
Secure Mobile Computing via Public Terminals

Richard Sharp1, James Scott1 and Alastair R. Beresford2

1 Intel Research,
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

2 Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

richard.sharp@intel.com

james.w.scott@intel.com

alastair.beresford@cl.cam.ac.uk

Abstract. The rich interaction capabilities of public terminals can make
them more convenient to use than small personal devices, such as smart
phones. However, the use of public terminals to handle personal data
may compromise privacy. We present a system that enables users to
access their applications and data securely using a combination of public
terminals and a more trusted, personal device. Our system (i) provides
users with capabilities to censor the public terminal display, so that it
does not show private data; (ii) filters input events coming from the
public terminal, so that maliciously injected keyboard/pointer events
do not compromise privacy; and (iii) enables users to view personal
information and perform data-entry via their personal device. A key
feature of our system is that it works with unmodified applications. A
prototype implementation of the system has been publicly released for
Linux and Windows. The results arising from a pilot usability study
based on this implementation are presented.

1 Introduction

It is often convenient to access personal data and applications from public termi-
nals (e.g. viewing documents in a hotel business center, or checking email in an
Internet cafe). However, it is also dangerous: public terminals are an easy target
for criminals intent on harvesting passwords and other confidential information
from legitimate users.

This is not just a theoretical threat. The Anti-Phishing Working Group
(APWG) report that the use of crimeware (e.g. software-based keyloggers) has
recently “surged markedly”, with the number of new crimeware applications dis-
covered doubling from April to June 2005 [2]. As well as software-based vulnera-
bilities, the public terminal hardware itself can be compromised. Tiny, inexpen-
sive devices embedded in keyboards or PS2/USB cables [8] can log millions of key
strokes to flash memory. Attackers can easily install such devices on public ter-
minals, leave them for a while and return later to collect users’ private data and



authentication information. In addition, attackers can often obtain user creden-
tials from public terminals without installing any malicious software or hardware
at all. For example, persistent data stored in browser caches sometimes includes
usernames/passwords [20] and legitimate Desktop Search packages installed on
shared terminals enable attackers to browse the private documents and emails of
previous users [23]. Of course, when terminals are located in busy public places,
attackers can also shoulder-surf : stand behind a user in order to read the content
of the display and watch them type on the keyboard [25].

In the field of mobile computing research, a great deal of effort has been ex-
pended in developing architectures and interaction techniques that exploit shared
public terminals. For example, the Internet Suspend Resume [9] project aims to
provide users with the ability to “logically suspend a machine at one Internet site,
then travel to some other site and resume . . . work there on another machine”;
the authors of the Virtual Network Computing thin-client technology [18] were
motivated by creating a world where “users can access their personal . . . desktops
on whatever computing infrastructure happens to be available—including, for ex-
ample, public web-browsing terminals in airports”; and interaction techniques
such as Situated Mobility [15], Parasitic Computing [12] and Opportunistic An-
nexing [16] rely on small mobile devices co-opting computing resources already
present in the environment in order to facilitate interaction with their users
(e.g. taking over a public display and data-entry device). If mobile computing
research is to achieve its goal of providing anytime, anywhere access to personal
information via shared public terminals, it is clear that the security and privacy
problems highlighted above must be addressed.

In this paper we present a framework that allows users to access their appli-
cations and data securely using a combination of public terminals and a trusted
personal device such as, for example, a smart phone or a PDA3. Our system en-
ables users to enjoy the rich interaction capabilities of large situated displays and
keyboards, whilst performing security-critical operations via their smart phone.
For example, passwords are typed via the smart phone’s keypad, thwarting key-
loggers running on the public terminal. Similarly, secure information is displayed
only on the smart phone’s screen preventing both screengrabbing attacks per-
petrated by software running on the public terminal4. Using the smart phone
for private display and data-entry also helps protect against shoulder-surfing.
A major benefit of our approach is that we do not require applications to be
re-written; our system is specifically designed to work with existing Windows,
Linux and MacOS applications.

3 Although a variety of small personal devices with displays and keypads are adequate
for our purposes, for the sake of brevity, the remainder of this paper will refer to the
trusted personal device as a smart phone. In Section 2 we will justify our belief that
smart phones are indeed more trusted than public terminals.

4 Packages such as PC SpyCam 2.0 combine key logging and screen grabbing to build
a complete picture of what a user did with a computer. Programs such as this can
often be configured to take screenshots in response to specific actions (e.g. when a
user opens their email package).



