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Abstract

Administration tasks increasingly dominate the total
cost of ownership of database management systems. A
key task, and a very difficult one for an administrator,
is to justify upgrades of CPU, memory and storage re-
sources with quantitative predictions of the expected im-
provement in workload performance. Current database
systems are not designed with such prediction in mind
and hence offer only limited help to the administrator.
This paper proposes changes to database system de-
sign that enable aResource Advisorto answer “what-
if” questions about resource upgrades. A prototype Re-
source Advisor built to work with a commercial DBMS
shows the efficacy of our approach in predicting the ef-
fect of upgrading a key resource — buffer pool size —
on OLTP workloads in a highly concurrent system.

1 Introduction

Administering database systems is a complex and in-
creasingly expensive task, and there is a pressing need
for greater automation in this area [7, 13]. A key as-
pect of DBMS administration isresource provisioning:
given a hardware budget, an administrator must decide
whether and in what proportion to invest in faster pro-
cessors, additional memory, or larger and faster disks.
DBMS running transactional workloads serve as back
ends to a variety of enterprises such as e-commerce,
banking, and travel reservation systems, essentially de-
termining the application’s response time [19]. Accurate
database resource provisioning is thus vital to ensuring
quality of service in these enterprises.

Such enterprises typically hire human experts who use
experience and rules of thumb [12] to decide whether ac-
quiring more resources will improve performance. The
cost of hiring skilled DBAs for resource provisioning de-
cisions is high for large enterprises and practically pro-
hibitive for the large number of small businesses using
DBMS as back ends. Even experts find it difficult to
quantify the expected benefit of a resource upgrade, an
especially challenging task for highly concurrent OLTP
(On-Line Transaction Processing) workloads whose be-
havior at any point in time is the combined effect of
many concurrent transactions. The net effect is that
DBMS are often over-provisioned.

In this paper we argue that the DBMS itself is in the best
position to answer “what-if” questions from administra-
tors about its resources. In addition to sharing the re-
sources fairly among workloads, the DBMS should be
proactive in suggesting resource upgrades and predict-
ing their effect on both aggregate and per-request per-
formance. To gain insights on required system changes
that will enable such self-predictability, we have build a
prototypeResource Advisorfor a recent unreleased ver-
sion of Microsoft’s SQL Server DBMS.

The Resource Advisor aids administrators in making re-
source upgrade decisions by answering what-if ques-
tions about hypothetical resource upgrades such as
“How would performance be affected if I doubled the
amount of memory on this server?” withquantitative
answers: “throughput will increase by 40%, the re-
sponse time of ‘new order’ type transactions will de-
crease by 80%, and the bottleneck will move from the
storage system to the CPU”. Although many aspects of
database performance have been individually studied in
great detail, we believe this is the first attempt to auto-
matically answer such high-level questions through an
architecture that integrates online, end-to-end, live sys-
tem tracing with hardware resource models and perfor-
mance prediction.
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One resource of great interest for DBMS administrators
is main memory. The size of the buffer pool for caching
table and index data retrieved from disk has traditionally
been one of the most important performance limiting
factors [5, 9, 11]. Its effect on performance, however,
is inherently workload-specific and non-linear, and hard
to predict using rules of thumb. Although the Resource
Advisor is designed to answer “what-if” questions about
all three hardware resources (CPU, storage, and main
memory) relevant to a DBMS, our prototype implemen-
tation and evaluation focus on the main memory buffer
pool as the variable resource.

The contributions of this paper are as follows:

• We demonstrate the feasibility of answering “what-
if” questions through a prototype implementation
and evaluation of a Resource Advisor for a com-
mercial DBMS.

• We present a modular architecture for the Resource
Advisor, and identify the key components required
for effective self-prediction: low-level instrumenta-
tion, end-to-end tracing, and parametrized models
of hardware resources.

• We demonstrate the additional benefits of our end-
to-end tracing technique in providing detailed in-
formation for visualization and understanding of
system performance.

Our design and implementation are validated through
detailed experiments showing that the Resource Advi-
sor accurately predicts changes in OLTP workload per-
formance across large changes in available main mem-
ory resources. When available memory is doubled, for
instance, the Resource Advisor predicts the resulting
throughput to within 7% or better. The Resource Advi-
sor also correctly tracks the trend in transaction response
time across a range of memory sizes spanning more than
an order of magnitude.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background and motivates our approach.
Section 3 describes the instrumentation required for a
DBMS to support self-prediction, as well as the range of
performance visualizations enabled by such instrumen-
tation. Section 4 describes the predictive models that
process traces from the instrumented DBMS to generate
answers to “what-if” questions. Section 5 presents an
evaluation of a prototype Resource Advisor with a real
commercial DBMS. Section 6 discusses related work,
and Section 7 concludes with a summary of our contri-
butions and directions for future work.

