Parsec: Direct Style Monadic Parser Combinators
For The Real World

Daan Leijen
University of Utrecht
P.O. Box 80.089, 3508TB
Utrecht, The Netherlands
daan@cs.uu.nl

Erik Meijer
Microsoft Corp.
Redmond, WA

emeijer@microsoft.com

DRAFT

October 4, 2001

Abstract

Despite the long list of publications on parser combinators, there does
not yet exist a monadic parser combinator library that is applicable in real
world situations. In particular naive implementations of parser combina-
tors are likely to suffer from space leaks and are often unable to report
precise error messages in case of parse errors. The Parsec parser com-
binator library described in this paper, utilizes a mnovel implementation
technique for space and time efficient parser combinators that in case of
a parse error, report both the position of the error as well as all grammar
productions that would have been legal at that point in the input.

mailto:daan@cs.uu.nl
mailto:emeijer@microsoft.com

2 Parsec: Direct Style Monadic Parser Combinators For The Real World

1 Introduction

Parser combinators have always been a favorite topic amongst functional pro-
grammers. Burge (1975) already described a set of combinators in 1975 and they
have been studied extensively over the years by many others (Wadler, 1985;
Hutton, 1992; Fokker, 1995;

Hutton and Meijer, 1996). In contrast to parser generators that offer a fixed
set of combinators to express grammars, these combinators are manipulated
as first class values and can be combined to define new combinators that fit
the application domain. Another advantage is that the programmer uses only
one language, avoiding the integration of different tools and languages (Hughes,
1989).

Despite the theoretical benefits that parser combinators offer, they are hardly
used in practice. When we wrote a parser for the language XM\ (Shields and
Meijer, 2001) for example, we had a set of real-world requirements on the com-
binators. They had to be monadic in order to make the parse context sensitive,
they had to be efficient (ie. competitive in speed with happy (Gill and Mar-
low, 1995) and without space leaks) and they had to return high quality error
messages. To our surprise, most current monadic parser libraries suffered from
shortcomings that made them unsuitable for our purposes; they are not efficient
in space or time, and they don’t allow for good error messages.

There has been quite a lot of research on the efficiency of parsers combinators
(Koopman and Plasmeijer, 1999; Partridge and Wright, 1996;

Rojemo, 1995; Meijer, 1992) but those libraries pay almost no attention to error
messages. Recently, Swierstra et al. (1996; 1999) have developed sophisticated
combinators that even perform error correction but unfortunately they use a
non-monadic formulation and a separate lexer.

This paper describes the implementation of a set of monadic parser combinators
that are efficient and produce good quality error messages. Our main contribu-
tion is the overall design of the combinators, more specifically:

e We describe a novel implementation technique for space and time efficient
parser combinators. Laziness is essential ingredient in the short and con-
cise implementation. We identify a space leak that contributes largely to
the inefficiency of many existing parser combinators described in litera-
ture.

e We show how the primitive combinators can be extended naturally with
error messages. The user can label grammar production with suitable
names. The messages contain not only the position of the error but also

2 Grammars and Parsers 3

all grammar productions that would have been legal at that point in the
input — i.e. the first-set of that production.

The combinators that are described in this paper have been used to implement
a ‘real world’ parser library in Haskell that is called PARSEC. This library
is available with documentation and examples from http://www.cs.uu.nl/
“daan/parsec.html and is distributed with the GHC compiler.

Throughout the rest of the paper we assume that the reader is familiar with
the basics of monadic combinator parsers. The interested reader is referred to
Hutton and Meijer (1996) for a tutorial introduction.

2 Grammars and Parsers

The following sections discuss several important restrictions and other char-
acteristics of existing parser combinator libraries that influenced the design of
Parsec.

2.1 Monadic vs. Arrow style Parsers

Monadic combinator parsers consist of a monad Parser a (typically of the form
String — Result a for some functor Result) with a unit return and bind
(>>=) operation, and a number of parser specific operations, usually a choice
combinator (<[>) and a function satisfy for construction elementary parsers
for terminal symbols:

type Parser a

return :: a — Parser a

(>>=) :: Parser a — (a — Parser b) — Parser b
satisfy :: (Char — Bool) — Parser Char

(<[>) :: Parser a — Parser a — Parser a

An important practical benefit of monadic parser combinators is the fact that
Haskell has special syntax (the do-notation) that greatly simplifies writing monadic

http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.uu.nl/~daan/parsec.html

4 Parsec: Direct Style Monadic Parser Combinators For The Real World

programs. However, there are also deeper reasons why we prefer using monadic
combinators.

