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ABSTRACT

When transmitting the so-called “texture-plus-depth” video format,
texture and depth maps from the same viewpoint exhibit high cor-
relation. Coded bits from one map can then be used as side infor-
mation to encode the other. In this paper, we propose to use the
depth information to divide the corresponding block in texture map
into arbitrarily shaped regions (sub-blocks) for separatemotion esti-
mation (ME) and motion compensation (MC). We implemented our
proposed sub-block motion prediction (MP) method for texture map
coding using depth information as a new coding mode (z-mode) in
H.264. Nonetheless, in practical experiments one can observe either
a misalignment between texture and depth edges, or an aliasing ef-
fect at the texture boundaries. To overcome this issue,z-mode offers
two MC types: i) non-overlapping MC, and ii) overlapping MC.In
the latter case, overlapped sub-blocks after ME are alpha-blended us-
ing a properly designed filter. Moreover, the MV of each sub-block
in z-mode is predicted using a Laplacian-weighted average of MVs
of neighboring blocks of similar depth. Experimental results show
that usingz-mode, coding performance of the texture map can be
improved by up to0.7dB compared to native H.264 implementation
at high bitrate.

Index Terms— Depth-image-based rendering, motion predic-
tion, arbitrary shape, video compression

1. INTRODUCTION

Three dimensional (3D) displays have recently become widely avail-
able at a consumer level. The particular method of delivering visual
information to those devices is, however, still a subject ofintense
research. The simple solution of sending stereo video (i.e., a left
and a right view) suffices to provide the novelty aspects of the 3D
experience but has significant limitations. Among more advanced
solutions, a format known astexture-plus-depthhas received signif-
icant attention due to its flexibility. Besides traditionaltexture maps
(e.g., RGB images), this format sends corresponding depth maps
(i.e., per-pixel physical distances between camera and thelocations
of the scene objects) of the same viewpoint. These depth mapspro-
vide the decoder with geometric information of the capturedscene
for view synthesis via depth-image-based rendering (DIBR)[1]. In
particular, it allows the receiver to generate a second slightly shifted
view using texture and depth maps of the first view for stereo view-
ing, resulting in a visual perception of depth.

Texture-plus-depth format can also be used for coding of multi-
view video, where texture and depth maps of multiple camera view-
points are coded and transmitted. After decoding at receiver, any de-
sired intermediate view can be synthesized using texture and depth
maps of two neighboring camera-captured views via DIBR. This re-
sults in a smooth view transition from one camera-captured view to
another, benefiting applications such as immersive video conferenc-
ing and free viewpoint TV [2]. Moreover, texture-plus-depth format

provides information to assist in the creation of mixed content, e.g.,
when synthetic elements are added to a received video, at thecorrect
depth and perspective. However, encoding and transmittingboth tex-
ture and depth maps of captured views can incur a high transmission
cost. In this paper, we address the problem of texture map compres-
sion in the context of texture-plus-depth format.

Because in texture-plus-depth format both texture and depth
maps from the same viewpoint need to be compressed and trans-
mitted, there exists strong correlation between them that can be
exploited for coding gain. More specifically, coded bits from one
map can be used as side information to encode the other, reducing
the total required bitrate in the process. In this paper, we propose to
use coded depth information to divide a given code block in texture
map into sub-blocks for separate motion prediction (MP): motion
estimation (ME) followed by motion compensation (MC). The key
observation is thatpixels of similar depth have similar motion. Thus,
pixels on one side of a depth edge (detected in encoded depth map)
in a texture block will typically have similar depth values and mo-
tion; representing their motion field with a single unique motion
vector (MV) will lead to a smaller prediction residual, resulting in
coding gain compared to coding the entire block using a single MV.
The traditional solution is to divide a code block into many small
rectangular blocks (as done in H.264 [3]). This may also result in
a small prediction residual. However, besides never quite match-
ing the boundary contour, these small blocks imply a much more
complex representation (thus more required encoded bits).