2 Motivation and design

Large commercial databases are complex systems that
depend on several physical resources such as the back
end storage system, volatile main memory and CPUs.
A database administrator (DBA) must decide on a good
initial configuration of these resources, and then con-
tinuously monitor the system for new bottlenecks and
changes in workload. There are two nightmare scenarios
that every DBA faces. First, when clients complain that
their workload performance does not meet service-level
agreements, she needs to pinpoint the source of the prob-
lem. Second, a fixed budget is allocated to buying new
hardware during periodic system upgrades. Which re-
sources should the DBA upgrade and how can she quan-
tify the effect on workload performance? From talking
to administrators of real database systems, it is clear that
they do not have the right tools to handle these scenarios.

The most common solution — over-provisioning all the
resources that might impact performance — is waste-
ful and can even be prohibitively expensive. A second
approach is to monitor performance using the aggre-
gate counters provided by most commercial DBMS [14,
21, 22]. Such per-resource counters provide a narrow
view of the system and do not identify the global bot-
tlenecks. (If the observed disk queues are long, should
we buy more memory or faster disks?) Additionally, ag-
gregate statistics do not offer any insights into response
time, since they do not distinguish between background
and foreground (“critical-path”) resource usage. Finally,
to determine the effect of a change in the available re-
sources the DBA must still constructively interpret the
performance implications of 400+ counters.

The challenge here is to predict the performance impact
of additional resources, in order to invest in resources
for optimal price/performance. In other words, the DBA
must be able to answer “what-if” questions: given obser-
vations of the system with one set of resources, to predict
performance with another, hypothetical set of resources.
The goal of the Resource Advisor is to provide adminis-
trators with automated answers to such “what-if” ques-
tions, for example “how will my workload perform if I
double the current memory?” In addition to point pre-
dictions, it should also forecasttrends: “what curve will
response time follow as memory is increased?” In a typ-
ical scenario, the Resource Advisor would be part of the
DBMS software at the client site. It would run in the
background and continuously collect trace information
with which it kept up-to-date summaries of workload re-
source demand based on recent behavior. At any point,
the DBA could propose a resource upgrade and receive
a quantitative prediction of the expected performance.
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An additional goal is to provide detailed information
about current system performance. While an inexpert
administrator might only wish to know “what will I get if
I buy more resources”, a more knowledgeable one might
wish to know “why do ‘new order’ type transactions take
so long, where is the time going?” The Resource Ad-
visor should capture sufficiently detailed and accurate
information about system performance to allow the con-
struction of such “performance views”. It is especially
important to be able to construct new, previously unan-
ticipated views without recompiling or reinstalling the
DBMS.

2.1 Design principles

Our design incorporates several insights we have had
into enabling a DBMS to identify resource bottlenecks
and predict the impact of upgrading them. First, admin-
istrators are usually unable to precisely characterize or
model the expected application workload. Additionally,
workloads evolve and change over time, causing bottle-
necks to shift. This means that resource advice should
be based oncontinuous monitoringof a live system run-
ning a real application workload.

Second, OLTP performance in particular depends on the
interaction between multiple DB components as well
as multiple types of transactions executing concurrently.
Thus it is insufficient to track aggregate resource utiliza-
tion statistics: we musttrace system behavior in suffi-
cient detail to compute the resources used by each trans-
action, and the order in which they were used, in a highly
concurrent execution.

Third, it is essential to separatedemandfrom service.
The former refers to the resource demands placed by the
workload on the system, independent of the underlying
hardware. The latter refers to the way these resource
demands are scheduled by the available hardware re-
sources. To answer “what-if” questions about resource
changes, we must distinguish workload characteristics
from hardware-dependent measurements.

Finally, we advocate that each individual resource man-
ager in the system beself-predicting, with the ability to
answer hypothetical questions about their behavior un-
der different resource regimes. For a DBMS, the rel-
evant resource managers are the CPU scheduler, the
buffer manager, and the I/O scheduler. The designers
of these resource managers are in the best position to
incorporate predictive models that correctly reflect their
scheduling algorithms, eviction policies, etc. Since cur-
rent DBMS lack this capability, we demonstrate its fea-
sibility by incorporating resource models for a specific
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Figure 1. Resource Advisor components.

