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Abstract. Context-bounded analysis is an attractive approach tdicaion of
concurrent programs. Bounding the number of contexts é&dquer thread not
only reduces the asymptotic complexity, but also the corifyléncreases grad-
ually from checking a purely sequential program.

Lal and Reps [14] provided a method for reducing the convextrded verifica-
tion of a concurrent boolean program to the verification oéguential boolean
program, thereby allowing sequential reasoning to be eyeplfor verifying con-
current programs. In this work, we adapt the encoding to Viorlsystems pro-
grams written in C with the heap and accompanying low-leysrations such
as pointer arithmetic and casts. Our approach is compleigigmatic: we use
a verification condition generator and SMT solvers, instefa boolean model
checker, in order to avoid manual extraction of boolean raog and false alarms
introduced by the abstraction. We demonstrate the ugeldfslicingfor improv-
ing the scalability and (in some cases) coverage of our ¢hgecWe evaluate our
tool STORM on a set of real-world Windows device drivers, and has discmy a
bug that could not be detected by extensive application&fipus tools.

1 Introduction

Context-bounded analysis is an attractive approach tdieeion of concurrent pro-
grams. This approach advocates analyzing all executiomsamincurrent program in
which the number of contexts executed per thread is boungeddiven constank.
Bounding the number of contexts executed per thread redibeesymptotic complex-
ity of checking concurrent programs: while reachabilitylysis of concurrent boolean
programs is undecidable, the same analysis under a cdmexid is NP-complete [18,
15]. Moreover, there is ample empirical evidence that symaization errors, such
as data races and atomicity violations, are manifested metwwent executions with
small number of context switches [19, 16]. These two pragetbgether make context-
bounded analysis an effective approach for finding conoggrerrors. At the same
time, context-bounding provides for a useful trade-offimn the cost and coverage
of verification.

In this work, we apply context-bounded verification to cament C programs such
as those found in low-level systems code. In order to dedl thi# complexity of low-
level concurrent C programs, we take a three-step appréash. we eliminate all the

* This work was supported by a Microsoft Research Graduatewship.



complexities of C, such as dynamic memory allocation, moiatithmetic, casts, etc.
by compiling into the Boogie programming language (Boogie], a simple pro-
cedural language with scalar and map data types. Thus, veénabiconcurrent Boo-
giePL program from a concurrent C program. Second, we etitaithe complexity
of concurrency by appealing to the recent method of Lal angsR#&4] for reducing
context-bounded verification of a concurrent boolean @ogto the verification of a
sequential boolean program. By adapting this method todtiag of concurrent Boo-
giePL programs, we are able to construct a sequential BBagieogram that captures
all behaviors of the concurrent BoogiePL program (and floeesof the original C pro-
gram as well) up to the context-bound. Third, we generateificagion condition from
the sequential BoogiePL program and check it using a SdtifyaModulo Theories
(SMT) solver [8].

In order to scale our verification to realistic C programs,imteoduce the idea of
field slicing The main insight is that the verification of a given propéytyically de-
pends only on a small number of fields in the data structurésegprogram. Our algo-
rithm partitions the set of fields intoackedanduntrackedields; we only track accesses
to the tracked fields and abstract away accesses to the kexdréields. This approach
not only reduces the complexity of sequential code beinglat, but also allows us to
soundly drop context-switches from the program points wloerly untracked fields are
accessed. Our approach is similar to localization-redadtl3], but adapted to work
with arrays. We present an algorithm for refining the setatked fields based on the
counterexample-guided-abstraction-refinement (CEGARp | starting with the fields
in the property of interest. Our refinement algorithm is effes; on a number of exam-
ples it discovered the field abstraction that was carefudliggd by a manual inspection
of the program.

We implemented our ideas in a prototype tool calletb8m. We applied $SORM
on several real-life Windows device drivers that operate ighly concurrent setting,
and we clearly demonstrate its usability and scalabiliytiiermore, we assess the
effect of code size, number of contexts, and number of platese a context-switch
could happen on ®RM's performance. In the process, we found a bug in one of the
drivers that could not be detected by extensive applicaifgorevious tools. The bug
was confirmed and fixed by the driver developers.