We implemented our proposed sub-block motion prediction
method for texture map coding using depth information as a coding
mode (calledz-mode) in H.264. Inz-mode, each16 × 16 mac-
roblock is divided into two arbitrarily shaped regions (sub-blocks),
formed by the pixels with depth value above (below) the mean-depth
value for the block. Nonetheless, in practical experimentsone can
observe either a misalignment between texture and depth edges,
or an aliasing effect at the texture boundaries. To overcomethis
issue,z-mode offers two MC types: i) non-overlapping MC, and ii)
overlapping MC, while the ME utilizes only non-overlappingsub-
regions. Overlapped sub-blocks are alpha-blended using a properly
designed filter. The MV of each sub-block inz-mode is predicted
using a Laplacian-weighted average of MVs of neighboring blocks
of similar depth. Experimental results show that using our proposed
z-mode, coding performance of the texture map can be improved
by up to0.7dB compared to native H.264 implementation at high
bitrate, when intra mode is disabled.

The outline of the paper is as follows. We first overview related
work in Section 2. We then discuss our proposal of sub-block motion
compensation using depth edges in Section 3. Prediction of sub-
block MVs is discussed in Section 4. Results and conclusion are
presented in Section 5 and 6, respectively.
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Fig. 1. Motion compensation of sub-blocks in texture map divided
using detected edge in depth map.

2. RELATED WORK

There are several proposals in the literature [4, 5, 6] to exploit the in-
herent correlation between texture and depth maps of the same view-
point in texture-plus-depth format for coding gain. [4] shared MVs
between texture and depth maps to lower the overhead required for
coding motion information of both maps. [5] extended the notion
of motion information sharing further, by selecting a single MV that
minimizes the energy of prediction residuals in texture anddepth
blocks simultaneously during ME. For edge-adaptive wavelet cod-
ing, [6] reused the encoded edge information in depth map fortex-
ture map as well to lower the overall bitrate required to codeedges in
both maps. We differ in that we use detected depth edges to segment
a texture code block into arbitrarily shaped sub-blocks forseparate
ME and MC.

While H.264 [3] offers different block sizes (rectangular blocks
from 16× 16 down to4× 4) for MP, to accurately track the motion
of an arbitrary-shaped object in a code block, many small sub-blocks
are needed to accurately compose the object, resulting in a substan-
tial overhead in coding a large set of MVs. In light of this prob-
lem, line-based segmentation schemes [7, 8] that divide a code block
using any arbitrary straight line segment that cuts across the code
block have been proposed. There are two problems, however: i) the
shape of the moving object may not follow a straight line, resulting
in shape-mismatch; and ii) the computation required to search for
a RD-optimal dividing line segment can be prohibitively expensive.
In our proposal, because the detected depth edge follows theshape
of the object1, we can segment a code block along object boundary
with pixel-level accuracy. Moreover, the depth edge can be acquired
simply without complex computation.

Note that the observation of pixels of similar depth having sim-
ilar motion has been previous made in [9], where unlikely coding
modes are eliminated a priori for faster H.264 encoding. We fo-
cus instead of MP of arbitrarily shaped sub-blocks in texture map
divided by detected depth edges.

3. EDGE-BASED MOTION COMPENSATION

We first overview the system setup. We assume (one or more) pairs
of texture and depth maps, one pair for each captured viewpoint,
must be compressed across time for transmission. Texture and depth
maps from the same viewpoint are of the same resolution. We as-
sume depth maps are captured or estimated to be of sufficiently high
quality, that a detected depth edge will roughly correspondto the
boundary of a foreground object in the texture map.

1As discussed, unlike sharp depth edges, texture edges may beblurred
due to out-of-focus camera capture. We discuss overlappingMC within our
proposedz-mode to address this issue in Section 3.

