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ABSTRACT

Streaming media applications are plagued with playback
disruptions due to client buffer underflow resulting from
fluctuations in network throughput. When some clients are
experiencing buffer underflow and disruptions, other clients
may have excess buffered data. This suggests that disrup-
tions can be reduced by the redistribution of resources to
provide higher throughput to streaming sessions with less
buffered data, that is, to sessions with greater need. This
paper proposes a scheme that achieves an effective or end-
to-end result of the above dynamic resource allocation with-
out the use of either explicit per-session resource reserva-
tion or across-session coordination. Instead, each packet is
stamped at the source with the buffer occupancy of the ses-
sion, and prioritized scheduling is performed at the resource
bottleneck to favor packets with smaller buffer occupancy.
Due to the actions of end-to-end congestion control, higher
throughput can then be maintained for streaming sessions
with less buffer. Experimental and simulation results show
that the proposed scheme can increase the mean time be-
tween playback disruptions by a factor of 4 for fixed initial
buffer time, or reduce the required initial buffer by a factor
of 2.5 for fixed probability of hitting a playback disruption.

1. INTRODUCTION

In streaming media applications, media data has to be con-
tinuously available at the client to prevent highly objection-
able disruption or stalling in playback. Due to possible fluc-
tuations in the available bandwidth for a streaming media
session, buffering is typically employed at the client to re-
duce the frequency of playback disruption. Nevertheless,
for a number of streaming media sessions sharing a bottle-
neck link, it is typical that some sessions may experience
buffer depletion, and therefore suffer playback disruption.
Perhaps surprisingly, while some streaming sessions may
be experiencing buffer depletion, other sessions operating
over the same bottleneck link may have plenty of buffered

data. This could be due to either the fluctuation of avail-
able capacity on the bottleneck link or different network
conditions experienced by streaming sessions. This striking
unbalance suggests that a reduction in playback disruption
may be achieved by explicitly or implicitly allocating more
instantaneous bandwidth resources to media sessions with
less buffered data.

The motivation for this work was to reduce the spread,
or equalize the playback buffer for streaming media sessions
sharing a bottleneck link. In such a way, the aggregate num-
ber of playback disruptions can be reduced. We refer to
this as Playback Buffer Equalization (PBE). The paper pro-
poses a scheme that achieves an effective or end-to-end re-
sult of dynamically allocating more resources to streaming
media sessions with more critical need of resources without
using explicit network reservation. This is accomplished
by exploiting the dependence of the transmission rate of
media sessions on the characteristics of the transport envi-
ronments. Specifically, our approach begins by inserting
in each packet a label corresponding to the buffer occu-
pancy of the streaming session the packet belongs to. For
resource bottlenecks that provide two or more types of de-
livery service of different grade, joint prioritization across
all streaming sessions is performed at the resource bottle-
neck using only the labels in the packets. In such a way,
streaming sessions with little playback buffer can be trans-
mitted using a higher grade service, and thereby indirectly
trigger the end-to-end congestion control mechanism to op-
erate at higher throughput at the expense of streaming ses-
sions that already have plenty of buffer. Since the transport
prioritization at the resource bottleneck is based on labels
carried in the packets, but without any other streaming or
transport session information, we call our scheme Playback-
Buffer Equalization using Stateless Transport Prioritization
(PBE-STP). Some advantages of PBE-STP are as follows.
First, no client or protocol modification - streaming clients
and protocols that are already widely deployed today can be
used directly without requiring global upgrade. Second, ex-
isting QoS mechanisms, such as the differentiated services



model (DiffServ) [1] of the Internet, can be employed since
the scheme does not require networks to possess media-
specific knowledge, or be modified in other ways. Third,
the multiple streaming sessions may be delivered from mul-
tiple streaming servers which may potentially be located in
different places, and no coordination among the streaming
servers or even the streaming sessions from a single server is
required. In addition, unlike some approaches, no frequent
setup/teardown or reconfiguration of the QoS network is re-
quired since prioritization of resources is across all media
sessions sharing the bottleneck resource.

PBE-STP may be beneficial in a number of practical
scenarios involving multiple users behind a single resource
bottleneck. One possible example is multiple cable mo-
dem users sharing the same connection to an Internet ser-
vice provider. Another example is campus networks where
many workstations are potentially sharing only a few con-
nections to the Internet.

The remainder of the paper is organized as follows. We
first survey in Section 2 related approaches to mitigate the
effects of playback disruption in streaming media applica-
tions. We then describe our proposed scheme in Section 3.
Evaluation of some possible implementations of the general
design is given in Section 4, followed by additional simu-
lation results in Section 5. Finally, a conclusion is given in
Section 6.