DBMS into the Resource Advisor. Our prototype uses
standard analytic and simulation models: our focus is
on the Resource Advisor framework rather than specific
modeling or simulation techniques.

2.2 Prototype architecture

To illustrate the impact of the above design principles
on making a DBMS self-predictive, and to examine the
complexity of doing so, we have built a prototype Re-
source Advisor for SQL Server. Our specific goal was
enabling the DBMS to observe the behavior of a live
OLTP workload, and predict the results of changing the
buffer pool size. This includes identifying the new bot-
tleneck resource (CPU or storage) and predicting the re-
sulting throughput and response time.

Figure 1 shows the high-level architecture of the Re-
source Advisor. Event traces are generated by thein-
strumented DBMS, and a demand traceis extracted
which separates out the workload-intrinsic aspects of the
resource usage from the hardware-dependent aspects.
This resource demand can then bevisualizedin various
ways, either in aggregate or by individual transaction,
to give a comprehensive view of system performance.
The demand trace is also the starting point for answering
“what-if” questions. Parametric models of the hardware
resources convert the demand trace into predictions of
resource usage in a new, hypothetical hardware config-
uration. These predictions are then used to compute the
expected workload throughput and latency.

Note that this architecture is workload-agnostic, i.e. all
relevant information about workload behavior is cap-
tured in the live system traces, allowing the remaining
steps to use generic techniques and models. The design
also allows bothonlineandofflineoperation, i.e. traces
can be consumed live from the running DBMS or cap-
tured on disk and analyzed later.
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Event Type Arguments Description
Control Flow StartRequest SQL transaction begins

EndRequest SQL transaction ends
EnterStoredProc procname Stored procedure invocation
ExitStoredProc procname Stored procedure completion

CPU scheduling SuspendTask taskid Suspend user-level thread
ResumeTask taskid Resumes user-level thread
Thread/CSwitchIn cpuid, systid Schedule kernel thread
Thread/CSwitchOut cpuid, systid Deschedule kernel thread

Buffer pool activity BufferGet pageid Get reference to a buffer page (blocking)
BufferAge pageid Reduce the “heat” of a page
BufferTouch pageid Increase the “heat” of a page
BufferDirty pageid Mark a page as dirty
BufferReadAhead startpage, numpages Prefetch pages (non-blocking)
BufferEvict pageid Evict a page to the free pool
BufferNew pageid Allocate a new page from the free pool

Disk I/O DiskIO startpage, numpages Asynchronously read/write pages
DiskIOComplete startpage, numpages Signal read/write completion

Table 1. Events used by the Resource Advisor

3 Resource Monitoring

This section describes the instrumentation required by a
self-predicting DBMS. It then describes the extraction
of aggregate and per-transaction demand traces, and fi-
nally the use of demand traces in visualizing workload
behavior.

3.1 Instrumentation

Before making predictions from observations of a live
DBMS, we mustinstrumentit to provide the informa-
tion we need: fine-grained, end-to-end traces of trans-
action resource demands and not just aggregate perfor-
mance counters. We have instrumented a private copy
of the SQL Server source code to track the use of CPU,
memory, or I/O resources. Each instrumentation point
generates aneventwith associated parameters related to
resource usage; these events are then processed in time
order by the Resource Advisor components to gener-
ate performance predictions. Events are inserted in the
DBMS source code as calls to C functions. The imple-
mentations of these functions are automatically gener-
ated from a high-level definition of the interface between
the DBMS and the Resource Advisor.

Currently we trace events relating to transaction control
flow, buffer pool activity, disk I/O, and thread scheduling
(Table 1). Although the exact interface and instrumen-
tation points depend on the particular DBMS, this list of
events represents the information that any DBMS will

need to monitor for effective self-prediction. We are ex-
tending the event list to include locking activity, which
can have a significant impact on response time. This
will allow us to extend the Resource Advisor to model
the lock “resource”.

Each event is automatically annotated with the user and
kernel thread IDs and then posted through Event Trac-
ing for Windows (ETW) [20], a low-overhead tracing
infrastructure in Windows Server 2003. ETW marks the
events with an accurate, high-resolution timestamp de-
rived from the processor cycle counter, orders the events
by timestamp, and flushes them in the background.