Fig. 2. Example ofz-mode MBs forBallet sequence in high bi-
trate: segmentation of texture MBs around boundary of dancer into
sub-blocks (left) using corresponding depth data (right).

As discussed in the Introduction, we propose a new coding mode
in H.264, calledz-mode, to partition a16 × 16 coding block (mac-
roblock or MB) into two sub-blocks given an arbitrary boundary (de-
tected using the block’s depth information) for separate motion esti-
mation and compensation.z-mode consists of the following parts:

• Partition the current MB into two sub-blocks.

• For each sub-block, perform motion estimation; i.e., find
best-matched sub-block in reference frame to current sub-
block.

• Compute prediction residuals for the current MB given the
two motion-compensated sub-blocks for residual encoding.

• Compute a predicted motion vector (PMV) for each sub-
block using MVs of neighboring blocks in current frame.

Before discussing the details in each step, we first define no-
tations for ease of discussion. Considering a texture mapI of
a certain viewpoint and its corresponding per-pixel depth map
Z. A 16 × 16 MB support is denoted by a set of pixel offsets
Φ = {(0, 0), (0, 1), . . . (15, 15)}. Thus, a16× 16 MB with top-left
corner at pixel(x, y) in the texture and depth maps areIΦ(x, y) and
ZΦ(x, y), respectively. MB supportΦ can be partitioned into two
non-overlapping sub-block supportsΦ1 andΦ2, whereΦ = Φ1∪Φ2

and∅ = Φ1 ∩ Φ2, so thatIΦ(x, y) = IΦ1
(x, y) ∪ IΦ2

(x, y). See
Fig. 1 for an illustration.

3.1. Macroblock Partitioning

The first step of our proposedz-mode is MB partitioning. Given
depth blockZΦ(x, y), we divide MB supportΦ into two non-
overlapping sub-block supportsΦ1 andΦ2 as follows:

Φ1 = {(i, j) ∈ Φ | Z(x+ i, y + j) < z̄Φ(x, y)}

Φ2 = {(i, j) ∈ Φ | Z(x+ i, y + j) ≥ z̄Φ(x, y)}
(1)

wherez̄Φ(x, y) is the arithmetic mean of depth values in depth block
ZΦ(x, y), andZ(x, y) is the depth value at pixel(x, y) in depth
mapZ. In other words,ZΦ1

(x, y) andZΦ2
(x, y) are the sets of

depth pixels with values smaller than, or larger than and equal to,
block-wise depth value mean̄zΦ(x, y), respectively. Assuming MB
ZΦ(x, y) contains only one foreground object (small depth) in front
of a background (large depth), (1) can segment pixels in texture MB
IΦ(x, y) into foregroundIΦ1

(x, y) and backgroundIΦ2
(x, y). This

statistical approach is robust and of very low complexity, with accu-
rate empirical results as shown in Fig. 2.
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Fig. 3. Example of overlapping motion compensation.

3.2. Sub-block Motion Estimation

As similarly done in H.264, for each segmented sub-blockIΦs
(x, y),

s ∈ {1, 2}, we search in the reference texture frameI ′ for a “best-
matched” sub-blockI ′Φs

(m,n). By “best-matched”, we mean a sub-
block that minimizes a metric that measures the pixel difference be-
tween predictor sub-blockI ′Φs

(m,n) in reference frameI ′ and tar-
get sub-blockIΦs

(x, y) in current frameI within a defined search
space:

min
|x−m|≤W,|y−n|≤W

∥

∥

∥

I′Φ1
(m, n)− IΦ1

(x, y)
∥

∥

∥

1
+λ ·Rate(MV − PMV)

(2)
whereW defines the size of search space of candidate sub-blocks
in reference frameI ′, and Rate(.) is the rate term for the motion
vector prediction error. As done in H.264, either thel1-norm (sum
of absolute difference(SAD)) shown in (2), or thel2-norm (sum of
square difference(SSD)), can be used as the pixel difference metric.