The key contributions of this work are: (i) A general system architecture
suitable for the scenario above (Section 2), (ii) A threat model formalising the at-
tacks against users of public terminals, and a set of security principles addressing
these threats (Section 3), (iii) a GPL implementation of the architecture (Sec-
tion 4), which is equally applicable to both the Remote Access Model [18] where
the user’s thin-client server is located on a remote machine accessible via the
Internet; and the Personal Server Model [26], where the user’s applications run
locally on their personal device, and (iv) a pilot usability study showing the fea-
sibility of our approach (Section 5). We also survey related research (Section 6)
and present conclusions and directions for future work (Section 7).

2 System Overview

Our system is based on thin-client technology. When a mobile session is initiated,
the smart phone and the public terminal connect concurrently to a user’s thin-
client server as shown in Figure 1. On connection, the public terminal’s display
shows the user’s entire desktop; the phone’s (smaller) display shows a scrollable
portion of this screen. As well as performing data-entry via the public terminal,
the user can also type via the keypad (or virtual keypad) on their smart phone.

(untrusted components)

Keyboard

Computer

thin−client server
Applications and

Display

Keyboard

Smart phone Public Terminal

Display

(trusted components)

Fig. 1. Using our system to access private information via a public terminal.

When performing operations that are not security critical the user interacts
with the public terminal in the usual fashion, via its own display and keyboard.
However, when a user performs a security critical operation (e.g. entering a credit
card number) they can use their smart phone to activate a variety of security
features. The security features currently supported include (i) applying image
processing filters to censor content on the public display; (ii) controlling the way
in which (untrusted) mouse and keyboard events arising from the public terminal
are interpreted; and (iii) entering security-critical data, such as passwords, via
the (trusted) smart phone’s keypad.

The security provided by our system is based on the premise that a user’s
smart phone is inherently more trustworthy than a public terminal (e.g. it is less



likely that crimeware will be running on a user’s smart phone than on a public
terminal). There are a number of reasons why this assumption is justified: (i)
whereas it is easy for hackers to gain physical access to a public terminal (in
order to install crimeware, for example), it is much harder to gain physical
access to a users’ phone; (ii) users install applications on their phones relatively
infrequently, and often only inside sandboxes such as Java MIDP which do not
permit general keylogging/screengrabbing, thus limiting the risk of trojan-based
crimeware5; and (iii) the developers of phone-based operating systems often go
to great lengths to prevent installed applications from performing silent network
communication—this makes it difficult for crimeware to transmit information
(such as keylogs etc.) back to hackers without alerting the user. (We note that, in
previous work, other security researchers have made similar arguments, claiming
that personal devices offer a greater degree of security than general purpose
PCs [3].)

Fig. 2. Our prototype in use. Content on the public terminal is censored (right inset);
the area around the mouse pointer appears uncensored on the private display (left
inset). In this case, pixellation is used for censoring the public display, but other filters
are also provided.

Figure 2 shows a picture of our system in the case where a user has opted to
censor the content on the public display. When content on the public display is
censored, the area of the screen surrounding the mouse pointer6 is automatically
displayed uncensored on the smart phone’s private display. As the user moves
the mouse pointer, the uncensored smart phone’s display scrolls accordingly.
Although one cannot use the censored public display to read the text of the
private document, it still provides a great deal of contextual information—for
example, the positions of windows, scroll bars, icons etc. Users can thus perform

5 Legitimate applications which incorporate crimeware functionality.
6 We assume that the public terminal provides some kind of pointing device: e.g. it is

a touchscreen, or a mouse or tracker-ball is available.



macroscopic operations (e.g. dragging or scrolling windows) via the censored
public display, whilst performing microscopic operations (e.g. selecting options
from a menu or reading a private email) via their smart phone’s private display.

3 Security Model

Following standard security engineering practice we start by presenting our threat
model and security policy model [1]. The threat model characterises attack-
ers’ motivation and capabilities; the security policy model provides an abstract,
architecturally-independent description of the security properties of our system.

3.1 Threat Model

Attackers’ motivation is to steal private and confidential information, often with
a view to committing identity theft and fraud. Attackers are capable of mounting
both passive monitoring attacks and active injection attacks against the public
terminal. Passive monitoring attacks include recording everything shown on the
public terminal’s display, typed on the public terminal’s keyboard and transmit-
ted over the network. Active injection attacks include injecting malicious data
packets into the network and also injecting fake User Interface (UI) events (e.g.
keypresses and mouse clicks) into the public terminal.

