fq × Vi is

vi−1 + ahi = vi

Therefore, dx +
∑n

i=1 xihi = dx ⇒ H xt = 0 ⇒ x ∈ C, thus contradicting our original

assumption.

Let x, y ∈ C(T) and let x′, y′ ∈ S(T) respectively, be their label codewords. Since

C(T) = C, we have z=x+ y ∈ C(T). In order to prove linearity of T , we need to show that

z′=x′+y′ also belongs to S(T). We have x′ = 〈dx, x1,u1, . . . , xn,dx〉, such that ui |1≤i≤n=

dx +
∑i

j=1 xjhj, and y′ = 〈dy, y1,v1, . . . , yn,dy〉, such that vi |1≤i≤n= dy +
∑i

j=1 yjhj.

Therefore

z′ = 〈dx + dy, x1 + y1,u1 + v1, . . . ,xn + yn,dx + dy〉 = 〈dz, z1,dz + z1h1, . . . ,zn,dz〉

which shows that z′ is the label codeword in S(T) representing the codeword z, thus proving

that T is indeed a linear trellis representing C.

Lemma 4.8 The trellis T is biproper.

Proof: Assume there exists a vertex v at some time index i, with two outgoing edges

(v, a,v1) and (v, a,v2), v1 6= v2 (that is, T is not proper). From the BCJR construction we

know that v+ahi+1 = v1 and v+ahi+1 = v2 ⇒ v1 = v2, which contradicts our assumption

that v1 and v2 are distinct. Therefore T must be proper. A similar argument shows that T

must also be co-proper (that is, T with edges reversed is also proper), thus proving that T

is a biproper trellis.

Let Gi and Hi respectively, denote the submatrices consisting of the first i columns of G

and H . For every i ∈ {0, 1, . . . , n− 1}, define a matrix Mi as follows.

Mi =
[
HiGit + D

]
(4.5)

Then we have the following lemma, which is a generalization of Lemma 2.15 for the

conventional BCJR trellis.

42

Lemma 4.9 (State-Space Lemma) For all time indices i ∈ I, Vi the state space of the trellis

T at time index i equals the column-space of Mi.

Proof: For every generator g = (g1, g2, . . . , gn) ∈ G , the state vi at time index i is given by

vi = dg + Hi(g1, g2, . . . , gi)
t. Therefore the set of states at time index i for generators in G

is defined by the columns of Mi = [HiGit + D], and the lemma follows.

Example 4.10 For the (4, 2)2 code defined in Example 4.3, the T–BCJR trellis shown in

Figure 4.1.

)(0
1

)(1
0

)(0
1

)(0
0)(0

0)(0
0)(0

0

)(0
0

1

0

1

0 0

1 1

0

Figure 4.1: A T–BCJR trellis for the (4, 2)2 code.

Example 4.11 Consider the (7, 4)2 Hamming code C with parity check and generator ma-

trices defined as follows.

H =


1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

 G =


0 0 0 1 1 0 1

1 1 0 1 0 0 0

0 0 1 1 0 1 0

1 0 1 0 0 0 1



Choosing D =


0 0 0 1

0 0 0 0

0 0 0 1

, we obtain a minimal T–BCJR trellis T for C with

smax(T) = 2, as illustrated in Figure 4.2.

We will now define a displacement matrix derived directly from a KV product specification

of a non-mergeable linear trellis.

43

)(1

1
0

()0

0
0

)1(
0
1

(1
1)0

)(0

0
0

)(1

1
0)(0

0
1

)1(
0
1

)(0

0
0

(0

1
0) (0

1
0)
)(0

0
0

)1(
0
1

)(0

0
1

)(0

0
1

)(0

0
0

(0

1
0)

)1(
0
1 ()1

1
1

)(1

1
0

)(0

0
1

)(0

0
0)(1

1
0

)(0

0
0

)(1

1
0

)(0

0
0

0

1

1

0

0

1

0

1

1 1

0

0

1

0

1

0
0

1

0
1

11

0

1

0

1

0

0

1

0

1

1

0
0

Figure 4.2: A minimal T–BCJR trellis for the (7, 4)2 Hamming code.

Definition 4.12 Let G be a KV product matrix for a non-mergeable linear trellis T rep-

resenting an (n, k)q code C. Let the parity check matrix for C be H = [h1h2 · · ·hn], with

columns hi ∈ F(n−k)×1
q , 1 ≤ i ≤ n. A T–BCJR labeling for T is defined by the displacement

matrix D with respect to H and G as follows.

The ith column of D is equal to 0 if the ith row of G has linear span, else it is equal to

dg =
∑n

j=a gjhj, where g = (g1, g2, . . . , gn) is the ith row of G with circular span [a, b].

The following lemma is proved in [KV02].

Lemma 4.13 If any of the elementary trellises in the trellis product for a tail-biting trellis

T is mergeable, then T is mergeable.

The following lemma follows easily from the T–BCJR construction.

Lemma 4.14 Every vector g in the KV product matrix is associated with a non-mergeable

elementary trellis Tg, via a BCJR labeling of 〈g〉 defined in Definition 4.12, and this trellis is

isomorphic to the elementary trellis (conventional or tail-biting), defined by the vector along

with its associated span.

Lemma 4.15 If c = (c1, . . . , cn) and c′ = (c′1, c
′
2, . . . , c

′
n) are two codewords that lead to

distinct vertices at level i in a non-mergeable KV trellis, then c and c′ must induce distinct

T–BCJR labels (as given in Definition 4.12) at level i.

44

Proof: This follows from the fact that if c and c induce the same T–BCJR label (as given in

Definition 4.12), then merging the corresponding vertices in the KV trellis T will not change

C(T), thus implying that T is mergeable.

Theorem 4.16 Let G be a KV product matrix for a non-mergeable linear trellis T represent-

ing an (n, k)q linear block code C. Let the T–BCJR trellis T ′ be defined as in Definition 4.12.

Then T is isomorphic to T ′.

Proof: Assume that T = (V,E,Fq) is a non-mergeable linear KV trellis. Let each el-

ementary trellis of T be labeled according to the labeling stated in Lemma 4.14. Let

Li = {v1,v2, . . . ,vk} be a set of vertex labels, where vj, 1 ≤ j ≤ k is a label for a vertex at

level i in the jth elementary trellis. Let v = (v1,v2, . . . ,vk) ∈ Vi be the corresponding node

in the product trellis T . For the T-BCJR trellis T ′ = 〈GH ,D〉, the vertex v′ ∈ V ′i computed

from the vertex labels in L is given as follows (this follows from the T–BCJR construction).

v′ = (v1 + v2 + · · ·+ vk)

Define a map φ : V → V ′, from the labeled vertices in T to the labeled vertices in T ′ as

follows.

(v1,v2, . . . ,vk) 7→ (v1 + v2 + · · ·vk)

We first prove that φ is a bijection. Let x = (x1,x2, . . . ,xk), y = (y1,y2, . . . ,yk) ∈ V

be two distinct vertices in V . Since the trellis T is non-mergeable, by Lemma 4.15, φ(x) and

φ(y) must be distinct. Therefore φ is injective. For every x′ = (x1 + x2 + · · ·+ xk) ∈ V ′ in

the T–BCJR trellis T ′, there exists a vertex x = (x1,x2, . . . ,xk) = φ−1(x′) in the KV trellis

T (by definition of the product trellis). Therefore φ is surjective, and hence φ is bijective.

Next, let (x1, α,x2) ∈ E be an edge in the KV trellis T . Then by definition, the T–BCJR

trellis has an edge (φ(x1), α, φ(x2)) ∈ E ′. Therefore φ is an isomorphism, and the trellises

T and T ′ are isomorphic.

Corollary 4.17 Every non-mergeable linear tail-biting trellis can be constructed by a T–

BCJR construction.