3.3. Sub-block Motion Compensation

Having found a best-matched predictor sub-blockI ′Φs
(m,n) for

each target sub-blockIΦs
(x, y), we next perform motion compen-

sation (MC) to compute the prediction residuals in the complete
16 × 16 MB for residual coding. We discuss two methods for MC
in order: non-overlapping MC, and overlapping MC.z-mode offers
both options, and we will encode one bit to indicate to the decoder
which type of MC is used for this particular MB.

3.3.1. Non-overlapping Motion Compensation

Non-overlapping MC is the conventional MC used in H.26x, where
for each target sub-blockIΦs

(x, y), the pixel difference from the
best-matched predictor sub-block,I ′Φs

(m,n) − IΦs
(x, y), is com-

puted for residual coding. Transform coding of the residuals using
Discrete Cosine Transform (DCT) is then performed, as typically
done in H.264.

3.3.2. Overlapping Motion Compensation

For overlapping motion compensation, we extend the blockI ′Φs
(x, y)

in the reference frame by one pixel across the depth edge boundary.
Specifically, sub-block supportsΦ1 andΦ2 are both expanded to
include pixels on either side of the horizon and vertical boundaries,
BH andBV . Formally, we defineBH andBV as follows:

BH = {(i, j) ∈ Φ|Z(x + i, y + j) < z̄Φ(x, y)

| Z(x+ i, y + j ± 1) ≥ z̄Φ(x, y)} (3)

BV = {(i, j) ∈ Φ|Z(x + i, y + j) < z̄Φ(x, y)

| Z(x+ i± 1, y + j) ≥ z̄Φ(x, y)} (4)

A

D B C

E

Fig. 4. Motion vector prediction for E is the median value of A, B
and C or D depending on position.

The extended supportsΦ∗
1 = Φ1 ∪BH ∪BV andΦ∗

2 = Φ2 ∪BH ∪
BV will lead to overlapping sub-blocksI ′Φ∗

1

(m,n) andI ′Φ∗
2

(k, l) in
IΦ(x, y) after motion prediction, as shown in Fig. 3. We must hence
performalpha blendingin the overlapped region.

To determine how alpha blending should be performed, we first
perform 2D filtering around the depth edge using the following filter
to determine the weights for pixel mixing:

A =





0 1/5 0
1/5 1/5 1/5
0 1/5 0



 (5)

Having derived the weights, each pixel in the overlapped region will
be the weighted sum of the two pixels in each sub-block.

4. MOTION VECTOR PREDICTION

Bits required to encode the MVvΦs
(x, y) for a sub-blockIΦs

(x, y)
can be reduced if a good PMV,uΦs

(x, y), can be estimated from
MVs vΦ(m,n)’s of neighboring code blocks,(m,n) ∈ N (x, y).
Thus, only the motion vector difference (MVD) between the PMV
uΦs

(x, y) and the sub-block true MVvΦ(m,n) is encoded and
transmitted. In H.264, PMV is computed to be the median of the
MVs of the neighboring blocks. In Fig. 4, PMV for blockE is
computed using MVs of blockA (left), blockB (top) and blockC
(top-right). If top-right blockB is not available, then top-left block
D is used instead.

4.1. Depth-based Predicted Motion Vector

The reason median filter is applied to the neighboring blocks’ MVs
is to eliminate outliers that have motion uncorrelated to the motion
of the target block, which happens, for example, when a foreground
object has different motion than the background. When coding tex-
ture map given depth information, however, we have available depth
values to evaluate the “trustworthiness” of motion information pro-
vided by neighboring blocks. In other words, assuming pixels of
similar depth have similar motion, we can discredit a neighboring
block’s MV if it has depth very different from our target block.

