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IrisNet:
An Architecture for a
Worldwide Sensor Web

W
ide-area architectures for perva-
sive sensing will enable a new
generation of powerful distrib-
uted sensing services. Such archi-
tectures have so far received lit-

tle attention but are increasingly relevant because
of a confluence of technological trends. Com-
modity off-the-shelf sensors—including video
cameras (Webcams), microphones, and motion
detectors—have become readily available. Such
sensors interface easily with today’s low-cost PCs,
which are deployed globally and connect through
the Internet. Indeed, we could even view a PC’s

high-speed network interface as
a rich sensor that senses the vir-
tual environment of a LAN or
the Internet rather than the
physical environment. Together,
these devices present a promis-
ing hardware platform for an
emerging wide-area sensor net-

work. What’s missing are the architecture, algo-
rithms, and software system needed to orchestrate
this hardware into a global sensor system that
responds to users’ queries.

We envision a worldwide sensor web, in which
users can query, as a single unit, vast quantities of
data from thousands or even millions of widely
distributed, heterogeneous sensors. Internet-con-
nected PCs that source sensor feeds and cooper-
ate to answer users’ queries will form the global
sensor web’s backbone. Developers of wide-area
sensing services (service authors) will deploy their

services on this distributed infrastructure.
Imagine the following scenario: after an oil

spill, an ecologist wishes to know all locations
where oil has significantly encroached on the
coastal habitat. She queries a coastal-monitoring
service, which collects data from video cameras
directed at the coastline. In response, she receives
both images of these contaminated sites and their
geographic locations. The same coastal-moni-
toring service can store triggered queries, whereby
the service notifies the appropriate lifeguards
when a strong riptide develops in a beach region.

In the IrisNet (Internet-scale Resource-Inten-
sive Sensor Network Services) project at Intel
Research, we are designing an architecture and
building a system that enable easy deployment of
such wide-area sensing services. Our aim is to
provide the missing software components for
realizing a worldwide sensor web.

Worldwide sensor web:
context and benefits

To date, sensor-network research has largely
been defined by the design of algorithms and sys-
tems to cope with the severe resource constraints
of tiny battery-powered sensors that use wireless
communication (for example, slow CPUs, low-bit-
rate radios, and scarce energy). Such sensor net-
works are distributed over a single, contiguous
communication domain. They use simple sensors
that provide time series of single numerical mea-
surements, such as temperature, pressure, light
level, and so on. Researchers have developed spe-

Today’s common computing hardware—Internet connected desktop PCs
and inexpensive, commodity off-the-shelf sensors such as Webcams—is
an ideal platform for a worldwide sensor web. IrisNet provides a
software infrastructure for this platform that lets users query globally
distributed collections of high-bit-rate sensors powerfully and efficiently.
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cialized hardware, operating systems, pro-
gramming languages, and database sys-
tems to accommodate such severely con-
strained environments.1–3

In contrast, in IrisNet we seek to
broaden the traditional notion of sensor
networks to include wide-area “sensor
webs,”4 such as those comprising Inter-
net-connected, widely-dispersed PC-class
nodes with powerful CPUs that can
process rich sensor data sources. A world-
wide sensor web seamlessly integrates a
wide range of sensor feeds, from high-bit-
rate feeds from Webcam-equipped PCs to
low-bit-rate feeds from traditional wire-
less sensor networks.

Additionally, a worldwide sensor web
enables a wide variety of useful services.
Consumer-oriented services include

• Alert services for notifying users when
to head to the bus stop or when water
conditions have become dangerous

• Waiting-time monitors for reporting
on queueing delays at post offices,
food courts, and so on

• Parking-space-finder services for
directing drivers to available parking
spaces near their destinations

• Lost-and-found services for locating
lost objects or pets

• Watch-my-child (or watch-my-parent)
services for monitoring children play-
ing in the neighborhood (or elderly
parents about town)

Other promising services exist in vari-
ous domains. Epidemic early warning ser-
vices (public health), homeland defense
services (security), computer network
monitoring services (technology), and
Internet-scale sensing observatories (nat-
ural sciences) are a few possibilities.

Envisioning a worldwide
sensor web

Wide-area sensing services have sev-
eral key demands that drive worldwide
sensor web design.