It is worth noting that every biproper linear trellis cannot be constructed by T–BCJR

construction. The biproper linear trellis for the (3, 2)2 code in Figure 4.3 is one such example.

45

Note that this trellis is computable by the KV product construction with the product matrix

defined as

G =

 1 0 1

1 1 0

 [1, 3]

[2, 1]

0

1

0

1

0

1

1

0

0

1

0

1

Figure 4.3: A trellis for the (3, 2)2 code not computable by a T–BCJR construction.

The following is an example of a T–BCJR trellis which is biproper but not one-to-one.

Example 4.18 Consider a (3, 2)2 code C with generator matrix G, parity check matrix H

and displacement matrix D defined as follows.

G =

 1 0 1

1 1 0

 H =
[

1 1 1
]

D =
[

0 1
]

The T–BCJR trellis shown in Figure 4.4 is non-mergeable but not one-to-one.

(1) (1) (1)(1)

(0)

(0) (0)

(0)

0 0

0 0 0

1 1
1 1

1
1

0

Figure 4.4: A non one-to-one non-mergeable T–BCJR trellis for the (3, 2)2 code.

A question that naturally arises here is whether the T–BCJR trellises exactly represent

the class of non-mergeable trellises. Below is an example to show they do not.

Example 4.19 Consider the self dual (4, 2)2 linear code specified by

H = G =

 1 1 1 1

1 0 0 1

 and D =

 1 0

0 1


46

)(0
0

1
0)(

)(0
1

)(1
1

)(0
0

)(0
0)(0

0)(0
0

)(0
1)(1

1)(0
1 1

0)(
1
0)(1

0)(1
0)(

)(0
1

)(1
1)(0

1)(1
1

)(1
1

0 0 0 0

1 1 1 1

1 1

0 1

0 0

1 0

Figure 4.5: A mergeable T–BCJR trellis for the (4, 2)2 code.

The T–BCJR trellis (for the above choice of D) for C is shown in Figure 4.5 and is

mergeable. It is easy to see that to see that this trellis corresponds to a coset decomposition

of the code with respect to the subcode C0 = {0000}.

Therefore, we have the following lemma.

Lemma 4.20 The class of trellises computed by the T–BCJR construction lies in between

the class of non-mergeable linear trellises and the class of biproper linear trellises.

4.2 Construction of Minimal Trellises

We will now address the problem of constructing a trellis T for an (n, k)q code C such that

smax(T) is minimized for a fixed permutation of the code. We define an smax-minimal trellis

as follows.

Definition 4.21 A trellis T is said to be smax-minimal, if and only if for every trellis T ′,

smax(T) ≤ smax(T ′).

Note that the class of smax-minimal trellises subsumes the class of ≺max-minimal trellises

given in Definition 3.12. For example, the trellis in Figure 4.4 is smax-minimal but not ≺max-

minimal, since it is not a ≺Θ-minimal trellis. To the best of our knowledge the complexity

of the problem of computing smax-minimal trellises is not yet known to be polynomially

bounded. As discussed in Section 3.3.2, the feasible space of linear trellises has cardinality

equal to O(qk
2
nk), and this has been reduced to O(nk) by Köetter and Vardy [KV03].

47

Observe that the smax-minimality problem for an (n, k)q code C with parity check matrix

H and generator matrix G may be stated as follows.

Problem: Find a displacement matrix D that minimizes smax(T) for a T–BCJR trellis T =

〈GH ,D〉 representing C.

µ(C) def
= min

D∈F(n−k)×k
q

smax(〈GH ,D〉) (4.6)

A naive scheme would involve an O(qk
2
) search over the space of all D matrices. It is

interesting to note that the product of this search complexity and the search complexity from

the KV characteristic matrix is equal to the total number of linear trellises O(qk
2
nk). A better

approach is a dynamic algorithm which begins with the generator matrix in trellis-oriented

form (see Definition 2.21), and computes a smax-minimal trellis from this matrix in time

O(nk). While this is a non-polynomial time algorithm, it illustrates the difference between

the KV specification and the T–BCJR specification of the minimal trellis.

Let C be an (n, k)q code with generator matrix Ψ in trellis-oriented form (TOF), and

arbitrary parity check matrix H . Recall that the matrix Ψ is said to be in trellis-oriented

form if no two rows in Ψ have linear spans that start in the same position or end in the same

position. It is well known that the computation of Ψ can be performed in O(k2) steps [KS95].

Given Ψ, we have to find a displacement matrix D which yields a minimal trellis. This is

illustrated by the following example.

Example 4.22 For the (7, 4)2 Hamming code with generator matrix and parity check matrix

as defined in Example 4.11,

Ψ =


1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1



and 〈ΨH ,D〉 with D =


0 1 0 0

0 0 0 0

0 1 0 0

 is an smax-minimal trellis, and is shown in Figure 4.2.

48

We will now describe our dynamic algorithm for computing an smax-minimal tail-biting

trellis. This involves computing in time O(nk) the displacement matrix D for a smax-minimal

trellis from the TOF matrix Ψ for C.

Let part(Ψ) denote the set of all two-partitions of the matrix Ψ. Given a partition Ψl

Ψc

 ∈ part(Ψ), the algorithm Compute–Displacement computes a set of at most n dis-

placement vectors for every y ∈ Ψc. Denote by x[i,j] the projection of x ∈ Fnq onto its

components in the closed interval [i, j]. Given A ∈ Fm×n
q , let A[i,j] denote the projected

matrix whose rows are the rows of A projected onto components in [i, j]. The algorithm

essentially finds, given a partition of the matrix Ψ, for each basis vector y in the partition

Ψc and every time index i ∈ {0, 2, . . . , n−1}, the longest interval of consecutive time indices

(starting at time index i) where the state-complexity of the trellis representing the subcode

〈

 Gl

y

〉 is the same as the state-complexity of the trellis representing the subcode 〈Gl〉.

Algorithm Compute–Displacement

Input: The matrices H and Ψ =

 Ψl

Ψc

 ∈ part(Ψ) for an (n, k)q linear block code C.

Compute: The set of displacement vectors for each y ∈ Ψc.

begin

for each y ∈ Ψc

for each i ∈ [n]

solve(Ψl,y, i)

end

function solve

Input: A matrix A ∈ Fm×nq , a vector y ∈ F1×n
q and an integer s ∈ [n].

Compute: A displacement vector dy for y.

begin

Find the maximum t such that the system of equations given by

(α1, α2, . . . , αm)A[s,t] = y[s,t], αi ∈ Fq, i ∈ [m]

49

has a solution. Let u ∈ Fmq be one such solution.

Let z = (z1, . . . , zn) = uA− y and set dy =
∑n

i=t zihi.

end

Lemma 4.23 The function solve has time complexity O(n4).

Proof: For each t ∈ [n], solving the system of equations as described in the function solve

involves a computational effort of O(n3). Therefore, finding the maximum such t takes O(n4)

steps.

Lemma 4.24 The algorithm Compute–Displacement has time complexity O(n6).

Proof: For each y ∈ Ψc, the algorithm Compute–Displacement invokes the function solve an

O(n) number of times. Therefore from the fact that |Ψc| ≤ n and Lemma 4.23, it follows

that the algorithm Compute–Displacement has time complexity O(n6).

Define an optimal partition of Ψ ∈ part(Ψ) to be a partition that results in an smax-minimal

trellis 〈ΨH ,D〉, for some D = [0 Dc] , Dc ∈ F(n−k)×|Ψc|
q .

Lemma 4.25 Given an optimal partition of Ψ =

 Ψl

Ψc

 ∈ part(Ψ), there exists a displace-

ment matrix D obtained from the displacements computed by Compute–Displacement such

that 〈ΨH ,D〉 specifies an smax-minimal trellis for C. Furthermore, this can be done in time

O(n|Ψc|).