2. RELATED WORK

One of the major challenges of streaming media is guar-
anteeing that media data is continuously available at the
client. To this end, many advances have been made, includ-
ing those assuming only a best-effort network, and those as-
suming infrastructure support in the form of network QoS [2]
or intelligent resource management [3]. In this section, we
first summarize prior work for best-effort networks, which
are complementary with our proposed scheme and can be
used in conjunction. We then describe prior work that ex-
ploits infrastructure support and discuss their advantages
and disadvantages. Finally, we survey related works that tar-
get different problems but with some relevance to our work.

2.1. Related Work for Best-effort Networks

Client buffering: Current streaming systems, including those
from Microsoft and Real Networks, implement congestion
control whereby a streaming server 1) estimates the avail-
able bandwidth of a media streaming session based on preva-
lent network conditions, and 2) streams the media according
to the estimated available bandwidth. Since the available
bandwidth fluctuates with time, if no buffering is used then
playback disruption would occur if the instantaneous avail-
able bandwidth is lower than the media rate. To reduce the
number of playback disruptions, existing streaming clients

typically employ a buffer of 5 to 15 seconds. With such
buffering, a client can pre-fetch data that is not immediately
needed when the available bandwidth is above the media
rate, and then drains the buffer when the available band-
width is below the media rate. In such a way, playback
disruption will not occur when the available bandwidth is
temporarily below the media rate, unless the buffer is also
empty.

There have been a variety of strategies proposed to im-
prove the effectiveness of client buffering, including slow-
ing down the media playout rate at the client to reduce its
consumption rate and help prevent buffer underflow [4].

Multi-rate switching: Another complementary technique
to buffering is multi-rate switching whereby multiple copies
of the same content at different bit-rates are made avail-
able. Early implementations of streaming media systems
coded the same content at a few strategic media rates tar-
geted for common connection speeds (e.g. one for dialup
modem and one for DSL/cable) and allowed the client to
choose the appropriate media rate at the beginning of the
session. However, these early systems only allowed the me-
dia rate to be chosen once at the beginning of each session.
In contrast, multi-rate switching enables dynamic switching
between different media rates during a single streaming ses-
sion. This mid-session switching between different media
rates enables better adaptation to longer-term fluctuations in
available bandwidth than can be achieved by the use of the
client buffer alone. Examples include Intelligent Streaming
from Microsoft and SureStream from Real Networks [5].

Layered or scalable compression: A more elegant approach
to adapt to bandwidth fluctuations is to use layered or scal-
able compression. This is similar in spirit to multi-rate switch-
ing, but instead of producing multiple copies of the same
content at different bit-rate, layered compression produces
a set of (ordered) bitstreams (sometimes referred to as lay-
ers) and different subsets of these bitstreams can be selected
to represent the media at different target bit-rates [6]. Many
commonly used compression standards, such as MPEG-2,
MPEG-4 and H.263 have extensions for layered coding. Nev-
ertheless, layered or scalable approaches are typically not
used because they incur a significant compression penalty
as compared to non-layered/non-scalable approaches.

2.2. Related Work using Infrastructure Support

A typical scheme for streaming media that exploits network
QoS support by explicit reservation has the following two
characteristics. First, different streaming media sessions ne-
gotiate (and potentially re-negotiate over time) resources in-
dependently of each other. Second, resource-allocation de-
cisions are often made in an uncoordinated fashion, and are
typically based on instantaneous resource availability. Ex-
amples of such schemes are [2, 7]. Consequently, there is



no guarantee that a session in critical need of resources can
obtain them even when other sessions sharing the same re-
source bottleneck may have excess resources. Furthermore,
the complexity of such schemes is high due to frequent es-
tablishment and teardown of reservations.

A related dynamic resource allocation scheme that ex-
plicitly provides more bandwidth to streaming sessions with
less buffered data has been proposed in [3]. Instead of rely-
ing on explicit resource reservation, the scheme simply dy-
namically allocates the bottleneck resource (wireless band-
width) according to the need of each streaming session. How-
ever this approach requires matching custom-designed stream-
ing clients and custom-designed infrastructure to achieve
the desired bandwidth allocation across sessions. Specifi-
cally, each of the custom-designed clients transmits a pro-
prietary feedback to the custom-designed infrastructure for
every streaming session. The proprietary feedback contains
enough information to estimate at the infrastructure the cur-
rent session state (buffer occupancy). The custom-designed
infrastructure then keeps and maintains the states (buffer oc-
cupancy) for each session sharing the same wireless band-
width, and explicitly allocates the available bandwidth ac-
cording to the “Join the Shortest Queue” (JSQ) policy, where
the session with the least buffer (in time) will receive the
next available bandwidth resource in the form of code or
frequency/time slot depending on the actual wireless system
used. In such a way, the system allocates more resources to
streaming sessions with more critical needs for bandwidth.

