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Abstract
New memory technologies, such as phase-change memory (PCM),
promise denser and cheaper main memory, and are expected to
displace DRAM. However, many of them experience permanent
failures far more quickly than DRAM. DRAM mechanisms that
handle permanent failures rely on very low failure rates and, if
directly applied to PCM, are extremely inefficient: Discarding a
page when the first line fails wastes 98% of the memory.

This paper proposes low complexity cooperative software and
hardware that handle failure rates as high as 50%. Our approach
makes error handling transparent to the application by using the
memory abstraction offered by managed languages. Once hard-
ware error correction for a memory line is exhausted, rather than
discarding the entire page, the hardware communicates the failed
line to a failure-aware OS and runtime. The runtime ensures mem-
ory allocations never use failed lines and moves data when lines
fail during program execution. This paper describes minimal exten-
sions to an Immix mark-region garbage collector, which correctly
utilizes pages with failed physical lines by skipping over failures.
This paper also proposes hardware support that clusters failed lines
at one end of a memory region to reduce fragmentation and im-
prove performance under failures. Contrary to accepted hardware
wisdom that advocates for wear-leveling, we show that with soft-
ware support non-uniform failures delay the impact of memory fail-
ure. Together, these mechanisms incur no performance overhead
when there are no failures and at failure levels of 10% to 50% suf-
fer only an average overhead of 4% and 12%, respectively. These
results indicate that hardware and software cooperation can greatly
extend the life of wearable memories.

Categories and Subject Descriptors D. Software [D.3 Programming
Languages]: D.3.4 Processors, Memory management (garbage collection);
B. Hardware [B.8 Performance and Reliability]: B.8.1 Reliability, Testing,
and Fault-Tolerance
General Terms Reliability

Keywords Failure tolerance, memory management, phase-change memory

1. Introduction
The semiconductor industry continues to exploit Moore’s Law by
scaling down lithographic feature sizes to improve chip density.
However, due to increased process variation and smaller features,
scaling charge-based memories such as DRAM is becoming in-
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creasingly difficult [12]. Errors increase as smaller features rep-
resent a bit with less charge. Process variation makes scaling even
more challenging because different memory cells operate with a
wider range of charges.

Memory manufacturers are delivering alternatives to charge-
based memories, such as resistive and magneto-resistive memories.
Among these, memristors are under advanced development and
phase-change memory (PCM) is in production [15]. PCM’s storage
principle is based on physical atomic arrangements of the materials
that constitute it, rather than charges it holds, resulting in more
stable storage at smaller feature sizes. The result is better scaling
for main memory storage, which will keep improving memory
density and cost in smaller feature sizes. Moreover, PCM is non-
volatile, which presents opportunities for new software designs [7]
and lower power operation.

However, PCM comes with its own idiosyncrasies. Stable mem-
ory cells require more energy to write and fail much quicker com-
pared to DRAM, as writes change the material’s physical configu-
ration and cause it to wear out. We call memories vulnerable to this
issue wearable memories. This paper frames our solution as target-
ing PCM, but it is applicable to any main memory technology that
suffers failures.

Current DRAM approaches assume failures occur extremely
rarely. When one line in DRAM fails, software remaps its virtual
page to another working physical page and discards the entire failed
physical page [9]. Even recent work on error correction hardware
tailored to wearable memories [16, 22, 23, 25] assumes that once
the finite error correction resources are exhausted, the entire page, if
not the entire memory, fails. Assuming only pages fail, 4 KB pages
and 64 B lines, this solution wastes 98% of working memory. In
other words, only 2% of lines need fail and the entire wearable
memory becomes unusable.

This paper proposes a software/hardware cooperative mecha-
nism to extend the life of wearable memories. We propose software
mechanisms that handle failures at a fine granularity, e.g., a cache
line, in which the OS and managed runtime extend the lifetime of
wearable memory, with graceful performance degradation as the
number of failures (holes) increases.

The first line of defense for failures is of course the hardware
error correction of the memory system. When the number of failed
bits exceeds the capacity of the error correction hardware, the
memory communicates this failure to the OS. The OS keeps track
of failures at the level of individual lines in a page. The OS reports
failed lines when the runtime requests memory, and it may also
communicate failures that occur during program execution.

The failure-aware memory manager never allocates live objects
on failed lines and evacuates live objects from lines when they fail.
We show how to minimize wasted space and performance degra-
dation for garbage-collected managed languages, such as C#, Java,
JavaScript, and PHP, using the hierarchical, logical line and block
heap organization in the Immix mark-region garbage collector [3].



This heap organization reflects hardware cache lines and pages and
simplifies failure tolerance because it manages memory in sizes
similar to the failure granularity.

This basic software design delivers a correct, simple failure-
aware approach for heap data and dynamically generated code with
modest performance degradation for low failure rates. Even though
hardware-unassisted software results in correct behavior, we show
that memory fragmentation causes significant overheads when the
number of failures rises above 10%. Fragmentation makes it too
time consuming to locate free memory for medium and large ob-
ject allocations. Novel, low complexity failure clustering hardware
comes to the rescue by redirecting failures within a region (one or
more pages) to a cluster at one end, greatly reducing virtual mem-
ory fragmentation. This modest hardware support solves the frag-
mentation problem for software, increasing the number of failures
that are performance-transparent.

We implement this approach in a Java virtual machine, but it
generalizes to any managed language. Since PCM is not yet avail-
able as a DRAM replacement, we add fault injection between the
OS and VM memory allocators and execute on current processors
with DRAM. Experiments with DaCapo benchmarks [5] show that
failure-aware software adds no overhead in the absence of failures,
and with 10% and 50% failure ranges on average adds only 4%
and 12%, respectively. We explore the sensitivity of our approach
to different clustering granularities and software line granularities.
These results show that hardware failure clustering brings addi-
tional benefits because it creates larger contiguous pieces of work-
ing memory, even entire working pages, with little performance
degradation. These results contradict accepted hardware wisdom
on wear leveling [17, 18, 26]. Wear leveling delays any one fail-
ure, but once memory begins to fail, uniformly distributed failures
cause fragmentation, whereas concentrated failures fragment mem-
ory less and are more transparent to software.

The capability of a managed runtime to relocate objects in-
creases the ability of the system to tolerate uncorrected hardware
failures, independent of the underlying hardware error correction
mechanism. By allocating around holes in non-homogeneous mem-
ory pages, our system increases the useful lifetime of PCM mem-
ory, making it more practical to use as main memory.

2. PCM Background and System Design
This section explains why DRAM technology is struggling to scale
to smaller technologies. It then briefly describes PCM technolo-
gies, approaches to extending PCM lifetimes, and how future sys-
tems may incorporate PCM. We use the following failure termi-
nology. (1) Static failures occur prior to an application executing.
The runtime may never allocate into pre-existing failed memory.
(2) Dynamic failures occur during an application’s execution.

2.1 Scaling Problems for DRAM
DRAM technology manufacturers are running into difficulties scal-
ing DRAM cells to smaller features (thus denser memory chips)
because DRAM uses a capacitive storage principle. Each cell is a
capacitor, which stores electrons. The charge held by the cell is later
sensed to determine the state stored in the cell. As cells get smaller,
the charge held in each cell drops, which increases the probability
that charge escaping from the cell will cause a bit flip. Emerging
technologies such as PCM are much more stable than DRAM, so
they became interesting potential replacement technologies.

2.2 PCM Hardware
The basic storage principle of PCM is changing the state of a
chalcogenide material [19]. Electrical current heats up cells and
then the material cools down into an amorphous or a crystalline

state that have different resistances, which encode logical zeroes
and ones. Due to the physical nature of state changes on writes,
cells tend to wear out. The average lifetime is currently about
108 writes per cell versus 1015 in DRAM. These changes are
isolated and localized to individual cells, so failures have no spatial
correlation. The peripheral circuitry responsible for performing the
write detects failures by reading the value once the write completes.