Planet-wide local data collection
and storage

First and foremost, wide-area sensing
necessarily employs numerous globally
distributed sensing devices that observe
the physical world. Because the sensors
would collect a vast volume of data, and
because we would want to retain both the
most recent observations and a historical
record, the system should store observa-
tions near their sources and transmit them
across the Internet only as needed.

Real-time adaptation of collection
and processing

The system should be able to reconfig-
ure data-collection and -filtering processes
in reaction to sensed data. Sampling rates
might change; we might invoke new, spe-
cial-purpose processing routines; we
might even control actuators to modify
data collection. Deciding when and how
to adapt collection and processing might
depend on sophisticated analysis of data
derived from multiple sensors.

Data as a single queriable unit
The user should view the sensing

device network as a single unit that sup-
ports a high-level query language. Each
query would be able to operate over data
collected from across the global sensor
network, just as a single Google search
query encompasses millions of Web
pages. Beyond the keyword searches
Google offers, the worldwide sensor web
should support rich queries, which could
include arithmetic, aggregation, and
other database operators. (Google is not
intended for sensing applications and so
offers few of these features.)

Queries posed anywhere 
on the Internet

We are accustomed to retrieving infor-
mation stored anywhere on the Internet
from anywhere on the Internet. The sen-
sor web should preserve this ubiquitous
information access. At the same time, the

system should actively seek to exploit any
locality between the querier and the
queried data. Because the sensed data are
inherently coupled to a physical location,
many queries will be posed within tens of
miles of the data. For example, lifeguards
responsible for monitoring a beach region
would tend to request riptide alerts for
the waters adjacent to “their” beach.

Data integrity and privacy
Pervasive monitoring of the physical

world raises significant data integrity
and privacy concerns. In our initial Iris-
Net prototype, we assume that the entire
worldwide sensor web is administered
by a single, universally trusted author-
ity. In any real-world deployment of a
global sensor web, different authorities
will control portions of the sensing infra-
structure, and sensor service authors
might wish to compose services across
authority boundaries.

Moreover, different service users
might trust different authorities, as could
different service authors. The sensor web
should support defining and enforcing
data integrity and privacy policies that
match the concerns of four constituen-
cies: service users, service authors, those
in a sensed region, and those operating
the sensor web. The combination of
these policies should determine how data
are distributed, processed, and shared in
a sensor web.

Robustness
In a system that uses so many sensing

devices and so many computing devices,
failures will occur often. The system
should operate smoothly despite these
failures and the resulting unreachable
hosts, unavailability of previously stored
observations, missed new observations,
and so on.

Ease of service authorship
Finally, the system should make it as

easy as possible for service authors to
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develop sensing services by providing
high-level abstractions of the sensing
infrastructure that hide the complexities
of the underlying distributed-data-col-
lection and query-processing mecha-
nisms. Ease of service authorship is cru-
cial to fostering system adoption and
proliferation of new services that use it.

Challenges for service authors
A service author deploying a wide-

area sensing service faces several chal-

lenges to realizing the vision we just
described. IrisNet can help ease service
authorship.

Wide-area sensing’s two most funda-
mental challenges are data collection and
query answering. IrisNet provides soft-
ware tools that automate these two
processes in a service-neutral fashion so
that several different services can be
deployed on a single IrisNet software
infrastructure.

Data collection
Although different services may seek

different measurements from sensors, a
subset of data collection tasks is com-
mon to all services. First, all services
must instrument the environment with
sensors. In a naive sensor deployment,
each service author would need to
deploy a separate sensor to monitor the
same physical area. Requiring that sep-
arate sensors be deployed for each ser-
vice, however would greatly increase the
cost and configuration effort involved in
deploying a service, hindering new ser-
vice deployment. IrisNet shares sensors
among multiple sensing services to max-

imize each deployed sensor’s use to ser-
vice authors. A particular sensor might
be positioned to measure a physical area
of interest for one particular service, but
it might, in fact, provide data useful in
multiple services. 

While shared sensors simplify service
deployment, they complicate resource
management in the infrastructure. How
do sensor owners allocate resources
among services competing for the same
sensor? How do they protect services

running on the same sensor from one
another? How do they avoid wasting
computation if two sensing services over-
lap in the processing they perform on
their input? The IrisNet architecture pro-
vides a runtime environment for sensor
nodes that assists with these tasks. More-
over, sharing the sensor infrastructure
across all services forces each service to
select a set of sensor feeds relevant to that
service. In the current IrisNet prototype,
service authors learn about available
deployed sensor feeds out-of-band of
IrisNet. In the future, IrisNet will include
a sensor feed discovery service to pro-
vide this system functionality.

