Using Dynamic Mediation to Integrate COTS
Entities in a Ubiquitous Computing Environment

Emre Kiciman and Armando Fox

Stanford University
{emrek,fox}@cs.stanford.edu

Abstract. The original vision of ubiquitous computing [14] is about en-
abling people to more easily accomplish tasks through the seamless in-
terworking of the physical environment and a computing infrastructure.
A major challenge to the practical realization of this vision involves the
integration of commercial-off-the-shelf (COTS) hardware and software
components: consider the awkwardness of such a mundane task as ex-
porting a textual memo written on a Palm Pilot to a Microsoft Word
document. It is not enough to overcome the protocol and data format
mismatches that currently impede the interoperation of these entities: for
the user experience to be truly seamless, we must provide a framework
for the dynamic connection of such endpoints on demand, to support the
ad-hoc interactions that are an integral part of ubiquitous computing. To
this end, we offer a dynamic mediation framework called Paths. A Path
consists of dynamically instantiated, automatically composable opera-
tors that bridge datatype and protocol mismatches between components
wishing to communicate. Because operator composability is inferred from
the type system, adding support for a new type of endpoint requires only
incremental work; because the control and data flow for Paths are largely
decoupled from the communicating endpoints, it is easy to connect COTS
or legacy components. We describe the Paths architecture, our prototype
implementation, and our experience and lessons based on several produc-
tion applications built with the framework, and outline some continuing
work on Paths in the context of the Stanford Interactive Workspaces
project.

Keywords: Ubiquitous Computing, Automatic Mediation, Service Composi-
tion, Ad-hoc Applications, Software Infrastructure

1 Introduction

Ubiquitous computing is about enabling people to more easily accomplish tasks
through the seamless interworking of the physical environment and a computing
infrastructure [14]. This “seamless interworking” implies some level of coopera-
tion among the various devices and software in the environment.

©Springer-Verlag 2000

Today, however, most of these devices and software cannot cooperate with
each other, simply because they cannot communicate with each other. This stems
from a variety of technical causes, but the fundamental cause is that these devices
and software simply were not designed to communicate with each other. The
devices and software were built at different times, for different purposes, and have
different capabilities. These problems are especially pronounced when trying to
integrate commercial-off-the-shelf (COTS) components and legacy systems into
a ubiquitous computing system.

We have two goals: first, to provide a system for connecting heterogeneous,
COTS and legacy devices and software, and second, to allow new devices and
software to be integrated into the system easily. Our approach is to step away
from the tightly-coupled model of direct communication and instead enable
loosely-coupled communication through a third party. In this model, two end-
points communicate through a mediating infrastructure rather than communi-
cating with each other directly. This infrastructure automatically discovers and
places relevant mediators between the two endpoints to compensate for commu-
nication mismatches. A loosely-coupled model of communication enables com-
munication between devices and software that were not originally designed to
communicate with each other.

1.1 For Example ...

An interactive workspace is an emerging type of ubiquitous-computing environ-
ment. Such a space typically contains a number of highly heterogenous, multi-
modal I/O devices: large screen displays, smart whiteboards, projectors, speak-
ers, microphones, wireless pointing devices, etc. In addition, participants in a
meeting or other collaborative activity in such a space bring with them a variety
of personal devices: PDA’s, laptops, cellphones, active badges, etc.

Consider a meeting held in an interactive workspace. As the meeting begins,
the meeting organizer displays an agenda (stored on his own laptop) on one of
the large screens. During this meeting, the attendees discuss various important
points and make decisions, sharing information to clarify and elucidate their
respective points of view.

A few attendees have prepared notes and information to share. This infor-
mation might be in the form of text, graphics or visualizations, spreadsheet
data, etc. They pass out electronic copies to the other attendees, who view the
information with whatever devices and software they have at hand. Other at-
tendees share unprepared, impromptu data. During discussions, they find or are
reminded of relevant documents or elucidating information. Some attendees cre-
ate documents during the meeting itself. They author these documents using
whatever device/software at hand is most appropriate; perhaps a smart white-
board, perhaps a plain piece of paper (using a scanner to import it into the
digital environment).