Previous work advocates for hardware and software wear lev-
eling [17, 18, 26] that uniformly distributes failures across mem-
ory with the purpose of wearing it equally and delaying failures.
Hardware-only error correction replaces bits or entire lines on per-
manent failures [16, 22, 23, 25]. These papers assume that once the
finite error correction resources are exhausted, the entire page, if
not the entire memory, fails. This was inspired by how DRAM sys-
tems handle failures today, but it is not adequate for PCM because
failures are not as rare as in DRAM. This paper shows that, with
modest hardware and software support, only the failing line needs
to be disabled and removed from the visible memory space. Fur-
thermore, software tolerates failures better when they are clustered,
rather than uniformly distributed throughout memory.

Our software/hardware cooperative approach extends system
endurance to go beyond what is possible with hardware-only er-
ror correction because it successfully uses other lines in the same
page. Effectively, the system gradually shifts from error correction
to error tolerance. An additional benefit is that error correction re-
sources previously used to correct the failed line can be repurposed
to correct lines that are still in use when they experience additional
bit failures, extending the system lifetime even further.

2.3 System Design
Even though the bulk of a system’s main memory may eventually
be composed of PCM, we assume in this paper that the system will
have some DRAM protected by regular ECC for operations that
must not fail. For example, DRAM should store essential OS and
runtime data structures. The lower the software’s dependency on
DRAM and perfect PCM, the more failure-tolerant it will be. One
may wonder what incentive application writers have to use PCM
when DRAM is also available. The right balance between PCM
and DRAM sizes will depend on costs and goals of the system,
but if PCM reaches the scale required to service the main mem-
ory market, it will have to be significantly cheaper than DRAM.
As such, main memories are likely to use a small DRAM module
and a much larger PCM module, making DRAM scarce. A process
storing data in DRAM would have a higher probability of having
its pages swapped out into disk, which will likely degrade perfor-
mance. If the process stores data in PCM, performance improves
because this module is large and its contents are less likely to be
swapped out, if at all.

3. Cooperatively Avoiding Faults
This section describes our proposed hardware, OS, and runtime
support for handling PCM failures.

3.1 Hardware Support
We propose two simple hardware mechanisms. The first informs
the software of failures, and is the foundation for cooperative fail-
ure tolerance. The other clusters failures to reduce fragmentation.

3.1.1 Hardware: Failure Tolerance
The hardware cooperates with software by (a) informing software
when a write fails, and (b) transparently maintaining the data from
a failed write while the software adapts to the failure.

When a PCM write fails, the PCM memory module: (1) copies
the data and the corresponding physical address to a failure buffer,
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Figure 1. Hardware Failure Clustering

and (2) interrupts the processor. The failure buffer consists of a
small quantity of SRAM or DRAM that is part of the PCM mod-
ule itself, its peripheral DIMM circuit, or the memory controller.
Every memory read request checks the buffer for the latest value
written to a memory location. This search is performed in paral-
lel with the actual access, so it does not affect read latency. If the
memory module finds an entry in the buffer, it returns the corre-
sponding data instead of the data read from the PCM array. The OS
invalidates entries in this buffer once it finishes handling them. If
other failures happen before a first failure is processed, information
about these failures is stored in the failure buffer in FIFO order. The
size of the buffer bounds the number of simultaneous failures that
can be tolerated. The physics of PCM results in failures that are
not naturally clustered in practice and do not happen frequently, so
this buffer can be small (no larger than the processors’ load/store
queues, which have similar forwarding capabilities). An earlier en-
try with the same address is invalidated. When the failure buffer is
about to fill up (enough entries are reserved to drain all outstanding
writes to PCM), another type of interrupt is sent to the processor,
and the PCM memory stops accepting any further write requests
until the OS handles and clears at least one buffer entry. The hard-
ware and OS thus prevent deadlocks and data loss.

3.1.2 Hardware: Minimizing Fragmentation
As failures accumulate, they increase memory fragmentation, mak-
ing it more difficult to allocate data across multiple contiguous
lines. We propose a hardware mechanism called failure clustering
to mitigate this problem. Failure clustering logically pushes failures
to one end of a region, consisting of one or more pages. Section 6.4
quantifies fragmentation due to failures and shows that reducing
fragmentation greatly reduces software overhead.

Failure clustering logically remaps failed lines to edges of re-
gions, as illustrated in Figure 1. Figure 1(a) shows a region with
no failures. Figure 1(b) shows that, as the region wears out, lines
run out of error correction resources and fail. Figure 1(c) shows
that ideally these lines map to the edges of regions, maximizing
the amount of contiguous space available for object allocation. To
create contiguous space, we propose a simple line redirecting strat-
egy. Figure 1(d) shows that every time a line fails, the hardware
redirects it to the top or bottom of the region. Once the first line
fails, the hardware installs a redirection map in the first line (or an-
other pre-defined line) of the region and a pointer to the boundary
between lines that work and lines that do not.

The redirection map has as many entries as lines in a region (128
by default in our experiments) and each entry requires as many bits
as the logarithm of this number. Each entry is indexed by the phys-
ical address offset in the region and produces the actual line offset

to which that line was redirected. On each failure, the hardware
maps the failed address to the boundary pointer line, advances the
boundary, and updates the redirection map, exchanging the offsets
of the two lines being swapped. It increments or decrements the
boundary, depending on which side of the region the failures clus-
ter. If regions are page-sized, to further maximize the amount of
contiguous memory, failures cluster to the top of even regions and
to the bottom of odd regions, as shown in Figure 1 (e). Figure 1(f)
illustrates regions larger than one page, in which case failures of
both pages cluster in only one of them (as long as the number of
unavailable lines corresponds to less than one page). Multiple-page
clustering creates logically perfect PCM pages. Assuming a 4 KB
page, 64 B lines, and a 2-page region size, the redirection map re-
quires 889 bits, or two lines, for its metadata: 126 7-bit fields for
redirection entries, and one 7-bit field for the boundary pointer. It
uses the remaining bits for error correction.

When the first failure happens in a page, the hardware sets up a
redirection map. The memory module first places a ‘fake’ failure at
the location in which it intends to install the redirection map in its
failure buffer, before inserting the entry corresponding to the first
failure. Once the OS clears both entries from the list, the memory
module installs the redirection map. The hardware handles failures
in the redirection map with error correcting codes.

On memory operations, the memory module must identify
which lines to redirect. The hardware uses a single bit in the orig-
inal error correction metadata to indicate if the line is redirected.
The memory module inserts the failure maps at fixed locations to
ease lookup — the top of even regions and bottom of odd regions.

The implementation complexity of clustering hardware is mod-
est. Upon an application reference to a region with failures, the
memory module accesses the redirection map using the physical
address offset it received from the cache hierarchy as the index. It
retrieves a new offset and then accesses the corresponding line. In
practice, this functionality requires very simple logic. However, it
requires three memory accesses: (1) The first access finds the line is
redirected, and (2) the second access goes to the redirection table,
and (3) the third access reads or writes the redirected line. Three
accesses could significantly increase latency. A simple solution is
to cache recently used redirection maps. Note that in the common
case of no failure, references require only one memory access irre-
spective of whether or not caching is in use.

3.2 Operating System Support
When the system is new, most, if not all, pages will be perfect
(no failures). As PCM pages wear, their cells start to fail, and, at
some point, hardware error correction is exhausted. Certain lines in
a page become unusable, although other lines are still functional.



When a line fails, the operating system receives the interrupt
notification of the failure. The memory access may have executed
in a user process or the operating system itself. This paper focuses
on the first case. The OS accesses PCM, as discussed below, and
must handle situations in which its writes fail, but this paper does
not consider storing OS data structures or code in PCM.