3.2 Demand trace extraction

A live system trace is the combined effect of workload
demand and resource availability. From it, the Resource
Advisor extracts ademand tracethat represents work-
load behavior in a hardware-independent way. This is
then used to represent workload behavior when model-
ing the effect of changing the hardware resources. The
demand trace includes abuffer reference trace, which
contains the resource-independent aspects of buffer pool
activity: demand accesses, readaheads, buffer touches,
buffer dirties, and new page creations. It does not in-
clude buffer evictions or I/O events, which depend on
the buffer pool size. The demand trace also includes
the CPU cycles used in executing workload transac-
tions, computed by tracking the active threads within the
DBMS using the scheduler context switch events.
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Figure 2. Timeline view of a single transaction from an OLTP workload
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Figure 3. Stack depth visualization

The demand trace contains the interleaved demands
of many concurrently executing transactions as well
as background tasks such as buffer pool management.
From it the Resource Advisor extractsper-requestde-
mand traces, essential to predicting request response
time. Given the thread events and request markers, it
ascribes each event and each cycle of computation to ex-
actly one transaction request or background task. It then
groups the transaction requests according to their stored
procedure invocations: for example, a TPC-C “new or-
der” request invokestpcc neworder exactly once.

3.3 Virtual performance counters

In addition to its use in answering “what-if” questions,
detailed end-to-end tracing provides a wealth of infor-
mation about current system performance. This infor-
mation can be represented in a variety of ways to help
administrators understand system behavior. In addi-
tion to the existing performance counters typically pro-
vided by modern DBMS, we can dynamically gener-
ate new “virtual” performance counters without any fur-
ther modification of the DBMS. Once we have correctly
instrumented the resource multiplexing points (CPU
scheduling, buffer page access, etc.) for each resource
of interest, any per-transaction or aggregate performance
measure can be derived from the trace data. This flexi-
bility allows an administrator to choose the most appro-
priate view to understand some aspect of performance.
As one example, Figure 3 shows a stack depth analy-
sis [18] of buffer cache locality by transaction type, de-
rived from one of our experimental traces.

In addition to summary views, it is often instructive to
examine in detail the behavior of a single transaction, in-
dependent of other concurrently executing transactions.
Per-request traces allow us to do precisely this. Figure 2
shows an automatically generated “timeline view” of a
single “new order” transaction selected from a highly in-
terleaved TPC-C execution.
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4 Answering “what-if” questions

The primary function of the Resource Advisor is to an-
swer “what-if” questions about system performance in
a hypothetical hardware configuration. In other words,
given a workload demand trace, we wish to predict its
performance with different resources. In this section
we first describe the performance metrics of interest —
throughput and latency — and the operational formulas
used to predict them. The inputs to these formulas are
provided by the resource models, which predict the be-
havior of the CPU, storage, and buffer pool managers
when resources change. We describe in detail the buffer
pool and storage models used in the prototype as they
are affected by changes in buffer pool size, the resource
that we vary in the experimental validation.

4.1 Performance metrics

The throughputof a DBMS running some workload is
the number of transaction requests satisfied per second.
It depends not only on server performance but also on
the client request rate, and whether clients operate in an
open or closed loop. In a closed-loop workload, each
concurrent user has at most one outstanding transaction
request at any time. After the transaction is completed,
the user waits for somethink timebefore issuing the next
one. The throughput depends on this think time as well
as on server performance. In an open-loop workload,
requests are issued independently of the completion of
previous requests, and the throughput equals the request
rate as long as all resources are underutilized.Saturation
throughputis the maximum achievable server through-
put, i.e. the request rate when either the CPU or the I/O
system is fully utilized but not overloaded.

Thus, the interesting workload performance metrics to
predict are:

1. closed-loop throughput with a given think time
2. saturation throughput
3. response time

This work is concerned with server performance. Thus,
“response time” consists only of the time between the
server receiving a transaction request and sending out
a response after committing or aborting the transaction.
All delays external to the server process — client-side
processing, network queuing, etc. — are considered to
be part of “think time” from the server’s viewpoint.

4.2 Throughput prediction

To predict the throughput of a workload, the Resource
Advisor first identifies the bottleneck or throughput-
limiting resource. The expected server throughputT
will be that of the bottleneck resource, the lowest of:

• Tmax/io: throughput limit imposed by the storage
subsystem servicing the I/O request stream from
the buffer pool manager.

• Tmax/CPU: throughput limit imposed by the pro-
cessor executing the workload’s computational de-
mands.

• Tmax/workload: throughput limit imposed by client
request rate due to “think time” (user think time,
client processing time, network delay, etc.)