2 Translation

In earlier work, Lal and Reps [14] presented a mechanismrérstorming a multi-
threaded program operating on scalar variables into a séiglprogram, with a fixed
context-bound. In this section, we show the main steps ttstoam a multithreaded
program written in C into a sequential program, using Lal Beps method. The in-
put C programs support pointers, dynamic memory allocatiobounded arrays, and
low-level operations such as casts and pointer arithmiggicdre prevalent in systems
software. Our translation is performed in two steps:

1. Translate a multithreaded C program into a multithred8i@olgiePL program us-
ing the HAVOC tool [3]. The resultant BoogiePL program cansascalars and
maps, and operations on them. The translation compiles tngagomplexities of C



Locs li=xe|e— f
Expr ex=x|n|l|&l|eope|e@®ne

Command c:=skip|cy;c | x:=e|l:=e|if ethenc|whileedoc
Fig. 1. A simplified subset of C.

E(x) =X C(ski p) = skip

E(n) =n C(c1;¢2) = C(c1);C(c2)
E(e— f) = Mem/[E(e)+Offsetf)]  C(x:=¢) =x:=E(e);

E(x(e: 1)) = Mem'[E(e)] C(l:=e) =E(l):=E(e);
E(&e— f) = E(e)+ Offse(f) C(i f ethenc) =if E(e)thenC(c)
E(&*xe) =E(e C(whi | e edo ¢) = while E(e) do C(c)
E(e1 op &2) = E(ey) op E(ey)

E(e1®n€2) = E(er) +n+E(e)

Fig. 2. Translation from C into BoogiePL.

programs related to pointers, dynamic memory allocatiasts; and pointer arith-
metic.

2. Translate the multithreaded BoogiePL program into a eetigi BoogiePL pro-
gram, for a fixed context-bound. We show how to extend Lal aepsimethod to
deal with programs with maps or arrays.

In the next two subsections, we describe these two stepdailsie

2.1 Translating from C into BoogiePL

We present a translation of a simplified subset of C into BeBgiprograms. The trans-
lation is similar to the one presented earlier [6]; the maifecence lies in splitting
the C heap into multiple maps corresponding to differenti§eind types in the pro-
gram, by assuming field-safeC program — the field-safety can be justified formally
in HAVOC and we explain it in this section.

Figure 1 shows a simplified subset of C for illustrating thenslation from C into
BoogiePL. We assume that the input program is well-typethéndriginal C type sys-
tem. Furthermore, all structures, global variables, amdll@ariables whose address
can be taken are allocated on the heap. The field names araesso be unique and
Offset f) provides the offset of a field in its enclosing structure. For this presentation,
we do not show how we handle nested structures and uniondo®hsupports all the
features of C programming language and details of the @tioslcan be found in ear-
lier work [6]. In the figureLocsdenotes the set of heap expressions that can be used or
assigned to, anfixpr denotes the set of C expressions. The expressions include va
ables k), constantsr{), Locsand their addresses, binary operations (suck)asand
pointer arithmetich, over n-byte pointers. The language contasisi p, sequential
composition, assignments, conditional statements, aopslo

Figure 2 shows our translation from C into BoogiePL. Initiaignore the super-
script toMem and assume there is a sindgliem map. We represent the C heap using
the mapMem : int — int that maps an address to a value. The opeiate) describes
the translation of a C expressienWe usee: 1 to denote that is the static type of



e. Addresses of fields and pointer arithmetic are compiledyawaerms of arithmetic
operations. Finally, a dereference is translated as a [poka theMem map. The oper-
atorC(c) translates a C statement into BoogiePL and is self-expanakssignments
to heap expressions result in updates tolteen map.

The benefit of the translation with a single miglem is that it does not rely on the
types and the type-safety of a C program. However, the latikpas can make disam-
biguating locations in the heap difficult. For example, thiéofving assertion cannot be
proved without knowledge about the layout of the pointeendy:
x->f = 1; y->g = 0; assert(x->f == 1);

To disambiguate heap locations, we had earlier proposeasthef a mafgype : int —
type that maintains a “type” with each location in the heap [6].18lzal quantifiedype-
safety invariantrelating the contents dflem and Type is asserted after every update
to the heap; the assertion ensures that the runtime type a@héep corresponds to its
static type. The type safety invariant helps disambiguatetprs and fields of different
types, such as the pointe#%- >f and&y- >g in the example above.