To support several rich sensor feeds, a
service must reduce raw observations to
postprocessed, extracted information
near the data source. This filtering strat-
egy avoids overloading the network and
spreads the computational burden among
many machines operating independently
in parallel. The largest data reduction
arises from using service-specific filter-
ing. For example, filtering code for a
coastal imaging service can reduce a 1.5-
Mbps compressed video feed of a coast-

line to a single time-exposure image of
20–150 Kbytes every 10 minutes (under
2 Kbps). The IrisNet architecture makes
it easy for services to upload such filter-
ing code to sensing devices.

Querying the collected data
Sensing services typically collect fil-

tered sensor readings in a database that
users can query. For example, a coastal
imaging service might use a database of
all past single-frame images for moni-
tored coastline locations, while a person-
locator service might use a database of
individual identifying information (for
example, name or social security num-
ber) and location. Databases for differ-
ent services might have grossly different
properties. The database for an imaging
service for an entire coast could be quite
large, while that for a citywide person
locator might be much smaller. Similarly,
updates to sensed data for services such
as a network and host monitor service
that records every packet traversing a
network’s monitored portions might
occur much more frequently than updates
for services such as a parking-space finder
and coastal imaging. Furthermore, the
query patterns for distinct services might
differ substantially. One would expect
most parking-space-finder queries to be
for neighborhoods near the querier,
while queries for a coastal imaging ser-
vice might cover large regions far from
the querier. IrisNet provides tools that
let service authors implement sensor-ser-
vice databases. The key challenge in
designing such tools is ensuring that they
meet the wide range of real demands dif-
ferent services make.

Sensing services have a few common
key properties that IrisNet’s database
support specifically addresses. First,
although update rates for sensor data-
bases can vary from service to service,
they are often much greater than those
in traditional databases. This occurs
because data sources in a sensor data-
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A particular sensor might be positioned to

measure a physical area of interest for one

particular service, but it might, in fact, provide

data useful in multiple services. 



base are automated, allowing for fre-
quent updates without human interven-
tion. Consider a person-locator service,
which updates stored user positions once
every 10 minutes. For a moderately sized
metropolitan area of 1.5 million people,
the user location database would need
to process approximately 25,000 up-
dates per second. The entire US (approx-
imately 300 million people) would have
approximately 500,000 updates per sec-
ond. To support high update rates, we
can partition the database across multi-
ple host nodes. However, partitioning a
database often limits query types or
query performance. Fortunately, while
all sensing services let users query the col-
lected sensor readings, services also
commonly target particular query types.
For example, a coastal-imaging service
might require queries to include a target
location and date. Similarly, a person-
locator service might need queries to
specify a person’s name and social secu-
rity number. IrisNet gives service authors
a hierarchically organized distributed
database system tailored to these com-

mon characteristics. In addition, IrisNet
automatically partitions the database
among the hosts that participate in it and
routes queries among these hosts.

The support IrisNet gives data collec-
tion and query processing drastically
reduces the difficulty of authoring a
wide-area sensing service. A service
author using IrisNet need only write the
code that filters sensor readings and the
schema that define the database’s con-
tents. IrisNet’s architecture implements
this high-level abstraction of a sensing
service for use by service authors.

The IrisNet architecture
Figure 1 shows IrisNet’s two-tier archi-

tecture. The following observations moti-
vated this design:

• Despite differences between sensor
types, developers need a generic data
acquisition interface to access sensors.
In IrisNet, the nodes that implement
this interface are called sensing agents
(SAs).

• Services must store the service-specific

data the SAs produce in a distributed
database. In IrisNet, the nodes that
implement this distributed database
are called organizing agents (OAs).

OA architecture
Service developers deploy sensing ser-

vices by orchestrating a group of dedicated
OAs. Consequently, each OA partici-
pates in only one sensing service (a single
physical machine can run multiple OAs).
The group of OAs for a single service
must collect and organize sensor data to
answer the particular class of queries rel-
evant to the service (for example, queries
about parking spots for a parking-space-
finder service). OAs also should provide
fault tolerance and balance load across
the system. We use the parking-space-
finder service to illustrate the important
properties of IrisNet’s query processing.

