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Abstract

This paper presents a novel approach for establishing
vertex correspondences between two planar shapes. Corre-
spondences are established between the perceptual feature
points extracted from both source and target shapes. A simi-
larity metric between two feature points is defined using the
intrinsic properties of their local neighborhoods. The opti-
mal correspondence is found by an efficient dynamic pro-
gramming technique. Our approach treats shape noise by
allowing discarding small feature points, which introduces
skips in the traversal of the dynamic programming graph.
Our method is fast, feature preserving, and invariant to ge-
ometric transformations. We demonstrate the superiority of
our approach over other approaches by experimental re-
sults.

1. Introduction

Shape morphing is the gradual transformation of one
shape into another which has wide applications such as
modeling, animation, medicine, and entertainment.

The morphing problem has been investigated in many
contexts [12, 26]. In particular, object-space morphing has
two subproblems. First is the vertex correspondence prob-
lem - determining the vertex correspondence pairs. Second
is the vertex path problem - finding paths that the corre-
sponding vertices traverse during the morphing process.

1.1. Related work

The establishment of suitable correspondence between
the shapes is the primary concern for the morphing. There
are many attempts to find methods for automatically find-
ing vertex correspondences between shapes in the literature.
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Sederberg and Greenwood [22] proposed to use a physically
based approach to minimize some work function to deter-
mine the correspondence. Zhang [27] introduced a fuzzy
vertex correspondence based on maximizing a similarity
function between vertices. This method is similar to the
physically based approach but uses a similarity function in-
stead of a work function. Ranjan etal. [19] represented an
object by a union of circles. Correspondence is established
by considering the sizes and relative locations of the circles
and the in-between objects are generated by blending corre-
sponding circles. Recently Mortara and Spagnuolo[17] used
an approximate skeleton to describe the shape and estab-
lished the vertex correspondence through finding a reason-
able match among the approximate skeletons of the shapes.

In addition, in the morphing of curved shape, exist-
ing methods usually assume a uniformly distributed set of
vertices approximating the shape. Sederberg etal. [23] ex-
tended the physically based approach [22] for establishing
correspondences between knots of closed B-spline curves.
Cohen etal. [5] used an approximated solution exploiting
dynamic programming over the discrete sample sets of the
two curves and their unit tangent vector fields. In industrial
design context, Hui and Li [10] proposed a technique for lo-
cating significant vertices along curved shapes, which rep-
resent shape features. Correspondences between features of
the objects are then established. Recently, Sebastian etal.
[20] introduced an approach to find a correspondence be-
tween two curves based on a notion of an alignment curve
which treats both curves symmetrically.

The vertex correspondence problem also arises in surface
reconstruction [15], shape recognition and retrieval [2].

Other object-space methods were designed to solve the
path problem assuming that the correspondence is given.
Most of the research on solving the path problem concen-
trates on trying to eliminate shrinks and self-intersections
and preserve the geometric properties of the intermediate
shapes [3, 7, 21]. Two curves were morphed by blending
their curvature signatures in [24]. Recent work of [1, 8, 11]
blended two polygonal shapes by interpolating their com-
patible triangulations.



1.2. Perceptually based approach

This paper mainly focuses on the vertex correspondence
problem for planar morphing. A novel perceptually based
approach is proposed to establish the correspondences be-
tween planar shapes. In this paper, a planar shape is repre-
sented as a series of contiguous curve segments or line seg-
ments. The shapes are first scaled to the same size so that
the relative sizes of the shapes will not affect the correspon-
dence process.

In previous approaches, correspondence is usually estab-
lished by measuring the similarity between series of ver-
tices approximating the shapes. It can be seen that corre-
spondence between visual features other than vertices is es-
sential to retain certain characteristics of the original shapes
for morphing at a human level of competence. For instance,
consider the morphing of two dancers. It is desirable that the
visual parts such as head, arms, and legs in both shapes are
in correspondence. The corresponding parts are to be mor-
phed respectively to form the intermediate shape.