Besides bind, there exists another important form of a sequential combinator
(<*>) which is described by Swierstra and Duponcheel (1996) and later identi-
fied as a special case of an arrow-style combinator by Hughes (2000). The types
of the monadic and arrow-style combinators are closely related, but subtly dif-
ferent:

(<*¥>) :: Parser a — Parser (a — b) — Parser b
(>>=) :: Parser a — (a — Parser b) — Parser b

However, their runtime behavior differs as much as their types are similar. Due
to parametricity (Wadler, 1989), the second parser of (<*>) will never depend
on the (runtime) result of the first. In the monadic combinator, the second
parser always depends on the result of the first parser. An interesting rela-
tion between both forms follows directly from their type signatures; arrow-style
parser combinators can at most parse languages that can be described by a
context-free grammar while the monadic combinators can also parse languages
described by context-sensitive grammars.

Since parsers described with arrow-style combinators never depend on run-time
constructed values, it is possible to analyze the parsers before executing them.
Swierstra and Duponcheel (1996) use this characteristic when they describe
combinators that build lookup tables and perform dynamic error correction.

Monadic combinators are able to parse context sensitive grammars. This is not
just a technical nicety. It can be used in many situations that are tradionally
handled as a separate pass after parsing. For example, if plain XML documents
are parsed with a context-free parser, there is a separate analysis needed to
guarantee well-formed ness, i.e. that every start tag is closed by a matching end
tag.

A monadic parser can construct a specialized end tag parser when an open tag
is encountered. Given an openTag parser that returns the tag name of a tag
and an endTag parser that parses an end tag with the name that is passed as
an argument, an XML parser that only accepts well-formed fragments can be
structured as follows:

xml = do{ mame <- openTag
; content <- many xml
; endTag mame

2 Grammars and Parsers 5

; return (Node name content)

3

<|> xmlText

2.2 Left recursion

An important restriction on most existing combinator parsers (and Parsec is no
exception) is that they are unable to deal with left-recursion. The first thing a
left-recursive parser would do is to call itself, resulting in an infinite loop.

In practice however, grammars are often left-recursive. For example, expression
b)
grammars usually use left-recursion to describe left-associative operators.

expr ::= expr "+" factor
factor ::= number | "(" expr ")"

As it is, this grammar can not be literally translated into parser combinators.
Fortunately, every left-recursive grammar can be rewritten into a right-recursive
one (Aho et al., 1986). It is also possible to define a combinator chainl (Fokker,
1995) that captures the design pattern of encoding associativety using left-
recursion directly, thereby avoiding a manual rewrite of the grammar.

2.2.1 Sharing

One could think that the combinators themselves can observe that expr is left-
recursive, and thus could prevent going into an infinite loop. In a pure language
however, it is impossible to observe sharing from within the program. It follows
that parser combinators are unable to analyze their own structure and can never
employ standard algorithms on grammars to optimize the parsing process.

All combinator libraries are forced use a predictive parsing algorithm, also known
as left-to-right, left-most derivation or LL parsing (Aho et al., 1986). (LR pars-
ing is still the exclusive domain of separate tools that can analyze the grammar
on a meta-level.) However, Claessen and Sands (1999) describe an interesting
approach to observable sharing in the context of hardware descriptions which
might be used in the context of parser combinators to analyze the structure of
a parser at run-time.

6 Parsec: Direct Style Monadic Parser Combinators For The Real World

2.3 Backtracking

Ambiguous grammars have more than one parse tree for a sentence in the lan-
guage. Only parser combinators that can return more than one value can handle
ambiguous grammars. Such combinators use a list as their reply type.

In practice however, you hardly ever need to deal with ambiguous grammars. In
fact it is often more a nuisance than a help. For instance, for parser combinators
that return a list of successes, it doesn’t matter whether that list contains zero,
one or many elements. They are all valid answers. This makes it hard to give
good error messages (see below). Furthermore it is non-trivial to tame the space
and (worst case exponential) time complexity of full backtracking parsers.

However, even when we restrict ourselves to non-ambiguous grammars, we still
need to backtrack because the parser might need to look arbitrary far ahead in
the input.

