
Integrated Network Performance Diagnostics

Srikanth Kandula Anees Shaikh Erich Nahum

Dept. of Computer Science Network Services and Software
University of Illinois IBM T.J. Watson Research Center

Urbana, IL 61801 Hawthorne, NY 10532

PROBLEM SCENARIO

One of the most challenging parts of running a network-
based service is monitoring and managing performance.
End-to-end performance may be influenced by numerous
factors, and problems are not easily attributable to their
correct source [1]. When a performance problem arises,
the service provider or customer has available a number
of tools to aid in diagnosing performance issues, each of
which test different aspects of the network service.

Client-perceived performance, for example, requires the
use of application-layer tests to measure the application
response time. Such tests can be conducted for Web-
based applications using tools likePageDetailer[2] or ser-
vices provided by companies such as Keynote Systems [3].
Low-level network properties such as connectivity and la-
tency may be tested using tools liketraceroute or
ping . Network protocol behavior can be examined in de-
tail using packet sniffing tools, as exemplified bytcp-
dump. Loss rate and bandwidth along paths can be mea-
sured using tools such assting [4] and pathrate [5], re-
spectively. While these low-level tools are useful for de-
tecting relatively simple conditions, such as a server be-
ing unavailable, or the absence of a network path to the
destination, it is not straightforward to directly relate the
information from such tools to application behavior.

A common performance management approach in-
volves monitoring the application (i.e., user-perceived)
performance at a relatively coarse level, and then conduct-
ing further, more detailed, tests when a potential problem
is detected. As discussed above, such an approach requires
the use of multiple techniques and tools, operating at mul-
tiple levels. Hence, the problem remains of how to corre-
late the information to construct a more complete view of
low-level network events (e.g., packet retransmission) and
the application actions that triggered them (e.g., HTTP re-
quest).

In this abstract, we focus on the problem of integrat-
ing performance-related information from multiple net-
work layers for the purpose of network performance diag-
nosis. Our approach is to provide application-level mea-

surement tools with direct access to pertinent information
from lower layers. This enables a diagnostician to detect
specific packet-level events in various contexts of the ap-
plication in an automated way, without having to unify
multiple traces. Our initial objective is to embody this ap-
proach in a measurement and monitoring tool for identi-
fying the causes of performance problems in Web-based
applications. Below we describe our approach in further
detail, with a discussion of our initial design and ongoing
implementation. We also list some of the advantages and
limitations of this scheme.

SOLUTION OVERVIEW

To achieve our goal it is necessary to provide a measure-
ment application with access to fine-grained information
generated by the end host operating system’s networking
stack. One technique is to export such information through
kernel interfaces such as socket options. For example, the
Linux 2.4 kernel has added aTCP INFO socket option
that exports TCP connection-specific information such as
the sender congestion window, number of packet losses,
and round-trip time estimate. Another option is to use the
statistics exported by the kernel to the/proc filesystem,
though it contains limited information and is likely to re-
quire modification.

Since our intention is to develop a tool that can be used
easily in a variety of settings, we wish to avoid reliance on
a particular kernel configuration, or the presence of spe-
cific kernel support. In many cases it is not possible or
desirable to to use tools that require changes to an un-
derlying production platform. Hence, our approach is to
make the bulk of the kernel networking stack available at
the user level in the form of a library, with instrumenta-
tion to deliver notifications about events of interest to the
measurement application.

Our architecture is shown in Figure 1. The measure-
ment application is linked with the user-level TCP/IP li-
brary, and communicates using raw IP sockets. Although
the library performs some input IP processing, outbound
packet routing is handled by the kernel IP implementation.
Note that, as with other user-level networking implemen-



2

user−level
TCP/IP
library

m
ea

su
re

m
en

t
ap

pl
ic

at
io

n

raw IP socket

USER

KERNEL

kernel TCP/IP stack

ipchains filter

bpf capture

X

inbound pkts outbound pkts

pkt copy

Fig. 1. Architecture diagram

tations, we must arrange for incoming packets to bypass
the native kernel stack [4]. The kernel will not be able
to find the corresponding connection state when demulti-
plexing since the state is kept in the user-level library. As
shown in the figure, we achieve this with a combination
of the Berkeley packet capture (BPF) facility and native
firewall/filtering support (e.g.,ipchains on Linux sys-
tems). The BPF filter is configured to deliver a copy of
specified packets to the measurement application, and the
firewall drops the same packets before they are processed
by the kernel stack. Outbound packets are emitted via the
raw socket and pass through the filters unmolested.

In order to effectively aid in problem diagnosis, the
measurement application must have access to lower-level
events of interest. In our initial architecture, the network
library exports an API through which the measurement ap-
plication can express its interest in events from a prede-
fined set. When one of the specified events occurs, the
library records the event and makes it available to the ap-
plication for examination or logging. For example, if a
measurement application is interested in network latency
effects during a certain phase of application execution, it
can request notifications of significant changes in the TCP
RTT estimate which may indicate increased network con-
gestion or path fluctuations.

Advantages and Limitations

This approach has several key benefits over other, non-
integrated, diagnostic techniques. As we have access to
the main protocols in the TCP/IP protocol suite, the mea-
surement application can receive extensive diagnosis in-

formation. Changes in TCP state variables, bursty vs. iso-
lated packet loss events, and information about the source
and type of received ICMP messages, are examples of the
type of additional details that are not otherwise available to
an application-level measurement tool. As described ear-
lier, this technique obviates the need to combine multiple
sources of measurement or diagnosis data from the appli-
cation and the packet level to account for application de-
pendencies. Also, note that the amount of trace data gen-
erated can be flexibly adjusted, and can be different during
different execution phases of the measurement application.
The user-level networking stack handles only traffic to or
from the measurement application, and thus does not in-
troduce much overhead on other application traffic at the
host. Finally, our requirement of avoiding kernel depen-
dencies makes the tool relatively easy to move to different
platforms.