Tmax/io is computed as as1
niotio

. Herenio is the average
number of I/O requests per transaction predicted by the
buffer pool model (Section 4.4).tio is the average I/O
service time per request predicted by the storage model
(Section 4.5).

Tmax/CPU is computed as 1
tCPU

, wheretCPU is the average
amount of CPU time used per transaction. The Resource
Advisor currently assumes that this is inversely propor-
tional to processor speed and independent of other hard-
ware parameters.

Tmax/workload for an open-loop workload is its known
transaction rateT. For a closed loop workload, it is
Nusers
tthink

, whereNusersis the number of concurrent users and
tthink is the mean think time.

4.3 Response-time prediction

Unlike throughput, response time depends not only on
overall resource usage but also on thecritical path re-
source usage, which is available from our per-request
demand traces (Section 3.2). In the general case, pre-
dicting response time requires us to solve the hard prob-
lem of modeling the interleaved scheduling of multi-
ple concurrent transactions. Here we present a simpler
model which predicts response time by scaling the cur-
rently observed response time. For an OLTP workload,
this gives promising results despite its simplicity.

The Resource Advisor categorizes transactions into
types by the stored procedures invoked and analyzes
each transaction type separately, as they can have very
different response-time characteristics. Depending on
the DBMS and workload, many factors can contribute
to response time, notably locking [6, 19]. Currently we
only predict delays due to waiting/executing on hard-
ware resources, i.e. CPU and I/O.
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For each transaction typeX, the Resource Advisor com-
putes the critical-path CPU time per transaction and
scales it using the CPU model. I/O blocking time is
proportional to the number of blocking I/Os per trans-
action (predicted by the buffer pool model) and to the
average I/O response time including queuing delay. Re-
sponse time is assumed to be inversely proportional to
storage system idleness, and storage system utilization
proportional to the total amount of I/O traffic. Thus the
predicted mean response time for transaction typeX

tX = t ′X/cpu+bX/iod′

io
1−U ′

io

1−U ′

io
nio
n′io

From the live system trace we can computet ′X/cpu, d′

io,

U ′

io, andn′io: the mean critical-path computation time for
typeX, the mean response time per blocking I/O, the I/O
subsystem utilization, and the average number of I/Os
per transaction across all types. The buffer pool model
providesbX/io andnio: the predicted number of blocking
I/Os per transaction of typeX and the predicted number
of I/Os per transaction across all types.

4.4 Buffer pool model

In the above analyses, the throughput and latency pre-
dictions depend on the amount of I/O generated per
transaction. I/O is generated due to buffer cache misses
and dirty page evictions, which depend on the buffer
pool size and also on the buffer management strategies
used by the DBMS, especially the cache eviction pol-
icy [11]. The prototype Resource Advisor uses a simu-
lation model specific to the DBMS under study, which
uses a single global buffer cache and an LFU evic-
tion policy. Our model assumes that the sequence of
buffer references, as well as memory allocations for pur-
poses other than caching disk pages (temporary objects
or working memory), is independent of the underlying
buffer pool size. We have confirmed these assumptions
through code inspection and experimentation.

The Resource Advisor makes three simplifications in
modeling the real buffer manager. First, the simulator
only models the I/Os to the main database tables, as-
suming a configuration where the recovery log is on a
separate disk and is not the performance-limiting factor.
Second, the simulator ignores the opportunistic write-
back of dirty pages by the DBMS, which occurs only
when the I/O subsystem is idle and does not affect the
analysis of I/O as a performance-limiting factor. Finally,
the DBMS replenishes a small free buffer pool in the
background whereas the simulator evicts pages strictly
on demand, a negligible difference given that the free
pool is very small relative to the total memory.

4.5 Storage model

The storage model predicts the performance of the I/O
request stream predicted by the buffer pool model. It
uses an analytic model [24] based on the Shortest Seek
Time First (SSTF) scheduling algorithm used by almost
all modern disk device drivers. It assumes that the I/O
request stream is random, with little or no spatial lo-
cality. This is a good fit for highly concurrent work-
loads with many independent requests such as OLTP,
especially as the buffer cache tends to filter out much
of the locality in the access pattern. If data pages are
distributed across disks, the Resource Advisor separates
out the I/O requests by disk and analyzes each disk indi-
vidually as a potential bottleneck. It does not currently
model more complex storage schemes such as mirroring
or RAID.