For an example of an attack based on injecting fake UI events, consider
the following. An attacker installs crimeware on the public terminal that waits
until the user opens their email client. At this point the crimeware generates
click events, selecting each email in turn. When the emails are displayed on the
screen (as a result of the injected click events) the attacker performs a screen
grab, thus obtaining users’ private information.

We assume that users’ smart phones are not compromised and that attackers
therefore have no means of either recording or injecting phone-based keyboard,
screen or UI events. However attackers can nonetheless monitor and inject net-
work packets travelling to and originating from the phone.

3.2 Security Policy Model

We address the threat model presented above by adopting the following four
security principles:

1. The connections between the smart phone and the application server must be
authenticated and encrypted. This protects against network monitoring and
injection attacks7.

7 In the case where it is more probable that the network is compromised than the public
terminal itself, one may also consider authenticating and encrypting the connection
between the public terminal and the application server.



2. Users must be able to enter text via their (trusted) phone at all times in
the interaction. This protects against keylogging attacks since information
entered via the phone cannot be recorded by keyloggers running on the public
terminal.

3. Users must have control over what is shown on the public display (e.g. show
everything, remove all text, turn off entirely). This protects against malicious
screengrabbing software running on the public terminal.

4. Users must have control over how events originating from the public terminal
are interpreted. For example, users may tell applications to ignore all key-
presses from the public terminal, allowing only keypresses originating from
their phone; similarly, users may instruct applications to ignore all mouse
clicks originating from the public terminal. This protects against User Inter-
face injection attacks.

4 Technical Details

Our system is based on the well-known, open-source VNC thin-client software [18].
Figure 3 presents a diagrammatic view of our system’s architecture, showing the
dataflow of control messages and UI events between the thin-client server, public
terminal and smart phone. (Although we start by assuming that the thin-client
server is running on a separate machine, Section 4.3 shows that this general ar-
chitecture is also applicable to the Personal Server Model [26] where the user’s
applications run locally on their smart phone.) Like VNC, we use the Remote
FrameBuffer (RFB) protocol [24] to send pixel data from the server to remote
displays and to send mouse and keyboard events from remote input devices back
to the server. However, we have modified both VNC server and client software
in order to enforce our Security Policy Model (above). Our source code is freely
available for download [22].

As shown in Figure 3, the VNC server is augmented with 3 extra components:
the Image Processor , Authentication Manager and UI Security Controller. These
components are described below.

Image Processor: This component is responsible for removing private content
from the public display, censoring the image transmitted to the public termi-
nal as requested by the user. We have currently implemented three censoring
algorithms: uniform blur , pixellation and text removal . (Our image processing
algorithms are discussed in more detail in Section 4.1.)

Authentication Manager: In accordance with our Security Policy Model, all
data transmitted between the thin-client server and the smart phone is tunnelled
over the standard SSH protocol [27]. SSH already contains provision for two-way
client/server authentication. The public terminal is authenticated by means of
a one-time password displayed on the smart phone’s screen. The authentication
manager relies on SSH’s standard authentication primitives to determine which



Mouse and
key events

Terminal
Public

Authentication
Manager

App App App

Framebuffer

Window Manager

Modified
VNC Server

Modified
VNC Client

Modified
VNC Client

Security Ctrl
Messages

Display Pos. Updates

Mouse and key events

UI Security Ctrl

Application / thin−client server

Image
Processor

Pixel data

Smart
phone

Pixel data

Fig. 3. Dataflow of control messages and UI events through the thin-client server,
public terminal and smart phone.

of the connections to the thin-client server originates from the trusted smart
phone and which originates from the public terminal, configuring the UI Security
Controller and Image Processor components accordingly.

UI Security Controller: The UI Security Controller filters mouse and key-
board events generated by the public terminal in order to protect against UI
injection attacks; (this functionality will be discussed in detail in Section 4.2).
The UI Security Controller also processes Security Control Messages generated
in response to a user activating or deactivating a particular security feature via
their smart phone. As shown in Figure 3, the UI Security Controller forwards
mouse movement events originating from the public terminal to the smart phone.
These display position updates are interpreted by the smart phone as an instruc-
tion to move its uncensored display window to a new screen location, as described
in Section 2.

4.1 Image Processing Components

The Image Processor maintains a second framebuffer containing a censored ver-
sion of the screen. This framebuffer is the one exported to the public terminal’s
display. To avoid constantly recensoring the entire framebuffer, the Image Pro-
cessor is hooked into VNC’s screen update events; only screen areas that have
changed are reprocessed. The Image Processor also understands VNC’s Copy-
Rect events [24]—when areas of the screen that have already been censored are
copied or moved (e.g. when the user drags a window) they are not reprocessed.