Naive implementations of backtracking parser combinators suffer from a space
leak. The problem originates in the definition of the choice combinator. It either
always tries its second alternative (because it tries to find all possible parses),
or whenever the first alternative fails (because it requires arbitrary lookahead).
As a result, the parser (p <|> q) holds on to its input until p returns, since it
needs the original input to run parser q when p has failed. The space leak leads
quickly to either a stack/heap overflow or reduction in speed on larger inputs.

2.4 Errors

Parsers should report errors when the input does not conform to the grammar.
A good parser error message contains the position of the error in the input as
well as the cause of the error. Besides the cause of an error, the message can
contain all possible productions that would have been legal at that point in the
input. These correspond to the FIRST set of a non-terminal.

Beside error reporting the parser might try to correct the error. After detecting
an error, the input is modified by deleting or inserting tokens which might lead
to valid input again. Swierstra and Duponcheel (1996) describe how automatic
error correction can be implemented with arrow-style parser combinators.

As explained above, current (nondeterministic) parser combinators are not very
good at reporting errors. The combinators report neither the position nor the

2 Grammars and Parsers 7

possible causes of an error. It is hard to report an error since the the parsers can
always look arbitrarily far ahead in the input (they are LL(c0) and it becomes
hard to decide what the error message should be.

It is for the two reasons above that in Parsec we restrict ourselves to predictive
parsers with limited lookahead. The <|> combinator is left-biased and will return
the first succeeding parse tree (i.e. even if the grammar is ambiguous only
one parse tree is returned). The Parsec combinators will report all possible
causes of an error. The messages can be customized by the user — instead of
giving the error message on the character level it contains a grammar production
description.

2.5 LL Grammars

The following sections derive a space efficient and error reporting combinator
parsers. The space leak can be fixed by restricting the lookahead. As a side
effect this also improve the quality of the error messages that are implemented
later in this paper.

LL grammars have the distinctive properties that they are non-ambiguous and
not left-recursive. A grammar is LL(k) if the associated predictive parser needs
at most k tokens lookahead to disambiguate a parse tree. For example, the
following grammar is LL(2):

S ::=PQ | Q
P ::= ||p||
Q ::= Ilpqll

When a the first token is "p",F we still don’t know if we are in the PQ or Q
production, only upon seeing the second token ("p" or "q") we know what to

choose.

The usual list of successes combinators have the interesting property that they
have a dynamic lookahead to an arbitrary large k; We will call this an LL(oc0)
parser. The combinators will look arbitrarily far ahead due to the definition
of the (<|>) combinator. Whenever the first parser fails, the second will be
tried instead, no matter how many tokens the first parser has consumed! The
previous grammar can be translated literally into combinators:

s =do{p; q}<i>q

8 Parsec: Direct Style Monadic Parser Combinators For The Real World

char ’p’
do{ char ’p’; char ’q’ }

Q "o
non

Unfortunately, this doesn’t hold in general. There is a specific case where we
can’t literally translate the grammar. Here is the previous grammar again writ-
ten in a slightly different way:

S ::=PQ
P :: npn | €
Q sz upqn

When we literally translate this grammar we get:

do{ p; q }
char ’p’ <|> return ’p’
= do{ char ’p’; char ’q’ }

Q oon
]

The <|> combinator is now local to the p parser. It returns a result right after
the first character is consumed. If the input was "pq" it will recognize the
"p" character as part of the p production and fail when trying q! The <|>
combinator should be used at the point where lookahead is actually needed and
can not be used locally in the production.

In general, every PQ where P =* € (i.e. P has an empty derivation) and where
FIRST(P) U FIRST(Q) # () (i.e. their first-sets overlap (Aho et al., 1986)), should
be rewritten to P'Q | Q where P’ equals production P but no longer includes an
e derivation. If a grammar is left-factored (Aho et al., 1986) this transformation
happens automatically.

LL(00) is a powerful grammar class. Any non-ambiguous context-free grammar
can be transformed into an LL(co) grammar. In practice, there are many lan-
guages that require arbitrary lookahead; for example, type signatures in Haskell
or declarations in C.

3 Restricting lookahead

The following sections will focus on implementing a set of monadic combina-
tors that circumvent the space leak of naive combinators and add good error
messages.