The above scheme provides adaptive resource allocation
among multiple sessions, however it has a number of draw-
backs: The requirement of a proprietary client feedback
means that 1) clients need to support an additional feedback
mechanism, and 2) existing clients cannot be used. Unlike
server upgrades, client upgrades are typically difficult due
to the large number of parties involved. A custom-designed
infrastructure is required to implement the specific resource
allocation scheme, and to collect feedback from clients. As
a result, existing infrastructure cannot be substituted. The
custom-designed infrastructure has to maintain up-to-date
states for each streaming session, thereby incurring addi-
tional complexity in the overall system. This can lead to
scalability problems when supporting a large number of ses-
sions.

In [8], a scheme to share bottleneck bandwidth across
several TCP flows according to application need is proposed.
Specifically, the scheme does not require modifications to
the delivery infrastructure, but instead relies on additional
out-of-band collaboration of TCP clients to achieve the de-
sired allocation.

2.3. Other Related Work

In a DiffServ framework, the authors of [9] showed an ex-
ample where traffic prioritization is more effective when

based on “flow state” than on application types. Specifi-
cally, their goal was to improve the performance of interac-
tive TCP applications such as Telnet and Web. They propose
a scheme to give priority at the sender to low-volume inter-
active traffic by (1) assuming that TCP flows with smaller
congestion window size (i.e. TCP flow state) correspond
to the interactive TCP applications that they would like to
prioritize, and (2) giving those identified flows higher prior-
ity at the sender. This work is related to ours in the sense
that it is designed to perform traffic prioritization to improve
the performance of some session over others. However, the
proper priority can be maintained for TCP flows from a sin-
gle server only, and it is performed at that server. In contrast,
with PBE-STP the “flow state” (client buffer in seconds) is
embedded in each packet and therefore global prioritization
across all flows from multiple servers can be performed at
an intermediate resource bottleneck within the network.

Information exchange between data senders and routers
can improve end-to-end data transmission. In Explicit Con-
gestion Notification (ECN) [10], routers set the Congestion
Experienced (CE) bit in the IP packet header to inform data
senders of network congestion. In PBE-STP, the informa-
tion flows in the opposite direction from data senders to
routers.

3. PBE-STP: OVERVIEW AND DESIGN

The general framework of the proposed system is depicted
in Fig. 1, and consists of the following elements:

Media Streaming Server that implements any commonly
employed streaming media standard and congestion con-
trol algorithm. For each streaming sessions, the stream-
ing servers first derive the client buffer occupancy of each
session using existing knowledge of the start-time and the
amount of data transmitted for that session. A label repre-
senting the time-varying Time-To-Depletion for each ses-
sion is then recorded in each IP packet belonging to that
session.

QoS Network that offers at least two types of services that
differ in end-to-end packet loss rate, delay, or both. Ex-
ample includes Asynchronous Transfer Mode (ATM) net-
works, Integrated Services (IntServ) and Differentiated Ser-
vices (DiffServ) Internet.

Packet Classifier performs assignment of each packet to
the different available types of service based only on the
label contained in a packet.

Streaming Clients that are compatible with the associated
Media Streaming Server. They are not aware of the presence
and actions of the packet classifier above.

In Fig. 1, a number of streaming servers, A to K, are
streaming to clients, 1 to N , through the same resource
bottleneck in a QoS Network. Packets are marked with
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Fig. 1. Architecture of the proposed scheme. The network
and streaming clients, which do not require modifications,
are shown shaded.

labels corresponding to the time-to-depletion of their re-
spective session at the servers. The packet classifier then
classifies each packet into one of the M available service
classes based only on the packet’s label. Specifically, pack-
ets with labels corresponding to a smaller time-to-depletion
are preferentially given better service. Transmitting packets
of a session using a better service has a number of effects.
First, the direct effect is that the packets themselves will be
delivered faster, or dropped with a lower probability. Sec-
ond, an important but indirect effect is that sessions whose
packets are transmitted using a better service will effectively
observe a “better” channel, and by virtue of their conges-
tion control, boost their transmission rates, as illustrated
by Fig. 2. Despite the fact that congestion control mech-
anisms in the streaming servers and clients are not aware
of the existence of the proposed techniques, the preferential
assignment of a better service to sessions with less client
buffer will trigger higher transmission rates to sessions with
greater need. Note that since the assignment of labels to
the M network services is performed locally at the resource
bottleneck, global optimization for all streams across differ-
ent servers can be achieved.
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Streaming
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Core Network
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PBE-STP

Fig. 2. PBE-STP exploits behaviour of congestion control
mechanisms to achieve preferential allocation of resources.