We have implemented three image processing filters that users can activate
or deactivate via their smart phone: pixellation, blurring and text removal. The



Fig. 4. The text detection and removal filter. left : a portion of the uncensored public
terminal screen; right : the same portion after text removal has been activated.

pixellation and blurring filters are both parameterisable—the user can set the
level of pixellation or blurring using their smart phone. It is worth noting, how-
ever, that whatever level of blurring or pixellation is used, attackers may be able
to use sophisticated image restoration software to reconstruct some of the cen-
sored information. To protect against this eventuality, in the case where a user
wants to hide text from attackers, we implemented a text removal filter. This
component explicitly detects areas of text, replacing them with filled rectangles.

The text removal filter is based around a 5-stage image processing pipeline:
(i) transformation to a 1-bit (binary) image by means of adaptive thresholding;
(ii) building a tree of contours using edge detection on the 1-bit image; (iii)
marking possible text by contour analysis; (iv) applying heuristics to remove false
positives; and (v) blanking out regions which are believed to contain text. The
full technical details of the image processing are beyond the scope of this paper;
interested readers may wish to examine the source code for more information [22].
Our approach is similar to recent work on general text and information extraction
from images and video [7].

We tested our text removal filter on a variety of Windows applications, in-
cluding Word, Excel, Internet Explorer, Adobe Reader and Visual Studio; a
typical example is shown in Figure 4. In general we found that text removal
was near 100% effective. However, performance dropped to a 92% success rate
on Adobe Reader due to its heavily anti-aliased fonts. Most of the detection
failures on Adobe Reader only revealed single characters, although in one case
an entire word went undetected. We measured the speed of the algorithm on
an Intel Pentium 4 (3.2 GHz) machine, by executing the algorithm on a vari-
ety of typical Windows screenshots (at a resolution of 1280x1024). The average
processing speed was 102 fps (s.d. 4 fps).

In future work we intend to improve the text removal filter to handle anti-
aliased text better. Nonetheless, our current implementation demonstrates that
text removal through image processing is a viable method for censoring a public
display, in terms of both accuracy and execution time.



4.2 Dealing with untrusted mouse/keyboard events

To protect against UI injection attacks (as described in Section 3.1) untrusted
mouse and keyboard events originating from the public terminal are filtered
by the UI Security Controller. In this section we describe the various filtering
policies supported. Users can activate or deactivate mouse/keyboard filtering
policies at any time using their smart phone.

We currently support 3 different policies for dealing with keyboard events
from the public terminal: ignore all keyboard events entirely, allow all keyboard
events from the public terminal and only allow alphanumeric/cursor keypress
events. This latter policy deserves further explanation—we argue that it provides
a convenient tradeoff between allowing the user to perform many common tasks
(e.g. editing a document) whilst making it more difficult for an attacker to mount
dangerous key-injection attacks (which often rely on using Alt- or Ctrl- key
combinations to access application functionality).

Of course, only allowing alphanumeric key events does not preclude key-
injection attacks entirely—some applications may allow critical functions to be
accessed via alphanumeric key presses; furthermore, when a user clicks on the
“File” menu in a Windows application, for example, alphanumeric and cursor
keys can be used to select and execute critical functions (such as “Open New”,
“Exit” etc.). However, filtering all but alphanumeric keypress events nonetheless
makes it more difficult to execute key-injection attacks, offering users a sweet-
spot on the security-usability spectrum.

Pointer events from the public terminal (mouse, touchscreen, tracker ball
etc.) are also filtered by the UI Security Controller. We provide two mouse
filtering modes: one which allows all mouse events from the public terminal to
pass through unmodified (in the case where the user is not concerned about
mouse event-injection attacks); and one which allows only mouse movement
events from the public terminal, but filters all click events. The second of these
policies is based on the principle that it is difficult to mount a dangerous UI-
injection attack by inserting mouse movements alone. Of course, it is also difficult
for the user to perform any legitimate actions without clicking, so to address this
we map one (or more) of the smart phone’s buttons to click events; in essence
these buttons on the smart phone take the place of the regular mouse buttons.
This mode of operation gives the user the best of both worlds—they can use the
public terminal mouse (or touchscreen or trackerball etc.) to point at arbitrary
screen areas; however, click events are generated by the phone and thus trusted.