3 Restricting lookahead 9

To solve the space leak of the naive parser combinators, we turn to deterministic
predictive parsing with limited lookahead. An LL(1) parser has a lookahead of a
single token — it can always decide which alternative to take based on the current
input character. In practice this means that the parser (p <|> q) never tries
parser q whenever parser p has consumed any input.

To use an LL(1) strategy, each parser is keeps track of its input consumption.
We call this the consumer-based approach. A parser has either Consumed input
or returned a value without consuming input, Empty. The return value is either
a single result and the remaining input, Ok a String, or a parse error, Error:

type Parser a = String — Consumed a

data Consumed a = Consumed (Reply a)

Empty (Reply a)

data Reply a Ok a String | Error

Note that the real Parsec library is parameterized with the type of the input
and a user definable state.

3.1 Basic combinators

Given the concrete definition of our Parser type, we can now turn to the im-
plementation of the basic parser combinators.

The return combinator succeeds immediately without consuming any input,
hence it returns the Empty alternative:

return x
= \input -> Empty (Ok x input)

The satisfy combinator consumes a single character when the test succeeds
but returns Empty when the test fails, or when it encounters the end of the
input:

satisfy :: (Char — Bool) — Parser Char
satisfy test

10 Parsec: Direct Style Monadic Parser Combinators For The Real World

P q (p >>=q
Empty Empty Empty
Empty Consumed | Consumed

Consumed Empty Consumed
Consumed Consumed | Consumed

Figure 1: Input consumption of (>>=)

= \input -> case (input) of
[-> Empty Error
(c:cs) | test c -> Consumed (Ok c cs)
| otherwise -> Empty Error

With the satisfy combinator we can already define some useful parsers:

char ¢ = satisfy (==c)
letter = satisfy isAlpha
digit = satisfy isDigit

The implementation of the (>>=) combinator is the first one where we take
consumer information into account. Figure 1 summarizes the input consumption
of a parser (p >>= f). If p succeeds without consuming input, the result is
determined by the second parser. However, if p succeeds while consuming input,
the sequence starting with p surely consumes input Thanks to lazy evaluation,
it is therefore possible to immediately build a reply with a Consumed constructor
even though the final reply value is unknown.

(>>=) :: Parser a — (a — Parser b) — Parser b
p>=f
= \input -> case (p input) of
Empty replyl
-> case (replyl) of
Ok x rest -> ((f x) rest)
Error -> Empty Error

Consumed replyl
-> Consumed
(case (replyl) of
Ok x rest
-> case ((f x) rest) of
Consumed reply2 -> reply2

3 Restricting lookahead 11

Empty reply2 -> reply2
error -> error

Due to laziness, a parser (p >>= f) directly returns with a Consumed construc-
tor if p consumes input. The computation of the final reply value is delayed.
This ‘early’ returning is essential for the efficient behavior of the choice combi-
nator.

An LL(1) choice combinator only looks at its second alternative if the first hasn’t
consumed any input — regardless of the final reply value! Now that the (>>=)
combinator immediately returns a Consumed constructor as soon as some input
has been consumed, the choice combinator can choose an alternative as soon
as some input has been consumed. It no longer holds on to the original input,
fixing the space leak of the previous combinators.

(<|>) :: Parser a — Parser a — Parser a
p <I>q
= \input -> case (p input) of
Empty Error -> (q input)

Empty ok -> case (q input) of
Empty _ -> Empty ok
consumed -> consumed

consumed -> consumed

Note that if p succeeds without consuming input the second alternative is fa-
vored if it consumes input. This implements the “longest match” rule.

With the bind and choice combinator we can define almost any parser. Here
are a few useful examples:

string :: String -> Parser ()
string "" = return
string (c:cs) = do{ char c; string cs }

manyl :: Parser a -> Parser [a]
manyl p
= do{ x <- p;

; xs <- (manyl p <|> return [])
; return (x:xs)

}

12 Parsec: Direct Style Monadic Parser Combinators For The Real World

identifier
= manyl (letter <|> digit <|> char ’_’)

Note that the formulation of the many1 parser works because the choice combi-
nator doesn’t backtrack anymore.

3.2 Related work

It is interesting to compare this approach with previous work on efficient parser
combinators. Rojemo (1995) uses a continuation based approach in combination
with a cut combinator. The cut combinator is used to implement an LL(1)
variant of the choice combinator. A variant of RGjemo’s solution is given by
Koopman and Plasmeijer (1999). In his thesis (1992), Meijer describes several
alternative implementations of the cut combinator using continuation based
parsers.