Typical congestion control mechanisms rely on end-to-
end measurable quantities such as round-trip propagation
delay and packet loss statistic to infer the level of conges-
tion in the transmission path. When the congestion level is

high, the typical action is to lower the transmission rate so
that through the collective actions of all sessions, the level
of congestion can be controlled. Generally, higher end-to-
end propagation delay and higher packet loss rates are as-
sociated with higher levels of congestion. For instance, it
is well known that for TCP flows, the goodput (G), or the
rate at which data can be reliably transmitted, is related to
the round-trip propagation delay RTT , the packet loss rate
p, and the maximum transmittable unit size MTU , roughly
by [11]:

G =
1:22 �MTU

RTT � pp (1)

Despite the popularity of TCP-friendly congestion con-
trol for streaming media, which explicitly attempts to trans-
mit at the same average rate as TCP, the actual congestion
control mechanisms employed by streaming media systems
may be different. Nevertheless, the general action is still to
transmit at a lower rate with increasing round-trip time or
packet loss rate, and vice versa. As a result, the proposed
method can be applied to general congestion control mech-
anisms as well.

For the purpose of this paper, we focus on video sessions
that are conducted using TCP only. This allows us to focus
on the key issues, without becoming entangled in all the
variations of TCP-friendly congestion control. Also note
that TCP is the protocol commonly employed for HTTP
streaming.

4. PBE-STP: EVALUATING THREE
IMPLEMENTATIONS

In this section, we describe evaluation results of three spe-
cific implementations of PBE-STP using a physical network
test-bed depicted in Fig. 3. Specifically, we consider the
scenario where 9 flows of constant bit-rate 1.2 Mbps and
duration 300 seconds are streamed from the servers in Fig. 3
to clients in the receiver machine through a 10 Mbps bot-
tleneck at nodeR. Six of the flows start at time 0 and the re-
maining three flows start at times 60, 120, and 180 seconds,
respectively. A 3-bit label representing the time-varying
Time-To-Depletion for each session is then recorded in the
Type-Of-Service (TOS) field of each IP packet belonging to
that session. Time-To-Depletion for a streaming session is
the time for which media playback can be sustained using
only data that has already been buffered (playback buffer
occupancy). The meaning of the label is given in Fig. 4.
The bottleneck node R is a Linux machine that implements
various traffic differentiation schemes to be described next.

4.1. Baseline: First-In-First-Out

As a baseline for comparison, we describe the results for the
scenario described above when the Linux boxR implements
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Fig. 4. Mapping between client playback buffer occupancy
and the 3-bit label carried in the TOS field of IP header.

simple first-in-first-out (FIFO) forwarding. The top graph
of Fig. 5 shows the amount of data received by the differ-
ent streaming sessions in a typical run of the scenario. The
amount of data is reported in seconds, and is the ratio of the
amount of received data in bits to the bit-rate of the media.
Media playback starts five-seconds after streaming starts
(i.e. 5 sec pre-roll buffer), and the dotted lines show for
each stream the amount of data that needs to be consumed
as a function of time to maintain the streaming session with
no playback disruption. In other words, playback disruption
occurs when the solid line crosses the corresponding dotted
line, as indicated by the red triangular markers in Fig. 5. Af-
ter a playback disruption, a client would pause and rebuffer
for 5 seconds before resuming playback. The difference be-
tween the solid and the dotted lines of a streaming session
is the client buffer occupancy, which is shown in the lower
plot of Fig. 5. We see that there is generally a very large
spread in the amount of client buffer across sessions that
start at different times. Between time 0 to 60 seconds, there
are only 6 sessions sharing the bottleneck link, and all ses-
sions are building up their client buffer. At about time 150
seconds, there are 8 flows sharing the bottleneck link, and
none is gaining in buffer occupancy. Finally, when the last
session starts at time 180 seconds, the throughput that each
of the flows receives is lower than the media rate, and they
are all draining their client buffers. The last stream, with
the least buffer build-up from uncongested times, is the first
to experience playback disruption, followed by the second
to last stream. Furthermore, we note that the last two ses-
sions are experiencing playback disruptions at a time when
the other sessions have ample amounts of buffered data at
the clients. The goal of PBE-STP is to exploit such spread
to provide higher throughput to sessions with less buffer at
the expense of sessions with more buffer.
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Fig. 5. Example illustrating the situation under conven-
tional FIFO. Media sessions that start later (when band-
width is constrainted) have much less client buffer built
up as compared to media sessions that start earlier (when
bandwidth is available), and therefore are afflicted by nu-
merous playback disruptions.