Although the scheme described above provides an accuratemenodel for C,
using the type invariant while checking other propertiesamputationally expensive
as this invariant makes use of quantifiers. Therefore, we laa@opted the following
strategy that provides a way for a separation of concernsplietheMem map into a
set of maps where there is a mifem' for each (word-valued) field andMem? for
each pointer type, and use the translation shown in Figure 2. We then add assert
for each memory dereference as follows: for a derefereneef in a statement, we
asserfType[E(e) 4 Offse{ f)] = f, and for a dereferences, we asserfype[E(e)] =T.
These assertions are checked during the type-checking plidse assertions can be
proved by the type-safety checker in HAVOC or other orthaoechniques [21], we
say that the resultant programfisld-safewith respect to our choice of memory splits.
This allows us to have a high-level (Java-like) view of the & while proving the
concurrency related properties, without sacrificing smasd. Besides, as we show in
the next section, the ability to split the C heap into indefmt maps allows us to
perform scalable bug detection using SMT solvers.

The type-safety checker may fail to prove the introducedrdisss in programs that
take the address of fields in structures and dereferencedheantly, as in the following
example:

x->f = 1; int »y = &->f ; xy = 0; assert(x->f == 0);
In this case, the pointegs and&x- >f are aliased and the type-safety checker would

complain. To get around this problem, the user can spedifyttte maps for field and
typeintx should be unified into a single map.

2.2 Eliminating Concurrency Under a Context-Bound

The previous section showed how to convert a concurrent @ranointo a concurrent
BoogiePL program. In this section, we show how to reduce awwant BoogiePL

3In our examples from Section 4.1, we only had to unify threkl$ién theserial driver.
HAVOC automatically issued field-safety warnings, and weoduced three annotations to
merge the fields (no code changes are required).



program into a sequential BoogiePL program while captusdhdpehaviors within a
context-bound, i.e. within a certain number of contextstpegad [14].

For the rest of this section, we fix the number of threads initipeit program
to a positive numben and the context-bound to a positive numlerNote that the
number of possible context-switches in that case+K — 1. Without loss of gen-
erality, we assume that the input concurrent program isigeavas a collection of
procedures containing+ 1 distinguished procedurésit, Ty, ..., Ty, each of which
takes no parameters and returns no value. The concurregitapnois then given by
P2 Init(); (T10)||---||Tn()). Our goal is to create a sequential progr@rthat captures
all behaviors oP up to the context-bounid. More preciselyQ will capture all round-
robin schedules d? starting from thread in which each thread can execute at ntst
times. Each thread is allowed to stutter in each turn, theeslablingQ to model even
those schedules that are not round-robin.

The global store of the concurrent C program is captureddrBihogiePL program
as a collection of global maps from integers to integers,ezxibed in the previous
section. We assume that the program has been transformeat svery statement either
reads (into a local variable) or writes (from a local vargld global map at a single
index, and that the condition for every branch dependseintim local variables. We
will also assume that each such read or write to the globalongexecutes atomically.
To model synchronization constructs, the grain of atomicén be explicitly increased
by encapsulating statements inside an atomic block. Fanpbea the acquire operation
on a lock stored at the addresss modeled using a global map variathleck and a
local scalar variablampas follows:

atomic { tmp:= LocKa]; assume tmp=0; LocKa] :=1; }

Finally, we assume that assertions in the program are mibdsieg a special global
boolean variablerror that is set to true whenever the condition in the assertratate
evaluates to false.

To convert the concurrent prograbhinto the semantically-equivalent sequential
programQ, we introduce several extra global variables. First, weonhice a global
variablek to keep track of the number of contexts executed by eachdh&sacond,
for each global mags, we introduceK — 1 new symbolic map constants namezﬁ to
V,?. Finally, we replace each global m&with K new global maps name@; to Gk.
Intuitively, the sequential progra® mimics a concurrent execution & as follows.
First, each maygs; is initialized to the arbitrary symbolic constaM? forall2<i<
K. The initialization procedurénit runs using the global ma@; (with an arbitrary
initial value) and initializes it. Then, the proceddrgstarts executing using the global
mapG;. Context switches iff; are simulated by a sequencekof- 1 nondeterministic
choices. Tha-th such choice enforces that the program stops using theGnapd
starts using the ma@; 1. Then, each off; to T, is executed sequentially one after
another under the same policy. Note that wiign, starts executing on the ma&, the
value of this map is not arbitrary; rather, its value is |b#ire byT; when it made it$-th
context switch. Finally, whefi, has finished executing, we ensure that the final value
of mapG; is equated t()/i?rl, which was the arbitrary initial value of the m&p,; at
the beginning of thé+ 1-th context ofT;.