Choice of database. We envision a rich and
evolving set of data types, aggregate fields,
and so on within and across services, best
captured by self-describing tags. In addi-
tion, each sensor reads a geographic loca-

OCTOBER–DECEMBER 2003 PERVASIVEcomputing 25

SA

SA

SA

SA

SA

SA

Parking-space-finder service OA group

University Downtown

Amy
Person-locator service OA group

 Kim Tom

Figure 1. The IrisNet architecture, with sensing agent (SA) and organizing agent (OA) nodes.



tion, so it’s natural to organize sensor data
into a geographic- or political-boundary
hierarchy. So, we choose to represent sen-
sor-derived data in XML, which is well-
suited to representing hierarchical data
and uses self-describing tags to organize

data. Figure 2a shows part of an XML
document representing the parking-
space-finder service’s schema. The
schema describes the static (for example,
<handicapped>) and dynamic (for example,
<available>) data as well as the hierarchy
the service uses. The database schema the
service author provides identifies the data-
base’s hierarchical portion using special
ID tags. Figure 2b shows the hierarchy’s
tree representation, formed by the ID-
tagged nodes.

Distributing the database. To adapt to
query and update workloads, IrisNet
dynamically partitions the sensor data-
base among a collection of OAs. Iris-
Net permits an OA to own any subset
of the nodes in the hierarchy (includ-
ing noncontiguous subsets). It employs
a distributed algorithm that—using sev-
eral statistics that the OAs maintain—
dynamically decides which parts of
the sensor database should be parti-
tioned or replicated and which OA to
choose when placing database frag-
ments. This adaptive data placement
algorithm reduces average query re-

sponse time and network traffic (for
read and write operations) while keep-
ing each OA’s load below a load-limit
threshold.

The path from the hierarchy’s root to
a lower node defines that lower node’s
globally unique name. (Achieving this
property requires that the sibling nodes’
ID tags be unique.) For example, the
Pittsburgh node in Figure 2b is named
city-Pittsburgh.state-PA.usRegion-NE. Each OA reg-
isters with the Internet’s Domain Name
System (DNS)5 each node that it owns
whose parent is owned by a different
OA. The registered name is the node’s
global name prepended to the service’s
name and a registered domain suffix (for
example, intel-iris.net). This is the only
mapping from the logical database hier-
archy to physical hosts’ IP addresses in
the system. This mapping allows con-
siderable flexibility in mapping nodes in
the XML document to OAs and OAs to
physical machines. For example, Figure
3 shows an example configuration
where one OA owns the nodes NE, PA, and
Pittsburgh, and different OAs own each of
the remaining nodes.
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<USRegion id="NE">
<state id="PA">

<city id="Pittsburgh">

</neighborhood>
</city>

</state>
</USRegion>

<block id="block3">
<parkingSpace>

<available>yes</available>
</parkingSpace>

</block>
</neighborhood>
<neighborhood id="Shadyside">

<block id="block1">
<parkingSpace>

<available>no</available>
</parkingSpace>

</block>

<block id="block2">
<parkingSpace>

<available>yes</available>
</parkingSpace>

</block>

<block id="block1">
<parkingSpace>

<handicapped>yes</handicapped>
<available>yes</available>

</parkingSpace>
</block>

<neighborhood id="Oakland">

block1

NE

PA

Pittsburgh

Oakland
Shadyside

block2 block3block1

(b)

(a)

Figure 2. (a) Part of the XML schema used
in the parking-space-finder service; (b) the
hierarchy defined by the ID-tagged nodes.
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Hierarchy Message

/parkingSpace[available=’yes’]
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NE, PA

block2 block3

/block[@id=’block1’ OR @id=’block3’]
/city[@id=’Pittsburgh’]/neighborhood[@id=’Oakland’]
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/USRegion[@id=’NE’]/state[@id=’PA’]

Figure 3. An example database configuration including (a) an XPATH query and (b) a
mapping of logical nodes to seven machines and the messages sent between the
machines to answer the query (numbers depict the relative order of messages).



Query routing. We use the XPATH query
language because it is the most widely
used for XML, with good query pro-
cessing support. Figure 3 shows an
example XPATH query asking for all
available parking spaces at block1 and
block3 of Oakland.