4.2. Strict Priority Queues

One possible scheme for prioritizing traffic flows with dif-
ferent labels is to use simple priority queues, where the
number of queue equals the number of label. In such a way,
it is guaranteed that packets with labels of higher priority
are always delivered first. We employed a Linux routing
daemon implementing an 8-class priority queue at node R
of Fig. 3. Specifically, the routing daemon examines the
3-bit label in the TOS field of the IP header without consid-
ering per-flow information, and simply assigns the packet to
one of the eight queues corresponding to the eight possible
labels. The results of a typical run using priority queues are
given in Fig. 6. Comparing the bottom plots of Figs. 5 and 6,
we notice that using priority queues, PBE-STP is effective
in bringing the client buffer occupancy of new sessions to
a similar level as the other existing sessions in a short time.
Specifically, under priority queue, when new sessions start
at times 60, 120 and 180 seconds, they receive large instan-
taneous throughput to boost their client buffer occupancy,
as shown by the steep slopes in the bottom plot of Fig. 6.
In contrast, under FIFO later sessions never attain the same
client buffer occupancy as earlier sessions.

We observe that playback disruptions are still present
under PBE-STP with strict priority queues. But unlike the
FIFO case, disruptions do not concentrate in later sessions,
but can appear in any session regardless of starting time.
Such disruptions are typically preceded by long periods of
zero throughput as indicated by horizontally flat lines in the
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Fig. 6. Using priority queues, PBE-STP allows sessions
starting at different times to achieve roughly the same
client buffer occupancy. Nevertheless, long periods of zero
throughput are observed.

upper plot of Fig. 6. Such complete loss of throughput for
extended periods is due to a combination of TCP behav-
ior and starvation caused by priority queuing. Specifically,
a session with low priority may temporarily receive zero
throughput due to preemption by higher priority traffic. This
in effect may trigger the exponential back-off algorithm of
TCP [12] which causes a TCP source to suspend transmis-
sion up to 64 seconds even when resources may become
available before then. For instance, in the top plot of Fig. 6,
the last playback disruption at around time 250 seconds is
preceded by a 64-second period of zero throughput.

4.3. Premium + Best Effort Services

To avoid triggering TCP exponential back-off and starva-
tion in general, one general approach is to limit the amount
of high-priority traffic. In this section, we consider the prac-
tical setting of having two types of traffic, premium or high
priority traffic that has restricted throughput, and best-effort
or low priority traffic. In the context of Fig. 3, we employed
a routing daemon implementing a two class priority queue
at R where the throughput of the high priority queue is re-
stricted to ��. Without distinguishing packets from differ-
ent sessions, the routing daemon simply looks up the label,
b, in the TOS field of each packet, and compares it to a
classification threshold, T . If b � T , the packet will be de-
livered using the Premium service. Otherwise, the packet
will be delivered using the Best-Effort service. For each of
the eight labels b, we maintain the running average of traf-
fic load �b for that label using the rate estimation technique
in [13]. The classification threshold T is then adjusted so

that the aggregate high priority traffic will not exceed ��:

T = max

�
L

????
LX
b=0

�b � ��
�

(2)

Note that the Packet Classifier does not need to keep states
for each media session, but only aggregate statistics across
all sessions, such as the average traffic rate for each label,
and the classification threshold.
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Fig. 7. Using a maximum of 30% premium traffic, PBE-STP
reduces playback disruptions, but maintains large spread in
the amount of client buffer occupancy.