A shape can be generally interpreted as composed of
some different perceptual or meaningful visual parts. Fea-
ture points segment a shape into meaningful subparts and
play a dominant role in shape perception by humans. If the
feature points are identified and matched properly for two
shapes, the morphing result will conform to the perception
of the human.

Given a source shape and a target shape, the perceptual
feature point of both shapes are first extracted. We propose
a novel approach to automatically establish correspondence
between the feature points. Our approach takes into consid-
eration the local information of the feature points accord-
ing to some reasonable similarity criteria. The correspon-
dence between these feature points is computed by optimiz-
ing a global cost function using dynamic programming (DP)
technique. We also propose a mechanism for computing the
cost for discarding relatively small and unimportant feature
points. Discarding feature point has a similar effect to that
of smoothing several short feature segments in a shape to
produce a single longer feature segment, but without actu-
ally performing the costly smoothing operation. Discard-
ing operation of feature points is incorporated in the dy-
namic programming scheme which introduces ”skips” in
the traversal of the DP graph.

Our approach has several advantages over previous
methods [5, 20, 22]. First, our approach establishes the cor-
respondence between perceptually feature points at a
human level of competence instead of the vertices of polyg-
onal approximation. So the corresponding features can be
preserved during the morphing sequence. Second, sim-
ilarity measurement between a pair of feature points in
our approach is determined by a wide range of local re-
gion of the feature points, while only a few nearby ver-

tices are used in measuring similarity between vertices
in their approaches. Third, the number of vertices ap-
proximating a shape is much more than the number of
feature points detected on the shape. Thus our algo-
rithm is much faster. Finally, our approach is resistant to
moderate amounts of noise by discarding small and unim-
portant feature points in DP.

The contributions of our perceptually based approach for
shape morphing are summarized in the following:

• Feature preserving: Correspondence between per-
ceptually visual features other than vertices is essen-
tial to retain certain characteristics of the original
shapes for morphing at a human level of compe-
tence. Overall shape as well as features can be pre-
served during the morphing process.

• Fast: Optimal correspondence is found by effective
DP technique. It is faster than other methods in that
there are only a few feature points used in the DP pro-
cess.

• Robust and flexible:Skips are allowed in the traversal
of DP graph by discarding unimportant feature points.
Thus our approach is resistant to moderate amounts of
noise.

• Geometric invariant: Both the correspondence and
interpolation methods are invariant under geometric
transformations such as translation, rescaling, and ro-
tation.

1.3. Overview

The paper is organized as follows. Section 2 defines
some geometric quantities for feature points. A general
framework to find an optimal correspondence between fea-
ture points of two shapes is described in Section 3. Section 4
introduces the method to create the intermediate morphing
sequences. Additional experimental results are illustrated in
Section 5. We conclude the paper in Section 6 with the sum-
mary and future work.

2. Perceptual Feature Points for Planar
Shapes

Feature detection is a well-studied research area in many
scientific fields, including computer vision, medical imag-
ing and computational fluid dynamics [4, 14, 28].

Given a shapeP, we first select a set of potential fea-
ture points, i.e., points that with high probability belong to a
feature point. For curved shapes, potential feature points in-
clude the curvature extrema, cusp, inflection points, and the
discontinuities of curvature. For polygonal shapes, we sim-
ply set all the vertices as potential feature points as they are



actually discontinuous points. End-points should also be re-
garded as feature points for non-closed shape. We then use a
simple and efficient method [4] to extract the feature points
from the potential candidate points. Figure 1 shows the re-
sults of feature point detection for two human shapes.

Figure 1. Some results of feature point detec-
tion.

As a pre-processing, the shapeP is first densely and
semi-uniformly sampled and represented by a sequence of
points Pi, i = 0, 1, . . . , n, while keeping all the feature
points in the sampled points. The sampled points are used in
computation of the covariance matrix introduced in the fol-
lowing.

2.1. Covariance matrix analysis of local neighbor-
hood

We define a region of support (ROS) of a feature point
Pi as a local neighborhood

ROSh(Pi) = {Pj |j = i− h, i− h + 1, . . . , i + h},
for some intergerh.