The SSTF model predicts the mean I/O service time
tio as a function of the known disk parameters such as
number of cylinders, seek times, etc. and also of the
mean I/O request queue lengthqave. The queue length
is an input to the model and must be predicted, since it
can depend on the resource availability. For example,
larger buffer pools generate fewer buffer cache misses,
which leads to fewer outstanding I/Os per user and hence
shorter queues. We use

qave= (Nusers−Ncpu− tthinkT)(
Nnonblocking

Nblocking
+1)

The first term represents the average number of user con-
nections blocked in I/O at any given time, and the sec-
ond represents the average number of outstanding I/Os
for each such connection.Nusersandtthink are the number
of user connections and the mean think time, both work-
load parameters obtainable from the live system trace.
Ncpu is the expected number of running or runnable
transaction threads, which for our non-preemptive CPU
scheduler is the number of processors in the system. The
ratio

Nnonblocking
Nblocking

of non-blocking I/Os (readaheads and

writebacks) to blocking I/Os (demand reads) is predicted
by the buffer pool model.

These equations give us the I/O service timetio as a func-
tion of the transaction rateT. For a closed-loop, I/O-
bound workload, the transaction rate in turn is a function
of tio (Section 4.2). The Resource Advisor solves the
mutual equations numerically using an iterative compu-
tation. Section 5 shows that this simple model of queue
length, combined with the analytic storage model, accu-
rately tracks the change in I/O subsystem performance
due to changing the buffer pool size.
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5 Evaluation

In evaluating the Resource Advisor, the high-level ques-
tion to be answered is:

Given a live system running a workload, can the Re-
source Advisor efficiently and accurately predict the per-
formance of the same workload with different resources?

In this evaluation, we answer this question for an OLTP
workload with the varying resource being buffer pool
size, i.e. memory availability. We break down our ear-
lier question into four sub-questions, and answer each in
turn:

• For a closed-loop workload, can the Resource Ad-
visor predict throughput at different memory sizes?

• Given a non-saturation workload, can it predict the
saturation throughput at different memory sizes?

• Given a non-saturation workload, can it predict the
response time at different memory sizes?

• What are the runtime overheads and other costs of
deploying the Resource Advisor?

5.1 Workloads and experimental setup

Our evaluation uses two variants of a TPC-C workload,
which differ only in the transaction request rate:

• SAT is a closed-loop saturation workload. Each
user operates in a closed loop with near-zero think
time, placing the server under heavy load.

• OPEN is an open-loop non-saturation workload
with a low, constant transaction rate such that the
server always has significant amounts of idle time.

All our experiments were conducted with a single in-
stance of SQL Server running on Windows Server 2003
on a single 2.7 GHz Intel Xeon processor. The 10GB
database is stored on a single 80 GB Western Digital
WDC800JB disk. To avoid contention with the database
disk, the transaction log and the event trace log are di-
rected to two additional disks. Our aim here is not to
obtain optimal performance from the DBMS server, but
to predict the change in performance when resources
change. Thus, we opted for simplicity rather than care-
ful tuning of the hardware and database configuration.

Our stress client simulates 200 independent user con-
nections to the server, runs on a single 2.8 GHz Intel
Pentium processor, and is connected to the server by
a 100 Mbps ethernet switch. Each workload run con-
sists of at least 5000 transactions and is preceded by
a warm-up phase of at least 30000 transactions. Each

run is repeated on five different server memory con-
figurations, with buffer pool sizes of 64 MB, 128 MB,
256 MB, 512 MB, and 1024 MB. The CPU and disks
were unchanged in all configurations.

The aim of each experiment is to validate the Resource
Advisor’s answer to a “what-if” question against the
measured result of carrying out the hypothetical change.
Of the many “what-if” questions a DB administrator
might ask, we chose two typical ones related to buffer
pool size:

• What will the performance be if I double the buffer
pool size?

• What is the trend as I further increase the buffer
pool size?

To answer these questions, we show for each experiment
two predictions:

• DOUBLE is the predicted performance when the
buffer pool size is doubled. It predicts the per-
formance at 128 MB from the trace at 64 MB, at
256 MB from 128 MB, etc.

• TREND predicts performance over the entire range
of buffer pool sizes, based on traces from the
lowest-memory configuration (64 MB).

We expect DOUBLE to give us accurate point predic-
tions and TREND to correctly track the shape of the
memory-performance trade-off curve.

The Resource Advisor can be used either online or of-
fline; in this evaluation, for control and repeatability, the
live system traces are logged to disk and prediction is
done offline.