One can envisage scenarios in which dangerous mouse event injection attacks
may be executed entirely via faking mouse movement events. However, just as
filtering all but alphanumeric keypress events makes key-injection attacks harder,
our model of removing clicks from the public terminal’s event stream makes
mouse-injection attacks harder. Again, we feel that this mode of operation finds
a sweet-spot on the security-usability spectrum.



4.3 Adapting our Architecture to the Personal Server Model

Figure 3 shows three distinct devices all communicating over the network: the
user’s thin-client server (which may, for example, be located in their office, at
home or in an ISP data-center), the user’s smart phone and the public terminal.
This is the Remote Access Model as envisaged, for example, by the creators of the
X Window System [21], VNC [18] and the Internet Suspend/Resume project [9].
However, our architecture is equally applicable to the Personal Server Model [26],
in which users’ personal data and applications are not accessed over the Internet,
but instead reside locally on their personal mobile device—in our case, on their
smart phone.

We can map our architecture onto a Personal Server Model by assuming
that the user’s smart phone runs not only our thin-client viewer, but also the
thin-client server, window manager and applications. Whilst the architecture as
presented in Figure 3 remains broadly the same, adopting the Personal Server
Model results in two significant differences to the system as a whole. Firstly, the
job of the Authentication Manager becomes simpler—the trusted client is the one
connecting via the loopback interface (since both trusted client and thin-client
server now reside on the smart phone). Secondly, there is no longer any need for
Internet connectivity. The smart phone (containing all applications and personal
data) can simply connect directly to the public terminal via a communication
technology of choice (e.g. Bluetooth, WiFi or even a USB cable).

We observe that modern smart phones are already powerful enough to sup-
port a thin-client server and general purpose applications. The Motorola E680,
for example, contains a 500 MHz Intel XScale Processor. As the trend of in-
creasing computational power on mobile devices continues we believe that smart
phones running both applications and thin-client servers have the potential to
form the basis of a powerful mobile computing platform.

5 Pilot Usability Study

We performed a pilot usability study that primarily aimed to address one key
question: can novice users interact with their personal applications and data via
our system, even when all the security measures are activated? We chose to focus
particularly on this question because it is one of the most fundamental; after all,
if participants find the combination of a smart phone display and censored public
display too difficult to interact with, our architecture offers little value.

We simulated a scenario in which participants accessed emails and documents
using a combination of a large censored display and a small, mobile uncensored
display. We used a 19-inch flat panel monitor and a mouse/keyboard to simulate
the public terminal, and an iPaq to simulate the participant’s smart phone. We
installed our system (as described in Section 4) on the public terminal and iPaq
and configured it as shown in Figure 2: as participants moved the mouse, the
pointer moved across the censored public display and the iPaq’s display scrolled
to show the uncensored screen area surrounding the pointer. As described in



Section 4.2, buttons on the mouse were disabled—to click participants used one
of the four buttons on the iPaq’s physical keypad. The keyboard on the public
terminal was also disabled. The study was performed using the Mozilla web-
browser and OpenOffice Writer applications running over the Gnome Desktop
on Linux. We used a pixellation filter to censor content on the public display
(see Section 4.1). The level of pixellation was sufficient to render all text used in
the study completely illegible.

8 participants took part in the study: 4 male, 4 female. The average age
was 29 (s.d. 5.7; min 25, max 39). Participants were an educated, mostly pro-
fessional group; 4 participants worked in computing, 4 came from non-technical
backgrounds. All used computers on a regular basis and all owned mobile phones.
No participants reported any difficulties with vision or motor skills; all were right
handed.

Participants performed two tasks. Task A involved using the Mozilla web-
browser to access a Gmail account containing 8 emails. Participants were pre-
sented with the Gmail Inbox page and asked four comprehension-style questions
(e.g. “What did people buy Bob for his birthday?”). To answer the questions
participants had to navigate the Gmail interface and read the content of emails—
some of the emails were in the Inbox and some were in the Sent Mail folder.
Task B involved using OpenOffice Writer, a word processing package similar to
Microsoft Word. Participants were presented with the OpenOffice Writer appli-
cation and asked to open 3 documents in turn: an order receipt from a large
UK-based clothing company (1 page long), a personal CV (3 pages long) and
a product order form for educational materials (2 pages long). The process of
opening a document involved selecting File→Open from the menu bar or click-
ing on the Open File Toolbar Icon, and then navigating a File Browser Dialog
Window. For each document, participants were asked two comprehension-style
questions, requiring them to find specific pieces of information. Since the docu-
ments were too large to fit on the public terminal, participants had to scroll the
OpenOffice Writer window down in order to find the answers to some of these
questions.