Various researches have used principal component anal-
ysis of local point neighborhoods to estimate local shape
properties [9, 18]. The measure for the shape property of the
feature pointPi is derived from the statistical and geomet-
rical properties associated with the eigenvalue-eigenvector
structure of the covariance matrix of sample points over the
region of supportROSh(Pi).

Let P̄i = (x̄i, ȳi) be the center ofROSh(Pi). The2× 2
covariance matrix ofROSh(Pi) is defined as:

C(Pi) =
1

2h + 1

i+h∑

j=i−h

(Pj − P̄i)(Pj − P̄i)T .

The eigenvectors{e0, e1} of matrixC(Pi) together with the
corresponding eigenvalues{λ0, λ1} define the correlation
ellipse that adopts the general form of the neighbor points
ROSh(Pi) , see Figure 2. Thus eigenvalues{λ0, λ1} can be

utilized to measure the local form at the feature point over
its neighborROSh(Pi). The two eigenvectorse0, e1 closely
point in tangent direction and normal direction ofPi respec-
tively. We call the eigenvector which points in tangent direc-
tion as tangent eigenvector, denoted byeT , and similarly
for normal eigenvectoreN . EigenvalueλT andλN that cor-
respond toeT andeN respectively are called tangent eigen-
value and normal eigenvalue respectively (Figure 2).
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Figure 2. Eigenvalue-eigenvector structure of
the covariance matrix of a point over a region
of support.

It is noted that the size of ROS (ie. the number of data
points used to construct the covariance matrix) will af-
fect the eigenvalues. In fact, increasing the size of the lo-
cal neighborhood is similar to applying a low-pass smooth-
ing filter. This becomes intuitively clear as the covariance
matrix is defined as sums of squared distances from the
neighborhood’s centroid. If we increase the neighborhood
size, each individual point contributes less to the variation.
Hence high frequency oscillations are attenuated, analo-
gous to standard low-pass filter behavior. Perceptually ROS
should be selected based on the level of detail represented
by the shape. As increasing the size of the local neighbor-
hood eventually violates the prerequisite that all points of
the neighborhood belong to the same feature element of the
underlying feature point, we suggest we use the same size
of ROS for each feature point. Typically, one selectsh in
the range between 20 and 30 for sampling period 2.

We observe by some experiments that the eigenvalue-
eigenvector structure of the covariance matrix is robust and
reliable for shape under varying orientations and sampling
ratio.

2.2. Geometric quantity properties of feature
point

The extracted feature points represent different percep-
tually visual subparts of a shape. A feature element is a por-
tion of the shape bounded by two successive feature points.
A feature pointPi is the junction of its two nearby feature



elements which are called left element and right element
and denoted asROL(Pi) andROR(Pi) respectively.

We now define some geometric quantities for describing
the local properties for a feature point.
(1) Feature variation

We define feature variation of feature pointPi as

σ(Pi) = ξ
λN

λN + λT
,

whereξ = 1 if Pi is convex andξ = −1 if Pi is con-
cave. Feature variation measures deviation of neighbor of
Pi from tangent direction atPi. Value of σ(Pi) is within
the interval[−1, 1] with the property that it is close to 0 as
the neighborhood ofPi looks like a line segment (see Fig-
ure 2(b)) and it tends to 1 or -1 as the neighborhood shape
of Pi is highly bended (see Figure 2(c)).
(2) Feature side variation

Side feature variation of feature pointPi is defined by

τ(Pi) =
σ(ROL(Pi)) + σ(ROR(Pi))

2
,

whereσ(ROL(Pi)) = λL
N

λL
N

+λL
T

, σ(ROR(Pi)) = λR
N

λR
N

+λR
T

,

λL
T and λL

N are eigenvalues of covariance matrix of
ROL(Pi), and λR

T and λR
N are eigenvalues of covari-

ance matrix ofROR(Pi). We useτ(Pi) to measure the
flatness of its side neighbors.
(3) Feature size

Feature size of feature pointPi is defined by

ρ(Pi) =
ρL(Pi) + ρR(Pi)

2
,

whereρL(Pi) andρR(Pi) are respectively the proportions
of lengths ofROL(Pi) andROR(Pi) with respect to total
length of the shape. Feature sizeρ(Pi) measures how dom-
inant the feature on the shape boundary.