The corresponding results for �� of 3 Mbps are shown
in Fig. 7. We observe two improvements from FIFO and
priority queuing. First, no playback disruption is observed.
Second, extended periods of zero throughput observed in
Section 4.2 are not present. Nevertheless, there is generally
a rather large spread in the level of client buffer occupancy
across the different sessions. The dashed line in the bottom
plot of Fig. 7 indicates the classification threshold at dif-
ferent times. When a new stream starts, it is classified as
premium due to its low client buffer occupancy. As a re-
sult high instantaneous throughput is achieved which even-
tually lead to a buffer occupancy level above the classifi-
cation threshold. Nevertheless, in steady-state operation,
apart from the short times when new flows are injected, all
sessions are classified as best-effort, and the system effec-
tively behaves as FIFO. This is because we quantized the
buffer occupancy according to Fig. 4. When the lowest la-
bel with significant amount of traffic has a rate above our
target high priority traffic rate, �� or 3 Mbps, the rule ac-
cording to Equation 2 is to not transmit high priority traffic.
Despite the fact that the PBE-STP is behaving as FIFO most
of the time, the ability to provide an initial build-up of buffer
for new flows effectively reduces playback disruption.



Generally, it would be desirable to assign packets to “fill
the high priority pipe”. However, the simple determinis-
tic classification rule given in Equation 2 may fail to fully
utilize the amount of high priority traffic that is available,
��. One possible implementation to increase utilization is
to randomly assign packets with label T to “fill the pipe”,
i.e., until the amount of high priority traffic meets �� [9].
It turns out that such an implementation may lead to lower
overall throughput. This is because traffic for TCP flows
with label T will be transmitted in both the low and high pri-
ority classes, resulting in large random jitter that decreases
TCP throughput. Specifically, a TCP flow that consistently
receives better QoS can sustain a higher throughput, how-
ever the same statement may not be true if only a portion
of a flow experiences better QoS. This motivates our use of
Equation 2 which guarantees consistency in packet classifi-
cation when the threshold is constant.

4.4. Hybrid Priority Queues

The two-class priority queue in Section 4.3 enjoys only lim-
ited success. The primary drawbacks include the overhead
to estimate traffic load corresponding to different labels, and
more importantly, the steady-state FIFO behavior discussed
in Section 4.2. Another approach to prevent starvation is to
employ hybrid priority queues that switch between round-
robin and priority queues in a periodic fashion. Specifically
in the context of Fig. 3, we consider a hybrid queuing dis-
cipline in node R that maintains 8 queues corresponding
to the 8 possible labels. Packets are served according to
two alternating rules so that everyK packets served accord-
ing to priority queuing are followed by one packet served
according to round-robin. The corresponding results for
K = 15 are shown in Fig. 8. Compared to approaches
in Sections 4.1 to 4.3, there is generally less playback dis-
ruptions, and the spread in client buffer occupancy is much
smaller. The remaining client buffer spread in the bottom
plot of Fig. 8 is due to the quantization effect of label as-
signment according to Fig. 4, where packets for flows with
16 to 32 seconds of client buffer are assigned an identical
label.

5. QUANTITATIVE RESULTS

In this section, we quantify the performance improvement
of PBE-STP over FIFO queuing. Since the effectiveness of
TCP feedback control scheme depends strongly on propaga-
tion delay, we are interested in comparing PBE-STP against
FIFO under different amounts of propagation delay in addi-
tion to different levels of network load. The hybrid queue
implementation of PBE-STP in Section 4.4 is employed. In
order to gain precise control of propagation delay, results in
this section are generated using the discrete-event network
simulator ns-2 [14].
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Fig. 8. Using hybrid priority queue, PBE-STP achieves
small spread in client buffer occupancy as well as few over-
all number of playback disruptions.

5.1. Simulation Setup
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Fig. 9. Simulation topologies. Unless otherwise indicated,
links are 100 Mbps and with negligible delay.

The network topologies in Fig. 9 are used for simula-
tions in this section. Media traffic originating from vari-
ous nodes with initial designation of S is streamed via TCP
through a common resource bottleneck B to clients in node
C. PBE-STP is implemented at node B. For media traf-
fic, we assume Poisson arrival of intensity � new sessions
per second. For each new session, we choose a constant
media bit-rate from 100, 300, and 500 kbps uniformly at
random. The media duration is drawn uniformly accord-
ing to an empirical distribution obtained from actual media
access logs of over 1.2 million accesses from HP Media So-
lutions. By varying the arrival intensity �, we can achieve
different levels of Loading Factor, which is the average ag-
gregate streaming rate to the bottleneck bandwidth. Note
that loading factor is an average quantity, so that short time-
scale congestion may still occur at loading factors below 1,
and vice versa.