Operating systems can handle the failure in two fundamentally
different ways. They can hide line failures from executing pro-
cesses by replacing failed pages with perfect pages, changing the
process’s page tables and continuing the process without interrup-
tion. This approach masks the failure, preserving the illusion of
perfect memory, at the cost of depleting the increasingly scarce re-
source of perfect pages.

The other approach is to notify the process of a line failure,
to allow the runtime to reorganize data structures and avoid using
memory locations in the failed line. The process continues using
the page until its defect density renders it unusable. The focus of
this paper is the design of failure-aware managed runtimes that may
relocate data transparently to applications.

3.2.1 OS: Data Structures and System Calls
The OS manages DRAM, perfect PCM, and imperfect PCM pages
in separate pools. Initially, all PCM pages start in the perfect pool.
When a page first becomes imperfect, the OS moves the page to
the imperfect page pool. The OS also tracks the failed lines in
these pages. A system with 64 B lines and 4 KB pages requires a
64-bit bitmap per page. The OS stores these bitmaps in a table in
DRAM with an entry corresponding to each physical PCM page
in the system. Uncompressed, this table is approximately 1.6%
of the size of the PCM page pool. Run-length encoding or other
simple encoding techniques may provide high compression rates
and reduce this overhead, especially when the system is new and
the number of failures is low. When the system is shut down, the
OS may save the failed line map to persistent storage and restore it
on system initialization. Alternatively, the OS may rebuild the table
by eagerly scanning memory or by lazily rediscovering failures at
first write. Rediscovery is necessary after abnormal shutdowns and
incurs a cost proportional to the size of PCM or the number of
failures not recorded in persistent storage before the shutdown.

Failure-unaware processes may continue allocating perfect
memory via normal mechanisms such as mmap. A failure-aware
process can utilize both perfect and imperfect memory pages. Per-
fect memory grows scarcer as a system ages. Although imperfect
pages require extra management and overhead, they are more abun-
dant. A failure-aware runtime uses a special variation of mmap to
acquire imperfect pages. This call returns the number of pages re-
quested, however not all of the allocated memory may be usable.
The runtime uses a map-failures call to get a failure map of the
allocated memory region. If the runtime requires more space than
the OS returned, it requests additional memory.

3.2.2 OS: Handling Dynamic Failures
When the memory module detects a failure, it raises an interrupt.
This failure occurs asynchronously with respect to the write opera-
tion because a line is only written to PCM when it is evicted from
the cache subsystem. When the interrupt is raised, the OS inter-
rupt handler reads the failure information from the failure buffer.
Before removing any entries from the failure buffer, the OS must
prevent accesses to the failing addresses because, once it removes
them, the memory module no longer forwards data to read oper-
ations on these addresses. The OS finds the corresponding virtual
pages via reverse address translation, removes read and write per-
missions from them, and updates its own failure map. Reverse ad-
dress translation is relatively expensive, but dynamic failures are

very rare and either require copying a page or a garbage collection.
The cost of reverse address translation is small compared to both.

The OS handler needs to resolve every failure. For failure-
unaware processes, the only option is to copy the entire affected
page to a perfect page. It must do the same for memory regions
allocated when failure-aware processes request perfect memory.
For imperfect memory requests, it may use the same approach or
rely on the runtime to handle the failure.

A failure-aware runtime must register a handler with the OS be-
fore it uses imperfect memory. When a failure occurs, the OS per-
forms an up-call on the handler, passing the addresses and data of
all pending failures. The runtime must relocate affected data, updat-
ing whatever runtime structures are necessary to ensure correctness
and transparency before returning from the handler.

As a convenience to the runtime, the OS may optionally recon-
struct the affected page using a DRAM page for the duration of the
runtime handler performing its work. Otherwise, the runtime uses
the partially-failed PCM page and the information passed to the
handler to reconstruct the affected data, and must avoid accessing
the failed lines while it handles the failure.

3.2.3 OS: Paging and Other Issues
The OS may occasionally copy data from one imperfect page to
another, for example, when an imperfect page is swapped out and
then brought back into memory. If the failures on the destination
page are a subset of the failure locations on the source page, copy-
ing is straightforward. However, keeping track of page compatibil-
ity is expensive, and prior work shows similar matching processes
have limited efficacy in practice [11]. As we show below, failure
clustering helps solve this problem.

When moving data from a previous imperfect page (possibly on
disk) to another memory page, the OS has three options: (1) The
OS may swap data into a perfect page. (2) The OS may swap
data into an imperfect page with different failures compared to the
previous physical page. The OS must inform the runtime of the new
failure map by delivering an up-call on the runtime’s handler. If the
runtime cannot safely move data in the failed lines, the OS can try
another imperfect page or fall back to a perfect page. (3) Failure
clustering enables a third and simpler approach. Since clustering
accumulates failures at one end of the page, the OS simply maps
the page it is swapping in onto any available page with the same
number or fewer failures.

3.3 Runtime and Application Software Support
We turn now to failure-aware runtimes. We start with the limitations
inherent to native (unmanaged) applications. We then overview
failure-aware runtime support for managed applications. Section 4
describes the basic Immix garbage collection algorithm and how
we implement failure-tolerance in Immix.

3.3.1 Failure-Aware Applications and Runtimes
In principle, any application can be made failure-aware. In practice,
forcing developers to manage failures without runtime support is
impractical because it requires significant and pervasive changes to
ensure live data never occupies failed memory.

Static failures to memory allocated to the stack for both native
and managed languages could be addressed by the compiler and
runtime stepping around failed lines as they allocate new stack
frames. But given the frame allocation/deallocation frequency, the
overhead of such a scheme is likely to be unreasonable. Handling
dynamic failures to the stack is even more challenging.

Static failures to memory allocated to the code and data seg-
ments will be hard to handle because of hard-coded assumptions
about offsets to code and data in these segments. In principle, this
problem could be addressed via binary rewriting. However, because



native programs may hold untyped and undiscoverable references
to elements in the code and data segments, handling dynamic fail-
ures to these regions appears to be intractable.

The runtime memory manager may handle static failures in
heap memory. Native runtimes use free list allocators, which could
use imperfect memory, and mark as unavailable those units of allo-
cation that coincide with failed memory. Such an implementation
would increase the complexity of managing the free list. However,
for large objects and large numbers of failures, native runtimes have
a stronger requirement for perfect pages than managed runtimes.
For example, managed languages can split large arrays [21] (see
Section 4), whereas native languages require contiguous allocation.

Adding failure tolerance to the free-list used by native runtimes
will incur additional complexity, fragmentation, or both. Most of
the complexity arises due to (1) mismatches between failure granu-
larity and the free-list heap layout, and (2) the need to differentiate
between failed and in-use memory both to reduce fragmentation
and for correctness with conservative collection. Granularity mis-
matches arise because native memory managers use segregated size
free-list allocators [2, 6, 8, 14], carving up large fixed-sized regions
(e.g., one or more pages) into same-sized objects on demand. To
add failure tolerance, we have three choices: (a) to use only perfect
small page size regions, which incurs fragmentation for medium
size objects, and never uses pages with failures, or (b) incur frag-
mentation in each fixed-size large region, or (c) add complexity to
allocate and recycle variable-sized regions. Note that these same is-
sues arise for managed languages that use free-lists. None of these
options are appealing.

To summarize, native applications could be made tolerant to
static failures in the heap with non-trivial changes to a free-list
allocator, but the OS must still handle all dynamic failures.