We capture the intuition described above by performing thlewing transforma-
tions in sequence:

1. Replace each statement of the famp:= GJa] with
atomic {
if (k=1)tmp:=Gy[a]
elsif (k= 2) tmp:= G3|a]

else tmp:= Gk [a]

}

and each statement of the fof&fa] := tmpwith
atomic {
if (k=1)G[al:=tmp
elsif (k= 2) Gp[a] :=tmp

éiée Gk |[a] :=tmp
}

2. After each atomic statement that is not within the lexsmipe of another atomic
statement, insert a call to proced@ehedulavith the following specification:

modifies k

ensures old(k) <kAk <K
exsures true

void Schedulévoid);

Here,exsures true means thaSchedulenay terminate either normally or excep-
tionally; under normal terminatiork is incremented by an arbitrary amount but
remains within the context-bouri€l. The possibility of incrementing by more
than one allows the introduction of stuttering into the réuwnbin schedules. The
possibility of exceptional termination allows a threadtmpsexecuting at any point.
The raised exception is caught by handlers (as shown bel@awptrap the invoca-
tion of eachT;. We assume thdhit does not share any code with the threads and
we do not add a call t&cheduldo any of the procedures called frdmit.

For each procedurg let the procedure obtained by the transformation abovesbe d
noted byf’. Let us assume that there is a single map vari@ttethe original program.
The sequential prograf is then defined to be as follows:

Gy:=Vg; ...; Gk:=VS

Init();

error ;= false k:=1,;

try { Schedulg); T;() } finally k:=1;

try { Schedulg); T/,() } finally k:=1;
assume Gy :VZG; ...; assume Gx_1 = V|?;
assert —error



Note that all constraints involving the symbolic map conitareassumeckqual-
ities. These equalities can be handled by the select-ughatey of arrays without
requiring the axiom of extensionality. Consequently, ghesnstraints do not present
any impediment to the use of an off-the-shelf SMT solver. Traaesformed program
contains control flow due to exceptions which can be easitgted away if the un-
derlying verification-condition generator does not untkerd it. Furthermore, since the
transformed program is sequential, the verification-cmaigenerator can ignore the
atomic annotations in the code.

3 Field Slicing

Once we have the sequential BoogiePL program generatedtfremmultithreaded C
program, the next step is to try to verify the program usirgoB IE. BOOGIE performs
precise reasoning across loop-free and call-free codadmds loop invariants and pro-
cedure contracts to deal with loops and procedure calls fadgun order to have an
automatic tool, we inline procedures and unroll loops (vgitme exception discussed
later)# Since recursion is rare in system programs, inlining praceslis acceptable;
however, the size of inlined procedures can be very largeirtixial attempt at verify-
ing these inlined programs did not succeed. On the other,va@mdnay lose coverage
when we unroll loops a fixed number of times. In this sectioa,ilustrate the use of
a simplefield slicingtechnique to achieve scalability when checking large edinall-
free programs without sacrificing precision; in some casasmethod enables us to
avoid unrolling loops and therefore obtain greater coverag

3.1 Abstraction with Tracked Fields

The high-level idea of this section is fairly simple: ourrtstation of C programs de-
scribed in Section 2.1 uses a mlem' for dereferencing a field, and a mapvlem?

for dereferencing pointers of type We assume that the input C program has been
provenfield-safefor this split, i.e. the type checker has verified the assestiabout
the Type map as described earlier. We guess a subset of these fieldgpmsdagel-
evantand slice the program with respect to these fields. If theratistd program can
be proved correct, then we have proved the correctness sétivential BoogiePL pro-
gram. Otherwise, we have tefinethe set of relevant fields and try again. While proving
the abstracted program, we can skip loops (without the reeadrbll them) that do not
modify any of the relevant fields.

In this section, we formalize how we perform the slicing wigspect to a set of
fields, while in the next section we show how to refine the sdtetds we track. Let
us define the operatiatbstract(P, F) that takes a BoogiePL prografgenerated in
the last section and a set of fieldsand performs the following operations:

1. For any fieldg ¢ F, translate the writeMem?[¢] := tmpfor all 1 < i < K asskip.
2. Foranyfieldy ¢ F, translate the readsip:= Mem?[€] for all 1 < i < K ashavoc tmp,
which scrambles the value thp.