The main contribution of this paper is the simplicity of the consumer based
approach when compared to an implementation based on continuations. Due
to laziness, the algorithm can be specified declaratively, while getting the same
operational ‘interleaved’ behavior as with continuations. It is also easier to
constructively add error messages to the combinators, which is done later in
this paper.

The consumer based design is perhaps most closely related to the work of Par-
tridge and Wright (1996). They implement a predictive LL(1) parser using four
return values in their parser reply:

data Reply a = 0Ok a String

| Epsn a String
| Err

|

Fail

The Epsn (epsilon) and Fail alternatives are used when the parser hasn’t con-
sumed any input. The correspondence with a consumer based design is clear:

Partridge & Wright Consumer based design
Ok x input Consumed (0k x input)

Epsn x input = Empty (0k x input)
Err = Consumed (Error)
Fail = Empty (Error)

3 Restricting lookahead 13

Library chars/second allocated/char resident/char
parsec + scanner 115,000 409 13
parsec 88,000 896 6
parselib 78,000 730 23
uuparsing + scanner 61,000 928 58

Figure 2: Comparison of libraries

Unfortunately, the approach of Partridge and Wright still suffers from the space
leak. The information about input consumption is tupled with the information
about the success of the parser. The choice operator now holds on the input
since information about both the success and the consumption of a parser is
returned, which can only be done after a reply is completely evaluated.

3.3 Measurements

We have done some prelimary measurements on the effectiveness of the consumer
based design. We took four different libraries and let them parse the standard
libraries of the Zurich Oberon system (Wirth, 1988). To make the test as honest
as possible, we wrote the Oberon parser using standard arrow-style combinators
and mapped the basic combinators of each library to these combinators. This
enables each library to use the exactly the same parser sources.

The libraries tested are:

e parsec. The full Parsec library, including the error message mechanism
that is developed later in this paper. The library can parse context-
sensitive grammars with infinite lookahead. There are two variants tested,
“parsec” is a version where the entire grammar, including the lexical part,
is described using parser combinators and “parsec+scanner” is a version
where a seperate hand-written scanner is used.

e uuparsing. A sophisticated arrow-style library developed at the University
of Utrecht (Swierstra and Azero Alcocer, 1999). A prominent feature is
that the library automatically corrects the input on errors and (thus)
always succeeds. The library parses context-free with infinite lookahead.
The parser in our test uses a seperate hand-written scanner for Oberon.

e parselib. The ‘standard’ monadic parser library that is distributed with the
Hugs interpreter. This is a monadic parser library developed by Graham
Hutton and Erik Meijer (Hutton and Meijer, 1996). The library parses

14 Parsec: Direct Style Monadic Parser Combinators For The Real World

context sensitive with infinite lookahead and can even deal with ambigious
grammars but gives no error messages at all. The entire grammar is
described using parser combinators.

Each library was compiled with GHC 5.02 with the -02 flag and tested against
all 102 standard library files of the Zurich Oberon system. The largest of these
files consists of 115,000 characters and 3302 lines, and the total line count is
87,000. The libraries were run with a 64 Mb heap on a 550 MHz Pentium run-
ning FreeBSD. Detailed results can be found at http://www.cs.uu.nl/"daan/
pbench.html.

Figure 2 summarizes the results. It shows the average number of characters
parsed per second, the number of bytes allocated per character and the number
of bytes resident per character. The residency gives the maximal portion of the
heap that was live during the execution of the program.

The measurements should be interpreted with care since each library uses differ-
ent parsing strategies and has different features. For example, in contrast to the
other libraries, the ParseLib library can deal with ambigious grammars. The
bottom line however is that each library uses exactly the same parser source to
parse the same Oberon sources and it seems that the consumer based design
pays off in practice.

3.4 Infinite lookahead, again

With all these optimization efforts, the parser combinators are now restricted
to LL(1) grammars. Unfortunately, most (programming language) grammars
are not LL(1) and even require arbitrary lookahead.

Dually to the approach sketched in (Rdjemo, 1995;

Hutton and Meijer, 1996; Koopman and Plasmeijer, 1999;

Meijer, 1992) where a special combinator is introduced to mark explicitly when
no lookahead is needed, we add a special combinator to mark explicitly where
arbitrary lookahead is allowed.