Note that all the geometric quantities are invariant under
rescaling, rotation, and the sampling ratio.

3. Proposed Approach for Correspondence
Problem

Let S = {Si|i = 0, 1, . . . ,m} and T = {Tj |j =
0, 1, . . . , n} be the source shape and target shape respec-
tively, whereSi andTj are the feature points of shapeS and
T respectively. If shapeS (or T ) is closed, thenSm = S0

(or Tn = T0 ). Elements ofS (or T ) are indexed byi (or j).

3.1. Similarity measurement of two feature points

The similarity between pair of feature points is mea-
sured by the geometric quantity properties. Similar features
should have similar feature variation, similar feature side

variation, and similar feature size. The similarity cost of a
feature pointSi onS with a feature pointTj on T is com-
puted as

SimCost (Si, Tj) = Ψ(Si, Tj)
∑

q=σ,τ,ρ

ωq∆q(Si, Tj), (1)

where the term∆q is the cost associated with the difference
in feature geometric quantitiesq (i.e.,σ, τ, ρ) defined by

∆σ(Si, Tj) = |σ(Si)− σ(Tj)|,

∆τ (Si, Tj) =
1
2

(|σ(ROL(Si))− σ(ROL(Tj))|
+ |σ(ROR(Si))− σ(ROR(Tj))|) ,

∆ρ(Si, Tj) =
1
2

(∣∣ρL(Si)− ρL(Tj)
∣∣ +

∣∣ρR(Si)− ρR(Tj)
∣∣) ,

and ωq ≥ 0 are weights with sum to 1. The coeffi-
cient Ψ(Si, Tj) is a weight term associated with the
importance of this feature correspondence defined by
Ψ(Si, Tj) = max[ρ(Si), ρ(Tj)] which emphasizes the im-
portance of matching large parts from both shapes simi-
larly to the way humans pay more attention on large parts
when judging the quality of correspondence.

The similarity cost takes value from 0 to 2 with the prop-
erty that the value is close to 0 as the two feature points are
very similar and it tends to 2 as the two feature points are
rather dissimilar.

3.2. Penalty measurement of discarding a feature
point

Intuitively, a feature point can be possibly discarded if
its local neighborhood is small and flat enough. Therefore
we define the cost of discarding a feature pointSi on shape
S as follows:

DisCost (Si) = Φ(Si)
∑

q=σ,τ,ρ

ωq |q(Si)|,

whereq(Si), q = σ, τ, ρ, are the feature quantities ofSi,
Φ(Si) = ρ(Si) , and the weightsωq are same as in Equa-
tion 1. The intuition behind the coefficientΦ(Si) is to mea-
sure the importance of the discarded feature point relative
to the whole shape. The cost of discarding a feature point
Tj on shapeT is similarly defined.

3.3. Minimization problem for correspondence

Establishing correspondence is to locate similar feature
points between two shapes. Thus we can define the simi-
larity function ofS andT by using the similarity measure-
ment between feature points. A correspondence betweenS



andT is a mappingJ : {Si} → {Tj}. We thus define the
similarity function ofS andT as follows:

SimCost(S, T , J) =
m−1∑

i=0

SimCost(Si, TJ(i)),

An optimal correspondence(Si, Tj) will be obtained
if SimCost(S, T , J) is a minimum. So the optimiza-
tion problem that needs to be solved is

min
J

SimCost(S, T , J).

The above minimization problem can be effectively solved
by dynamic programming technique. We will show the
complete algorithm as follows.