Proof: Let G =

 Gl

Gc

 be the KV product matrix for an smax-minimal trellis T . From

Definition 4.12, we may also represent T as 〈GH ,D〉, for some D ∈ F(n−k)×k
q . Since we are

considering an optimal partition of Ψ, we may assume that 〈Gl〉 = 〈Ψl〉 (recall that Ψ is in

trellis-oriented form). Let y be an arbitrary vector in Ψc. We will now argue that there

exists a correct displacement vector out of the k possible displacements for y. Let y = c+ l,

where l ∈ 〈Gl〉 and c ∈ 〈Gc〉. Let c have a zero-run of [i, j] (from Lemma 3.23, any vector in

50

〈Gc〉 must have a nonempty zero-run). Since T is an smax-minimal trellis, [i, j] is the longest

run of zeros starting at time index i. Therefore the function solve will find a solution to the

system of equations

(α1, α2, . . . , αm)Ψl[i,j] = y[i,j], αi ∈ Fq, i ∈ [|Ψl|]

In general, there could be many solutions to these equations. Let u be an arbitrarily

chosen solution and let z = uΨl − y. Note that z has a zero-run in the interval [i, j] and

therefore the same circular span as c. Let G ′ = G \ {c} ∪ {z} and let T ′ = 〈G ′H ,D〉. Since

z = uΨl − c − l = l′ − c, where l′ ∈ 〈Gl〉, we have rank(G) = rank(G ′), and therefore

smax(T) = smax(T ′). Therefore dy as defined by Compute–Displacement is a correct choice

for obtaining an smax-minimal trellis. Since for each vector y ∈ Ψc, there exists a correct

choice for dy, the lemma follows.

Theorem 4.26 Given an (n, k)q code C, an smax-minimal trellis representing C can be com-

puted in time O(nk).

Proof: Given an optimal partition

 Ψl

Ψc

, we know from Lemmas 4.24 and 4.25 that

an smax-minimal trellis can be computed in time O(ni), where i = |Ψc|. The number of

partitions such that |Ψc| = i is equal to
(
k
i

)
. Therefore, computing an smax-minimal trellis

can be performed in time bounded above by

k∑
i=0

(
k

i

)
ni = O(nk)

We will conclude this section by presenting a new formulation of the minimal tail-biting

trellis problem that based on the T-BCJR specification. Let C be an (n, k)q code with

generator matrix G and parity check matrix H . Then from the BCJR construction, we know

that a conventional trellis for C is completely specified by the sequence

ΦC = {Si}ni=0, where Si = HiG t
i (4.7)

51

where we recall that the column-space of each Si represents the set of states at level i of

the trellis. From the results stated in Section 4.1, it follows that every non-mergeable linear

tail-biting trellis for C can be specified as

ΦC + D def
= {Si + D}ni=0, where D ∈ F(n−k)×k

q (4.8)

Define the rank of the sequence ΦC + D as follows.

rank(ΦC + D)
def
= max

0≤i≤n
rank(Si + D). (4.9)

The smax-minimal tail-biting trellis computation problem may thus be formulated as follows.

Problem: Find a matrix D such that rank(ΦC + D) is minimized.

µ(C) def
= min

D∈F(n−k)×k
q

rank(ΦC + D) (4.10)

52

Chapter 5

The Tail-Biting Forney Trellis

In this chapter we generalize the Forney construction for conventional trellises described in

Section 2.2.3 to obtain tail-biting trellises. Specifically, we show that there is a generalization

of “pasts” and “futures” which enables the construction of a linear tail-biting trellis for a

linear block code from a coset decomposition of the code, with respect to a subcode of the

code.

5.1 Introduction

As mentioned in Section 3.4, tail-biting trellises for block codes arise from a coset decomposi-

tion of the code with respect to a subcode [DSDR00, LS00, SDDR03, SB00]. The subtrellises

for the codes associated with the cosets are actually structural copies of the trellis for the

subcode and differ only in the labels labeling the edges. Recall that the Forney conventional

trellis for a linear block code C is constructed by identifying the vertices of the trellis at a

given time index i ∈ I with cosets of C modulo a certain subcode C0 of C. This subcode C0

is computed by identifying past and future projections (see Section 2.2.3) of the code C, at

each time index.

We will now show that there is a natural generalization for pasts and futures for tail-biting

trellises, depending on the coset decomposition which uniquely specifies the tail-biting trellis.

53

5.2 The Tail-Biting Forney Trellis

Our adaptation of Forney’s coset construction computes a trellis (henceforth referred to as

the T–Forney trellis) that uses a coset decomposition of the code and the associated merging

interval (see Section 3.4) for each coset. Let C0 be a linear subcode of an (n, k)q code C.

Denote by {C0, C1, . . . , Cm}, the coset decomposition of C over C0, where each coset leader

vi has merging interval [ai, bi]. For all vectors in coset Cl with coset leader vl, having

merging interval [al, bl] with the all-zero codeword, the past (perhaps more appropriately,

the circular past) at i begins at time index bl, wraps around mod n and ends at i. Similarly,

a future of a vector in Cl at time index i begins at i + 1 and ends at al. Define maps

πil, 0 ≤ i ≤ n, 0 ≤ l ≤ m, as follows.

πil : Cl → πil(Cl), defined by c = (c1, . . . , cn) 7→ cblhbl + · · ·+ cnhn + c1h1 + · · · cihi (5.1)

Example 5.1 Let C be a (7, 4)2 Hamming code specified by

H =


1 1 0 0 1 0 1

1 1 1 0 0 1 0

0 1 1 1 0 0 1

 and G =


1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1


Let the linear subcode C0 = {0000000, 1000110, 0010111, 1010001}. Then the rest of the

cosets in C/C0 are

C1 = {0100011, 1100101, 0110100, 1110010}

C2 = {0111001, 1111111, 0101110, 1101000}

C3 = {0011010, 1011100, 0001101, 1001011}

with coset leaders and merging intervals defined as follows.

v1 = 0100011 [3, 5]

v2 = 0111001 [5, 6]

v3 = 0011010 [6, 6]

54

For i = 3 and l = 2, the map πil is given by

π32(0111001) =

(
0

0

1

)

π32(1111111) =

(
1

1

1

)

π32(0101110) =

(
1

1

1

)

π32(1101000) =

(
0

0

1

)
For every time index i, we define the past Pi(Cl) and future Fi(Cl) for vectors in coset Cl

as follows.

Pi(Cl) = {(c1, . . . , ci) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ Cl, πil(c) = 0} (5.2)

Fi(Cl) = {(ci+1, . . . , cn) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ Cl, πil(c) = 0} (5.3)

Lemma 5.2 The set
⋃

0≤l≤m(Pi(Cl)×Fi(Cl)) is a linear subcode of C.

Proof: Fix a time index i. Let c1 ∈ Pi(Cr)×Fi(Cr) and c2 ∈ Pi(Cs)×Fi(Cs). Let

z = αc1 + βc2, α, β ∈ Fq, belong to coset Ct. It can easily be verified that πit(z) =

απir(c1) + βπis(c2) = 0, and therefore z ∈ Pi(Ct)×Fi(Ct).

The T–Forney trellis T = (V,E,Fq) for C is constructed by identifying vertices in Vi with

the quotient group corresponding to cosets of C modulo
⋃

0≤l≤m(Pi(Cl)×Fi(Cl)), that is,

Vi = C/
⋃

0≤l≤m

(Pi(Cl)×Fi(Cl)) (5.4)

There is an edge from e ∈ Ei labeled ci from a vertex u ∈ Vi−1 to a vertex v ∈ Vi, if and

only if there exists a codeword c = (c1, . . . , cn) ∈ C such that c ∈ u ∩ v.

Example 5.3 Let C be a self dual (4, 2)2 code with parity check matrix H and generator

55

0

1

0

1 1

0

1

0<0000>

<1001>

<0000> <0000>
<0000>

<1001><1001>

<0000>

Figure 5.1: A T–Forney trellis for the (4, 2)2 code.

matrix G defined as follows.