The (try p) parser behaves exactly like parser p but pretends it hasn’t con-
sumed any input when p fails:

try :: Parser a — Parser a
try p

http://www.cs.uu.nl/~daan/pbench.html
http://www.cs.uu.nl/~daan/pbench.html

3 Restricting lookahead 15

= \input -> case (p input) of
Consumed Error -> Empty Error
other -> other

Consider the parser (try p <|> q). Even when parser p fails while consuming
input (Consumed Error), the choice operator will try the alternative q since the
try combinator has changed the Consumed constructor into Empty. Indeed, if
you put try around all parsers you will have an LL(oco) parser again!

Although not discussed in their paper, the try combinator could just as easily
be applied with the four reply value approach of Partridge and Wright (1996),
changing Err replies into Fail replies. The approach sketched here is dual
to the three reply values of Hutton (1992). Hutton introduces a noFail com-
binator that turns empty errors into consumed errors! It effectively prevents
backtracking by manual intervention.

3.5 Lexing

The try combinator can for example be used to specify both a lexer and parser
together. Take for example the following parser:

expr = do{ string "let"; whiteSpace; letExpr }
<|> identifier

As it stands, this parser doesn’t work as expected. On the input letter for
example, it fails with an error message.

>run expr "letter”

parse error at (line 1,column 4):
unexpected "t"

expecting white space

The try combinator should be used to backtrack on the let keyword. The
following parser correctly recognises the input letter as an identifier.

expr = do{ try (string "let"); whiteSpace; letExpr }
<|> identifier

16 Parsec: Direct Style Monadic Parser Combinators For The Real World

In contrast with other libraries, the try combinator is not built into a special
choice combinator. This improves modularity and allows the construction of
lexer libraries that use try on each lexical token. The Parsec library is dis-
tributed with such a library and in practice, try is only needed for grammar
constructions that require lookahead.

4 Error Messages

The restriction to LL(1) makes it much easier for us to generate good error
messages. First of all, the error message should include the position of an error.
The parser input is tupled with the current position — the parser state.

type Parser a = State -> Consumed a

data State State String Pos

Beside the position, it is very helpful for the user to return the grammar produc-
tions that would have led to correct input at that position. This corresponds to
the FIRST set of that production. During the parsing process, we will dynami-
cally compute first sets for use in error messages. This may seem expensive but
laziness ensures that this only happens when an actual error occurs.

An error message contains a position, the unexpected input and a list of expected
productions — the first set.

data Message = Message Pos String [String]

To dynamically compute the first set, not only Error replies but also 0k replies
should carry an error message. Within the Ok reply, the message represents the
error that would have occurred if this successful alternative wasn’t taken.

data Reply a = Ok a State Message
| Error Message

4.1 Basic parsers

The return parser attaches an empty message to the parser reply.

4 FError Messages 17

return :: a -> Parser a
return x
= \state ->
Empty (Ok x state (Message pos [] []1))

The implementation of the satisfy parser changes more. It updates the parse
position if it succeeds and returns an error message with the current position
and input if it fails.

satisfy :: (Char -> Bool) -> Parser Char
satisfy test
= \(State input pos) ->
case (input) of
(c:cs) | test c
-> let newPos
newState
in seq newPos
(Consumed
(0k c newState
(Msg pos [1 [1)))

nextPos pos ¢
State cs newPos

(c:cs) -> Empty (Error
(Msg pos [c] [1))
(] -> Empty (Error
(Msg pos "end of input" [1))

Note the use of seq to strictly evaluate the new position. If this is done lazily,
we would introduce a new space leak — the original input is retained since it is
needed to compute the new position at some later time.

The (<|>) combinator computes the dynamic first set by merging the error
messages of two Empty alternatives — regardless of their reply value. Whenever
both alternatives do not consume input, both of them contribute to the possible
causes of failure. Even when the second succeeds, the first alternative should
propagate its error messages into the Ok reply.