5.2 Closed-loop throughput prediction

This experiment evaluates the accuracy of DOUBLE and
TREND in predicting the throughput of SAT. We eval-
uate the accuracy of each individual prediction compo-
nent as well as the final result. The results are based
on 5 identical runs at each configuration, showing the
mean and standard deviation of both the measured and
the predicted values.

Our first step is to evaluate the accuracy of the buffer
pool model. The predicted value is the number of I/Os
generated per transaction, which determines the I/O-
bound throughputTmax/io. Figure 4 shows the predicted
and actual I/Os per transaction. Figure 5 then shows
how well the storage model predicts the I/O service time.
Note that our model correctly tracks the slight increase
in service time due to decreasing queue lengths.
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Figure 4. I/Os per transaction for SAT

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200
Buffer pool size (MB)

I/O
 s

er
vi

ce
 t

im
e 

(m
s)

Actual
TREND
DOUBLE

Figure 5. I/O service time for SAT

Given the I/O request stream and service time, the Re-
source Advisor predicts throughput using the analysis of
Section 4.2. Figure 6 shows the accuracy of this predic-
tion. Note that throughput was I/O-bound at all buffer
pool sizes except at 1024 MB, when it becomes client-
bound, i.e. limited by workload think time. In all cases,
the predictor correctly identifies the bottleneck, and we
see that TREND tracks the performance curve, while
DOUBLE predicts throughput to within 7% or better.

5.3 Saturation throughput prediction

The previous experiment showed that that the Resource
Advisor can predict throughput across changes in buffer
pool size. Often we also want to predict the effect of
changes inrequest rate. For example, we might want
to know the maximum or saturation throughput even if
the server is not currently saturated. To test this pre-
dictive capability, we fed the Resource Advisor a trace
from a system running the low-load OPEN workload,
and applied the throughput analysis using the previously
measured think times of SAT to predict the closed-loop
throughput of SAT. This experiment validates the fol-
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Figure 7. Throughput of SAT (from OPEN)

lowing capabilities of the Resource Advisor:

• Predicting saturation throughput: as SAT is a sat-
uration workload in all but the 1024 MB case,
correctly predicting its throughput corresponds to
correctly predicting saturation throughput. At
1024 MB, correctly predicting SAT’s throughput
corresponds to correctly identifying that the bottle-
neck has shifted outside the server.

• Predicting across rate changes: SAT and OPEN
have very different transaction rates, and in fact dif-
ferent rate models (closed vs. open). Thus predict-
ing the performance of one by observing the other
will show that the throughput prediction can track
changes in transaction rate as well as buffer pool
size.

• Demand extraction: the throughput prediction is
based on the assumption that the demand trace cap-
tures all relevant features of the workload and is
independent of server load. This assumption is val-
idated by using the demand trace of OPEN to pre-
dict the performance under the very different load
regime of SAT.
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Figure 7 shows the measured throughput of SAT, the
DOUBLE and TREND predictions based on a single run
of OPEN, and the throughput of OPEN itself. Although
SAT and OPEN have completely different throughput
trends, the Resource Advisor correctly infers the former
by observing the latter: DOUBLE predicts the saturated
throughput to within 10% or better and correctly identi-
fies the client as the bottleneck for the 1024 MB case.

5.4 Open-loop response time prediction

Recall from Section 4.3 that the Resource Advisor
groups transactions by type. This lets us measure and
predict response time by transaction type, since differ-
ent transaction types have very different critical paths.
We predicted the effect on response time of doubling
memory for each of the five TPC-C transaction types, in
each of four memory configurations. The prediction er-
ror varies from 33%–68%. Although this appears large,
it is important to note that the underlying variation in
response time is also large. In 19 of the 20 cases, pre-
diction error was smaller than the observed standard de-
viation in latency.

The error is also small compared to the change in re-
sponse time as memory size is increased. Across the
full range of memory sizes measured, response time of
all five transaction type changes by more than an order of
magnitude. Our predictions accurately follow thistrend
for all five transaction types. Figure 8 shows this result
graphically for the “new order” type.

Our results show that the response time model effec-
tively predicts the shape of the memory-response time
trade-off curve, and that the point prediction errors are
not large compared to the inherent variation in response
times. The large variance also indicates that there is little
room for further improvement in predicting the mean re-
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Figure 9. Overhead of event logging

sponse time. Instead, the focus should be on predicting
the frequency distribution of response times.

5.5 Overheads

Figure 9 shows the runtime overheads of the Resource
Advisor: the amount of trace data generated and the
CPU consumed per transaction. The overhead per trans-
action is higher at lower buffer pool sizes: there are more
I/O events to process, as well as more background events
since transaction execution times are lengthened.