H = G =

 0 1 1 0

1 0 0 1


Let the linear subcode of C be defined as

C0 = {0000, 0110}

Let the coset leader for the coset C1 be v1 = 1001 (with merging interval [2, 3]). The subcodes⋃
0≤l≤1Pi(Cl)×Fi(Cl), 0 ≤ i ≤ 3, are given by

⋃
0≤l≤1

P0(Cl)×F0(Cl) = {0000, 0110}⋃
0≤l≤1

P1(Cl)×F1(Cl) = {0000, 0110, 1001, 1111}⋃
0≤l≤1

P2(Cl)×F2(Cl) = {0000, 0110}⋃
0≤l≤1

P3(Cl)×F3(Cl) = {0000, 0110, 1001, 1111}

The T–Forney trellis for C is shown in Figure 5.1. The vertices in Figure 5.1 are labeled by

the coset representatives in Vi, 0 ≤ i ≤ 3. For example, the vertex {1001, 1111} ∈ V0 is

labeled by 〈1001〉. We observe that since the coset with respect to which the decomposition

is computed is the whole code at time indices 1 and 3, there is a single state at those time

indices.

Example 5.4 Let C be the (7, 4)2 Hamming code from Example 5.1. The subcodes

56

1

0

1

1

0

0

0

0

1

1

1

1

0

1

0

0

0

1

0

1

1

0

1

0

1
0

1

0

0

1

1

0

0

1

0

1

0

1

1
0

1

0
0

1

0

1

0

1

0

1
0

1
0

<0001101>

<0100011>

<0101110>

<1011100>

<0001101>

<0111001>

<1100101>

<0100011>

<0000000>

<1010001>

<1101000>

<1101000>

<0001101>

<1100101>

<0000000>

<0001101>

<1100101>

<1101000>

<0000000>

<0011010>

<0001101>

<1110010>

<1100101>

<0000000>

<0010111>

<1101000>

<1111111>

<1110010>

<1101000><0000000>

<0000000>

<0011010>

<1110010>

<0000000>

<0011010>

<1101000>

<0000000>

<0001101>

<0100011>

<0101110>

Figure 5.2: A T–Forney trellis for the (7, 4)2 Hamming code.

⋃
0≤l≤2Pi(Cl)×Fi(Cl), 0 ≤ i ≤ 6, are given by:

⋃
0≤l≤2

P0(Cl)×F0(Cl) = {0000000, 0010111, 1010001, 1000110}⋃
0≤l≤2

P1(Cl)×F1(Cl) = {0000000, 0010111}⋃
0≤l≤2

P2(Cl)×F2(Cl) = {0000000, 0010111, 0110100, 0100011}⋃
0≤l≤2

P3(Cl)×F3(Cl) = {0000000, 1111111, 1011100, 0100011}⋃
0≤l≤2

P4(Cl)×F4(Cl) = {0000000, 0100011}⋃
0≤l≤2

P5(Cl)×F5(Cl) = {0000000, 0001101, 0100011, 0101110}⋃
0≤l≤2

P6(Cl)×F6(Cl) = {0000000, 0001101, 1001011, 1000110}

The T–Forney trellis for C is shown in Figure 5.2. The vertices in Figure 5.2 are labeled by

the coset representatives in Vi, 0 ≤ i ≤ 6. For example, the vertex {1101000, 1111111} ∈ V1

57

is labeled by 〈1101000〉.

The following theorem relates the T–BCJR and T–Forney trellises.

Theorem 5.5 Given an (n, k)q code C with generator matrix G, parity check matrix H and

displacement matrix D, the T–BCJR and T–Forney trellises are isomorphic to each other.

Proof: Given a coset leader v = (v1, v2, . . . , vn) with merging interval [a, b], define the

displacement vector for v as follows.

dv =
a∑
i=0

vihi (5.5)

Therefore H ,G and D also specify a T–Forney trellis. From Lemma 4.9, we also know that

the state-cardinality of the T–BCJR trellis at level i is given by the column-space cardinality

of Mi = [HiGit + D]. Define a family of maps πi, 0 ≤ i ≤ n, as follows.

πi
def
=

⋃
0≤l≤m

πil (5.6)

where the maps πil, 0 ≤ l ≤ m, are defined in (5.1). We also have ∀i, 0 ≤ i ≤ n,

Im πi = column−space(Mi) (5.7)

The kernel of πi, 0 ≤ i ≤ n, also turns out to be

Ker πi =

{
c : c ∈

⋃
0≤l≤m

(Pi(Cl)×Fi(Cl))

}
(5.8)

We therefore have

Im πi ∼= C/
⋃

0≤l≤m

(Pi(Cl)×Fi(Cl)) (5.9)

Since the vertex class Vi at level i of the T–Forney trellis is identified with C/
⋃

0≤l≤mPi(Cl)×

Fi(Cl), the T–Forney and T–BCJR trellises have the same number of vertices at all time in-

dices. From the previous statements, it can also be easily verified that the T–Forney condi-

tion for edge placement between vertices translates to the T–BCJR edge placement condition.

Therefore, the T–BCJR and T–Forney trellises are isomorphic to each other.

58

Chapter 6

The Tail-Biting Dual Trellis

As seen in Section 2.2.1, there are a number of interesting connections between the minimal

conventional trellis for a linear code and the minimal conventional trellis for its dual code.

It is an interesting fact that algebraic and combinatorial duality are related, and this was

first established by Forney [For88]. Kötter and Vardy [KV03] have defined a special product

operation called the intersection product to construct a linear tail-biting dual trellis directly

from a generator matrix for the primal code. This results in a linear tail-biting trellis

T⊥ for the dual code that has the same SCP as the primal trellis T , only if T is ≺Θ-

minimal. Their construction is somewhat indirect and involves a new trellis product invented

solely for the purpose of constructing dual trellises. We give a much simpler and direct

construction. Our construction that is based on the T–BCJR specification of linear tail-

biting trellises extends the Kötter-Vardy result to a larger class of trellises. We begin this

chapter by describing the intersection product construction for dual trellises, followed by our

dual T–BCJR construction.

6.1 The Intersection Product

Kötter and Vardy [KV03] define a trellis product operator called the intersection product,

and use this operation to construct dual trellises directly from the generator matrix for the

primal code. In particular, they prove that given any ≺Θ-minimal trellis T for a code C,

there exists a corresponding ≺Θ-minimal dual trellis T⊥ for the dual code C⊥, such that the

SCP of T is identical to the SCP of T⊥.

59

Definition 6.1 Let T1 = (V ′, E ′,Fq) and T2 = (V ′′, E ′′,Fq) be two trellises (either conven-

tional or tail-biting) of depth n. Then the intersection product trellis T ′ � T ′′ is the trellis

T = (V,E,Fq) of depth n, whose vertex and edge classes are Cartesian products defined as

follows.

Vi
def
= {(v′, v′′) : v′ ∈ V ′i , v′′ ∈ V ′′i } (6.1)

Ei
def
= {(v′i−1, v

′′
i−1), a, (v′i, v

′′
i) : (v′i−1, a, v

′
i) ∈ E ′i, (v′′i−1, a, v

′′
i) ∈ E ′′i } (6.2)

Then T represents the code C defined as

C = C(T1) ∩ C(T2) (6.3)

The construction of Kötter and Vardy is based on the following lemma.