Since it may take a long time for the media traffic to
build up and reach “steady state”, we introduce a batch of



media traffic starting at time 0 to model the effect of me-
dia flows that started at negative times. Note that the initial
traffic will have a bit-rate distribution identical to that of the
regular media traffic. Assuming independence, the expected
number of initial streaming sessions N can be calculated as
the product of the average duration d and the arrival rate �
of the regular media traffic. Given the PDF of the duration
of regular media flow f (given by the empirical distribution
discussed above), it can be shown that the PDF for the du-
ration distribution of the initial media flows, fi, is given by:

fi(x) =

Z
1

x

1

y
f(y)dy

All traffic is media traffic carried by TCP and no unre-
sponsive UDP flows are employed for two reasons. First,
the presence of unresponsive flows unduly complicates fair
comparison between FIFO and PBE-STP, since any differ-
ence in quality of service received by unresponsive flows
under the two schemes has to be accounted for. Second, the
empirical distribution of media access duration discussed
above has long tail with concentration of very short accesses.
As a result, the generated traffic naturally contains both short
and long time-scale fluctuation in load.

The streaming clients implement a five second initial
buffer (pre-roll buffer) so that playback will start after a five
second delay at startup. Also, each time a playback disrup-
tion occurs another five second delay for re-buffering will
take place.

5.2. Simulation Results

The following two metrics are used to quantify the perfor-
mance advantage of PBE-STP over FIFO forwarding:

Disruption Frequency: the number of playback disrup-
tions a media session is expected to experience per second
of media playback. For each experiment, we denote the
number of playback disruptions and the duration for flow
i by ni and di, respectively. We approximate the disruption
frequency, F , by:

F =

P
i
niP

i
di

Required Initial Buffer-time (RIB): the amount of initial
buffer time that would allow 95% of flows to finish with-
out encountering any playback disruption. At a given load,
this measure signifies the proper amount of initial buffer
time, and thus wait-time, that should be used to achieve
95% flows without disruption, had we known the network
condition beforehand. For flow i, we denote by r k

i
the time

when frame k is received, and by pk
i

the time when frame k
is needed for playback. Then the initial buffer time b i that
is required for flow i to avoid playback disruption can be

calculated as follows.

bi = max
k

f(rk
i
� pk

i
)+g

where
(rki � pki )

+ = maxfrki � pki ; 0g
The Required Initial Buffer-time is then calculated as the 95
percentile of bi.

For each test condition, two tests are performed where
the exact same media traffic is used to guarantee fair com-
parison between PBE-STP and FIFO. This means that the
set of starting times, durations, and bit-rates for all the me-
dia flows are identical for corresponding PBE-STP and FIFO
experiments. All simulations are performed for one hour of
simulated time.

5.2.1. Different Network Load

Using the topology of Fig. 9-(a) with a bottleneck link de-
lay Æ of 10 ms, and with sources randomly placed at nodes
S and S 0, we performed 66 independent simulations of one
hour simulated time each, at different loading factors be-
tween 0.92 and 1.06. For each of the 66 simulations, each
consisting of hundreds of media streams, a single disruption
frequency and required initial buffer time (RIB) are reported
to summarize the service quality at that particular loading
factor. The results are given in Fig. 10. We make two ob-
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Fig. 10. PBE-STP achieves significantly lower Disrup-
tion Frequency and Required Initial Buffer-time (RIB) than
FIFO at loading levels less than unity.

servations. First, at loading factors below unity, PBE-STP
out-performs FIFO on almost every case using identical me-
dia traffic. Specifically, the average disruption frequency at
loading factors below one is 0.0072 and 0.0016 for FIFO
and PBE-STP, respectively. This means the expected time



between playback disruptions is about 1=0:0072 or 139 sec-
onds for FIFO and 625 seconds for PBE-STP – a 4:5 times
improvement. Similarly, at the same range of loading fac-
tor, the average RIB for FIFO and PBE-STP are 79 and 28.5
seconds, respectively – a 2.8 times improvement. Second,
at loading factor above unity, PBE-STP still outperforms
FIFO on average, but the performance improvement dimin-
ishes and there are more experiments in which FIFO per-
forms better. Specifically, only an average improvement of
33% and 16% are observed for disruption frequency and
RIB, respectively. For loading factors above unity, it is ex-
pected that PBE-STP will provide small performance im-
provements over FIFO, since PBE-STP can neither create
resources nor reduce demand. Instead, it realizes intelli-
gent resource management to provide more throughput to
streams with higher need at the expense of streams with less
need. At the highly loaded regime, very few streams can af-
ford to receive reduced throughput, and the effectiveness of
PBE-STP diminishes.