Looking at this scenario, we see it requires two properties of ubiquitous com-
puting environments:

— Support for Heterogeneous Entities: A ubiquitous computing environment
has to support a wide variety of devices, from smart whiteboards to active
badges. The environment also has to support not just “permanent” devices,
but PDAs and other personal equipment that people bring with them. Ad-
ditionally, when these entities are legacy or COTS products, or simply not
under the environment’s administrative control, they cannot be adapted to
the environment. The environment must adapt itself to the entity.

— Ad-Hoc Communication Between Entities: None of the devices in this sce-
nario were useful individually. Their purpose was to create and disseminate
information. They had to communicate with each other to be useful. Though
this scenario explicitly required communication between the entities in the
system, the principle holds true in ubiquitous computing systems in general:
“No computer is an island” [5].

The difficulty with supporting ad-hoc, any-to-any communication in this environ-
ment is the communication mismatches between the heterogeneous entities. Any
two entities are likely to speak different communication protocols, understand
different data formats, and have different user interaction models. Compensating
for all of these differences using existing techniques is not feasible.

1.2 Existing Approaches for Communication

Ockerbloom has contributed a very useful analysis of the problem of converting
data among various formats [6]. Some of the approaches being used today to
mitigate this problem are:

— Standards: one common approach to solving the problem of incompatibility
is to create standard protocols, data formats and behaviors for interacting
entities. Though standards are useful, we argue that it is infeasible in ubig-
uitous computing, where potentially all devices and software must be able
to cooperate/interoperate. Additionally, standards alone cannot address the
problem of nonstandard legacy systems.

— Content Negotiation: a more flexible approach is to add a content-negotiation
phase to the communications protocol. However, content negotiation pre-
supposes widely-adopted standards for both data formats and negotiation
protocols, and also places a burden on devices to understand multiple sorts
of data (not always the case with small devices).

— Polyglot Entities: today, many entities are built understanding multiple
datatypes and protocols. These entities can communicate with a larger num-
ber of other devices and software, but are still fundamentally limited in their
ability to communicate with unknown systems.

— Least Common Denominator Data Formats: using a least-common-denominator
datatype and protocol, such as ASCII or HTML over HTTP, often causes
a loss of important information that can not be represented in this simple
form.

None of these existing solutions satisfactorily addresses the problem of legacy
devices and software, or of incompatible COTS products. Nor do they allow

arbitrary ad-hoc communication between two devices: both devices must have
been built a priori speaking the same protocols.

2 Paths: A Mediation Infrastructure

To address these problems, we have designed and implemented a prototype me-
diation infrastructure as a part of Paths, a general framework for composing me-
diators distributed across a network of machines. Using this prototype, we have
implemented several applications to support improved integration of devices and
software, including legacy and COTS entities, in a ubiquitous computing envi-
ronment.

The mediation infrastructure consists of a set of mediators that transform
data, a set of representatives that speak the native protocols of endpoints, and
a coordinator that discovers and initializes paths of mediators to connect end-
points. Mediators can be added to the infrastructure dynamically, simply by
announcing their existence to the coordinator. Representatives can be added to
the infrastructure in a similar fashion.

Mediation
Infrastructure

Coordinator

Mediators

A’s Rep_) B’s Repf
}

Fig. 1. The Mediation Infrastructure

Communication through a mediating infrastructure avoids the problems asso-
ciated with existing approaches detailed in Sect. 1.2. There are two prerequisites
for entities to communicate through this infrastructure:

— There must exist representatives in the infrastructure capable of commu-
nicating directly with each of the endpoints. This representative speaks an
endpoint’s native communications protocol, and forwards data between the
endpoint and any mediators.

— There must exist some series of mediators in the infrastructure, which to-
gether can transform data from its source format to the format required by
the destination. These mediators bridge the data format mismatches between
two entities.

Both of these prerequisites are requirements placed on the infrastructure and
not on the communication endpoints. This means that after adding the relevant
representatives and mediators to the infrastructure, it is possible for existing
devices and software to communicate with each other. This system requires no
modification of the endpoints, and enables a third party to “wrap” them into a
ubiquitous computing environment.