3.4. Dynamic programming (DP) algorithm

All feature correspondences can be represented in an
m × n rectangular DP graph defined withm rows corre-
sponding to feature points{Si} of S andn columns cor-
responding to feature points{Tj} of T . The graph node at
the intersection of rowi and columnj is referred to as node
node(i, j) , which signifies a correspondence betweenSi

andTj .
A complete correspondence can be represented on the

graph as a string of dots starting at(0, 0) and ending
at (m,n). This is illustrated in Figure 3, where the dots
are connected by bold lines. We will refer to such a se-
quence of dots (not necessarily adjacent) as a path, denoted
by Γ = ((i0, j0), (i1, j1), . . . (iR, jR)) in the DP graph,
where (i0, j0) = (0, 0), (iR, jR) = (m,n). The node
node(ir−1, jr−1), 1 ≤ r ≤ R, is called parent of node
node(ir, jr). We denote a sequence of consecutive feature
points ofS, e.g.,Si, Si+1, . . . , Si+k, asS(i|i + k); simi-
larly for the notationT (j|j + l).
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Figure 3. A complete path in DP graph.

The cost of correspondence between feature points ofS
andT is defined as

Cost(S, T ) = min
Γ
{Cost(S, T , Γ)} ,

whereCost(S, T , Γ) is the cost of the correspondence for
the complete pathΓ. In turn, Cost(S, T , Γ) is defined as
follows:

Cost(S, T , Γ) =
R∑

r=1

δ (S(ir−1|ir), T (jr−1|jr)),

whereδ (S(ir−1|ir), T (jr−1|jr)) represents the similarity
cost betweenS(ir−1|ir) andT (jr−1|jr), defined by

δ (S(ir−1|ir), T (jr−1|jr)) = DisCost (S(ir−1|ir))
+ DisCost (T (jr−1|jr))
+ λ · SimCost (Sir , Tjr ) ,

where DisCost (S(ir−1|ir)) =
ir−1∑

i=ir−1+1

DisCost(Si)

(note that there might be no item in the sum formula) is the
total sum of the discarding cost of the feature points be-
tweenSir−1 andSir

, DisCost (T (jr−1|jr)) can be simi-
larly defined. Constantλ represents the relative importance
of discarding feature points and similarity cost. High val-
ues ofλ encourage discarding and, conversely, low values
of λ inhibit discarding feature points. For example, match-
ing shapes with much detail must employ high values of
λ. We setλ = 1 in our paper. We have seen experimen-
tally that the correspondence result is relatively insensitive
to the choice ofλ.

3.5. Implementations

In our implementation, we compute the optimum cost of
the incomplete path ending at each node:

node(i, j) = min
k,l

[node(i− k, j − l)

+δ (S(i− k|i), T (j − l|j))] (2)

where the minimum is over all possible values of
(k, l), k, l ≥ 0. Equation 2 determines the minimum
cost transition from nodenode(i − k, j − l) to node
node(i, j) for all possible values ofk, l ≥ 0. See Fig-
ure 4 for an instance ofk = 3 and l = 2, where the skip
from node(i− 3, j − 2) to node(i, j) shown in 4(b) means
that the red feature points in Figure 4(a) would be dis-
carded. Indicesi− k andj− l are stored in nodenode(i, j)
and can be used to retrace the path from nodenode(i, j)
back to its starting point. It is seen that there will be skips
in the traversal of the DP graph which allows more flexi-
ble optimization process.

The above algorithm is optimal, in that it always finds
the path with the least cost. Equation 2 implies that the algo-
rithm computes the minimum cost transition from each al-
lowable nodenode(i−k, j−l) to nodenode(i, j). However,
the algorithm may become very slow especially on large DP
graphs. Notice that transitions on the DP graph correspond



 

iS

jT

),( ji

ljT −

kiS −
kiS − iS

jTljT −

(b) Update cost of node (i,j)  

from node (i-k,j-l) 

(a) Correspondence between feature points 

(The red feature points are discarded) 

T

S

Figure 4. Skip in DP graph.

to skips of feature points. It seems reasonable to restrict the
maximum number of skips to a constantC. Thus skips in
DP graph does not increase the complexity.