Specifically, we propose to compute the PMVuΦs
(x, y) for tex-

ture sub-blockIΦs
(x, y) as a weighted sum of MVs,vΦ(m,n)’s of

neighboring blocks,(m,n) ∈ N (x, y), where the weightsw’s are
proportional to the depth similarity between the neighboring blocks
and the target block. Mathematically, we write:

uΦs
(x, y) =

1

w̄

∑

(m,n)∈N (x,y)

w(z̄Φs
(x, y)− z̄Φ(m,n)) vΦ(m,n)

(6)
wherez̄Φ(m,n) is the mean of a neighboring depth blockZΦ(m,n),
andw̄ =

∑

(m,n)∈N (x,y) w(z̄Φs
(x, y)− z̄Φ(m,n)) is a scaling fac-

tor so that sum of weightsw’s divided byw̄ is 1. The real-valued
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Fig. 5. Objective PSNR results of texture coding.

precision of the resulting PMVuΦs
(x, y) is then rounded to half-pel

or quarter-pel precision to be H.264 compliant.

4.2. Finding Optimal Weights

To find the optimal weightsw’s, we first assume it follows a Lapla-
cian distribution with parameterb > 0:

w(x) =
1

2b
e−

|x|
b (7)

We then find the optimal parameterb∗ that minimizes the sum
of absolute errors between the predictionuΦs

(x, y) and true MV
vΦs

(x, y) for each texture sub-blockIΦs
(x, y) in a setΘ of training

data:

b∗ = min
b>0

∑

IΦs
(x,y)∈Θ

|uΦs
(x, y)− vΦs

(x, y)| (8)

5. EXPERIMENTATION

The performance of the proposed framework is evaluated using
the Multiview Video-plus-Depth (MVD) sequencesBallet and
Breakdancers (1024×768 @15 Hz) provided by Microsoft at
the camera position 4. The depth video provided for each camera
was estimated via a color-based segmentation algorithm [10], which
gives a reasonable alignment between texture and depth edges. In
the experiments, the original depth video has been utilizedto par-
tition each texture MB as described in Section 3.1. The objective
compression performance of the proposed method is plotted as rate-
distortion (RD) curves in Fig. 5: bitrate (kbit/s) averagedover 100
frames versus objective quality, measured in peak signal-to-noise
ratio (PSNR). The RD results correspond respectively to four QP
quantization parameters: 23, 25, 27 and 32.

We implemented the proposedz-mode in JM 18.0, and deacti-
vated intra-modes in P-slices to provide a comparison amonginter-
modes only. The JM has been set up with the main profile and a
full ME search. In motion estimation, only luminance component
has been taking into account. The Laplacian parameterb that min-
imizes the motion vector prediction as defined in Eq. (6) has been
set to 0.05. The activation of thez-mode in H.264 clearly indicates
the benefit of arbitrarily shaped sub-block motion prediction, where
a coding gain of 0.75 dB and 0.64 dB is achieved for the video-
plus-depth sequenceBallet andBreakdancers, respectively.
z-mode is selected, relative to other modes, at around 17% and9%
at high and low bitrate, respectively. In addition, the experiments
results have shown that 75% of the selectedz-mode used the over-
lapping MC mode.

6. CONCLUSION

Texture-plus-depth, where texture and depth maps from the same
camera viewpoint are coded together, is an important video format
for 3D and multiview video communication. Given the inherent cor-
relation between texture and depth maps from the same viewpoint,
in this paper we propose to use detected edges in a depth map to
divide the corresponding block in texture map into sub-blocks for
separate motion compensation. The key observation is that pixels
of similar depth have similar motion, thus representing twosub-
blocks each of similar depth (e.g., foreground and background) can
lead to smaller prediction residual and coding gain. In addition, we
introduce the notion of non-overlapping and overlapping sub-block
in motion compensation to deal with possible texture-depthbound-
ary misalignments. Experimental results show up to0.7dB gain in
PSNR over native H.264 implementation. Several issues remain that
warrant further research, such as future studies on the depth coding
impact on the overall framework performance.
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