In addition, the mediation infrastructure also makes it possible to integrate
new devices into the environment with only incremental work. Instead of needing
a bridge between every existing device and the new device, we only need a bridge
between some data format already understood in the mediation infrastructure
and the new device. Once we have done this, existing mediators will be able to
handle converting this data to formats understood by existing devices.

2.1 Mediators

Mediators are infrastructure services that transform data from one datatype to
another. They generally have a single input and a single output. Datatype de-
scriptions are associated with both their input and output. The fundamental
semantics of their functionality are completely described by the strongly-typed
interfaces of their inputs and outputs. These mediators may be full-fledged au-
tonomous services, or small pieces of mobile code instantiated on demand.

We can connect two mediators together, running them in sequence, if the
datatype of one mediator’s output matches the datatype of the second mediator’s
input. By composing mediators one after the other (into a path) we can create
more complex transformations. For example, we can chain a mediator which
transforms text into a GIF file with a mediator which transforms a GIF file into
a JPEG file. These mediator compositions are responsible for bridging the data
format mismatches between entities.

2.2 Representatives

Representatives are gateway services between the mediation infrastructure and
endpoints. They speak an endpoint’s native protocol and data format, and for-
ward that communication into the mediation infrastructure. There is a single
representative for each kind of endpoint. As a special case, it is possible for
a device to be its own representative in the mediation infrastructure. In our
architecture, representatives are responsible for bridging protocol mismatches.

Representatives can either initiate communications with an endpoint, accept
communication requests from endpoints, or both. When communicating with its
representative, an endpoint does not need to have knowledge of the mediation
infrastructure, or of the identity of the other end of the communication. For
example, a “dumb” device such as a microphone can send an audio stream to
a text editor without knowing what happens to the stream after it leaves the
microphone. This is the property that enables us to fully integrate legacy devices
and COTS products into a ubiquitous computing environment.

2.3 Setting up Communication and Mediation

There are two phases to setting up a Path: determining which two endpoints
to connect and determining a sequence of available mediators that bridges the
mismatches between the endpoints.

Choosing the Endpoints One general issue of communications in a ubiqui-
tous computing environment is “who talks to whom?” That is, which endpoints
should be connected together? Our mediating infrastructure does not make this
decision itself, nor does it dictate which entity makes this decision. Therefore, we
have adopted a flexible control model: a separate controller entity decides which
endpoints in the environment should communicate with each other, and notifies
the appropriate representatives and the coordinator to establish the communi-
cation (as a special case, the controller may be the end-points or their represen-
tatives). This decision is made in some out-of-band manner, such as in response
to a request by a person, or some set of conditions in the environment. For
example, the communications between various applications and displays in an
interactive workspace could be controlled using a separate user interface, rather
than through the applications or displays themselves.

Automatic Composition of Mediators Usually no single mediator provides
the exact transformation required to connect two endpoints. In this situation, we
must compose multiple mediators in sequence to provide the transformation. In
the general case, a human must decide how to compose this mediation. However,
when the requirements the endpoints have on their inputs and outputs are com-
pletely described in terms of their datatypes, we can automate the composition
process. By simply finding a path of mediators that transform from data of the
type produced by the source to that required by the destination, we will have
bridged the datatype mismatch between the endpoints.

The process of finding a path of mediators can be conceptualized as a graph
search. The vertices of the graph are the datatypes. Mediators are the edges
connecting the datatypes they transform between. Automatic composition of
mediators is thus reduced to finding a least-cost path between two vertices in a
graph.l.

The effectiveness of automatic composition depends in turn on how effective
the type system is at describing the assumptions endpoints make on the data
they receive. We discuss some of the work we have done to extend traditional
type systems to better support automatic composition in Sect. 5.2.

3 Paths Prototype

We have implemented this mediation infrastructure as part of Paths, a general
composition framework for autonomous services in a network of machines.

A Path is a pipe/filter stream through a graph of operators and connectors.
Operators perform computations on data. Connectors transport data between

! Unfortunately, the implementation of automatic composition is more complicated,
due to the existence of parametric types and polymorphic operators.

machines. Operators and connectors interface with one another via queues. Data
packets are packaged in the form of Application Data Units (ADUs). An ADU
is the smallest unit of data independently processable by an operator [1].