It can be shown [13] that the run-time complexity of the
algorithm isO(mn) if there is no skip in the DP graph,
wherem and n are number of feature points of the two
shapes respectively. By restricting discarding toC feature
points (usually,C << m, n ), the time complexity be-
comesO(C2mn). Note that the number of feature points
is much less than the number of sampling points in the pre-
vious method [5, 20, 22]. Therefore our algorithm is much
faster than these methods.

When the shapes are non-closed, we use a constraint that
the endpoints of the source and the target shapes correspond
alternatively. For closed shapes we might not know in ad-
vance the initial correspondence. We handle the case with
different starting points by repeating the algorithm for each
possible case and by taking the least cost as the best corre-
spondence.

It is worthwhile to indicate that previous methods [5, 20,
22] determined the globally optimal correspondence on ex-
isting vertices. The reason the optimization search is re-
stricted to existing vertices is that otherwise it becomes a
non-linear constrained optimization problem whose solu-
tion is very expensive and whole global optimality is dif-
ficult to verify. Note that the cost of discarding a feature
point at one shape can be seen as the similarity cost between
this feature point and an infinitesimal flat and short ”feature
point”, with all feature quantities being zeros, at the other
shape. Thus the optimization in our algorithm is essentially
not restricted to existing feature points, which makes the al-
gorithm more flexible and robust.

4. Generating Morphing Sequences

A feature point of source shape may correspond to mul-
tiple feature points of target shape or vice versa by the DP
process. For this case, we keep the corresponding pair of
feature points with minimal similarity cost and ignore the
other corresponding pairs. The intuition behind this process
is that the reasonable correspondence between two shapes
will be exhibited by a few perceptually important feature
points as the way humans pay primary attention on dom-
inant feature parts when judging the quality of correspon-
dence. Once we have a one-to-one correspondence between
feature points of the shapes, other points can be generated
on the shape based on the proportional length principle so
that we can obtain a one-to-one point correspondence be-
tween the two shapes both for feature points and non-feature
points.

To generate the in-between morph sequence, the path
along which each of the points travels from the source to
the target has to be defined. As the simple linear inter-
polation method generally yields distortion and shrink in
the intermediate shapes, we use the intrinsic method[21],
in which interpolated entities are edge lengths and angles
between edges rather than the Cartesian coordinates of its
vertices. This intrinsic method produces more satisfactory
blending than the linear interpolation method generally. It
handles many situations successfully, including cases where
the shapes are affine transformations of each other or where
parts of the shapes are transformed affinely.

5. Experimental Results

In this section we show several examples of morphing
between planar shapes that illustrate the behavior of our ap-
proach. All examples in the paper are the results of an im-
plementation of the proposed algorithm in a 2D user inter-



face design system in C# developed at our lab. From our ex-
perimental results, the proposed algorithm is fast. The cor-
respondence process of each example takes less than 0.6
second in all the experiments. The intermediate shapes can
be computed in real time. We can generate more than 45 in-
termediate shapes per second for all the examples shown in
this paper. The computation is performed on machine with
Pentium IV 2.6G.

There are some parameters used in our approach. In prac-
tices, weights ofωq = 1/3, q = σ, τ, ρ, in Equation 1 and
the maximal skip stepsC = 2 seem to perform well over a
wide range of shapes.

Our approach is robust to the sampling number of the
curves. This is due to the fact that the geometric quantity
properties of feature point are not sensitive to the sampling
number.

Some of the correspondence results are shown in Fig-
ure 5. Feature points are indicated by red points. Corre-
sponding points are marked by the same numbers. Feature
points without marked numbers are those skipped in the
travesal of DP graph. The blue points are non-feature points
which are generated by the proportional length interpola-
tion process mentioned in Section 4.

Figure 6 shows examples of morphing sequences for
shapes shown in Figure 5. Figure 6(a) shows the morph-
ing between two dancer shapes. Note that the head, arms,
and legs of the two dancer shapes are correctly in correspon-
dence respectively and the corresponding features in the in-
termediate shapes are well preserved. Figure 6(b) shows the
morphing between a desk shape and a turtle shape. The cor-
responding features are well preserved for the legs of the
shapes. Figure 6(c) shows an example of morphing between
two polygonal shapes. The head, legs, and tail are correctly
in correspondence in the morphing sequence. A more com-
plicated example is shown in Figure 6(d) where a horse
shape is morphed into an elephant shape.