4 Inference of loop invariants and procedure contracts isrgooitant area of future work.



Input: ProgramP
Output: ProgramP checked or error trace

1: allFields « all fields in P
2: trackedFields— 0
3: loop
4: A« Abstract(P, trackedField$
5:  (checkedabsErrTrace < Check(A)
6: if checked= true then
7 return CHECKED
8. else
9: concTrace— Concretize (P, absErrTrace
10: checked— Check(concTrace
11: if checked= true then
12: F — allFields
13: for all f € allFieldsdo
14: absTrace— Abstract(concTrace trackedFieldsu F\ {f})
15: checked— Check(absTrace
16: if checked= true then
17: F—F\{f}
18: else
19: trackedFields— trackedFieldsJ { f }
20: end if
21: end for
22: else
23: return BUG(concTrace
24: end if
25: endif
26: end loop

Fig. 3. Algorithm for tracked fields refinement based on the CEGARIoo

3. Finally, remove the call t&chedulehat was inserted after the atomic section for a
read or write from a field) ¢ F.

Itis easy to see that the first two steps are property-praeggive. they do not result
in missed bugs. Since statements suchasc tmpandskip do not access any global
state, context switches after them will not introduce artyaekehavior. Consequently,
the trailing calls taSchedule&an be removed, thereby eliminating a significant number
of redundant context switches.

In addition to reducing code size and eliminating contexitaves, checking the
abstractionAbstract(P, F) has another benefit. It enables us to create simple sum-
maries for loops whose body does not contain any reads oesmvibomF. The sum-
mary leaves the memory maps unchanged and puts nondetgimirdlues into the
local variables modified by the loop. This simple heuristicdreating loop summaries
is precise enough for our examples: it worked for 5 out of altof 15 loops in our
benchmarks from Section 4.1.

Both of these factors improve the scalability of our apphoaied improve coverage
by not requiring every loop to be unrolled. In particular, @& avoid the problem with



unrolling loops whose exit condition does not depend on apuyti values (e.g. a loop
that goes from 1 to 100) — for such loops any unrolling les th&0 times would
block the execution after the loop.

3.2 Refining Tracked Fields

In this section, we provide an algorithm for inferring thé serelevant fields that affect
the property being checked. Our inference algorithm is Ewaaof the counterexample-
guided abstraction refinement (CEGAR) framework [5, 13juiFé 3 gives the pseudo-
code for the algorithm. The algorithm takes a progRuand checks if the assertion in
the program holds. We start with initializirigpckedFieldswvith an empty set, and then
we add fields to the set based on the analysis of counteregamiite outer loop in
lines 3 to 26 refinerackedFieldsrom a single abstract counterexamplesErrTrace
obtained by checking the abstract progranif the abstract prograrA is not correct,
we concretize the abstract counterexample tedzsErrTraceand check if the trace is
spurious. If the trace is not spurious, then we have a tru grtine 23. The operation
Concretize simply restores the reads and writes of fields that were attsal away
(we do not add the context switches back, although adding theuld not break the
algorithm). The inner loop in lines 13 to 21 greedily finds animial set of fields from
allFields such that abstracting them would result in a spurious coexample. Those
fields are added twackedFieldsand the outer loop is iterated again. Since each iteration
of the inner loop increases the sizetadckedFieldsand the total number of fields is
finite, the algorithm terminates.

4 Implementation and Results

In this section, we describe our prototype implementativorv, and our experience
with applying the tool on several real-life benchmarks. Asatibed earlier, ®0rRM
first uses HAVOC to translate a multithreaded C program aleitly a set of relevant
fields into a multithreaded BoogiePL program (Section 2HBn reduces it to a sequen-
tial BoogiePL program (Section 2.2), and finally usesdssIE to check the sequential
program. The BOGIE verifier [2] generates a verification condition from the Bt
description, and uses the SMT solver Z3 [8] to check the tieguVerification condi-
tion.