Advantages of using stream-based computing, instead of an RPC interface,
include the ability to support unbounded data, such as real-time audio and
video, and the potential to provide progressive and incremental computation on
large datasets [13]. For example, lengthy speech recognition processes can begin
executing before the audio stream has finished.

We use XML-based description languages to describe datatypes, operators,
connectors, and paths. The Paths prototype is written in Java, but the entities
connected by Paths need not be in Java—the only requirement is that it must
be possible to write a Java-based representative that can communicate with the
entity. In Sect. 4 we describe several specific representatives we have built to
connect legacy applications to our interactive workspace.

3.1 Operators and Connectors

An operator consists of a piece of code that performs some transformation and
an XML description of its input and output types. An operator may have zero
or more inputs and outputs (for example, a data source has zero inputs but
one or more outputs). These inputs and outputs are strongly typed and govern
how the operator can be composed with other operators. The operator’s XML
description also includes information on where to get the code (e.g., a URL) and
how to run it.
Operators play a number of roles:

— Mediators perform datatype transformations, such as GIF to JPEG or XML
to HTML conversions. These operators are the mediators in our mediation
infrastructure.

— Semantic processors perform some operation on data that does not change
the type of the data, e.g., mathematical computation, sorting or filtering.
The dividing line between mediators and semantic processors depends on
the descriptiveness of the type system. Semantic operators provide higher-
level functionality not represented within our mediation infrastructure.

— Aggregators and Disseminators perform fan-in and fan-out functions within
a path. Since our mediation infrastructure currently supports only pairwise
communication, it does not use aggregators and disseminators. In the future,
they will be used to provide support for treating multiple endpoints as a sin-
gle, virtual endpoint (e.g., combining two displays to create a larger viewing
area).

— Data sources and data sinks are operators which have only a single output
or input. From the viewpoint of a path, these operators are generating and
consuming data, respectively. In the mediation infrastructure, these data
sources and data sinks are the representatives of the true endpoints of the
communication, the devices and software.

Connectors, unlike operators, are type-neutral pieces of code described by their
transport characteristics. Some of the characteristics that might describe a con-
nector include its reliability, latency, in-order delivery, QoS, and security levels.
By default, we currently use a reliable ordered bytestream connector, imple-
mented using TCP. In the future, we plan to allow the controller entity in our
mediation infrastructure to decide what sorts of connectors to use based on
the purpose of the communications channel; for example, a path manipulating
real-time streaming data might prefer an unreliable ordered connector, to avoid
retransmissions that violate real-time constraints.

3.2 Path Creation

Path creation is the process of turning a logical path description into an instan-
tiation of a path. The first phase of path creation handles assigning operators
onto physical hosts and adding any necessary connectors. The second phase of
path creation dispatches the path description to appropriate hosts. Finally, the
last phase of path creation instantiates the operators and connectors. After this,
the path is ready to accept data.

The process of creating a path is itself implemented as a path, with each of the
phases of path creation being encapsulated within an operator. The advantage
of implementing the path creation as a path is the flexibility we have to add new
functionality to the path creation process.

Logi cal
Pat h

Physi cal
Pat h

Path Di spat cher
Pl acer
Pat h
Instantiators

Fig. 2. The Path Creation Path

The first extension we have added to the path creation process is Automatic
Path Creation (APC), by prepending an extra operator to the beginning of the
path creation path. APC is a generic term for taking a high-level query and
generating a path from it. The sort of APC that we have implemented is a
Partial-Path APC. A partial path is a path description containing mismatches
between adjacent operators. Partial-Path APC takes this description and gener-
ates a logical path by mediating between the mismatched operators. This logical
path is then turned into an instantiation of a path via the original path creation
process.

Our automatic mediation problem in the mediation infrastructure is a spe-
cial case of Partial-Path APC. The generation of the partial path query is the
rendezvous problem discussed in Sect. 2.3. Once we have determined which rep-
resentatives to connect, we generate a partial path query consisting of two op-

erators connected together. These operators model the source and destination
representatives, with the appropriate datatype specifications on their inputs and
outputs. Applying APC to this partial path query discovers a mediation path
between the two representatives.

a)

TI FF JPEG

Digital Q—> _>Q Vb
Caner a Br owser

b)

TI FF PNM JPEG
Caner a Br owser

Fig. 3. a) a partial-path query between a digital camera and a web browser; b) the
result of the query, a full path between the digital camera and a web browser.