Lemma 6.2 Let C be an (n, k)q code defined by the set of generators {g1, g2, . . . , gk}. Then

C⊥ = 〈g1〉
⊥ ∩ 〈g2〉

⊥ · · · 〈gk〉
⊥ (6.4)

We will now introduce the elementary dual trellis T⊥g as defined in [KV03]. Given an

arbitrary vector x = (x1, x2, . . . , xn) over the field Fq = {0, β1, . . . , βq−1}, along with its

span [a, b], the corresponding elementary trellis Tx is completely determined by x and [a, b],

and represents the one-dimensional code 〈x〉 over Fq (see Section 3.2). Analogously, the

elementary dual trellis T⊥x is completely determined by x and [a, b], and represents the (n−1)-

dimensional code 〈x〉⊥ over Fq. The trellis T⊥x has q vertices labeled 0, β, . . . , βq−1 at those

positions that belong to (a, b], and a single vertex labeled 0 at other positions. For ease

of exposition, assume that xa 6= 0 and xb 6= 0. We will describe the edges of T⊥x for the

following cases.

(i) j /∈ [a, b]. There are q edges labeled by the elements of Fq between v ∈ Vj and

v′ ∈ Vj+1.

(ii) j = a. The vertex v ∈ Vj is connected by an edge labeled β
xj

to each of the q vertices

v′ ∈ Vj+1, where β is the label of the vertex v′.

(iii) j ∈ (a, b) and xj = 0. The vertices v ∈ Vj and v′ ∈ Vj+1 are connected if and only

60

if they have the same label β ∈ Fq – in which case there are q edges labeled by the elements

of Fq from v to v′.

(iv) j ∈ (a, b) and xj 6= 0. Each vertex in v ∈ Vj is connected by a single edge labeled

by β′−β
xj

to each vertex in v′ ∈ Vj+1, where β and β′ are labels of v and v′ respectively.

(v) j = b. The vertex v ∈ Vj is connected by an edge labeled −β
xj

to each of the q vertices

v′ ∈ Vj+1, where β is the label of the vertex v′.

d

a b c e f0 0 0 0

1 11 1

Figure 6.1: An elementary dual trellis for the vector (0110) with span [2, 3].

c’ d’ e’ f’

1 1

a’ g’

b’0 0 0 0

1 1

Figure 6.2: An elementary dual trellis for the vector (1001) with span [4, 1].

Example 6.3 Two elementary dual trellises for the vectors g1 = (0110) ∈ F4
2 (with span

[2, 3]) and g2 = (1001) ∈ F4
2 (with span [4, 1]) are shown in Figures 6.1 and 6.2 respectively.

The following lemma describes the intersection product construction that computes dual

linear tail-biting trellises from the specification of their primal counterparts.

Lemma 6.4 Let C be an (n, k)q code defined by a set of generators {g1, g2, . . . , gk}. Let T

be a linear trellis computed as T = Tg1
× Tx2 × · · · × Txk . Then the trellis

T⊥ = T⊥g1
� T⊥g2

� · · · � T⊥gk (6.5)

is a linear trellis that represents the dual code C⊥ of C, and has an SCP identical to the SCP

of T .

61

(a,a’)

(a,b’)

(d,d’)

(b,c’)

(c,d’)

(e,e’)

(f,g’)

(f,f’)

1

0

1

0 0

1 1

0

Figure 6.3: A dual trellis for the (4, 2)2 code computed by an intersection product.

Example 6.5 For the (4, 2)2 code specified by

G =

 0 1 1 0

1 0 0 1

 [2, 3]

[4, 1]

The elementary trellises for the rows of G are shown in Figures 6.1 and 6.2, and the dual

trellis computed by the intersection product is shown in Figure 6.3.

0 0 00

1

1

1

1

0

1

1

0

1

0

Figure 6.4: A non-minimal trellis for the (4, 2)2 code in Example 6.6.

00 0
0

1

0

1 1
1
1

Figure 6.5: An elementary trellis for the code 〈1110〉⊥.

The trellis T⊥ defined in Lemma 6.4, is in general not a reduced trellis, as illustrated by

the following example.

Example 6.6 ([KV03]) Let C be a (4, 2)2 code with KV product matrix

G =

 1 1 1 0

1 0 1 1

 [1, 3]

[1, 4]

62

00
0

0

1

1 0

1
0
0

1
1

Figure 6.6: An elementary trellis for the code 〈1011〉⊥.

0 00 0

1

1

1

0

0

1

1

0

0

1

1

1

Figure 6.7: A dual trellis for the dual code in Example 6.6 that is not reduced.

The product primal trellis T for C is shown in Figure 6.4. The elementary trellises for

〈1110〉⊥ and 〈1011〉⊥ are shown in Figures 6.5 and 6.6 respectively. The dual trellis T⊥

representing C⊥ computed by the intersection product is shown in Figure 6.7. As illustrated

by the figures, the SCP of T⊥ is identical to the SCP of T , and T⊥ is a not a reduced trellis.

But this situation does not arise if the original primal trellis T is Θ-minimal [KV03].

Therefore we have the following theorem.

Theorem 6.7 Let T be a ≺Θ-minimal linear trellis, either conventional or tail-biting, for a

linear code C. Then the dual trellis T⊥ is a ≺Θ-minimal trellis for C⊥, and the SCP of T⊥

is identical to the SCP of T .

6.2 The Tail-Biting Dual Trellis

We will now describe our solution to the dual trellis computation problem. Let G , H and D

respectively, be the generator, parity and displacement matrices for a primal code C. Given

a primal trellis specification T = 〈GH ,D〉, the dual BCJR construction (T–BCJR⊥) computes

a biproper linear tail-biting trellis T⊥ for the dual code C⊥, with the property that the SCP

of T⊥ is equal to the SCP of T . In other words, given a minimal (under any definition of

63

minimality) trellis T for the primal code, T–BCJR⊥ computes a minimal linear tail-biting

trellis T⊥ for the dual code such that the SCP of T is equal to the SCP of T⊥. We define

the dual trellis T⊥ representing the dual code C⊥ as follows.

Definition 6.8 (T–BCJR⊥ Construction) Let C be an (n, k)q code with generator and parity

check matrices G and H respectively. Let T = 〈GH ,D〉 be a biproper linear trellis representing

C for some D ∈ F(n−k)×k
q . Then the dual BCJR (T–BCJR⊥) trellis T⊥ =

(
V ⊥, E⊥,Fq

)
representing the (n, n−k)q dual code C⊥ is defined as

T⊥ = 〈HG ,Dt〉 (6.6)

)(0
1

)(1
0

)(0
1

)(0
0)(0

0)(0
0)(0

0

)(0
0

1

0

1

0 0

1 1

0

Figure 6.8: A T–BCJR⊥ trellis for the (4, 2)2 code.

Example 6.9 For the (4, 2)2 code defined in Example 4.10, we have

HG ,Dt =

 (0
0

)
0
(

0
0

)
1
(

1
0

)
1
(

0
0

)
0
(

0
0

)(
0
1

)
1
(

0
0

)
0
(

0
0

)
0
(

0
0

)
1
(

0
1

)


and 〈HG ,Dt〉 is the trellis shown in Figure 6.8.

Example 6.10 For the (7, 4)2 Hamming code given in Example 4.11, we have

HG ,Dt =



(
0

0

0

1

)
1

(
0

1

0

0

)
1

(
0

0

0

0

)
0

(
0

0

0

0

)
0

(
0

0

0

0

)
1

(
1

0

0

0

)
0

(
1

0

0

0

)
1

(
0

0

0

1

)

(
0

0

0

0

)
1

(
0

1

0

1

)
1

(
0

0

0

1

)
1

(
0

0

1

0

)
0

(
0

0

1

0

)
0

(
0

0

1

0

)
1

(
0

0

0

0

)
0

(
0

0

0

0

)

(
0

0

0

1

)
0

(
0

0

0

1

)
1

(
0

1

0

1

)
1

(
0

1

1

0

)
1

(
1

0

0

0

)
0

(
1

0

0

0

)
0

(
1

0

0

0

)
1

(
0

0

0

1

)


64

)(0

0
0

1

)(0

0
0

0

)(0

0
0

1

)(0

0
1

0

)(0

0
0

0

)(0

0
1

0

)(0

0
1

1

)(0

0
0

0

)(0

0
0

1

)(0

0
0

0

)(0

0
1

0

)(1

0
1

0

)(0

0
0

0

)(0

0
1

0)(0

0
0

1)(0

0
1

1)(0

0
1

0

)(0

0
0

0

)(0

1
0

0

)(1

1
0

0)(0

1
0

0

)(0

0
0

0

)(0

0
1

0

)(1

1
0

0

)(0

1
0

0

)(0

0
0

0

0

1

1

1

0

0

0
10

1

0

1

0

1

0

1

1

1

0

0

1
0

1

0

0

1

0

0

1

1

1

0

Figure 6.9: A T–BCJR⊥ trellis for the (7, 4)2 Hamming code.

and 〈HG ,Dt〉 is the trellis shown in Figure 6.9.