4.1 Benchmarks

We evaluated $0RM on a set of real-world Windows device driver benchmarks. Ta-
ble 1 lists the device drivers used in our experiments andanesponding driver dis-
patch routines we checked. It also provides their size| tateber of fields, number
of threads, and the scenario in which they are checkedr® found a bug in the
usbsamp driver (see Section 4.3) andbsamp_fix is the fixed version of the example.
We implemented a common harness for putting device driteosigh different con-
current scenarios. Each driver is checked in a scenaridlgpp@svolving concurrently
executing driver dispatch routines, driver request cdatieh and completion routines,



| Driver [LOC|Routind #F [#T]| Scenario |
daytona |105|ioctl 532 D|CA
read
mqueue |494|write |72|4|D|CA|CP|DPC
ioctl

read
usbsamp |644|write [113 3 D|CA|CP

ioctl

read
usbsamp_fix| 643 | write |113 3 D|CA|CP

ioctl

serial |1089 "°*¢ 214 3| D|cA|DPC
write
Table 1. Windows device drivers used in the experiments. “LOC” is Itlage number of lines
of code in the scenarios we check, excluding whitespacesmants, variable and function dec-
larations, etc.; “Routine” lists the dispatch routines heaked; “#F” gives the total number of
fields; “#T" is the number of threads in the checked scendB8ognario” shows the concurrent
scenario being checked, i.e. which driver routines arewgeelcconcurrently as threads (D — dis-

patch routine, CA — cancel routine, CP — completion routibleC — deferred procedure call).

and deferred procedure calls (column “Scenario” in Tabl@ g number of threads and
the complexity of a scenario depend on the given driver'sibdties. For example, for
the usbsamp driver, the harness executes a dispatch, cancel, and cioompfeutine
in three threads. Apart from providing a particular scemaour harness also models
synchronization provided by the device driver framewoskyeell as synchronization
primitives, such as locks, that are used for driver-spesificchronization.

SToRM has the ability to check any user-specified safety propbrtgur experi-
ments, we checked these-after-fregproperty for thel RP (10 Request Packetata
structure used by the device drivers. A driver may complatefeee anl RP it receives
by calling a request completion routine (e\fif Request Conpl et e in Figure 4),
and must not access &rRP object once it has been completed. To check this prop-
erty, we introduced assertions via automatic instrumentdiefore each access to an
I RP object; our examples have up to a hundred of such asserfigpgally, drivers
access and may complete the same request in multiple rewk@euting concurrently.
To satisfy our crucialise-after-fregoroperty, the code must follow the proper and of-
ten complex synchronization protocol. Bugs often maniéedy in highly concurrent
scenarios; consequently, this property is difficult to ¢heith static analysis tools for
sequential programs.

4.2 Evaluation

Our empirical evaluation of ® RM consists of two sets of experiments. In the first one
(Table 2 and Table 3), we runT®SRM on the benchmarks described in the previous
section using manually provided fixed set of tracked fields.assess the scalability of
STORM with respect to code size, number of threads, number of gtsmt@nd number
of locations where a context switch could potentially happe the second set of ex-



# of contexts per thread Table 2. Varying the number of
172734715 contexts per thread.

daytona |ioctl| 3.4 3.8 4.2 4.5 5.6

Example [Routin

read | 62.1161.5236.2173.0212.4
mqueue |write | 48.6113.4171.2177.4192.3
ioctl |120.6198.6204.7176.1199.9
read | 17.9 37.7] 65.8 66.§ 85.2
usbsamp |write| 17.§ 48.8§ 52.3 74.3109.7
ioctl| 4.4 50 5.1 53 54
read | 16.9 28.2 38.9 46.7 47.5
usbsamp fix| write | 18.1f 32.2 46.9 52.5 63.4
ioctl| 4.8 4.7 51 51 5.2
read | 36.5 95.4103.4240.5281.4
write | 37.3164.3100.8233.0649.9

serial

% of switches removed Table 3. Varying the number of
0 | 40 | 80 | 100| locations where a context switch

- could happen. The number of
daytoma |ioctl]| 26 39 3.7 36 35 contexts per thread is fixed to 2.

read |201161.1121.3112.1 57.8 “CS" represents the total number
mqueue |write|198112.7101.5100.6 25.2 places where a context switch
ioctl 202197719281685 731 could happen_ The examp|es
read | 90| 37.7 42.2*22.6(*17.9] where we missed thasbsamp
usbsamp |write| 90| 48.9 37.7*22.7/*18.9] bug because of randomly (un-
ioctl| 22| 5.00 4.8 4.5 4.4 soundly) removing contextswitch
read | 89 282 25.9 22.d 17.4 locations are marked with *.
usbsamp fix| write | 89 32.2 28.2 22.5 16.5
ioctl| 21 4.7 4.7) 4.5 4.3
read | 307 95.4 92.7 66.3 47.6
write | 309164.8120.2 94.3 29.7

Example [Routing#C

serial

periments (Table 4), instead of using manually providedkied fields, we determine
the usability of our tracked fields refinement algorithm byngst to completely au-
tomatically check our benchmark drivers. All experimen&@conducted on an Intel
Pentium D at 2.8GHz running Windows XP, and all runtimes argeiconds.