Because our XML database is distrib-
uted, providing fast and correct answers
to user queries is challenging. The sys-
tem must route a query directly to the
relevant nodes and must pass data
between OAs only as needed. An XPATH

query selects data from a node set in the
hierarchy. In IrisNet, the query is routed
directly to the lowest common ancestor
(LCA) of the nodes the query potentially
selects. For example, Oakland is the LCA
node for the XPATH query Figure 3
shows. Note that we can derive the LCA
node’s globally unique name simply by
parsing the XPATH query. A DNS lookup
on this name provides the IP addresses
of all OAs owning the LCA node. (As
we discuss later, a node can be replicated,
and thus owned by multiple OAs.) Iris-
Net selects one of these OAs, referred to
as the LCA OA, and routes the query to
that OA. This mechanism prevents the
hierarchy’s root from becoming a bot-
tleneck; the LCA is typically far down in
the hierarchy.

On receiving a query, the LCA OA
queries its portion of the overall XML
document and evaluates the result. For
many queries, a single OA might not
have enough of the document to respond.
The OA determines which part of a user’s
query it can answer from the local docu-
ment and where to gather the missing
parts (extracting the needed global names
from the document). The OA looks up
other OAs’ IP addresses and sends sub-
queries to them. These OAs might, in
turn, perform a similar gathering task.
Finally, the LCA OA collects the differ-
ent responses and sends the combined
result back to the user. For the example
in Figure 3, the Oakland OA receives the

query from the web server and sends sub-
queries to the block1 and block3 OAs. These
each return a list of available parking
spaces to be combined at the Oakland OA
and returned to the user.

Caching and data consistency. To improve
the performance of repeated requests for
similar information (for example, multi-
ple users requesting parking spaces
downtown), OAs cache data from any
query-gathering task that they perform.
IrisNet’s query-processing mechanism
uses cached data even if the new query
only partially matches the cached data.
Using this cached information proves
challenging because it complicates the
OA’s task of identifying the remaining
information it must gather to answer a
query.

Because of network propagation delays
and the use of cached data, answers
returned to users might not reflect the
most recent database updates. In IrisNet,
a query might specify consistency criteria
indicating its tolerance for stale data.
IrisNet stores timestamps along with the
cached data that indicate when the data
were created, so that an XPATH query
specifying a tolerance automatically goes
to data of appropriate freshness.

More details on IrisNet’s database dis-
tribution, query processing, and caching
techniques are available elsewhere.6

Fault tolerance. IrisNet replicates nodes
in the logical hierarchy on multiple OAs.
It uses two types of replicas: primary
replicas that are kept strongly mutually
consistent and placed in geographically
optimal locations (for example, near the
sensor reading sources) and secondary
replicas that only maintain a weakly con-
sistent copy of the data and are placed
far from the primary replicas to main-
tain robustness when the primary repli-
cas suffer correlated failure. During
query routing, an OA generating a sub-
query to a target OA retrieves the list of
primary replicas for the target  OA using
a DNS lookup and tries replicas  sequen-
tially until the query successfully reaches
a live target OA. If the OA fails to find a
live target OA, it performs a second DNS
lookup to retrieve the list of secondary
replicas, and again tries replicas sequen-
tially. IrisNet uses a weighted proba-
bilistic scheme that favors nearby repli-
cas to select which replica to query next.

SA architecture
SAs collect raw sensor data from sev-

eral sensors (possibly of different types).
The sensor types can range from Web-
cams and microphones to temperature
and pressure gauges. We focus our design
on sensors such as Webcams that produce
large volumes of data and that various
services can use. Figure 4 shows the exe-
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cution environment in an IrisNet sensor
host. A sensor host receives one or more
raw sensor feeds from directly attached
sensors and stores them in circular shared
memory buffers. Multiple services can
share an SA and access these buffers.