We compared our approach with those of [5] and [20].
Figure 7 shows some of these comparisons. Our algorithm
(c) obtains more natural intermediate sequences in the ex-
amples. In the second example of morphing between a horse
shape and a wolf shape, there is a geometrical similarity be-
tween the two shapes, including six large salient perceptual
parts (which describe the four legs, the head, and the tail).
There are many places where the two shapes may be con-
sidered locally similar. This local similarity is captured by
the optimization process in our correspondence approach so
that the corresponding feature parts are in correspondence
respectively. But some perceptual parts of the two shapes
are mismatched using the approaches [5] and [20].

Figure 8 plots the computational times of our approach
and the approaches [5] and [20]. The statistical figures are
obtained for the second example in Figure 7. Note that the
running time of our approach is relevant to the number of

(a)


(b)


(c)


(d)


Figure 6. Morphing sequences.

feature points but not the number of sampling points. It
shows that our approach is much faster than the other two
approaches when the sampling number becomes large.

Our approach is robust with respect to moderate amounts
of noise due to allowing skips in the traversal of DP graph
by discarding small and unimportant feature points. This
can be seen in Figure 9 where some noises are added at
the right arm of the target dancer shape shown in Figure 5.
The correspondence result shown in Figure 9(a) is gener-
ated without any skip, i.e.,C = 0, while the result shown in
Figure 9(b) is generated by allowing skips withC = 2. We
can see the correspondences between the parts of right arm
in Figure 9(b) is much better than in 9(a).

Observe that most of the intermediate shapes are mean-
ingful in these examples, although in some examples
self intersections can occur. More complicated interpola-
tion method based on compatible triangulations could be
used to avoid the self-intersections during the morphing se-
quence [8].

Our approach might fail in the case when the input shape
is rather simple like circle or helical curve. This is caused
by the fact no feature point can be detected for such shape.
In our system, we can deal with such simple shape by in-
serting some ”virtual” feature points such that the polygon
constructed by the feature points is a rough approximation
for the shape within a specified large tolerance.

The submitted accompanying movies show the shape
morphing animations of all the examples presented in this
paper.



Figure 5. Correspondence results using our approach.
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Figure 8. Comparison of running time with
other approaches [5] and [20].

6. Conclusions and Future Work

In this paper, we have proposed a novel approach for
morphing between two-dimensional shapes. Correspon-
dences are built between the perceptual feature points ex-
tracted from both source and target shapes. The optimal
correspondence is established using a dynamic program-
ming process that allows skips during the process. Our
algorithm is fast enough for interactive morphing applica-
tions because there are only a few feature points dealt in the
process of dynamic programming. We demonstrate the su-
periority of our approach over traditional approaches by
many experimental results.

Our approach still has much room for improvements and

(b) 
C
=2


(a) 
C
=0


Figure 9. Robustness with respect to noise.

extensions. First, we are primarily concerned with features
based on local cues in this paper. Potential extensions could
include dealing with more global shape features, such as the
transition from one type of curvature behavior to another,
global symmetries and repeated structure, and intersections
between analytic curves with different parameters. Second,
correspondences between shapes would be affected by large
noises on the shapes. Some work tried to address this issue
using coarse-to-fine strategy based on the multi-resolution
representations of shape [16, 6]. We found that mismatching



in coarse level would cause distinct errors in finer levels be-
cause coarse matching is independently carried out without
considering finer matching. For correct matching, it is nec-
essary to consider multi-levels simultaneously in the sim-
ilarity measurements like matching pixels of texture pyra-
mid in texture synthesis [25]. Finally, as the proposed ap-
proach is generic for matching two shapes, we would like
use the approach in other applications such as surface re-
construction, character recognition, and shape retrieval in
the future.
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Figure 7. Comparative results of morphing approaches. (a) Approach of [5]; (b) Approach of [20]; (c)
Ours.