Table 2 shows the result of varying the number of contextshpead from 1 (se-
guential case) to 5. We managed to successfully check alilobenchmarks with up
to 5 contexts per thread, which clearly demonstrates thalsitisy of our approach. In
the process, our tool discovered a bug in th@samp driver (details can be found in
Section 4.3).

Table 3 demonstrates how the runtimes vary with the numbplacks in the code
where a context switch can be introduced. Fordbk®samp example that has a bug,
removing the context switches results in the bug not beiagadiered. The runtime de-
creases as the number of context-switch locations de@€eabkis observation justifies
that removing context switches during field slicing is imjaait for scalability.



Table 4.Results of the tracked fields| Example [Routing #F [#MF[#AF[#IT[Time(s]

refinement algorith_m. “#F" gives t_he daytona |ioctl|53] 3 | 3 | 3| 2444
total number of fields; “4MF” is -
the number of manually provided re.ad 9 | 934463
tracked fields: “#AF" denotes the| mdueue |write |72 7 | 8 | 8 ) 3010.G
number of tracked fields generated ioctl 9 | 9]3635.6
by the refinement algorithm; “#IT” read 3 | 3|43824
is the number of CEGAR loop iter- jusbsamp fix| write 113 1 | 4 | 4 | 2079.2
ations; “Time” is the total running ioctl 0|0 21.
time. ) read 5 | 5|3013.7
serial | ice|?M O | 4 | 3| 17204

Table 4 describes the results of applying the abstracgfinement algorithm from
Section 3 to discover the set of relevant fields and completgiomatically check the
examples. Using the refinement algorithm, we were always @bbbtain a set of rel-
evant fields that is just a small fraction of the set of all fiethd that closely matches
the set of manual fields that we used previously. Most of théime is actually spentin
scripts to perform the abstraction, and can be significaetiyiced. Without the use of
field slicing, STorRM was unable to run on large examples. For example, even atgecki
themqueue read routine with only two contexts does not terminate in one Hbwe
do not use field slicing.

4.3 Bug Found

By applying SSTorM on the Windows device drivers listed in Table 1, we found acon
currency bug in thasbsamp driver. We reported the bug, and driver developers con-
firmed and fixed it. Figure 4 illustrates the bug with a simptificode excerpt from the
driver. It contains two routines, thegsbSanp_Evt | oRead dispatch routine and the
UsbSanp_Evt Request Cancel cancellation routine. The routines get executed by
threadsT1 andT2, respectively. The example proceeds as follows:

1. ThreadT1 starts executing on a requdquest , while threadT2 is blocked
since cancellation foRequest has not been enabled.

2. T1 enables cancellation and sets the cancellation routirretivd call to the driver
framework routineMf Request Mar kCancel abl e on line 8. Then the context
switch on line 10 occurs.

3. T2 can now start executingsbSanp_Evt Request Cancel , and another con-

text switch happens on line 7 a2.

. T1 completefRequest on line 11 and context switches again on line 12.

. On line 9,T2 tries to accesRequest that has been completed in the previous

step, which is an error.

(G20~

Itis important to note that although the scenario leadinyitobug might seem sim-
ple, the bug has not been found before by extensively applytiner software checkers
onusbsamp. For instance, SLAM [1] failed to discover this bug since 1Aan check
only sequential code. KISS [19], on the other hand, can chenkurrent code, but only
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/] Thread T1

VO D UsbSanp_Evt | oRead( 1// Thread T2
VDFQUEUE Queue, 2Va D
WDFREQUEST Request, 3 UsbSanp_Evt Request Cancel (
size_t Length 4 WDFREQUEST Request
) { 5 ) {
A 6 PREQUEST_CONTEXT rwCont ext ;
Wif Request Mar kCancel abl e( 7 . [/ SWTCH 2: T2->T1
Request, UsbSanp_Evt Request Cancel ) ; 8 rwContext =
./l SWTCH 1. T1->T2 9 CGet Request Cont ext (Request) ;
Wif Request Conpl et e( Request, status); 0 ...
... 11 SWTCH 3: T1->T2 11}
}

Fig. 4. Simplified version of the code illustrating the concurrermyg Srorm found in the
usbsamp example. Places where context switches happen when thecbugscare marked with
SW TCH.

up to 2 context switches, and would therefore also miss tigsdince the bug occurs
only after at least 3 context switches.