Programmable SAs. IrisNet lets services
upload and control the execution of code
that filters sensor readings dynamically
in a service-specific fashion. We call this

code a senselet. A single SA can execute
one or more senselets for each service that
wants to access its sensor feeds. A sense-
let instructs the SA to take the raw sensor
feed, perform a specified set of processing
steps (as the specific service requires), and
send the resulting distilled information
to a nearby OA. Although the OA receiv-
ing sensor readings from an SA will typ-
ically own the parts of the global sensor
database that store the readings, this is

not required. In the more general sce-
nario, the nearby OA routes the update
to the appropriate set of OAs owning the
relevant portion of the database. Decou-
pling the SA that generates a sensor read-
ing and the OA that owns the relevant
database part provides a useful abstrac-
tion to those services that monitor mobile
entities. For example, a person-locator
service might use an organizational hier-
archy to store people’s locations (for
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Researchers have made various related efforts toward enabling

wide-area sensing services. We can classify these into efforts with

similar applications goals (sensor networks and video surveillance)

and those that employ similar techniques (Internet service frame-

works and distributed databases).

Sensor networks
Sensor networks and IrisNet share the goal of letting users access

real-world measurements. The work on sensor networks has largely

concentrated on using motes, small nodes containing a simple

processor, a little memory, a wireless-network connection, and a

sensing device. Due to the emphasis on resource-constrained

motes, earlier key contributions have been in the areas of tiny oper-

ating systems1 and low-power network protocols.2 Mote-based

systems have relied on techniques such as directed diffusion3 to

direct sensor readings to interested parties or long-running queries4

to retrieve the needed sensor data to a front-end database. Other

groups have explored using query techniques for streaming data and

using sensor proxies to coordinate queries to address sensor motes’

limitations.5–7 None of this work considers sensor networks with

intelligent sensor nodes, high-bit-rate sensor feeds, and global scale.

Video surveillance
Efforts such as the Video Surveillance and Monitoring project8

have explored using video sensors. Such efforts have concentrated

on image-processing challenges such as identifying and tracking

moving objects in a camera’s field of vision. These efforts are com-

plementary to our focus on wide-area scaling and service author-

ship tools.

Internet services frameworks
Several efforts have produced frameworks for simplifying the

development of scalable, robust Internet services.9–12 In general,

these projects target a lower level of the architecture than IrisNet.

They concentrate on problems that are generic across all Internet ser-

vices, such as load balancing, resource allocation, and network place-

ment. In contrast, IrisNet addresses problems unique to services that

must collect vast amounts of data and process queries on the data.

In this way, IrisNet is largely complementary to these previous efforts

and could, in fact, be implemented using these frameworks.

Distributed databases
IrisNet’s distributed database infrastructure has much in common

with various large-scale distributed databases. For example, the

Domain Name System13 relies on a distributed database that uses

a hierarchy on the basis of host name structure to support name-

to-address mapping. The Lightweight Directory Access Protocol14

addresses some of the DNS’s limitations by enabling richer stan-

dardized naming using hierarchically organized values and attributes.

However, it still supports only a relatively restrictive querying model.

Matthew Harren and his colleagues have investigated peer-to-

peer databases that provide a richer querying model than the

exact-match queries existing distributed hash table (DHT) systems

support. (They reported significant hotspots in storage, processing,

and routing with their initial design.)15 Replicated DHT-based data-

bases and replicated hierarchical databases offer qualitatively differ-

ent robustness behaviors. DHTs replicate portions of the DHT key

space. Because DHT keys are typically hashes of data, failure of all

replicas for the same portion of the DHT key space results in the dis-

appearance of data items diffusely scattered throughout the data-

base. In contrast, a hierarchical database replicates contiguous por-

tions of its hierarchy across replicas. Should all replicas fail, all data

beneath the corresponding contiguous portion of the hierarchy

becomes unavailable. DHT-based databases are less well suited to

leveraging XML and the hierarchically scoped queries typical in

sensing services. Distributed databases supporting a full query-pro-

cessing language such as SQL (Structured Query Language) are a

well-studied topic,16 with the focus on supporting distributed trans-

actions or other consistency guarantees.17–23 The previous work

doesn’t address the difficulties in distributed query processing over

Related Work



example, people in academic depart-
ments in universities). When a partici-
pant in the service travels, he or she will
pass within the view of sensors whose
SAs might have no a priori association
with the OAs that own the database
node containing his or her location. Each
such SA sends the updated location
information to a nearby OA. IrisNet
routes that update to the OAs owning
the node.

Protecting senselets and SA hosts. The
SA execution environment protects the
host and senselets from buggy or mali-
cious senselets. Each senselet executes as
a different process. This separation pro-
vides process-level protection between
senselets. It also enables limiting the
resources that a senselet consumes,
although our current implementation
doesn’t enforce such limits. This lack of
resource limitations would not signifi-

cantly hinder deployments in which ser-
vice developers pay service providers for
the resources consumed.