The following lemma states the properties of the T–BCJR⊥ trellis T⊥.

Lemma 6.11 The trellis T⊥ is a biproper linear trellis that represents C⊥.

Proof: Since T⊥ is a T–BCJR trellis, the lemma follows from Lemmas 4.7 and 4.8.

Let Mi be the matrix defined in (4.5). Recall that

Mi =
[
HiGit + D

]
Lemma 6.12 For all time indices i ∈ I, the state space of T⊥ at time index i equals the

column-space of M t
i .

Proof: Follows directly from Definition 6.8.

Example 6.13 The T–BCJR⊥ trellises for the (4, 2)2 self dual code and the (7, 4)2 Hamming

code from Examples 6.9 and 6.10, are shown in Figures 6.8 and 6.9 respectively. These

trellises have the same SCPs as their primal counterparts (Figures 4.1 and 4.2).

Lemma 6.14 Let T and T⊥ be the trellises computed by the T–BCJR and T–BCJR⊥ con-

structions respectively. Then for all all time indices i ∈ I, the state-cardinality of T at level

i equals the state-cardinality of T⊥ at level i. In other words, |Vi| =
∣∣V ⊥i ∣∣.

65

Proof: From Lemmas 4.9 and 6.12 we know that Vi is equal to the column-space of Mi, and

V ⊥i is equal to the column-space of M t
i . Therefore, by the “row rank=column rank” theorem

of linear algebra [HK61], |Vi| =
∣∣V ⊥i ∣∣.

Finally, we have the following theorem.

Theorem 6.15 Let T be a minimal linear trellis, either conventional or tail-biting, for a

linear code C. Then there exists a minimal linear dual trellis T⊥ for the dual code C⊥ such

that the SCP of T⊥ is identical to the SCP of T .

Proof: Follows from Corollary 4.17, Lemma 6.11 and Lemma 6.14.

66

Chapter 7

Abstract Characterization of

Tail-Biting Trellises

This chapter describes an abstract characterization for linear tail-biting trellises in terms of

an equivalence relation defined on a certain language derived from the code. In the context

of formal language theory, this characterization is related to the Myhill-Nerode theorem for

regular languages. In this chapter we will also review the Myhill-Nerode theorem from formal

language theory which is central to the understanding of our abstract characterization of

tail-biting trellises. We refer the reader to the classic text [HU77] for more background on

formal language theory.

7.1 The Myhill-Nerode Theorem for Regular Languages

We will first survey the principal mathematical ideas necessary for understanding the mate-

rial in this section. An alphabet Σ is any finite set of symbols. A finite word over Σ is any

finite sequence of symbols from Σ. The length of a word w, denoted |w| is the number of

symbols composing the word. The empty word, denoted by ε, is the word consisting of zero

symbols. Therefore |ε| = 0. A prefix of a word w is a word x such that there exists a word z

and w = xz. A suffix of a word w is a word x such that there exists a word z and w = zx.

The concatenation w of two words w1, w2 is written as w = w1w2. We will denote by Σ∗ the

set of all words on Σ. A language L is any subset of Σ∗.

67

Example 7.1 Let Σ = {0, 1}. Then Σ∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .} is the set of all

binary words. The language L = {ε, 11, 011, 101, 110, 0011, . . .} consisting of all words with

an even number of 1’s is a subset of Σ∗.

Definition 7.2 A deterministic finite automaton (DFA) M is a 5-tuple (Q,Σ, δ, q0.F), where

Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is

the set of final states, and δ : Q×Σ→ Q is the transition function. That is, δ(q, a) is a state

for each state q ∈ Q and input symbol a ∈ Σ.

To formally describe the behaviour of a DFA M on a word w ∈ Σ∗, we must extend the

transition function δ to apply to a state and w rather than a state and a symbol. We define

δ̂ : Q× Σ∗ → Q, such that δ̂(q, w) is the state of the DFA after reading the word w starting

in state q. Formally,

δ̂(q, ε) = q, and δ̂(q, wa) = δ(δ̂(q, w), a), ∀a ∈ Σ, w ∈ Σ∗ (7.1)

For convenience, δ and δ̂ are used interchangeably. A word w ∈ Σ∗ is said to be accepted by

a DFA M = (Q,Σ, δ, q0.F), if δ(q0, x) = f , for some f ∈ F . Therefore, the language L(M)

accepted by M is defined as

L(M)
def
= {w ∈ Σ∗ : δ(q0, w) ∈ F} (7.2)

2q0q

1q

1 11

0

0

0

Figure 7.1: A DFA for the language in Example 7.4.

Definition 7.3 A language L ⊆ Σ∗ is said to be regular if it is the language accepted by

some finite automaton.

68

states inputs
Q 0 1
q0 q0 q1

q1 q1 q2

q2 q2 q1

Figure 7.2: δ(q, a) for the DFA in Figure 7.1.

Example 7.4 Let Σ = {0, 1}. Consider the language L ∈ Σ∗ consisting of words with an

even number of 1’s. The DFA M = (Q,Σ, δ, q0, F) for L is shown in Figure 7.1. We have

Q = {q0, q1, q2}, F = {q2}, and δ is defined in Figure 7.2.

Definition 7.5 A binary relation R ⊆ S × S is said to be

(i) reflexive if and only if ∀s ∈ S, (s, s) ∈ R.

(ii) symmetric if and only if ∀s, t ∈ S, (s, t) ∈ R⇒ (t, s) ∈ R.

(iii) transitive if and only if ∀s, t, u ∈ S, (s, t) ∈ R and (t, u) ∈ R⇒ (s, u) ∈ R.

Definition 7.6 A reflexive, symmetric and transitive relation R is called an equivalence

relation. The equivalence class of an element of S under R is the set {x : (x, a) ∈ R}, denoted

[a]. The set of equivalence classes is a partition of S. The cardinality of this partition is called

the index of R.

There is a natural equivalence relation on words induced by any automaton. Let M =

(Q,Σ, δ, q0, F) be a DFA. For x, y ∈ Σ∗, let (x, y) ∈ RM if and only if δ(q0, x) = δ(q0, y) –

that is, if and only if the words x and y are taken to the same state from the start state by

the action of the automaton. The relation RM is reflexive, symmetric and transitive, since

“=” has these properties, and thus RM is an equivalence relation.

Definition 7.7 An equivalence relation R ⊆ Σ∗ is said to be right-invariant if (x, y) ∈ R ⇒

(xa, ya) ∈ R, ∀a ∈ Σ.

For a DFA M , the equivalence relation RM induced by it has the following two properties.

(i) RM is of finite index.

(ii) RM is right-invariant.

69

We now state the well-known Myhill-Nerode theorem [Myh57, Ner58].

Theorem 7.8 The following statements are equivalent.

(i) The set L ⊆ Σ∗ is accepted by some DFA.

(ii) L is the union of some of the equivalence classes of a right-invariant equivalence

relation of finite index.

(iii) Let equivalence relative RL be defined by: (x, y) ∈ RL if and only if ∀z ∈ Σ∗,

xz ∈ L exactly when yz ∈ L. Then RL is of finite index.