4 Applications

We have developed a number of services using the Paths prototype and Auto-
matic Mediation. Here, we present three applications with particular relevance
to ubiquitous computing, and the lessons we learned while developing them.

4.1 Room Control Service

As an initial exploration of Automatic Mediation, we implemented an any-to-any
messaging service that enabled users to send and receive messages from poten-
tially any networked device. On top of this system, we implemented a multimodal
Room Control service for audio/visual and other resources in several classrooms
and conference rooms in Soda Hall, UC Berkeley’s Computer Science building.
The end devices we connected to this system include a desktop computer GUI,
microphone and speakers, a cell phone, and a Palm Pilot.

Users can use graphical, text, or speech based user interfaces to send messages
to one another and to programmatic entities (such as the Room Control). When
users send a message, it is routed through an automatically generated path of
mediators to transform the data from its original data format to the format
required by the receiver. These mediators include straightforward data format
conversion mediators (GSM audio to PCM audio) as well as more complicated
mediators such as speech-to-text and a rule-based text command interpreter.
The latter two are interesting because they may inject context-based semantics
into the transformation procedure. In Sect. 5.1 we discuss a classification of
mediators that has emerged from our experience using Paths to build several
applications.

This system was implemented as part of the ICEBERG and Ninja projects at
U.C. Berkeley [12, 4]. It leveraged existing software, such as the speech recognizer
and IP telephony infrastructure, and was completed in only a few person-months

Speech
GSM PCM Recognition Text to
converter Room Conmand
converter

GsM
cel | phone

Room
Room Response Control
PCM GSM to Text Service
converter Speech Converter
Synt hesi zer

Fig. 4. Communication between a cellphone and the Room Control Service.

of work. Extending the system has been equally easy. For example, adding sup-
port for sending messages from the Palm Pilot required only two hours of work.

In the process of building this system, we made significant advances in our
understanding of paths and our requirements of them. We found that support
for parametric types and polymorphic operators (described in Sect. 5.2) greatly
increases operator reusability and flexibility.

4.2 Dada (Data—Application and Device—Application decoupling)

In the Dada project, we explored the use of the Paths framework for flexible data
representation, manipulation and display in interactive workspaces. The goal of
Dada was to decouple data/application and device/application dependencies,
and give the user the ability to display and manipulate data in an ad-hoc fashion.
In particular, Dada allows a user to select what data to view, what semantic
processors to apply to this data, and on which device to display the results.
Once the user makes these choices, Dada initializes a Path from the appropriate
data source, through the chosen semantic processors, and to the display device,
using automatic mediation to resolve mismatches between the chosen services.
As the data processing completes, the user sees the results on the chosen display,
and, if applicable, can manipulate and interact with these results.

We chose to work within the domain of architectural design and construction
planning because this domain requires multiple integrated views of and inter-
actions with project data from a variety of sources. The Stanford Interactive
Workspaces Project provided the environment and infrastructure for the im-
plementation of Dada [10]. The data sources included 3D models of buildings,
time schedules and cost estimates for construction of these buildings, encoded in
various XML-compliant markup languages and stored in databases. These data
were interlinked, with parts of buildings, scheduled work tasks, and cost items
being associated with each other. The device types we supported were large wall-
mounted displays and a table display, all capable of showing 2D and 3D data.
The table display required its contents to be rotatable so that data may be read
from any side of the table.

Some of the more interesting semantic processors we wrote for Dada im-
plemented application-level functionality within the Path itself. These semantic
processors manipulated the data flowing through them in response to user ac-
tions. These user actions were propagated to the semantic processors using con-
trol messages flowing along the reverse path. To ensure decoupling of semantic

processors and the devices displaying actions to the user, the semantic processor
packages the control message associated with a user action. In this way, the con-
trol message is acting as a callback function. Additionally, downstream operators
can transform and even replace these user actions as they are sent to the device,
then “undo” this transformation as the control messages flow back up the path.