The worst-case CPU overhead is 6.2%, for an unopti-
mized C# implementation of the Resource Advisor run-
ning online. With offline operation, this is reduced to
1.2% for tracing and logging. The trace data rate is a
modest 0.44 MB/s in the worst case, whether for online
consumption or logging to disk. These overheads could
be reduced further with an optimized implementation
of the Resource Advisor, and by running it periodically
rather than continuously.

A potential concern with self-prediction is the amount of
effort required to add it to an existing DBMS. Although
we advocate that future DBMS designs incorporate self-
prediction as a goal from the beginning, our experience
is that this capability can also be added to legacy code
with a modest amount of work. Instrumentation of the
DBMS required only 189 additional lines of code in 6
source files; it could also be achieved without any source
modification by using binary rewriting techniques [3, 8].
The rest of the Resource Advisor runs as a stand-alone
program, and is also modest in size: 1150 lines of code.

10



6 Related work

Much research has identified buffer memory as a key re-
source for database throughput and response time [9, 11]
and proposed various techniques to optimize or adapt
memory usage: for example, by dynamically limiting
the working memory allocated per query [5]. The Re-
source Advisor complements this work by predicting
the behavior of the buffer manager at different memory
sizes, given traces of the memory allocation and buffer
references at higher levels.

The technique used by our buffer model — trace-based
simulation — is an old and well-studied idea [10, 18].
An alternative approach is to model the cache hit ra-
tio of a specific workload such as TPC-C as a function
of buffer size [15, 25]. Although we use a TPC-C like
workload in our evaluation, the Resource Advisor itself
is workload-agnostic, relying on live system traces to
capture the characteristics of the workload. It is thus
usable by DBAs with little or no understanding of work-
load characteristics.

Several studies have proposed detailed cost models of
CPU usage and of the processor cache hierarchy [2, 4,
17]. Others have developed models of storage device
performance [24, 26]. The novelty of our contribution
lies in integrating these approaches into a broader mech-
anism to answer “what-if” questions about hypothetical
hardware changes, and in demonstrating the feasibility
of answering these questions online for a live system.

As in Magpie [3] and Pinpoint [8], a key feature of the
Resource Advisor is the use of detailed, low-overhead,
end-to-end event tracing. Magpie and Pinpoint, how-
ever, use the traces for workload modeling and anomaly
detection in web servers, whereas the Resource Advisor
uses it to predict performance for capacity planning in
DB applications.

Finally, resource provisioning is only one of many
database configuration and maintenance tasks. Orthog-
onally to our work, database research has recently fo-
cused on automated physical database design tools to
reduce manual intervention and maximize performance.
The Database Tuning Advisor [1] and DB2 Advisor [16]
suggest the most appropriate set of indexes and materi-
alized views as well as the best physical layout of tables,
while AutoPart [23] automates database schema design
using data partitioning on large-scale datasets.

7 Conclusion

This paper presented a design and implementation for
a databaseResource Advisorthat predicts the impact
of changing resource availability on workload perfor-
mance. The Resource Advisor is based on fine-grained,
low-overhead tracing; per-request demand extraction;
and simple, lightweight, workload-agnostic resource
and performance models.

Our primary contribution is to demonstrate that the Re-
source Advisor can accurately answer “what-if” ques-
tions about hypothetical resource changes for a live sys-
tem: the key requirement for automating decisions on
resource upgrades or reprovisioning. We validated this
claim by predicting the throughput and response time
of an OLTP workload as a function of buffer pool size.
Our second contribution is a modular architecture where
each analysis and modeling component can be sepa-
rately replaced or extended. Finally, we demonstrated
the value of end-to-end request tracing both in response
time prediction and in performance visualization.

Our short-term goal is to more thoroughly validate
the Resource Advisor design with a broader range of
workloads and resource models. For example, DSS
(Decision Support System) workloads are very differ-
ent from OLTP workloads in having low concurrency,
long-running transactions, and phased behavior. In the
medium term, we would like to explore the range of
prediction options enabled by detailed, realistic, end-
to-end tracing. For example, given per-request traces,
we could model not just the mean response time but
also the distribution of response times. Additionally,
we could answer “what-if” questions about changing
the workload transaction mix by sub-sampling a trace
with a different workload mix. In the long term, we in-
tend to tackle more challenging aspects of performance
prediction, such as the effect of locking on response
time, as well as performance in a distributed setting such
as a two-tier web service with both database and web
servers.
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