Privacy mechanisms. Video streams from
cameras in public places will often con-
tain human faces, automobile license
plates, and other data that can be used to
identify a person. This disclosure of iden-
tifying information raises an important
question: how can IrisNet help protect
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an XML document. Researchers have also done considerable work

on query processing over a federation of heterogeneous data-

bases,16 dealing with problems such as incompatible schemas.

These problems do not arise in the current IrisNet architecture

because the service author defines the schema for an entire 

service.
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people’s privacy? Ensuring with full gen-
erality that no one can use a video stream
to compromise another individual’s pri-
vacy is out of scope for our work on Iris-
Net. Nevertheless, we believe that Iris-
Net must provide a framework to help
limit senselets’ ability to misuse video
streams for unauthorized surveillance.
To this end, our current SA implemen-
tation uses privacy filters to identify the
sensitive components (for example,
human faces) in an image and replaces
these regions with black rectangles. Sys-
tem administrators can load arbitrary

privacy filters to enforce policies that are
appropriate for their sites. As Figure 4
shows, IrisNet distinguishes between
trusted and untrusted senselets; trusted
senselets receive raw video feeds, whereas
untrusted ones  receive only the privacy-
filtered video data. IrisNet uses digital sig-
natures to authenticate trusted senselets
to ensure that if sensitive information is
leaked, system administrators can dis-
cover who is responsible.

Shared computation among senselets.
The filtering that senselets do is compu-

tationally expensive. To increase the effi-
ciency of executing multiple senselets on
the same SA, we exploit the fact that one
sensor feed might interest multiple, dif-
ferent IrisNet services. For example, a
video feed in a particular location might
monitor parking spaces in one service and
track passersby in the same visual field in
another. Senselets working on the same
video stream often use many of the same
image-processing primitives (for exam-
ple, color-to-gray conversion, noise reduc-
tion, edge detection, maintaining a sta-
tistical background model, and so on).
IrisNet provides a limited memoization
mechanism that senselets can use to share
intermediate computational results with
other senselets through a shared memory
pool. Intermediate results are named
using the sequence of function calls per-
formed on them, where each function is
from a common library of image pro-
cessing primitives. Each function call first
checks whether the desired result already
exists in the shared memory.

Prototype IrisNet applications
Along with our collaborators (in the

case of the coastal imaging service) we
have built three services from different
application domains using IrisNet. Here
we describe their implementation and
deployment.

Parking-space finder
The parking-space finder uses cameras

throughout a metropolitan area to track
parking space availability. Users fill out
a Web form to specify a destination and
any constraints on a desired parking
space (for example, does not require a
permit, must be covered, and so on).
Based on the input criteria, the parking-
space-finder service identifies the near-
est available parking space that satisfies
the user constraints, then uses the
Yahoo! Maps service to find driving
directions to that parking space from the
user’s current location.
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Figure 5. (a) Mock parking lots, (b) postprocessed video stream of one parking lot, and
(c) driving directions to the parking spot.

(a)

(c)

(b)



Although our current prototype
operates on mock parking lots and
miniature cars laid out on a table top,
the rest of the system operates as it
would in an outdoor setting. Senselets
that recognize parking space avail-
ability run on laptops with Webcams.
After the reference background image
is initially calibrated, each senselet
detects a car’s presence by compar-
ing the current image of the spaces
with the corresponding background
images.7 The senselets do these image
processing tasks using the Intel Open
Source Computer Vision library (www.
intel.com/research/mrl/research/
opencv) provided with the SA envi-
ronment. Once a senselet determines
which parking spaces are empty, it
sends the availability information to
the appropriate OAs.

Figure 2 shows part of the database
schema for this service. As mentioned
earlier, this schema defines the database’s
geographically hierarchical organization
and the dynamic (for example, avail-
ability information from the SAs) and
static (for example, handicapped or not)
descriptions for each space.

Figure 5 shows our laboratory deploy-
ment of this service on IrisNet. Figure 5a
shows the mock parking lots, monitored
by Webcams. Figure 5b shows the view
of one parking lot after local image pro-
cessing to recognize full and empty park-
ing spaces; red rectangles indicate full
spaces, while green rectangles indicate
empty ones. Figure 5c shows an example
of the driving directions the user receives.
These directions are continually updated
as the user drives toward the destination,
if the parking spot availability changes,
or if a closer parking spot satisfying the
user’s constraints becomes available.