There are, however, several limitations to the integrated
approach. First, the application using the facility must be
instrumented to use the event and user-level networking
APIs. We envision, though, that the user-level stack will be
integrated with applications specially designed for perfor-
mance diagnosis, rather than with production applications
which may be more difficult to modify. Second, since the
user-level networking stack is just a regular application, it
is subject to process scheduling that may cause significant
jitter. This may be mitigated by giving the measurement
application the highest priority, but we have not yet quan-
tified the delay jitter. Third, the tool uses raw IP sockets,
and thus requires superuser privileges to run.

IMPLEMENTATION AND STATUS

One of the first tasks in implementing our approach was
to identify a suitable user-level networking implementa-
tion. Several user-level protocol stack implementations
have been developed for use in various contexts and on
different platforms [6], [7], [8], [9], [10], [11]. We chose
to use the Arsenic implementation by Pratt and Fraser [10],
primarily because i) Arsenic is based on the Linux TCP/IP
protocol implementation, and ii) it uses most of the pro-
tocol processing code from the kernel unmodified. Thus,
it is representative of the networking behavior on the plat-
form we are most interested in. However, Arsenic is also
tightly coupled to specific features of the Alteon ACEnic
gigabit Ethernet adaptor, and requires the use of loadable
kernel modules. We therefore had to modify the interface
between the library and the kernel significantly to remove
these dependencies. These changes have been completed,
resulting in a user-level Linux networking suite which does
not have any dependency on specific NIC hardware or
Linux kernel version.



3

We are currently instrumenting the networking library
to export a sufficiently detailed set of events to the appli-
cations. In some cases the application needs only to know
that an event occurred (e.g., packet retransmission, or re-
ceipt of a zero window advertisement). We are also con-
sidering allowing the application to receive notifications
when a certain event is repeated, or persistent. For ex-
ample, the measurement application may be interested in
knowing about bursty or persistent packet loss, in contrast
to individual loss events. Such notifications require the li-
brary to maintain additional state for the connection.

wwwprobe – a first application

As part of related work on Web performance mea-
surement, we developedwwwprobe, an multi-threaded
application-layer tool to measure client-perceived Web re-
sponse time. wwwprobeacts as a mini-browser, down-
loading web pages, along with their embedded objects. It
measures the time taken for each step in an HTTP trans-
action, including DNS name resolution, connection estab-
lishment, server response time, and download time for an
entire page as well as for individual objects. These mea-
surements are taken at the socket API level, by timing
such system calls asconnect , read , andgethost-
byname. Currentlywwwprobesupports only HTTP/1.0.
We are planning to usewwwprobeas a proof-of-concept
measurement application to explore the benefits of the in-
tegrated approach for enhanced diagnosis of Web perfor-
mance.

In our ongoing work, we are completing instrumenta-
tion of thewwwprobeapplication. We are also conducting
experiments in a controlled lab setting to introduce net-
work events that exercise the notification mechanisms to
wwwprobefrom the user-level networking library. In addi-
tion, we are planning to deploy thewwwprobe-based tool
in the wide-area to monitor and diagnose the performance
of production Web applications.

REFERENCES

[1] Paul Barford and Mark Crovella, “Critical path analysis of TCP
transactions,” inProceedings of ACM SIGCOMM, Stockholm,
Sweden, August 2000.

[2] IBM Corporation, “Page Detailer,” Distributed with IBM
WebSphere Studio,http://www.research.ibm.com/
pagedetailer/ , June 2000.

[3] Keynote Systems, Inc., ,”http://www.keynote.com .
[4] Stefan Savage, “Sting: a tcp-based network measurement tool,”

in Proceedings of USENIX Symposium on Internet Technologies
and Systems, October 1999.

[5] Constantinos Dovrolis, Parameswaran Ramanathan, and David
Moore, “Packet dispersion techniques and capacity estimation,”
available at http://www.cis.udel.edu/˜dovrolis/
Papers/ton_dispersion.ps .

[6] Aled Edwards and Steve Muir, “Experiences implementing a
high-performance TCP in user-space,” inProceedings of ACM
SIGCOMM, August 1995.

[7] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and
Edward D. Lazowska, “Implementing network protocols at user
level,” IEEE/ACM Transactions on Networking, vol. 1, no. 5, pp.
554–565, 1993.

[8] Torsten Braun, Cristophe Diot, Anna Hoglander, and Vincent
Roca, “An experimental user level implementation of TCP,” Tech.
Rep. RR-2650, INRIA Sophia Antipolis, September 1995.

[9] Peter A. Dinda, “The Minet TCP/IP stack,” Tech. Rep. NWU-
CS-02-08, Department of Computer Science, Northwestern Uni-
versity, January 2002.

[10] Ian Pratt and Keir Fraser, “Arsenic: A user-accessible gigabit
ethernet interface,” inProceedings of IEEE INFOCOM, 2001.

[11] David Ely, Stefan Savage, and David Wetherall, “Alpine: A user-
level infrastructure for network protocol development,” inPro-
ceedings of USENIX Symposium on Internet Technologies and
Systems, March 2001.