3.3.2 Failure-Aware Managed Runtimes
We design and implement a solution for failure-aware memory in a
managed runtime that dynamically allocates code and data mem-
ory space. A large and growing set of applications are written
in managed languages, such as C#, Java, JavaScript, Python, and
PHP. These languages use safe pointer disciplines and execute in
virtual machines (VMs) that include dynamic compilers and au-
tomatic memory management (garbage collection). Because these
languages are memory safe, the garbage collector (GC) allocates
and is free to move objects in memory (including code objects in
some VMs). Moving objects is both safe and transparent to appli-
cations. We leverage this functionality to tolerate failures in PCM
without putting a burden on developers. A failure-aware garbage
collector never allocates objects in failed memory and relocates af-
fected data when new failures happen.

In VMs that dynamically allocate code and data, our solution
transparently handles both, but we focus on data here. A VM
solution reduces the need for perfect memory to the VM itself,
heap metadata, and large objects. A self-hosting VM may reduce
the need even further. The next section provides an overview of
how to make garbage collection failure-aware.

3.3.3 Garbage Collection
Two high-level modifications are necessary for a garbage collector
to tolerate failures: (1) exposing information about failures to the
garbage collector (GC), and (2) modifying the allocator to avoid
allocating live objects in memory that contains failures.

The OS communicates a failure map to the GC. The GC adds
the failure map to the heap metadata that records which memory
contains live objects and which memory is free for allocation. The
hardware determines the finest possible granularity of the failure
map. This paper uses the cache line size as the finest failure gran-
ularity, which is also typically the same granularity of hardware

write operations to PCM. The failure map may use coarser granu-
larities that trade-off less storage overhead for less available mem-
ory as failures accrue. We evaluate this trade-off in Section 6.3.
For simplicity, we assume here that the failure map and other heap
metadata are stored in perfect memory and do not themselves fail.

In a failure-aware VM, (a) the GC must never allocate live
objects in a failed region of memory, and (b) when a region of
memory fails during execution, the collector must evacuate all
objects in the failed region and allocate them elsewhere.

Static failures The GC already maintains the invariant that it only
allocates objects into free memory. The GC treats all allocations
the same regardless of whether an object allocation is the result
the application’s call to new(), or if the GC itself is allocating an
object to evacuate (move) it during a collection. A failure-aware GC
maintains the same invariant. It only allocates into free memory. It
treats failed memory the same as memory with live objects on it
(neither are free). With a static failure map in hand, the collector
simply allocates into free memory.

At a minimum, all memory managers separately manage (i) small
or medium objects and (ii) large objects. Given sufficient failures
and a large enough object, imperfect memory will not accommo-
date a large object. As with any allocation, when the failure-aware
memory manager first attempts to allocate an object and there is
insufficient memory, it triggers a collection to reclaim free mem-
ory and then attempts to allocate again. If the GC still cannot ac-
commodate the object in imperfect memory, the allocator requests
perfect memory. We greatly reduce the probability of this situation
with hardware clustering at the granularity of two or more pages to
create logically perfect pages (see “Large Objects” below).

Dynamic failures If a failure occurs during program execution,
the OS may notify the GC and provide it with the values the pro-
gram intended to write into the affected region. The OS can specify
dynamic failures at the granularity of lines or pages. Regardless,
the collector must move any affected objects, allocating them else-
where in the heap. This requires that all pointers to the affected
object(s) be identified and retargeted to the moved object(s). In a
typical generational collector, a failure to memory in the nursery
will only require a nursery collection, but any other failure will re-
quire a full heap collection. If no live objects reside in the affected
region, which is unlikely because writes cause the failures, the col-
lector marks the memory as failed in the failure map and returns.

Pinning support is required in some languages, such as C#.
If a live object in the failed region is pinned by the application,
the VM cannot move it and must notify the OS that it cannot
vacate the region. An alternative solution is to allocate pinned
objects to memory that does not fail, but some systems require
in-place pinning after allocation, so this solution will not always
work. Since pinning is rare, the probability of a line failing that
contains a pinned object is low and some expensive action, such as
the OS remapping the affected page to another perfect or failure-
compatible physical page would be appropriate.

While the collector recovers from a failure, other failures could
happen. As explained earlier, the hardware and OS handle these
failures until the collector is ready to deal with them.

Heap Layout To implement failure tolerance, the garbage collec-
tor must relate the PCM failure granularity to the data structures
it uses to manage live objects and free memory. Modern garbage
collectors use one of contiguous allocation, a free-list, or the Im-
mix mark-region line and block hierarchy [3, 4]. The next section
describes how to use the Immix heap, and Section 3.3.2 described
why modifying a free list is possible, but complex. Modifying a
contiguous heap layout is not even possible, because it simply has
no way to skip over or manage small regions of memory without
fundamental changes to the algorithm.
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Large Objects Both memory managers and garbage collectors
explicitly handle large objects separately [2, 4, 14, 21]. The exact
large object size is a function of the granularity of the memory
manager’s block size, i.e., the granularity at which it manages the
small and medium size objects. Typical block sizes range from
16 to 64 KB. Immix uses 32 KB by default. Most large objects in
managed languages are arrays and, for DaCapo Java programs, they
consume on average half the heap [21].

Without hardware clustering, if many failures are uniformly
distributed in memory, large objects will not fit. A purely software
solution is to use discontiguous arrays, which divide up arrays into
a spine that points to smaller fixed-size arraylets and modify the
array access code [1, 21]. Discontinuous arrays were invented to
bound pause times for real-time systems. Sartor et al. showed how
to make them relatively efficient, with average overheads below
13%, even with arraylets as small as 256 bytes.

With hardware clustering at a two-page granularity or higher,
the hardware creates the logically perfect pages that large ob-
jects require. For example, with two-page clustering and failures
in roughly 50% or less of the memory, at least 50% of memory will
consist of perfect pages that the allocator may use for large objects.

4. Implementing a Failure-Aware Runtime
This section describes the modest changes required to make the
Immix mark-region garbage collector failure-aware. The key at-
tributes of Immix are well suited to the PCM failure mode, in which
fixed-size lines fail. (a) Immix already tracks memory at a line
granularity categorizing lines as: free, live, or live pinned. (b) Im-
mix already maintains two invariants: (i) it only allocates into free
lines, and (ii) it only ever moves unpinned objects. To make Im-
mix failure-aware, we simply add a fourth line category to Immix,
failed lines, and continue to enforce the same two invariants.

4.1 Basic Immix
The Immix design was motivated by the tension between three de-
sirable performance objectives: space efficiency, collection time,
and mutator (program) locality [3, 4]. Immix achieves all three per-
formance objectives by combining bump-pointer allocation, effi-
cient tracing, and occasional copying of live objects, as well as a
memory-efficient two-level line and block heap organization. A key
to this design is a bump-pointer allocator that can very efficiently
skip over unavailable lines. This organization makes Immix an ex-
cellent match for our requirement that the allocator skip over failed
PCM lines. Prior work established that Immix outperforms prior al-
gorithms and heap organizations, and it is now the default collector
in Jikes RVM [3].

Lines and Blocks Immix manages heap memory at coarse and
fine granularity by dividing memory into blocks and blocks into
lines, as depicted in Figure 2. Lines approximate cache lines and
blocks approximate pages. Objects may span lines within a block,
but cannot span blocks. Objects that fit within one line are regarded
as small. Immix has a threshold that designates objects as large and

delegates them to a separate page-grained large object space (LOS).
This threshold is never larger than a block. Initially all blocks are
free and Immix allocates objects contiguously into blocks until it
fills the heap, which triggers a collection.

Collection Immix collection marks live objects by performing a
transitive closure over the live object graph starting at the roots
(global and stack variables) and then tracing references. When it
encounters an object for the first time, it marks the object and
its line as live. Immix does not copy objects by default; it deals
with fragmentation by copying objects on occasion. Some managed
languages, such as C# and JavaScript, require object pinning, in
which applications can specify that an object may not be moved.
This is typically supported for performant interoperability with
native C. Immix respects pinned objects and never copies them.