5.2.2. Different Network Delay

Since the effectiveness of TCP to effect changes in transmis-
sion rate decreases with increasing delay, it is expected that
the performance of PBE-STP would as well. To compare
the performance of PBE-STP with FIFO at different net-
work delays, we repeat the simulation experiments in Sec-
tion 5.2.1 with different values of network delay. Specif-
ically, for the topology in Fig. 9-(a), experiments are per-
formed for Æ of 5, 10, 20, 40, 80, 160, 320 and 640 ms. The
results are summarized in Fig. 11. We see that generally
the disruption frequency increases for both PBE-STP and
FIFO as propagation delay Æ increases. Specifically, when
Æ is increased from 5 to 640 ms, the disruption frequencies
for both PBE-STP and FIFO increase roughly twenty times.
Nevertheless, PBE-STP constantly maintains significantly
lower disruption frequency. In Fig. 12, we plot the ratio of
the average disruption frequency for PBE-STP and FIFO,
as a function of different values of delay Æ. Separate ratios
are reported for loading factors above and below unity. We
see that despite the absolute performance degradation asso-
ciated with increasing feedback latency, the relative perfor-
mance improvement in disruption frequency stays relatively
constant.

5.2.3. Streams with Mixed Delay

We next compare the behavior of PBE-STP against FIFO
when multiple streaming sessions with different end-to-end
network delay are sharing a common resource bottleneck.
Specifically, we use the topology of Fig. 9-(b), where media
traffic is being generated independently at source nodes S 1

to S4. The average amount of traffic from the 4 source nodes
is the same, and different loading factors can be achieved by
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Fig. 11. Disruption Frequency for FIFO and PBE-STP for
different one-way propagation delays.
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Fig. 12. Relative performance improvement of PBE-STP
over FIFO, as a function of one-way propagation delay.

increasing the arrival intensity of new flows �, as described
in Section 5.1. As before, 66 simulations of one hour dura-
tion each are performed at different loading factors between
0.92 and 1.08. For each loading factor, 4 average numbers
of disruption frequency are reported, one for each source
node S1 to S4. The results are shown in Fig. 13. We see
that under FIFO, streaming sessions that originate from the
distant node S4 consistently receive poor service. Even at
lower loading factors near 0.92, streams from S4 experience
a disruption frequency of 0.05, or roughly a playback dis-
ruption every 20 seconds. This is due to the dependency
of TCP throughput on round-trip time given by Equation 1,
which indirectly assigns higher throughput to streaming ses-
sions with low round-trip-time at the expense of sessions
with higher round-trip-time. Such throughput assignment
without regard to application needs causes streams from
S4 to suffer playback disruptions even when many streams
from S1 have plenty of buffered data at the playback client.
In contrast, under PBE-STP, the effective or resulting allo-
cation of bottleneck throughput is dependent on application
need. As a result, at loading factors below unity, playback
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Fig. 13. Disruption frequencies for streams with different
end-to-end delays.

disruptions are greatly suppressed (as compared to FIFO).
At loading factors above unity, PBE-STP maintains roughly
uniform service for streams from different source nodes.
With FIFO, on the other hand, streams from S1 continue
to enjoy better service at the expense of streams from S3
and S4, even when the loading factor exceeds unity.

6. SUMMARY

This paper proposes a system that enables multiple stream-
ing sessions sharing a common resource bottleneck to dy-
namically receive different amounts of resources based on
their respective application needs, where we define the need
of each client as the time to buffer underflow and playback
disruption. Specifically, each packet of a streaming me-
dia session is labeled at the sender with the buffer occu-
pancy of the client, and prioritized scheduling is performed
at the resource bottleneck to preferentially transmit packets
of sessions with smaller buffer occupancy. This approach
provides a method of classifying packets from all stream-
ing sessions in a stateless manner into one of the service
classes to effect the desired dynamic resource allocation,
and specifically without requiring either explicit per-session
resource reservation or across-session (e.g. across multiple
senders) coordination. Using this approach, sessions with
lower client buffer occupancy receive higher throughput and
thereby significantly reduce the number of playback disrup-
tions. Specifically, our experimental results indicate that,
as compared to conventional FIFO, our proposed approach
increases the mean time between playback disruptions by a
factor of 4 for fixed initial buffer time, or reduces the re-
quired initial buffer time by a factor of 2.5 for fixed proba-
bility of hitting a playback disruption.
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