One example of such a semantic processor we wrote was a data-agnostic oper-
ator for Cut&Paste functionality. These operators associate Cut&Paste actions
with data objects as they flow through them. Upstream in the path, a mediator
renders these associated actions into a device-specific UI description language.
Thus, users see live data that they can manipulate and move between displays.

Another interesting mediator converted data for display on the table. It trans-
formed 3D data into rotatable data by wrapping it in a simple user interface for
controlling rotation. When the user triggered a rotation action, this mediator
applied the appropriate rotation.

Because these semantic processors are both data-agnostic and application-
agnostic, it was easy to integrate them into the transformational path. From
building the Dada prototype, we gained valuable experience in using Paths and
mediators to render user interfaces and dynamic data. Specifically, we gained
insights into the requirements dynamic data and user actions had on control
messages.

4.3 Global Clipboard

The Global Clipboard is a multi-machine, cross-platform clipboard with history.
Its purpose is to support transfer of data between heterogeneous, legacy applica-
tions and devices within an interactive workspace by automatically transforming
data among appropriate formats. Target platforms include MS Windows appli-
cations and Palm Pilot devices, among others. Target application domains for
mediators include image and text document transformations. The prototype
global clipboard is currently under development.

Users copy data into the global clipboard just as they would copy data into
the normal system clipboard (e.g., by pressing Control-C). A daemon running on
each participating machine intercepts the copy operation and forwards a copy
of the data to our global clipboard system. When a user pastes data into an
application, our daemon again intercepts the request, adds context information
about the requesting application and the datatypes that application can accept,
and forwards it to the global clipboard. The global clipboard fulfills the paste
request by transforming the data currently in the clipboard into one of the
formats understood by the application.

By interposing our mediation layer in the clipboard, we are extending an
already-familiar metaphor by enabling users to transfer data between applica-
tions that otherwise could not understand each other’s data formats at all; for
example, for cutting and pasting between Microsoft Word and a Palm Pilot
memo directly on the Palm Pilot device.

5 Discussion

In Sect. 4, we presented three applications that use the Paths mediation infras-
tructure. Here we discuss some of the lessons we learned about our mediation
infrastructure while implementing those prototypes.

5.1 Classification of Mediators

Through our experience writing and using mediators in applications, we have
discovered a classification of mediators based on the effect they have on the
semantic richness of the data they transform.

— Negative-Delta Mediators perform lossy transformations which lose data,
structure, and/or semantic information. Examples of this sort of transfor-
mation include converting an image from a lossless to a lossy encoding; and
transforming XML into HTML, losing the semantic meaning of the original
data. They are similar to prior work at lossy encodings to adapt Internet
content to small devices [2].

— Zero-Delta Mediators perform non-lossy transformations between equivalent
formats. This includes converting an image between two lossless encodings,
and converting from a less expressive encoding to a more expressive one (e.g.,
converting ASCII text to Rich Text Format).

— Positive-Delta Mediators perform a type transformation where some seman-
tic knowledge (context information, etc.) is required to perform the transfor-
mation. These mediators are effectively injecting semantic information from
domain- or context-specific knowledge into the data as they transform it.
For example, Dey and Abowd’s CyberDesk [7] uses positive-delta mediation
to attach semantic properties such as “this is an email address” to strings
that otherwise have no semantics of their own.

This classification of mediators is useful in approximating the degree of infor-
mation loss that occurs during a transformation. Each negative-delta mediator
causes some information to be lost. Positive-delta mediators can re-inject infor-
mation. However, there is no guarantee that they will re-inject the same informa-
tion that was lost by a negative-delta mediator. Therefore, to guarantee that the
existing semantic information is perfectly preserved through a transformation
path, all mediators in the path must be zero-delta or positive-delta mediators.
In general, the acceptability of negative-delta mediators in a transformation de-
pends on how the transformed data is to be used (e.g., people viewing data can
often tolerate more semantic loss than a computer program can).