After marking, Immix scans line mark tables, recycles partially
filled blocks, and returns completely empty blocks to a global pool
of pages for use by the whole runtime.

Allocation In steady state, Immix allocates objects into available
recycled blocks first, as depicted in Figure 2. The allocator is
parallel, with one thread-local allocator for each application thread.
The allocator initializes a bump pointer to the first free line in
a block and sets the limit to the end of the last free line in this
contiguous set of free lines. When the bump pointer finds that an
allocation request cannot be satisfied within the limit, it skips over
any unavailable lines to identify the next set of free lines. When it
exhausts a recycled block, it requests another from a shared pool
of recycled blocks. Once all recycled blocks have been exhausted,
the allocator requests completely free blocks from the global block
pool. Once the global pool is exhausted the allocator triggers a
collection. Other allocators, such as the large object space (LOS)
compete for blocks from the global pool.

To make efficient use of recycled blocks, and avoid skipping
otherwise usable smaller spaces, Immix heuristically allocates
medium objects (those larger than a line) on a special overflow
block if the object cannot immediately fit in the contiguous space
available to the bump pointer. Overflow blocks are sourced from the
global pool of completely free blocks, so have maximal contiguous
space. Our failure-aware collector handles requests for completely
free blocks by the LOS and overflow allocator by using perfect
memory for such requests (see Section 3.3.3).

Sticky Immix The Sticky Immix algorithm adds high-performance
generational behavior to the Immix collector. It combines sticky
mark bits collection [8] with the Immix algorithm. Sticky mark
bits collectors identify young objects by a bit in their header, rather
than by allocating them into a distinct space. By default, it oppor-
tunistically copies nursery survivors into any available empty or
partially filled blocks. If there is no available memory, it leaves
them in place. This collector retains all of the attributes of Immix
which make it amenable to failure tolerance and to the need to skip
over failures, whilst gaining the performance of compacting and
collecting younger objects first.



Performance Figure 3 shows a sample result that motivates Im-
mix as a performant baseline for a failure-aware runtime. It shows
the geometric mean of total execution time of the DaCapo bench-
marks configured with full-heap mark-sweep (MS), Immix (IX),
and the Sticky generational variants (S-MS and S-IX). We extend
Immix to handle failures because of its high performance and its
line-block organization simplifies the algorithmic design.
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Figure 3. Performance of DaCapo benchmarks running with vari-
ous memory management algorithms at multiple heap sizes.

4.2 Failure-Aware Immix
This section describes how we modify Sticky Immix to be failure-
aware.

Static Failures When the OS gives Immix a region of memory
and a failure bit map, failure-aware Immix marks corresponding
lines as failed in its line-mark metadata. Because line marks are
bytes and only some of the 256 available states are used, we add an
additional state that denotes a failed line without space overhead.
One subtlety is that the Immix line size is not necessarily the same
as the PCM line size. For example, the best performing line size
for Immix is 256 B without failures, whereas PCM line sizes are
typically 64 B. When the Immix line size is greater than the PCM
line size, we must mark the entire Immix line failed, even though
only part of it failed. Section 6.3 explores this trade-off.

The previous section described how Immix uses free blocks
for overflow allocation to accommodate medium sized objects that
do not immediately fit in the space available at the bump pointer.
With failure-aware Immix, the overflow block is not guaranteed
to be perfect and the object may not fit. Thus we change the
algorithm to search the remainder of the overflow block for suitably
sized available space. If this search fails, the allocator resorts to
requesting a free perfect block. Hardware failure clustering greatly
reduces the likelihood of multiple overflow allocation failures.

Dynamic Failures To address dynamic failures, we use the same
mechanism that Immix uses to defragment the heap. Immix oppor-
tunistically copies objects that reside on sparsely populated pages
to free or partially free blocks during a defragmenting collection.
For dynamic failures, we straightforwardly reuse this mechanism
to move objects affected by dynamic PCM failures. We mark the
affected object(s), the lines that contain it, and its block for evac-
uation, and then invoke a copying collection. Although a full heap
collection is relatively expensive, dynamic failures are rare.

The full heap collection time is an estimate of the time needed
by the runtime to handle a failure. For the DaCapo benchmarks
on Intel Core i7 hardware, it takes 7 msec on average. The worst
case is 44 msec (hsqldb). The next two are 22 and 12 msec (fop and
xalan), with all others under 10 msec. To put this time in context, the
average number of garbage collections is 14.7 and the average total
execution time for these benchmarks is 1817 msec. We believe that
for most applications, this simple strategy is sufficient for dealing
with the rare occurrence of a dynamic failure.

5. Experimental Methodology
This section justifies our use of execution time results and then
describes the hardware, benchmarks, collector configurations, and
methodology for running experiments.

At the time of writing, direct evaluation on systems with PCM
main memory is unfortunately not possible, as the only commer-
cially available PCM parts today are NOR flash replacements, with
very low capacities and incompatible physical interfaces. Simu-
lation is slow, making whole benchmark execution prohibitively
long. Instead, we evaluate our approach running natively on
DRAM, and instrument the managed runtime with a fault injection
module between the OS memory allocator and the VM memory
allocation module. When the latter allocates memory, part of this
memory is made ‘defective’ by the fault injection module.

Machine, benchmarks, and collector configurations All exper-
iments execute on an Intel Core i7 2600 machine with 4 GB of
DRAM main memory, running on Ubuntu 10.04.1 LTS. We use
an implementation of Immix in Jikes RVM, a Java virtual machine.
We execute the superset of all benchmarks in the DaCapo 9.12-
bach and DaCapo-2006-10 suites that can run on Jikes RVM. We
use lusearch-fix, which is the lusearch benchmark patched to fix a
bug in the underlying lucene library that introduces pathological
allocation behavior [24] by needlessly allocating a large data struc-
ture in a hot loop. This bug results in an allocation rate a factor of
three higher than any other benchmark. Aside from reporting it in
Figure 4 for completeness, we exclude the buggy version of luse-
arch from all of our analysis.

We compare to the Sticky Immix (S-IX) implementation in
MMTk from Jikes RVM 3.1.2 described above with a block size
of 32 KB and a line size of 256 B. Failures and garbage collection
expose application performance to a space-time trade-off that we
explore explicitly across a range of heap sizes. We use a modest
default heap size that is 2× the minimum for each benchmark.

Failure map generation and memory accounting We model
PCM failures via a failure map. The failure map has one bit for
each 64 B PCM line, which indicates whether that line is work-
ing or has failed. The failure map generator distributes failures
uniformly from a command line argument and produces clustered
failure map distributions from uniform distributions.

Because the time-space trade-off is central to garbage collected
systems, we explicitly control for heap size in all of our experi-
ments. This introduces two important and distinct methodological
considerations in the context of memory that may fail. First, we
compensate the fixed heap sizes according to the failure rate to en-
sure that the usable memory is held constant. Section 6.2 discusses
heap compensation in detail. Second, and quite separately, appli-
cation memory requests now fall into two categories: those from
relaxed allocators that are robust to failure because they can uti-
lize fragmented pages, and those from fussy allocators that require
perfect PCM or DRAM pages (because their allocations are page-
grained). The balance between fussy and relaxed allocation varies
greatly as a function of time and among benchmarks.

Because our modeling of PCM failure is not guaranteed to
return a perfect page and a real implementation would have a
limited supply of DRAM for such requests, we use a debit-credit
based cost model to account for the cost of using a DRAM page
when no perfect PCM page is available. Penalizing the use of
DRAM is appropriate both because it would be scarce in practice
and because, without a penalty, DRAM is highly attractive since
it is never fragmented, which may lead to the counter-intuitive
situation where higher failure rates offer better performance.