It can also be shown that the minimal DFA for a regular language can be derived from

Theorem 7.8 [HU77].

Definition 7.9 Let Σ be a finite alphabet and let L, L1 and L2 be subsets of Σ∗. The

concatenation of L1 and L2, denoted L1L2, is the set {xy : x ∈ L1 and y ∈ L2}. Define

L0 = {ε} and Li = LLi−1 for i ≥ 1. The Kleene closure of L, denoted L∗, is the set

L∗
def
=
∞⋃
i=0

Li (7.3)

and the positive closure of L, denoted L+, is the set

L+ def
=
∞⋃
i=1

Li (7.4)

Example 7.10 Let Σ = {0, 1} and let L1 = {0, 01} and L2 = {1, 101}. Then L1L2 =

{01, 0101, 011, 01101}. We also have L∗1 = {ε, 0, 01, 00, 000, 001, 010, 0101, . . .}.

7.2 An Abstract Characterization of Linear Tail-Biting Trellises

We now propose an abstract characterization of linear tail-biting trellises along the lines of

the Myhill-Nerode theorem described in the earlier section. But first we give some necessary

definitions.

Definition 7.11 Let Σ be a finite alphabet and let L ⊆ Σ∗ be a language over Σ. Let R

be a binary relation on L. R is said to be restricted right-invariant if ∀a ∈ Σ, (x, y) ∈

70

R ⇒ (xa, ya) ∈ R, whenever xa, ya ∈ L. R is said to be right-cancellative whenever

(xa, ya) ∈ R ⇒ (x, y) ∈ R, ∀a ∈ Σ. If R is both restricted right-invariant and right-

cancellative, then it is bi-invariant.

Definition 7.12 Let R be an equivalence relation on L ⊂ F∗q. For a fixed integer n ∈ Z+, R

is said to have an index profile J = {ιi}n−1
i=0 , if ιi = |{[x] ∈ R : |x| = i mod n}|, 0 ≤ i ≤ n−1.

We will therefore denote the partition on R induced by J as

R =
n−1⋃
i=0

Ri (7.5)

where Ri ⊆ R is an equivalence relation of index ιi.

Definition 7.13 Let R be an equivalence relation on L ⊆ F∗q with an index profile of length

n. Then R is said to be linear if ∀x1, x2, y1, y2 ∈ L, where |x1| = |x2|, |y1| = |y2|,

{(x1, y1), (x2, y2)} ⊆ Ri,⇒ (αx1 + βx2, αy1 + βy2) ∈ Ri, ∀α, β ∈ Fq, 0 ≤ i ≤ n− 1. (7.6)

From now on we will be using the terms word and vector interchangeably. Denote by

C =
⋃m
i=0 Ci, the coset decomposition of a linear block code C over C0 (see Section 3.4). Let

Pi denote the language of all prefixes of C∗i . Define languages U and W on Fq as follows.

U
def
=

m⋃
i=0

CiPi and W
def
=

m⋃
i=0

C+
i (7.7)

Note here that W is not a concatenation of codewords, but is restricted to concatenation of

codewords that lie in the same coset. We will now specify a tail-biting trellis in terms of the

equivalence relations defined earlier.

Theorem 7.14 Let C be a linear block code of length n over Fq, and let the languages U

and W be as defined in (7.7). Then T is a reduced one-to-one biproper linear tail-biting

trellis representing C with SCP (h0, h1, . . . , hn−1), if and only if W is the union of qh0

equivalence classes of a linear bi-invariant equivalence relation over U with index profile(
qh0 , qh1 , . . . , qhn−1

)
.

Proof: (⇒) Assume T = (V,E,Fq) is a reduced one-to-one biproper linear trellis repre-

senting C. Define a trellis transition function δ : V × Fq → V , where δ(v1, a) = v2, if

71

(v1, a, v2) ∈ E. This definition is also extended naturally to paths in T as shown in (7.1).

Define a relation RT on U as follows. For x, y ∈ U , (x, y) ∈ RT if and only if ∃ i and j

such that δ(si, x) = δ(sj, y), where si and sj are start states for the subtrellises representing

cosets Ci and Cj. It is easy to see that RT satisfies the properties of reflexivity, symmetry and

transitivity, and is hence an equivalence relation. We have ∀a ∈ Fq, δ(si, x) = δ(sj, y) ⇒

δ(si, xa) = δ(sj, ya), whenever xa, ya ∈ U , and hence (xa, ya) ∈ RT . Therefore RT is

restricted right-invariant.

Next δ(si, xa) = δ(sj, ya), for xa, ya ∈ U ⇒ δ(si, x) = δ(sj, y) as T is biproper. Hence

RT is right-cancellative. The construction procedure ensures that RT is linear as T is

linear. Since T is reduced, every state of T is reachable and the index profile of RT is

{qh0 , qh1 , . . . , qhn−1}.

(⇐) Given a code C of length n, assume that RC is a linear bi-invariant equivalence re-

lation over U , with index profile J =
(
qh0 , qh1 , . . . , qhn−1

)
. Construct a tail-biting trellis TC

representing C as follows. The start states of TC at time index 0 are the equivalence classes

{[ci] : ci ∈ Ci}1≤i≤qh0 . Also define δC([x], a) = [xa], x ∈ U, a ∈ Fq. Since RC is restricted

right-invariant, this choice is consistent with the choice of any other representative y ∈ [x].

Let ci ∈ Ci, for some i ∈ {0, 1, . . . , qh0}. Then from the construction of TC , it follows that

[ci] = C+
i . Therefore, W =

⋃qh0

i=1{[ci] : ci ∈ Ci}. Note that the trellis TC is biproper. To

see this, for any state [x], there is at most one edge out of [x] on a ∈ Fq, as RC is restricted

right-invariant. Also there is at most one edge into [x] on a ∈ Fq as RC is right-cancellative.

Since RC is an equivalence relation, TC is one-to-one. Finally as RC is linear, it is easy to

verify that TC is also linear with SCP {h0, h1, . . . , hn−1}. Also, by construction all states of

TC are reachable from at least one of the start states hence TC is reduced.

[c 0] 1

[c] 0

[c] 1

[c 0] 0 [c 00] 0[c] 0

[c] 1

0 0

0

1
1 1 1

0

Figure 7.3: A reduced one-to-one non-mergeable tail-biting trellis for the (3, 2)2 code.

72

Example 7.15 Consider a (3, 2)2 code with generator matrix

G =

 1 0 1

1 1 0


Therefore C = {000, 101, 110, 011}. Let C0 = {000, 110} and C1 = {101, 011} be the coset

decomposition of C over C0. Let U and W be as defined in (7.7). Define the linear bi-

invariant equivalence relation RC as follows. Let c0 ∈ C0 and c1 ∈ C1. Denote by EC the

equivalence classes of RC.

EC = {[c0], [c1], [c00], [c10], [c000]}

The trellis TC is shown in Figure 7.3.

An observation that can be made here is that the Myhill-Nerode theorem for deterministic

finite automata defines the unique minimal automaton for the language recognized by an

automaton and directly leads to a minimization algorithm. Here the automaton obtained

from the equivalence relation RC for the languages defined by each coset are minimal. The

choice of coset leaders is specified (indirectly) by the equivalence relation RC , by noting

which words in a coset not containing the all-zero codeword lead to a state on the all-zero

codeword path. However, the coset leaders selected may be such that the resulting tail-

biting trellis is far from minimal – so unfortunately no useful minimization algorithm can be

derived from Theorem 7.14.

73

Chapter 8

Conclusions

In this concluding chapter, we review our main results and propose avenues of study for

the future. This thesis presents unifying views of tail-biting trellises for linear block codes;

all of these stem from the observation that a linear tail-biting trellis for a linear block code

corresponds to a coset decomposition of the code with respect to a subcode. The thesis

addresses a number of problems in the area. These include:

(i) A specification of tail-biting trellises that is a natural generalization of the BCJR con-

struction of conventional trellises for linear block codes. All properties of the original

BCJR construction are preserved (except, of course minimality).