5.2 Extending the Type System

As we noted in Sect. 2.3, the descriptiveness of the type system in our mediation
infrastructure has a great effect on the usability of automatic composition of
mediators. In order to better describe the data in our systems, we have built a
simple, extended type system. Here are the three extensions we made to better
describe our data:

— Attributes are <key,value> pairs representing some specific metainforma-
tion. For example, our speech recognizer requires that its audio input is not
only in PCM sound format, but that is also sampled at 8000Hz. There-
fore, the type description of its input includes the attribute <samplerate,
8000Hz>.

— Type Relationships, such as a “contains” or “represents’ relationship, de-
scribe relationships between types that are awkward to capture with simple
subtypes or “is-a” relationships. For example, an aggregator that generates
a list of images has an output datatype of “List” with the addition of a
“contains” relationship to the “image” datatype.

— WILDCARD and UNKNOWN values are used when an attribute or relationship
field does not yet or cannot have a specific value. An attribute or relation-
ship value of “wildcard” means the associated field will match whatever is
required. An “unknown” value means no assumptions or assertions can be
made about the value of the field.

These data type descriptions are made in a language-neutral format. The type
requirements of endpoints are made external to the endpoint. This means we
can describe the requirements of third-party entities without modifying them.

It is important to highlight that there is a tradeoff between how descriptive
and complete a type system is, and how unwieldy and difficult the type system
is to use. As more semantic information is encoded in the type system, the
potential for “false negatives” when comparing two datatypes increases. As part
of our current research, we are investigating the nature of this tradeoff.

We are continuing to experiment with our extended type system to evaluate
its efficacy. Other type systems that may provide enough descriptive power for
our purposes include Spreitzer and Begel’s Flexible Types [9].

5.3 Path Lifetime

In our applications, we have experimented with both long-lived and short-lived
paths. Short-lived paths are simple and straightforward, and are appropriate
for sessionless message-based communication (i.e., no expectation that multiple
messages will follow). Both the Room Control Service and the Global Clipboard
use short-lived paths to perform their communication and transformation. The
main disadvantage of using a short-lived path is the cost of tearing down and
setting up a new path for every message sent.

Long-lived paths can handle a wider variety of applications than short-lived
paths. They are more appropriate for session-oriented applications, including
streaming media applications and applications that maintain other session state.
An example of such an operator might be a “moving-average” operator that
tracked the value of a variable throughout the duration of a session. We used
long-lived paths in Dada to support the long-lived user interaction sessions.

5.4 User Interaction

Our mediation infrastructure provides a progammatic interface to ease develop-
ment of cross-device applications and ad-hoc applications, but does not enforce

any particular interaction mechanisms upon end users. Instead, Paths leaves the
presentation of a user interface to a higher-level task-aware entity.

In our prototype applications, we have just begun to study the problem of
user interaction with groups of heterogeneous devices. Our Room Control service
built application-aware client programs on each of our supported device which
provided the user with a high-level of control. In Dada, we took advantage of
general-purpose viewers to generate and render simple user interfaces directly
on the client devices. In the Global Clipboard, we hid most of the user interface
behind an existing interface, the native system clipboard. In each of these cases,
we chose to implement significantly different user interaction mechanisms, but
were able to use the same Paths mechanism.

6 Related Work

Our work was first motivated in the context of composing Internet services,
particularly by work in using web proxies to adapt to client variations [2]. We
are still actively working in this area, in collaboration with the Ninja and Iceberg
projects at UC Berkeley.

The Compose Group at Carnegie Mellon University has done much work in
the area of component composition in the context of software architectures [3,
8]. With respect to their terminology, Paths matches the “pipe/filter model” of
software architecture.

Sun’s combined effort with Java and Jini is also trying to address the prob-
lem of communication in a ubiquitous computing environment [11]. However,
they are applying the standards-based approach, and defining a homogeneous
system to which entities must conform. We have explicitly attempted to enable
communication among COTS and legacy applications and devices.

In the area of ubiquitous computing, our work is most closely related to the
context-aware systems designed by the Future Computing Environments group
at Georgia Institute of Technology [7]. The type converters or context inter-
preters described in the context of CyberDesk are the equivalent of our media-
tors. That work uses type converters primarily to generate context information
that can be used as a trigger. We see our work as complementary to theirs and
can envision ways in which both systems might be enriched if they could be
integrated. Since integration with other systems is one of primary goals, we do
not expect this to be particularly difficult.