(<|>) :: Parser a — Parser a — Parser a
p <I>gq
= \state ->

case (p state) of
Empty (Error msgl)
-> case (q state) of

18 Parsec: Direct Style Monadic Parser Combinators For The Real World

Empty (Error msg2)
-> mergeError msgl msg2
Empty (Ok x inp msg2)
-> mergeOk x inp msgl msg2
consumed
-> consumed
Empty (0k x inp msgl)
-> case (q state) of
Empty (Error msg2)
-> mergeOk x inp msgl msg2

Empty (Ok _ _ msg2)
-> merge0Ok x inp msgl msg2
consumed

-> consumed
consumed -> consumed

merge0k x inp msgl msg2
= Empty (0Ok x inp (merge inpl inp2))

mergeError msgl msg2
= Empty (Error (merge msgl msg2))

merge (Msg pos inp expl) (Msg _ _ exp2)
= Msg pos inp (expl ++ exp2)

Notice that the positions of the error message passed to merge should always be
the same. Since the choice combinator only calls merge when both alternatives
have not consumed input, both positions are guaranteed to be equal.

The sequence combinator computes the first set by merging error messages
whenever one of the parsers doesn’t consume input. In those cases, both of the
parsers contribute to the error messages.

4.2 Labels

Although error messages are nicely merged, there is still no way of adding names
to productions. The new combinator (<?>) labels a parser with a name.

The parser (p <?> msg) behaves like parser p but when it fails without consum-
ing input, it sets the expected productions to msg. It is important that it only
does so when no input is consumed since otherwise it wouldn’t be something
that is expected after all:

FError Messages 19
4 9

(<?>) :: Parser a —-> String -> Parser a
p <?> exp
= \state ->

case (p state) of
Empty (Error msg)
-> Empty (Error (expect msg exp))
Empty (0k x st msg)
-> Empy (Ok x st (expect msg exp))
other -> other

expect (Msg pos inp _) exp
= Msg pos inp [exp]

The label combinator is used to return error messages in terms of high-level
grammar productions rather than at the character level. For example, the
elementary parsers are redefined with labels:

digit = satisfy isDigit <7?> "digit"
letter = satisfy isAlpha <7?> "letter"
char ¢ = satisfy (==c) <7> (show ¢)

identifier = manyl (letter <|> digit <|> char ’_’)

4.3 Labels in practice

Error messages are quite improved with these labels, even when compared to
widely used parser generators like YACC. Here is an example of applying the
identifier parser to the empty input.

>run identtfier "

parse error at (line 1,column 1):
unexpected end of input
expecting letter, digit or ’_’

Normally all important grammar productions get a label attached. The previous
error message is even better when the identifier parser is also labeled. Note
that this label overrides the others.

>run tdentifier "Q@"

20 Parsec: Direct Style Monadic Parser Combinators For The Real World

parse error at (line 1,column 1):
unexpected "Q"
expecting identifier

The following example illustrates why Ok replies need to carry error messages
with them.

test = do{ (digit <|> return ’0’)
; letter
}

The first set of this parser consists of both a digit and a letter. On illegal
input both these production should be included in the error message. Opera-
tionally, the digit parser will fail and the return ’0’ alternative is taken. The
Ok reply however still holds the expecting digit message. When the letter
parser fails, both productions are shown:

>run test "*"

parse error at (line 1,column 1):
unexpected "x"

expecting digit or letter

4.4 Related work

Error reporting is first described by Hutton (1992). However, the solution pro-
posed is quite subtle to apply in practice, involving deep knowledge about the
underlying implementation. The position of the error is not reported as the
combinators backtrack by default — this makes it hard to generate good quality
error messages. Rojemo (1995) adds error messages with source positions using
a predictive parsing strategy.

Error correcting parsers are parsers that always continue parsing. Swierstra
et al. (1996; 1999) describe sophisticated implementations of error correction.
These parser probably lend themselves well to customizable error messages as
described in this paper.

6 Acknowledgements 21

5 Conclusions

We hope to have showed to parser combinators can be an acceptable alternative
to parser generators in practice. Moreover, the efficient implementation of the
combinators is surprisingly concise — laziness is essential for this implementation
technique.

At the same time, we have identified weaknesses of the parser combinators
approach, most notably the left-recursion limitation and the inability to analyse
the grammar at run-time.

6 Acknowledgements

Doaitse Swierstra has been a source of inspiration with his intimate knowledge
of error-correcting parser strategies. We would also like to thank Mark Shields
for his help on the operational semantics of these combinators. Johan Jeuring
has provided many suggestions that improved the initial draft of this paper.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Principles,
Techniques and Tools. Addison-Wesley, 1986. ISBN 0-201-10194-7.

W.H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975. ISBN
0-201-14450-6.