(ii) An O(nk) dynamic algorithm to compute an smax-minimal trellis for an (n, k)q linear

block code.

(iii) A specification of tail-biting trellises that is a natural generalization of the Forney con-

struction of conventional trellises for linear block codes. This involves the notion of

circular pasts and futures as opposed to linear pasts and futures for conventional trel-

lises.

(iv) A simple specification of dual trellises arising from the description of the primal code.

The construction is direct and leads to a theorem stating that for every minimal linear

trellis T representing a primal code, there exists a minimal linear trellis T⊥ representing

the dual code, such that T and T⊥ have identical state-complexity profiles.

74

(v) An abstract characterization of tail-biting trellises in terms of an equivalence relation

defined on a certain language derived from the code.

There are a number of problems that are yet open. The most important one is the problem

of computing smax-minimal trellises. In Section 4.2, we presented a dynamic algorithm to

compute an smax-minimal trellis for an (n, k)q code. As a starting point to tackle the smax-

minimality problem, it would be interesting to see if this computation can be made “static”

– that is, compute an O(n) number of displacement vectors for the rows of the matrix Ψ, in

polynomial time.

Another very interesting problem would be to design a decoding algorithm that operates

on a T–BCJR⊥ dual trellis and decodes a received word to a primal codeword. This would

lead to an efficient decoding algorithm for high rate codes.

75

Bibliography

[BCJR74] Lalit R. Bahl, John Cocke, Frederick Jelinek, and Josef Raviv. Optimal decoding

of linear codes for minimizing symbol error rate. IEEE Transactions on Informa-

tion Theory, 20:284–287, March 1974.

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and H.C.A. van Tilborg. On the inher-

ent intractability of certain coding problems. IEEE Transactions on Information

Theory, 24:384–386, May 1978.

[CFV99] A. Robert Calderbank, G. David Forney, and Alexander Vardy. Minimal tail-

biting trellises: the golay code and more. IEEE Transactions on Information

Theory, 45:1435–1455, July 1999.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John

Wiley & Sons Inc., New York, 1991.

[DSDR00] Kaustubh Deshmukh, Priti Shankar, Amitava Dasgupta, and B. Sundar Rajan.

On the many faces of block codes. In Symposium on Theoretical Aspects of

Computer Science(STACS), pages 53–64, 2000.

[For67] G. David Forney. Final report on a coding system design for advanced solar

missions. Contract NAS2-3637, NASA Ames Research Center, CA, December

1967.

[For73] G. David Forney. The Viterbi algorithm. Proceedings of the IEEE, 61:268–278,

1973.

[For88] G. David Forney. Coset codes II: binary lattices and related codes. IEEE Trans-

actions on Information Theory, 34:1152–1187, September 1988.

76

[For94] G. David Forney. Dimension/length profiles and trellis complexity of linear block

codes. IEEE Transactions on Information Theory, 40:1741–1752, November 1994.

[For01] G. David Forney. Codes on graphs: normal realizations. IEEE Transactions on

Information Theory, 47:520–548, February 2001.

[HK61] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice Hall, 1961.

[HU77] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata, Languages

and Computation. Addison Wesley, 1977.

[KS95] Frank R. Kschischang and Vladislav Sorokine. On the trellis structure of block

codes. IEEE Transactions on Information Theory, 41:1924–1937, November 1995.

[Ksc96] Frank R. Kschischang. The trellis structure of maximal fixed-cost codes. IEEE

Transactions on Information Theory, 42:1828–1838, November 1996.

[KTFL93] Tadao Kasami, Toyoo Takata, Toru Fujiwara, and Shu Lin. On complexity of trel-

lis structure of block codes. IEEE Transactions on Information Theory, 39:1057–

1064, March 1993.

[KV02] Ralf Kötter and Alexander Vardy. On the theory of linear trellises. In M. Blaum,

P.G. Farrel, and H.C.A. van Tilborg, editors, Information, Coding and Mathe-

matics, pages 323–354. MA:Kluwer, 2002.

[KV03] Ralf Kötter and Alexander Vardy. The structure of tail-biting trellises: minimal-

ity and basic principles. IEEE Transactions on Information Theory, 49:1877–

1901, September 2003.

[LKFF98] Shu Lin, Tadao Kasami, Toru Fujiwara, and Marc Fossorier. Trellises and Trellis-

Based Decoding Algorithms for Linear Block Codes. Kluwer Academic Publishers,

1998.

[LS00] Shu Lin and Rose Y. Shao. General structure and construction of tail-biting

trellises for linear block codes. In IEEE International Symposium on Information

Theory, Sorrento, Italy, page 117, June 2000.

77

[Mas78] James L. Massey. Foundations and methods of channel encoding. In Inter-

national Conference on Information Theory and Systems, NTG-Fachberichte,

Berlin, pages 148–157, 1978.

[McE96] Robert J. McEliece. On the BCJR trellis for linear block codes. IEEE Transac-

tions on Information Theory, 42:1072–1092, July 1996.

[McE04] Robert J. McEliece. The Theory of Information and Coding. Cambridge Univer-

sity Press, 2004.

[Mud88] Douglas J. Muder. Minimal trellises for block codes. IEEE Transactions on

Information Theory, 34:1049–1053, September 1988.

[Myh57] John Myhill. Finite automata and the representation of events. Technical Report

WADD TR-57-624, Wright Patterson AFB, Ohio, 1957.

[Ner58] Anil Nerode. Linear automaton transformations. Proceedings of the American

Mathematical Society, 9:541–544, 1958.

[RB99] Ilan Reuven and Yair Be’ery. Tail-biting trellises of block codes: trellis com-

plexity and Viterbi decoding complexity. IEICE Transactions Fundamentals,

E82-A:2043–2051, October 1999.

[SB00] Yaron Shany and Yair Be’ery. Linear tail-biting trellises, the square-root bound

and applications for reed-muller codes. IEEE Transactions on Information The-

ory, 46:1514–1523, July 2000.

[SDDR03] Priti Shankar, Amitava Dasgupta, Kaustubh Deshmukh, and B. Sundar Ra-

jan. On viewing block codes as finite automata. Theoretical Computer Science,

290:1775–1795, March 2003.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27(3):379–423, July 1948.

[SKSR01] Priti Shankar, P. N. Anjaneya Kumar, Harmeet Singh, and B. Sundar Rajan.

Minimal tail-biting trellises for certain cyclic block codes are easy to construct. In

International Colloquium on Automata, Languages and Programming (ICALP),

pages 627–638, 2001.

78

[SvT79] Gustav Solomon and H.C.A. van Tilborg. A connection between block and con-

volutional codes. SIAM Journal on Applied Mathematics, 37:358–369, October

1979.

[Var98] Alexander Vardy. Trellis structure of codes. In V.S. Pless and W.C. Huffman,

editors, Handbook of Coding Theory. Elsevier, 1998.

[VK96] Alexander Vardy and Frank R. Kschischang. Proof of a conjecture of McEliece

regarding the expansion index of the minimal trellis. IEEE Transactions on

Information Theory, 42:2027–2034, November 1996.

[vL99] J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, Berlin, 1999.

[Wib96] Niclas Wiberg. Codes and decoding on general graphs. Ph.D. dissertation, De-

partment of Electrical Engineering, Linköping University, Linköping, Sweden,

1996.

[WLK95] Niclas Wiberg, Hans-Andrea Loeliger, and Ralf Kötter. Codes and iterative de-

coding on general graphs. European Transactions on Telecommunications, 6:513–

526, September 1995.

[Wol78] J.K. Wolf. Efficient maximum-likelihood decoding of linear block codes using a

trellis. IEEE Transactions on Information Theory, 24:76–80, 1978.

79