Before starting the tasks participants were allowed to practice using the sys-
tem for as long as they liked. In this familiarisation phase, participants were
given the free reign of the Gnome Desktop to play with. (All participants finished
practicing within five minutes.) To avoid ordering effects half the participants
performed Task A first, and half performed Task B first. We used the think-aloud
protocol [10] and conducted the studies under quiet, office conditions with only
the participant and one researcher present. During the study, we recorded the
time taken for the participant to complete each task; afterwards we performed
structured interviews in order collect qualitative data regarding the participant’s
experiences of the system.

Our key result was that all participants were able to complete the tasks with-
out prompting and in a reasonable time. Task A was completed in an average
of 82 seconds (s.d. 16s; min 56s, max 195s); Task B was completed in an av-
erage of 196 seconds (s.d. 42s; min 124s, max 252s). Participants answered all



comprehension questions correctly. This gives an unequivocally positive answer
to our initial question: novice users can interact with applications and data via
our system, even with all the security measures activated (i.e. disabled public
keyboard, disabled mouse buttons and censored public display).

We were interested in finding out whether participants felt that the censored
public display was useful, or whether they preferred to rely on the iPaq’s screen
alone. All participants claimed that they found the censored public display useful
for Task B, where they used it to scroll through different pages of documents
and navigate File Dialog windows. One participant commented “I couldn’t use
... [the censored public display] to read anything, so I used it more as a map I
suppose. Without it I would have found it hard to find scroll bars, menus and
open files.”. However, for Task A, only four of the participants claimed that the
censored public display was useful. For example, one participant observed “in
the GMail task I only used the big screen a little bit to find the back button on
the browser; everything else I just did through the [iPaq’s] little screen.”. We
believe that the reason participants relied less on the public display in Task A
was that this task did not require participants to scroll or navigate between
multiple windows; it is for these kinds of actions that the “map” provided by
the censored public terminal is particularly useful.

Six participants commented that they initially found it confusing to click
with the iPaq buttons rather than with the mouse buttons. A typical response
was “at first I kept clicking with the mouse button, which didn’t do anything,
but as it went on I started to get the hang of clicking with the other [iPaq] but-
ton. It’s not difficult though, you just get used to it.” The fact that participants
consistently made comments about confusion relating to clicking with the iPaq
buttons suggests that users would probably prefer to leave the mouse buttons
enabled whenever possible. At present we feel that leaving mouse buttons en-
abled would not present a great security threat; of all the attacks highlighted
in our threat model (see Section 3.1), mouse injection attacks are probably the
most unlikely in practice. One participant made an interesting suggestion: “when
you accidentally click with the mouse button the system could maybe beep to re-
mind you to click with the iPaq button.” The idea of incorporating automatic,
interactive help features into the system that assist the user in this kind of way
is something we would like to explore in future work.

We see this study as providing promising initial results. However, we recog-
nise that there are many other important questions that we have not yet ad-
dressed. For example, would users be able to understand when they should ac-
tivate/deactivate security measures (e.g. when to type on their smart phone,
when to censor content on the public display)? Are users sufficiently concerned
about security to use our system at all when using a public terminal? These are
questions that we intend to address in further studies. However, as a precursor
to studying the second question, we note that a number of participants explicitly
mentioned that they were concerned about shoulder-surfing when accessing per-
sonal information in public spaces. For example, “Being able to blur the [public]



screen is really useful. I don’t want people to see what I’m reading—I’m really
scared of people looking over my shoulder.”

6 Related Work

We have already highlighted how our research relates to number of other projects
including VNC [18], The X Window System [21], Internet Suspend/Resume [9]
and the Personal Server [26]. In this section we further explore the relationship
between our work and the research of others.

A number of researchers have proposed blurring electronic information in or-
der to provide privacy. However, these projects have tended to focus on protect-
ing users’ privacy in always-on video used to support distributed workgroups [5,
28]. In contrast we focus on general purpose access to applications and data,
addressing not just privacy concerns (e.g. screen blurring) but also other ways
in which public terminals may be attacked in order to violate privacy, including
keylogging and UI-injection attacks.

Berger et al. developed an email application which blurred sensitive words on
a projected display; selecting blurred words caused them to appear (uncensored)
on a private wrist-watch display [4]. A calendaring application with similar func-
tionality was also proposed. The concept of blurring words on a public screen,
whilst allowing them to be displayed on a personal private display is similar
to ours. However, our work extends this in two ways: firstly we present a se-
curity model and architecture that enables users to access existing , unmodified
applications securely via public terminals; secondly, as well as displaying private
content, we also deal with secure mouse and keyboard input (to avoid logging
and UI-injection attacks), issues not considered by Berger et al .