5 Related Work

We roughly divide the related work into two areas — boundeat@aches to concur-
rency and other techniques for analysis of concurrent Crarog.

Bounded approaches to concurrencyThe idea of context-bounded analysis of
concurrent programs was proposed by Qadeer and Wu [19]aserdclontext-bounded
reachability analysis for concurrent boolean programsshasvn to be decidable [18].
Many subsequent approaches have relied on bounding theamahtontexts to tackle
the complexity and scalability issues of concurrent progaaalysis [18, 19, 16, 20, 14].

KISS [19] transforms a concurrent program with up to two eahswitches into
a sequential one by mimicking context switches using procedalls. However, re-
stricting the number of context switches can be limitingeaislenced by the bug in
Section 4.3 that 8orRM discovered.

Rabinovitz and Grumberg [20] propose a context boundedieation technique
for concurrent C programs based on bounded model checkih@Am solving. The
algorithm applies traditional BMC on each thread sepayatetl generates sets of con-
straints for each. The constraints are instrumented towstdor concurrency, by in-
troducing copies of global variables and additional caists for context switches.
The resulting formula is solved by a SAT solver. Our work offseveral important
advantages: we support memory maps to deal with a possillgunded heap; our
source-to-source program transformation allows us torége any sequential verifi-
cation technique, including annotation-based modulasaeiag; our experiments are
performed on real-world benchmarks, whereas the authgiy #pe technique to hand-
crafted microbencmarks. Finally, it is unclear how to explechniques such as field
slicing using their method.

Bounded model checking of concurrent programs was alsmegbby Ganai and
Gupta [10], where concurrency constraints are added larity incrementally during



bounded unrolling of programs. The number of context sveisak not bounded a priori,
but heap and stack are, and the number of program steps tineldsbmodel checker
explores is limited by the available resources.

Suwimonteerabuth et al. [22] present a context-boundelysisaf multithreaded
Java programs. Their approach is different from ours ber@usanslates a multi-
threaded Java program to a concurrent pushdown system Imdinguthe size of the
program heap and using finite bitvector encoding for integer

CHESS [16] is a tool for testing multithreaded programs thetamically explores
thread interleavings by iteratively bounding the numbesmftexts. On the other hand,
STORM is a static analysis tool and therefore does not have to éx¢lee code using
tests and offers more coverage since it explores all paspdths in a program up to a
given context bound.

Analysis of concurrent C programs.Kahlon et al. [12] focus their efforts on itera-
tively reducing the number of thread interleavings usingirants generated by abstract
interpretation. The described techniques are complemetataur approach, since we
could also use them to reduce the number of interleavingsrimstrumented program.
The authors then apply model checking, but only on progrésasin order to resolve
data-race warnings, and therefore fair comparison withegperiments would be hard.

Witkowski et al. [23] describe their experience with applyiCEGAR-based pred-
icate abstraction on concurrent Linux device drivers. Thesults indicate that con-
currency rapidly increases the number of predicates iefeby the refinement loop,
which in turn causes a fast blow-up in the model checker. Bef@ derived our current
technique based on SMT solvers, we attempted a similar apprehere we used the
Lal-Reps method to create a source-to-source transfasmitm a multithreaded to a
sequential C program, which is then analyzed by the SLAM gtifier. Our experience
was similar as we could not scale this approach beyond emgglesimicrobenchmarks.
Henzinger et al. [11] present a more scalable approach f@ARebased predicate
abstraction of concurrent programs; their method checkk #aead separately in an
abstract stateful context that is iteratively construdiga refinement loop.

Chugh et al. [4] introduce a framework for converting a setdiaédataflow analysis
into a concurrent one using a race detection engine. Thedeteetion engine is used
to ensure soundness of the sequential analysis by invaliptite dataflow facts influ-
enced by concurrent writes. The analysis is scalable, ldyimany false positives;
our approach is much more precise, but not as scalable.

There also exists work that targets analysis of concurreatdan program mod-
els [7,17]. However, these approaches do not clarify howbtaio these models from
real-world programs, while our approach can automaticailglyze C programs.
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