When a fussy allocator requests a perfect page and the allocator
has sufficient memory, but no perfect page is available, we model
giving it a perfect page (DRAM or PCM) with a one page space
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Figure 4. Performance of DaCapo benchmarks running with a failure-aware Immix implementation at multiple failure levels, normalized to
the unmodified version of the algorithm.

penalty. Because garbage collection exists as a time-space trade-
off, this space penalty ultimately translates to a time penalty. The
relaxed allocator may ‘repay’ the debt of the fussy allocator. On
subsequent allocations, which may follow a collection or not, each
time the relaxed allocator is given a perfect page, it only takes the
page if there is no outstanding debt. If there is a debt, we reduce
the debt by one page and fetch another PCM page for the relaxed
allocator.

Nondeterminism and experimental error To eliminate the ef-
fects of nondeterminism due to timer-driven adaptive recompila-
tion, we used the current version of Jikes RVM’s replay compila-
tion mechanism [10, 13]. Compiler replay is driven by optimiza-
tion profiles gathered ahead of time for each benchmark and then
used for all experiments. Each profile identifies a good optimization
plan, stating the optimization level (if any) for each method, and in-
cludes edge counts and a call graph which would normally be gath-
ered dynamically. The replay mechanism first runs each benchmark
for one iteration without any optimization (this forces all classes
to be loaded). The system then compiles all methods according to
the optimization plan, before commencing a second iteration of the
benchmark. Our experiments evaluate this second, optimized, itera-
tion. This methodology eliminates the chaotic nature of timer-based
adaptive optimization while delivering performance slightly better
than steady-state performance for an adaptively optimized system.

We perform 20 invocations of each benchmark, each using the
replay methodology, and take the mean of these results, report-
ing 95% confidence intervals. The 95% confidence interval error
is generally very low, around 1-2%. We aggregate results across
benchmarks using geometric means. Some configurations cannot
execute some of the benchmarks in very small heaps. When report-
ing aggregated results, we discard results at a given heap size when
some of the benchmarks do not complete, which manifests in the
graphs as lines that terminate before reaching the y-axis.

6. Evaluation
This section starts with an evaluation of PCM-aware Sticky Immix
implementation with failure clustering hardware. It shows how
together they dramatically mitigate the effect of PCM failures. The
remainder of the section explores trade-offs in the design space and
illustrates the effects of failure-induced memory fragmentation.

6.1 Performance and Memory Overheads
Figure 4 shows the performance overheads of failure-aware Sticky
Immix with two-page failure clustering (S-IXPCM

2CL ) at multiple
PCM failure rates (0, 10%, 25% and 50%). The figure normalizes
time to the unmodified Sticky Immix (S-IX) collector (not shown).
All of the Immix collectors use a logical line size of 256 B and
block size of 32 KB, and receive the same amount of usable mem-

ory (the equivalent of two times the minimum heap required by
each benchmark to run). Note that S-IXPCM

2CL incurs zero overhead
when there are no PCM failures (the geometric mean of the green
bars is 1.0, the same as unmodified Sticky Immix). The lack of any
measurable overhead corroborates that, as described in Section 4.2,
no additional metadata is required for failure-aware Sticky Immix
(or we would see slowdowns at this constrained heap size).

As the number of failures increases, the performance overheads
slowly increase. At failure levels of 10%, the overhead is 3.9% on
average and never exceeds 7.4% (peach bars). Low overheads are
a result of the positive effects of failure clustering, which are more
thoroughly explained in Section 6.4. The overhead grows modestly
with failure rate, increasing when the failure rate is 50% to an
average of 12.4% with a maximum of 40% for pmd.

Some workloads, such as pmd and jython, experience high over-
heads. The reason is that they allocate many medium sized objects,
which makes it more challenging to find free memory to fit these
objects. Benchmarks such as xalan, which predominantly allocate
very large objects, are quite resilient to failures because they utilize
the entirely free pages delivered by two-page failure clustering. Vir-
tual address translation transparently removes any problem of page-
level fragmentation. As anticipated in Section 5, the buggy lusearch
benchmark (which we gray-out here and exclude from all further
analysis) gives a counter-intuitive result, with overhead reducing as
failure rate rises. This result is due both to lusearch’s pathological
behavior, and an unobvious interplay between the two-page fail-
ure clustering and the way we use heap space compensation in our
analysis (see Section 6.2 and Figure 5).

The remainder of this section explores the fragmentation problems
and the inherent trade-offs due to failures in more detail.

6.2 Memory Reduction vs. Fragmentation
Three main factors impact performance as memory degrades.
(1) As failures accumulate, the functional memory a VM receives
when it requests a certain region of memory from the OS is re-
duced. This problem is addressed by compensation: the VM simply
requests more memory until it gets as much working memory as
originally intended. (2) Failures cause heap fragmentation, which
reduces the usability of the available memory. (3) A more subtle
effect is false failures, which occur when the PCM failure gran-
ularity is less than the granularity of allocation (similar to false
sharing in caches). For example, if the Immix line size is greater
than the failed cache line size specified by the PCM memory or the
OS. With an allocation granularity of 256 B lines in Immix, an en-
tire line becomes unusable when a single 64 B PCM line fails and
false failures overstate the real failure by 192 B. This phenomenon
is not specific to Immix, and will manifest whenever a request is
made for contiguous memory greater than the PCM line granularity
(regardless of the software algorithm).
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Figure 5. Compensation for memory failures is most noticeable
at smaller heap sizes. This graph compares the baseline S-IXPCM

with no failures (green) to 10% PCM line failure rate and no
clustering, with (red) and without (orange) memory compensation,
and to S-IXPCM with clustering and compensation (maroon), the
best failure-tolerant configuration.

To break down these three effects, Figure 5 summarizes the be-
havior of different configurations by presenting normalized execu-
tion time geometric means (y-axis) over all workloads as a func-
tion of heap size (x-axis). It compares the baseline (green) with
no failures (S-IXPCM) to PCM-aware Sticky Immix with compen-
sation (orange) and without (red), both without failure clustering
hardware at a 10% failure rate (S-IXPCM 10%). Space compensa-
tion provides the same amount of working memory if there were
no failures. For example, given a heap size h used in the absence
of failure, when the failure rate is f , we compensate with a heap
size of h/(1− f ). Compensation ensures that the number of bytes
of non-faulty memory available to the system is held constant.

Consider S-IXPCM under no failures (S-IXPCM , green), at 10%
failure rates (S-IXPCM 10% NoComp, red), and with working-
memory space-compensation at 10% failure levels (S-IXPCM 10%,
orange). The gap between S-IXPCM 10% NoComp and S-IXPCM

10% (red and orange) in Figure 5 shows the effect of failures re-
ducing available memory. In small to moderate heap sizes, this ef-
fect is pronounced until the heap grows to 3 times minimum, when
the lines converge. The gap between the S-IXPCM 10% (orange)
and no failures (green) on the bottom shows the remaining two ef-
fects. Fragmentation and false failures, when spread uniformly over
memory, significantly degrade performance, over 25% in small to
moderate heaps and over 10% even in large heaps.

The large effects of fragmentation with or without heap com-
pensation motivate hardware clustering. Comparing no clustering
(the top two lines) to S-IXPCM

2CL 10% (two-page clustering, maroon)
shows that the latter significantly improves performance by reduc-
ing the amount of fragmentation exposed to the software. Reducing
fragmentation wins twice. First, the amount of usable memory is
increased, which reduces memory management load, shifting the
curve left. Second, application locality is improved, shifting the
curve down. The next section examines in more detail the effect
of line size on false failures.