Ross et al. developed a web-proxy which split an HTML page into secure
content and insecure content according to a user-specified, programmable pol-
icy [19]. The secure content was then displayed on a WAP browser running on a
mobile device whilst insecure content was displayed on a public display. Again,
the idea of splitting content between personal/public devices in this way is sim-
ilar to ours. The relationship of our work to Ross’ is similar to the relationship
of our work to Berger’s research: (i) our framework is immediately applicable
to all applications (not just web browsing); and (ii) as well as dealing with dis-
playing sensitive information on public displays, we also consider secure input
to applications.

Our thin-client architecture for securing mobile computing systems is similar
to that of Oprea et al. [14]. The major difference between this project and our
work is that Oprea does not provide mechanisms for obfuscating the content
on the untrusted display whilst viewing portions of it in unobfuscated form
on a trusted personal device. Indeed Oprea states that “it turned out that the
performance of the RFB protocol and VNC software on our PDA was too poor
to make this approach work efficiently” [14]. In contrast we have shown that it is



possible to implement this interaction technique efficiently on top of VNC/RFB8

and, further, that novice users can cope with dual displays without significant
difficulty.

The idea of simultaneously using multiple displays to access applications and
data has been explored extensively by the research community [11, 17]. Our work
adopts these ideas, simultaneously using users’ smart phone display and public
terminals to enable secure access to personal information via situated displays
and input devices.

Many researchers have explored users’ privacy concerns surrounding access-
ing information via public displays [13]. Our system addresses these concerns,
enabling users to access documents and applications via situated displays while
allowing them to view sensitive information privately via their personal phone
display.

7 Conclusions and Future Work

In this paper we have presented a thin-client architecture capable of supporting
secure, mobile access to unmodified applications. Our system allows users to
benefit from the rich interaction capabilities of large situated displays, whilst re-
lying on a trusted personal device to protect them against the inherent insecurity
of shared, public terminals.

The implementation described in this paper gives users full control over which
security policies to apply in which contexts (e.g. when to type on the phone
keypad rather than the public keyboard, when to censor content on the public
display etc.). This is fine for experts, but further studies are required to determine
whether non-technical users can successfully select the right policies to apply in
order to protect their privacy. In future work we would like to explore whether
automated activity inference methods may benefit novice users, automatically
suggesting suitable security settings in different contexts. Another possibility is
to explore ways that enable service providers (such as banks, for example) to
specify a particular security policy, removing some of the control from users. In
this scenario, web services could be explicitly written to enforce a pre-determined
split between a general purpose PC and a trusted, personal device (e.g. credit
card numbers and account transfers are always performed via an interface on the
personal device, whereas statements may be browsed on the public terminal).

While this paper discusses a thin-client implementation of our Security Policy
Model (Section 3.2), other implementations are also possible. For example, we
may choose to implement a system which works at the window-manager level,
enabling users to (say) select which windows to censor on the public display and
which to leave uncensored. Similarly, we could implement a system for secure
web-browsing on public terminals which works at the HTML-level, using an
HTTP proxy to censor parts of the web page (c.f. [6]) and to migrate secure
input fields and hyperlinks to the personal device.

8 At least for the personal-server model where applications run on the mobile device,
(see Section 4.3) or remotely when a low-latency network connection is available.



Our thin-client approach has the advantage of working with existing appli-
cations, with the disadvantage of having a coarser granularity of privacy con-
trols than the other solutions above. However, we can also achieve the “best
of both worlds”—by exposing an API from the UI Security Controller, applica-
tions themselves can specify detailed security policies for particular areas of the
display. Thus, the user is afforded always-present basic privacy controls at the
framebuffer layer, while also enjoying the usability advantages of precise privacy-
control support in whatever suitably enabled applications they may have.

Acknowledgements

The authors would like to thank Tim Kindberg, Claudio Pinhanez and Ian Smith
for insightful comments on a draft of this paper.

References

1. Ross Anderson, Frank Stajano, and Jong-Hyeon Lee. Security policies. In Advances

in Computers vol 55. Academic Press, 2001.