Network and host monitor (IrisLog)
The IrisLog service collects data from

host and network monitoring tools
(which act as sensing devices) running

on a widely dispersed set of hosts and
lets users query those data efficiently.
IrisLog is deployed on PlanetLab,8 an
open, shared, planetary-scale application
testbed comprising hundreds of nodes
distributed across five continents (see
Figure 6). Using a Web-based form, users
can query sets of PlanetLab nodes (for
example, all the nodes at Carnegie Mel-
lon University) by particular metrics (for
example, CPU load) and time periods
over which the data have been collected
(for example, the last hour). The Web

user interface also lets users issue arbi-
trary XPATH queries over the distributed
XML database of all IrisLog data.

IrisLog supports a superset of the
queries from the Ganglia PlanetLab mon-
itoring service,9 but incurs far less network
overhead. Each PlanetLab node runs an
SA, which uses the local Ganglia daemon
output to create a sensor feed describing
30 different performance metrics. The
senselet for IrisLog transmits these met-
rics to the matching OA in the schema.

The IrisLog schema describes the
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Figure 6. Deployed PlanetLab nodes as of October 2003.



metrics each PlanetLab node must mon-
itor (for example, CPU and memory
load, bandwidth usage, and so on) and
organizes them into a geographical hier-
archy. This hierarchy (see Figure 7)
allows efficient processing of geo-
graphically scoped queries (for exam-
ple, find the least loaded CMU node).
To support simple historical queries
over the monitored data, the schema
uses multiresolution vectors to store
each monitored metric. These vectors
provide samples of past data where the
sampling rate is higher for recent data
than for older data.

Coastal imaging service
In collaboration with oceanogra-

phers of the Argus project at Oregon
State University, we have deployed a
coastal imaging service on IrisNet (see
the Applications department on page
14).10 The service uses cameras in-
stalled at sites along the Oregon coast-
line and processes the live feed from the
cameras to identify the visible signa-
tures of nearshore phenomena such as
riptides, sandbar formations, and so
on. For example, Figure 8 shows how
we can use the time-averaged expo-

sures of camera images shown in fig-
ure 8b, generated by merging the raw
frames in Figure 8a, to identify sand-
bar formations. The front-end of this
service lets users query this historical
information distributed across multi-
ple sites. Users can change collection
and filtering parameters remotely and
install triggers to change the data ac-
quisition rate after certain events (for
example, darkness).

The senselet for this service produces
image data such as 10-minute interval
snapshots, 10-minute time-averaged
exposure images that show wave dissi-
pation patterns (indicating submerged
sandbars), variance images, and pho-
togrammetric metadata.

The schema defines a shallow hierar-
chy comprising a root node with each
coastal camera location connected as leaf
nodes. Each leaf node stores only the
most recent snapshot and 10-minute
time exposure, while the root stores an
archive of all past snapshots from all the
coastal cameras. These nodes are
mapped onto physical OAs such that the
root is located at a computer at Oregon
State and the leaf OAs are located at the
corresponding coastal locations.

S
ensor network research has largely
focused on localized deployments
of low-power wireless sensors col-
lecting numerical measurements.

However, as our examples show, many
sensing services require a wide-area net-
work of powerful sensors such as video
cameras. IrisNet is a general-purpose
software infrastructure that supports the
central tasks common to these services:
collecting, filtering, and combining sen-
sor feeds, and performing distributed
queries within reasonable response times.

We are far from the vision of a highly
available, high-performance, easy-to-use
worldwide sensor web. While IrisNet rep-
resents an important first step toward this
vision, its design focuses on the technical
challenges we’ve described. Important
policy, privacy, and security concerns must
be addressed before rich sensors can exist
pervasively at a global scale. Moreover,
sensors must be deployed and maintained.
Currently, companies such as Honeywell
and ADT provide sensor-based home
security systems. We envision that in time,
such private-sector companies, in combi-
nation with public-sector entities, non-
profits, and individuals, might provide the
needed sensor infrastructure.
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Figure 8. Coastal images in the form of (a) raw video frames and (b) 10-minute time-averaged exposure.
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