Heap compensation can have an unexpected interplay with two-
page failure clustering and our means of accounting for requests
for perfect memory, as in lusearch in Figure 4. When allocation is
dominated by page-grain requests, the number of failures on a page
is unimportant; what matters is whether the page is completely free
or not. Consequently, the impact of failure rate on such benchmarks
is essentially constant for non-zero failure rates. On the other hand,
heap compensation makes more memory available as failure rates
grow. Thus although in practice the cost in terms of usable pages for
failure rates of 10%, 25% and 50% remains similar for a benchmark
like lusearch, compensation increases, which leads to the counter-
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Figure 6. The presence of failures without hardware clustering
alters the performance behavior as Immix line size grows: While S-
IX uniformly benefits from larger lines, in the presence of failures,
S-IXPCM L256 suffers.

intuitive improvement in performance as failure rates grow that we
see in the lusearch result in Figure 4. However, this pathological
behavior is rare, as Figure 4 shows.

In the remainder of the evaluation, we use compensated runs by
default.

6.3 The Effect of Line Size
Figure 6 shows the effect of Immix line size on performance,
assuming a constant PCM line size of 64 bytes and no hardware
failure clustering. Figure 6(a) corresponds to the baseline S-IX at
three Immix line sizes: 64 bytes (S-IX L64), 128 bytes (S-IX L128),
and 256 bytes (S-IX L256), all running without PCM failure. The
interesting trend to note is that larger lines perform better on S-IX,
and that this advantage increases as the heap becomes smaller. The
primary reason is that in a tight heap, larger lines mean fewer slow-
path operations and better locality. Smaller lines increase metadata
overhead, which is felt most acutely in constrained heaps.

The presence of failures changes the Immix line size dynamics
significantly. Figure 6(b) shows the same three Immix line sizes
(S-IXPCM L64, S-IXPCM L128, and S-IXPCM L256) at 10% failure
levels, as well as S-IX. False failures make larger Immix line sizes
less desirable when we constrain the heap without clustering. As
the Immix line size increases, it takes only one PCM line failure
to make an entire 128-byte or 256-byte line unusable. These false
failures generate more severe loss of usable memory space, which
affects performance negatively. Once again, the issue is alleviated,
but not eliminated, at larger heap sizes.

Figure 7 further illustrates the relationship between perfor-
mance, Immix line size and failures, this time holding heap size
constant at 2× the minimum and varying failures between 0 and
50% of all lines. To more fully expose fragmentation behavior,
these configurations do not use hardware failure clustering. In this
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Figure 7. The effect of PCM failures on three different Immix line
sizes at a fixed 2× heap size. With a 256 B Immix line, failures
dramatically reduce useful memory causing benchmarks to fail
without hardware clustering.

case, the larger the line size, the earlier it starts causing excessive
false failures and thus wasting memory, so the worse the perfor-
mance. When the failure rate is zero, larger lines perform better,
but as the failure rate increases, the effect of false failures domi-
nates. With L256 this happens almost immediately, and with L128
the crossover is at about 15% failure rate.

Figures 6 and 7 illustrate the two opposing forces that influence
the choice of Immix line size without clustering: lower memory
management overhead versus higher usable memory waste.

6.4 Failure Clustering
The results in Section 6.3 assume that PCM failures occur with a
uniform random distribution at the granularity of 64 B lines. When
uniformly distributed, these failures cause significant fragmenta-
tion, and will lead to as much as 3× space overhead due to false
failures with a 256 B Immix line. This section quantitatively ex-
plores the effect of clustering failures at granularities greater than
64 B. The number of failed lines remains 10%, 25%, and 50%, but
we systematically distribute failures in clusters of 2N failed lines,
for sizes 64 B and greater to reveal the effects of fragmentation and
how well clustering counterbalances them.

Failure Clustering Limit Study To conduct these experiments,
we use the S-IXPCM collector, but generate the PCM failure map
slightly differently. Instead of failing individual 64 B lines with
probability p, we step through aligned regions of size 2N and fail
the entire region with probability p. The effect is that the gaps
between failures are guaranteed to be at least 2N , but the probability
of any given line having failed remains p. This analysis motivates
hardware support for failure clustering.

Figure 8 shows performance when S-IXPCM is exposed to 10%,
25%, and 50% failures with failures clustered at powers of two
from 64 B to 16 KB. The x-axis is logarithmic. Performance is
normalized to unmodified S-IX running on regular memory.

Performance dramatically improves with failure clustering.
Clustering mitigates fragmentation by reducing or eliminating false
failures and leaving larger chunks of usable memory for the mem-
ory manager to use. The greater the number of failures, the more
dramatic the effect of failure clustering. The problem is so severe
that starting at 25% failures, and at 64-byte failure cluster granu-
larity, the VM cannot execute many workloads to completion even
at a 2× heap, thus the 25% and 50% curves start at 128 bytes. Yet,
using clustering at 256 bytes, the performance overhead is reduced
to just 20% when 50% of lines fail.

Proposed Failure Clustering Hardware Figure 9 compares our
failure-aware collector with and without clustering hardware sup-
port at one- and two-page granularity, for 64 B, 128 B, and 256 B
Immix lines, and with 0, 10%, 25%, and 50% of PCM lines failed.
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These experiments use a failure map with uniformly distributed 64-
byte line failures, and then move those failures according to our
one- and two-page clustering algorithm, alternatively moving all
failures to the start or end of each clustering region.
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(b) Two-page clustering greatly reduces dependency on borrowed pages.

Figure 9. Hardware support for failure clustering mitigates frag-
mentation, reduces or eliminates false failures, and greatly reduces
demand for perfect pages.

Figure 9(a) shows the effect on average performance, while
Figure 9(b) shows the impact on average demand for perfect pages.
The first group of curves (red: S-IXPCM L64, S-IXPCM L128, and
S-IXPCM L256) does not have hardware support, while the second
(blue: S-IXPCM

1CL L64, S-IXPCM
1CL L128, S-IXPCM

1CL L256) has one-page
clustering and the third (green: S-IXPCM

2CL L64, S-IXPCM
2CL L128, S-

IXPCM
2CL L256) has two-page clustering.
Figure 9(a) shows that hardware failure clustering greatly re-

duces the performance overhead due to PCM failures. The first
group of lines (red, top) consistently perform worse because frag-
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Figure 10. Performance of failure clustering at one- and two-page granularities for each of the DaCapo benchmarks.

mentation and false failures dominate performance, especially
when lines are large and many lines fail. The 256 B line size fares
worst, and the effect of false failures is so great that many bench-
marks cannot run at 25% failure (hence no data for that point in
the graph). Performance is much better and less variable with hard-
ware support for failure clustering because clustering eliminates
most false failures and greatly reduces fragmentation visible to
software.

Two-page clustering (green) has the further advantage of creat-
ing completely failure-free pages. Note that for both one-page and
two-page clustering, 256 B Immix lines result in the best perfor-
mance. The reason is that clustering mitigates the negative effects
of fragmentation, leaving only the positive effects of coarser Immix
line granularity (lower memory management overheads).

Figure 10 shows the individual benchmark results for one- and
two-page failure clustering at various failure rates. Consistent with
Figure 9(a), two-page clustering reduces overheads considerably
unless failure rates are very high. Figure 9(b) shows that the main
reason is that hardware failure clustering greatly reduces demand
for perfect pages. This reflects the fact that clustering has a defrag-
menting effect, which greatly increases the probability of a medium
sized object being able to fit on a page suffering failed lines. Perfect
pages are used when objects cannot be placed on a regular page, so
the 3× reduction in demand for perfect pages by the two-page clus-
tering algorithm reflects the strong defragmenting effect of failure
clustering. The xalan benchmark makes very heavy use of perfect
pages and consequently sees a huge advantage in two-page push at
10% failure rate. The counter-intuitive lowering of overhead with
rising failure rate in xalan with one-page push is due to the effect of
heap compensation, as it was with lusearch (Section 6.1).