7 Conclusions

Ubiquitous computing requires a seamless interworking of heterogeneous enti-
ties, including legacy entities that is not feasible to implement using current
technologies.

The mediation infrastructure described in this paper enables ad-hoc, loosely-
coupled communication between heterogeneous, potentially legacy and COTS,
entities that were not originally designed to communicate with each other. It
compensates for mismatches between communicants through the automatic com-
position of mediators. Due to the use of composable mediators, support for new

entities can be added with only incremental work. We have implemented a pro-
totype of this infrastructure and built a number of applications using it.

Continuing work on the mediation infrastructure includes research into the
tradeoffs related to the descriptiveness of the type system, and the use of this
mediation infrastructure for supporting dynamically transformed or generated
user interfaces, and multimodal interfaces.

8 Acknowledgements

Early work on Paths began at UC Berkeley; we would like to thank Prof. Eric
Brewer for introducing us to the conceptual Paths model, Prof. Randy Katz for
his guidance, and especially Prof. Anthony Joseph for his feedback and advice
during the development of the Room Control Service. The Room Control Service
prototype was implemented with Barbara Hohlt of UC Berkeley. The Dada pro-
totype was implemented with John R. Haymaker, Martin Jonsson and Shankar
Ponnekanti at Stanford University. We thank Steve Gribble, Andy Huang, and
Michelle Munson for providing us with valuable feedback on this paper. This ma-
terial is based on work supported under an STMicroelectronics Stanford Grad-
uate Fellowship and a National Science Foundation Fellowship.

References

1. Clark, D., and Tennenhouse, D. Architectural Considerations for a New Generation
of Protocols. Proceedings of ACM SIGCOMM ’90, Sept. 1990, pp. 201-208.

2. Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer. Adapting to
Network and Client Variation Using Active Proxies: Lessons and Perspectives.
IEEE Personal Communications (invited submission), Aug 1998. Special issue on
adapting to network and client variability.

3. David Garlan, Robert Allen, and John Ockerbloom. Architectural Mismatch, or,
Why it’s hard to build systems out of existing parts. Proceedings of the 17th In-
ternational Conference on Software Engineering, April 1995.

4. Steve Gribble, Matt Welsh, Eric A. Brewer, and David Culler. The MultiSpace: an
Evolutionary Platform for Infrastructural Services. In Second USENIX Symposium
on Internet Technologies and Systems (USITS ’99), Aug 1999.

5. Andrew C. Huang, Benjamin C. Ling, John Barton, and Armando Fox. Running
the Web Backwards: Appliance Data Services. WWW-9, Amsterdam, May 2000.

6. John Ockerbloom. Mediating Among Diverse Data Formats. PhD Thesis, Carnegie
Mellon University, Jan 1998.

7. Daniel Salber, Anind K. Dey and Gregory D. Abowd. The Context Toolkit: Aiding
the Development of Context-Enabled Applications. In the Proceedings of the 1999
Conference on Human Factors in Computing Systems (CHI ’99), Pittsburgh, PA|
May 15-20, 1999. pp. 434-441.

8. M. Shaw, R. DeLine, V. Klein, T.L. Ross, D.M. Young, G. Zelesnik. Abstractions
for Software Architecture and Tools to Support Them. IEEE Transactions on Soft-
ware Engineering, Vol. 21, No 4, April 95.

9. Mike Spreitzer and Andrew Begel. More Flexible Data Types. In Proceedings of The
Eighth IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, June 1999.

10. Stanford Interactive Workspaces Project. http://graphics.stanford.edu/projects/iwork/

11.

12.

13.

14.

Sun Microsystems. Jini Connection Technology Overview. whitepaper.
http://www.sun.com/jini/overview/overview.ps

Helen J. Wang, Bhaskaran Raman, et al. ICEBERG: An Internet-core Network
Architecture for Integrated Communications. Submitted to IEEE Personal Com-
munications.

J. A. Watlington and V. M. Bove, Jr. Stream-Based Computing and Future Tele-
vision. Proc. 187th SMPTE Technical Conference, pp. 69-79, 1995.

Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94—
104, September 1991