2. Anti-Phishing Working Group (APWG). Phishing activity trends report, June
2005. http://antiphishing.org/.

3. Dirk Balfanz and Ed Felton. Hand-held computers can be better smart cards. In
Proceedings of USENIX Security, 1999.

4. S. Berger, R. Kjeldsen, C. Narayanaswami, C. Pinhanez, M. Podlaseck, and
M. Raghunath. Using symbiotic displays to view sensitive information in pub-
lic. In Proceedings of PERCOM. IEEE, 2005.

5. Michael Boyle, Christopher Edwards, and Saul Greenberg. The effects of filtered
video on awareness and privacy. In Proceedings of ACM CSCW, 2000.

6. Richard Han, Veronique Perret, and Mahmoud Naghshineh. WebSplitter: a unified
XML framework for multi-device collaborative web browsing. In Proceedings of

CSCW 2000. ACM, 2000.

7. Keechul Jung, Kwang In Kim, and Anil K. Jain. Text information extraction in
images and video: a survey. Pattern Recognition, 37:977–997, 2004.

8. Amecisco KeyLogger product range. http://www.keylogger.com/.

9. M. Kozuch and M. Satyanarayanan. Internet suspend/resume. In Proceedings of

the WMCSA 2002, June 2002.

10. C. Lewis and J. Rieman. Task-centered user interface design—a practical intro-
duction, 1993. University of Colorado, Boulder. (This shareware book is available
at ftp.cs.colorado.edu).

11. Brad A. Myers. Using handhelds and PCs together. Communications of the ACM,
44(11):34–41, 2001.

12. Chandra Narayanaswami, M. T. Raghunath, Noboru Kamijoh, and Tadonobu In-
oue. What would you do with 100 MIPS on your wrist? Technical Report RC
22057 (98634), IBM Research, January 2001.

13. Kenton O’Hara, Mark Perry, and Elizabeth Churchill. Public and Situated Dis-

plays: Social and Interactional Aspects of Shared Display Technologies. Kluwer
Academic Publishers, Norwell, MA, USA, 2004.



14. Alina Oprea, Dirk Balfanz, Glenn Durfee, and Diana Smetters. Securing a remote
terminal application with a mobile trusted device. In Proceedings of ACSA 2004.
Available from http://www.acsa-admin.org/.

15. Trevor Pering and Michael Kozuch. Situated mobility: Using situated displays to
support mobile activities. In Public and Situated Displays: Social and Interactional

Aspects of Shared Display Technologies. Kluwer, 2003.
16. Jeffrey S. Pierce and Heather Mahaney. Opportunistic annexing for handheld

devices: Opportunities and challenges. In Proceedings of HCIC 2004, 2004.
17. Mandayam Raghunath, Chandra Narayanaswami, and Claudio Pinhanez. Foster-

ing a symbiotic handheld environment. Computer, 36(9):56–65, 2003.
18. Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.

Virtual network computing. IEEE Internet Computing, 2(1):33–38, 1998.
19. Steven J. Ross, Jason L. Hill, Michael Y. Chen, Anthony D. Joseph, David E.

Culler, and Eric A. Brewer. A composable framework for secure multi-modal
access to Internet services from post-PC devices. Mob. Netw. Appl., 7(5), 2002.

20. Ken Salchow. Sorting through the hype of ubiquitous secure remote access and SSL
VPNs. SecurityDocs white paper. http://www.securitydocs.com/library/3103.

21. Robert W. Scheifler and Jim Gettys. The X window system. ACM Trans. Graph.,
5(2):79–109, 1986.

22. Richard Sharp, James Scott, and Alastair Beresford. Resources and
code accompanying this paper. http://www.cambridge.intel-research.net/

securemobilecomputing/.
23. Tom Spring. Google Desktop Search: Security Threat? Today@PCWorld.

http://blogs.pcworld.com/staffblog/archives/000264.html.
24. T. Richardson, RealVNC Ltd. The RFB Protocol, 2005.

http://www.realvnc.com/docs/rfbproto.pdf.
25. Desney S. Tan and Mary Czerwinski. Information Voyeurism: Social impact of

physically large displays on information privacy. In Extended Abstracts of CHI

2003. ACM, 2003.
26. Roy Want, Trevor Pering, Gunner Danneels, Muthu Kumar, Murali Sundar, and

John Light. The personal server: Changing the way we think about ubiquitous
computing. In Proceedings of UbiComp 2002. Springer-Verlag, 2002.

27. T. Ylonen. SSH transport layer protocol. RFC 3667.
28. Qiang Alex Zhao and John T. Stasko. The awareness-privacy tradeoff in video sup-

ported informal awareness: A study of image-filtering based techniques. Technical
Report 98-16, Georgia Institute of Technology, 1998.