Figure 9(b) also shows an interesting property of the two page
clustering. The demand for clean pages is very robust to failure
rates even as high as 50%. As long as a two-page region has a
failure rate less than 50%, the clustering will yield at least one
perfect page out of every two. Once the failure rate in a two-page
region exceeds 50%, clustering will only yield a free region that
is smaller than a page, greatly reducing the stock of failure-free
pages. Figure 10 shows that two benchmarks, pmd and jython, are
very sensitive to this threshold, but the others degrade gradually.

7. Discussion
This section discusses implications of our work.

7.1 Managed Language Incentives
Managed languages offer a layer of memory abstraction, which
this paper exploits to attain fault tolerance transparently and which
native languages lack. Our work thus creates an incentive to use
managed languages for future memory technologies. Native appli-
cations will need to rely on the operating system to shield them
from dynamic failures, losing an entire PCM page when the first
line on the page has failed. Modifying a free-list allocator to handle

static failures is possible. However, it is more complex than the so-
lution offered by Immix. Without clustering, it would be even more
complex. An additional consideration for native runtimes is that be-
cause C applications are unsafe they may generate illegal reads and
writes to failed memory, which the OS will need to handle. Without
support for pages with failures in a native runtime, native applica-
tions will have access to fewer and fewer pages as memory fails,
making managed applications more attractive for PCM memory.

7.2 Wear Leveling Considered Harmful
Wear leveling strives to uniformly spread writes and wear all mem-
ory equally. However, the result is that failures end up being evenly
spread out through memory, causing memory fragmentation. Our
results show that clustering mitigates fragmentation, but only to a
certain extent. We argue that evenly wearing memory is not the best
wear management strategy because of the fragmentation it causes.
Concentrating writes into certain regions of memory may reduce
total system fragmentation and the effect of failures. We intend to
investigate smarter wear management strategies in future work.

7.3 Balanced Hardware Clustering
Our results show that managed runtimes experience performance
improvements with multiple-page regions because this keeps en-
tire working pages available longer, making allocating medium
and large objects less challenging. Native applications need entire
working pages, so we expect them to benefit from this as well.

It may seem beneficial to use larger regions. Although initially a
higher number of pages are logically intact (e.g., three in four-page
region), these cases quickly degenerate to the two-page case. When
failures reach roughly 25%, two of the four pages will be necessary
to remap all failures in the region. Moreover, large regions may
create additional complexity such as failure map cache pressure.

7.4 Possible Mitigation of Memory Fabrication Issues
As DRAM cells get smaller and closer to the atomic scale, pre-
cise manufacturing of these memory cells gets more challenging
and fabrication variation causes cells to have wide ranges of sizes
and electron-storage capacities. Manufacturing issues may cause
certain cells to be ‘born dead’, i.e., not capable of holding any
charge after fabrication. Similar issues may afflict other memory
technologies. DRAM manufacturers today have on-chip provisions
to replace a small number of failed cells before memory parts are
shipped, but scaling this solution to a higher number of failures
while keeping overheads low may be very challenging. This issue
may cause low yields, i.e., only being able to ship the small por-
tion of fabricated chips that have low number of failures, which
increases costs and disrupts the memory industry business model.
Our solution makes memory chips with arbitrary numbers of fail-
ures useful, without incurring high area or cost overhead. Instead of
throwing the chips with high failures rates away, manufacturers can
‘bin’ them into classes. For example, the higher the number of fail-
ures, the cheaper the memory. This process is akin what processor



manufacturers do today with chip frequency and power dissipation,
which is also caused by process variation.

8. Conclusions
This paper explores an example of Rattner’s “self-aware sys-
tems” [20], in which hardware and software cooperate to accom-
plish a shared system goal, in this case, system endurance. As
hardware resources are gradually used up and exhausted, the OS
and runtime come to the rescue to tolerate visible failures.

This work proposes a cooperative hardware/software system
with low hardware and software complexity to mitigate failures
in wearable memories. The OS and runtime coordinate to recover
data from failed lines and migrate objects affected by failures.
We use the memory abstraction provided by a managed runtime
to handle failures transparently, and exploit the Immix garbage
collector’s capacity to efficiently skip over unusable holes. Even
without hardware clustering, the runtime correctly handles failures,
but overhead is 17% with 10% failed memory and 33% with 50%
failed memory. When the hardware assists by clustering failures,
software overhead reduces quite significantly to 3.9% with 10%
failed memory and 12.4% with 50% failed memory. This paper
is the first to observe that hardware and software cooperation has
the potential to achieve substantially better failure tolerance with
increasing numbers of hardware failures.
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D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 169–190, 2006.

[6] H.-J. Boehm. Conservative GC algorithmic overview.
http://www.hpl.hp.com/personal/Hans Boehm/gc/gcdescr.html.

[7] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger, B. C.
Lee, and D. Coetzee. Better I/O through byte-addressable, persistent
memory. In Proceedings of the 22nd ACM Sumposium on Operating
Systems Principles, pages 133–146, 2009.

[8] A. Demmers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, and
S. Shenker. Combining generational and conservative garbage col-

lection: Framework and implementations. In Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 261–269, 1990.

[9] Avoiding server downtime from hardware errors in system memory
with HP Memory Quarantine. Hewlett-Packard Corporation.

[10] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: Improving program
locality. In Proceedings of the 19th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 69–80, 2004.

[11] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Mosci-
broda. Dynamically replicated memory: Building reliable systems
from nanoscale resistive memories. In Proceedings of the 15th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 3–14, 2010.

[12] ITRS Working Group. ITRS report. Technical report, International
Technology Roadmap for Semiconductors, 2011.

[13] Jikes RVM. Compiler Replay, Dec. 2011. http://jikesrvm.org/Exper-
imental+Guidelines.

[14] D. Lea. A memory allocator. http://g.oswego.edu/dl/html/malloc.html.
[15] Micron Technology Inc. PCM-based MCP. http://www.micron.com/

products/multichip-packages/pcm-based-mcp?source=mb.
[16] M. K. Qureshi. Pay-as-you-go: Low-overhead hard-error correction

for phase change memories. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, pages
318–328, 2011.

[17] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture,
pages 14–23, 2009.

[18] M. K. Qureshi, V. Srinivasan, and J. Rivers. Scalable high perfor-
mance main memory system using phase-change memory technology.
In Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, pages 24–33, 2009.

[19] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H. L. Lung, and C. Lam. Phase-
change random access memory: A scalable technology. IBM Journal
of Research and Development, 52(4.5):465–479, 2008.

[20] J. Rattner. Extreme scale computing. Keynote Speech at the 39th
International Symposium on Computer Architecture, 2012.

[21] J. B. Sartor, S. M. Blackburn, D. Frampton, M. Hirzel, and K. S.
McKinley. Z-rays: Divide arrays and conquer speed and flexibility. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Languages Design and Implementation, pages 471–482, 2010.

[22] S. Schechter, G. Loh, K. Strauss, and D. Burger. Use ECP, not ECC,
for hard failures in resistive memories. In Proceedings of the 37th
Annual International Symposium on Computer Architecture, pages
141–152, 2010.

[23] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee.
SAFER: Stuck-at-fault error recovery for memories. In Proceedings
of the 43rd Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 115–124, 2010.

[24] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S. McKin-
ley. Why nothing matters: The impact of zeroing. In Proceedings
of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 307–324,
2011.

[25] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P.
Jouppi, and M. Erez. FREE-p: Protecting non-volatile memory against
both hard and soft errors. In Proceedings of the 17th International
Symposium on High Performance Computer Architecture, pages 466–
477, 2011.

[26] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy effi-
cient main memory using phase change memory technology. In Pro-
ceedings of the 36th Annual International Symposium on Computer
Architecture, pages 14–23, 2009.