Koen Claessen and David Sands. Observable sharing for functional circuit
description. In ASIAN’99, 5th Asian Computing Science Conference, LNCS,
1742:62-73, Phuket, Thailand, 1999. Springer-Verlag.

http://www.cs.chalmers.se/ dave/papers/observable-sharing.ps.

Jeroen Fokker. Functional parsers. In Advanced Functional Programming,
First International Spring School, LNCS, 925:1-23, Bastad, Sweden, May 1995.
Springer-Verlag. http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps.

Andy Gill and Simon Marlow. Happy — The Parser Generator for Haskell, 1995.
University of Glasgow. http://www.haskell.org/happy.

Steve Hill. Combinators for parsing expressions. Journal of Functional Pro-
gramming, 6(3):445-463, May 1996.

http://www.cs.chalmers.se/~dave/papers/observable-sharing.ps
http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps
http://www.haskell.org/happy

22 Parsec: Direct Style Monadic Parser Combinators For The Real World

John Hughes. Why Functional Programming Matters. Computer Journal,
32(2):98-107, 1989.

John Hughes. Generalising monads to arrows. Science of Computer Program-
ming, 37:67-111, 2000.

http://www.cs.chalmers.se/ rjmh/Papers/arrows.ps.

Graham Hutton and Erik Meijer. Monadic parser combinators. Technical Re-
port NOTTCS-TR-96-4, Department of Computer Science, University of Not-
tingham, 1996.
http://wuw.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps.

Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2(3):232-343, July 1992.
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps.

Pieter Koopman and Rinus Plasmeijer. Efficient combinator parsers. In Im-
plementation of Functional Languages, LNCS, 1595:122-138. Springer-Verlag,
1999.

Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen University, 1992.

Andrew Partridge and David Wright. Predictive parser combinators need four
values to report errors. Journal of Functional Programming, 6(2):355-364,
March 1996.

Niklas Rojemo. Garbage collection and memory efficiency in lazy functional
languages. PhD thesis, Chalmers University of Technology, 1995.

Mark Shields and Erik Meijer. Type-indexed rows. In Proceedings of the 28th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), London, England, pages 261-275. ACM press, January
2001.

http://wuw.cse.ogi.edu/ mbs/pub/type_indexed_rows.

Doaitse Swierstra and Pablo Azero Alcocer. Fast, error correcting parser com-
binators: A short tutorial. In SOFSEM’99, Theory and Practice of Informatics,
26th Seminar on Current Trends in Theory and Practice of Informatics, LNCS,

1725:111-129. Springer-Verlag, November 1999.
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing.

Doaitse Swierstra and Luc Duponcheel. Deterministic, error correcting com-
binator parsers. In Advanced Functional Programming, Second International
Spring School, LNCS, 1129:184-207. Springer-Verlag, 1996.
http://wuw.cs.uu.nl/groups/ST/Software/UU_Parsing/AFP2.ps.

Philip Wadler. How to replace failure with a list of successes. In Func-
tional Programming Languages and Computer Architecture, LNCS, 201:113—
128. Springer-Verlag, 1985.

http://www.cs.chalmers.se/~rjmh/Papers/arrows.ps
http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps
http://www.cse.ogi.edu/~mbs/pub/type_indexed_rows
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/AFP2.ps

6 Acknowledgements 23

Philip Wadler. Theorems for free. In Mac Queen, editor, 4’th International
Conference on Functional Programming and Computer Architecture, pages 347—
359, London, September 1989. Addison-Wesley.

Philip Wadler. The essence of functional programming. In 19’th Symposium on
Principles of Programming Languages, pages 1-14, Albuquerque, New Mexico,
January 1992. ACM press.
http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html.

Niklaus Wirth. The programming language Oberon. Software Practice and
Experience, 19(9), 1988. The Oberon language report.
http://www.oberon.ethz.ch.

http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html
http://www.oberon.ethz.ch

	Introduction
	Grammars and Parsers
	Monadic vs. Arrow style Parsers
	Left recursion
	Sharing

	Backtracking
	Errors
	LL Grammars

	Restricting lookahead
	Basic combinators
	Related work
	Measurements
	Infinite lookahead, again
	Lexing

	Error Messages
	Basic parsers
	Labels
	Labels in practice
	Related work

	Conclusions
	Acknowledgements
	References

