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Abstract. Nelson and Oppen provided a methodology for modularly combining de-
cision procedures for individual theories to construct a decision procedure for a com-
bination of theories. In addition to providing a check for satisfiability, the individual
decision procedures need to provide additional functionalities, including equality gen-
eration.

In this paper, we propose a decision procedure for a conjunction of difference con-
straints over rationals (where the atomic formulas are of the form z < y + ¢ or
x < y + ¢). The procedure extends any negative cycle detection algorithm (like the
Bellman-Ford algorithm) to generate (1) equalities between all pair of variables, (2)
produce proofs and (3) generates models that can be extended by other theories in a
Nelson-Oppen framework. All the operations mentioned above can be performed with
only a linear overhead to the cycle detection algorithm.

1 Introduction

Difference constraints are a restricted class of linear arithmetic constraints of the form x
y + ¢, where x, y are variables, <€ {<, <} and ¢ is a rational constant. These constraints
naturally arise in many applications. For instance, the array bounds’ check in a program and
the timing constraints in job scheduling can be specified as difference constraints.

There is a well-known, efficient decision procedure for difference constraints. Given a
set of difference constraints, one can reduce the problem of checking its satisfiability to the
problem of detecting negative cycles in an appropriately generated graph [6]. Then, any
of the negative-cycle-detection algorithms (see [5] for a nice survey) can be used to decide
the given constraints. For instance, the classic Bellman-Ford [3, 12] algorithm can decide m
difference constraints on n variables in O(n * m) time and O(n + m) space complexity.

In this paper, we extend this basic decision procedure to produce an equality-generating,
proof-producing, and model-generating decision procedure for difference constraints. The mo-
tivations for these extensions are the following: Using the Nelson-Oppen combination frame-
work [16] requires the decision procedure to generate any variable equalities implied by the
input constraints. Also, when used in a lazy-proof-explication framework [11, 10, 2], the de-
cision procedure needs to generate proofs, both when reporting unsatisfiability of the input
constraints and when generating any implied equality. Finally, the need for model-generation
is motivated by our use of the decision procedure in an unit-testing tool. In this application,
an input formula, when satisfiable, represents a feasible path in the program. A model for
this formula can then be used to produce a concrete test input that drives the program along
that path.

A trivial way to provide the extensions mentioned above is to compute the transitive
closure of the input constraints. For instance, the input constraints imply an equality x = y
if and only if the transitive closure contains the constraints x < y and y < z. Given m
difference constraints in n variables, computing the transitive closure requires O(n3) time



and O(n?) space. ! While the worst-case complexity is the same as the complexity of the
Bellman-Ford algorithm, our initial experiments with this approach show that computing
the transitive closure is very slow in practice and is a major bottleneck for the decision
procedure. This is particularly apparent when the input is sparse, where m is much less than
the maximum possible O(n?).

In contrast, the decision procedure described in this paper generates equalities, proofs,
and models with very little overhead to the basic negative-cycle-algorithm, in average linear
time and space. Such an algorithm is critical for the following pragmatic reasons. First, by
not performing the transitive closure our decision procedure is very fast for sparse difference
constraints. Also, the the time and space complexity of the decision procedure is determined
only by the negative-cycle-detection algorithm used. Thus, the efficiency of the decision
procedure can be further improved by using a negative-cycle-detection algorithm that is
optimized for the constraints appearing in a particular domain [5].

A detailed version of the current paper, complete with proofs and other descriptions is
available at [14].

1.1 Related Work

Pratt [18] observed that most linear arithmetic queries in software verification are limited
to difference logic (DIF) queries. Recently, there has been a renewed interest in solving DIF
queries, mainly because of the its importance in various hardware and software verification
domains. In this section, we briefly touch upon some of the related works that provide a
decision procedure for DIF constraints in a theorem prover.

MATHSAT [1] uses a DIF logic solver as the first step to check the satisfiability of a
linear arithmetic constraint before using a more general linear arithmetic decision procedure.
Nieuwenhuis et al. [17] use a decision procedure for DIF that can incrementally produce
all the constraints implied by a set of constraints. The procedure also produces proofs of
unsatisfiability. The implied constraints are used to improve the constraint propagation and
conflict analysis of a DPLL [8,9] style solver for first-order theories. Cotton et al. [7] use
a decision procedure for DIF based on negative cycle detection algorithm and integrate
conflict analysis of DIF with the conflict analysis of the SAT solver. Unlike our method,
these methods do not require producing equalities over variables, as the decision procedure
does not operate in a combination framework. Finally, Strichman et al. [21] and Bryant
et al. [4] provide a satisfiability preserving translation to a Boolean formula for a Boolean
combination of DIF constraints.

Model generation for linear arithmetic queries in a combination framework has been re-
cently addressed by Ruess et al. [19]. They extend the Simplex decision procedure to generate
satisfying assignments (over rationals) in the presence of disequalities. Our contribution is to
extend Bellman-Ford algorithm to handle disequalities. For the restricted fragment of DIF,
this provides an efficient algorithm to generate such models, while Simplex suffers from a
worst-case exponential complexity in solving linear constraints.

2 Background

For a given theory T, a decision procedure for T checks if a formula ¢ in the theory is
satisfiable, i.e. it is possible to assign values to the symbols in ¢ that are consistent with T,
such that ¢ evaluates to true.

! Transitive closure can be computed more efficiently using matrix-multiplication based methods.
It is not clear how well these methods perform when used in a decision procedure.



Decision procedures, nowadays, do not operate in isolation, but form a part of a more
complex system that can decide formulas involving symbols shared across multiple theories.
In such a setting, a decision procedure has to support the following operations efficiently:

1. Satisfiability Checking: Check if a formula ¢ is satisfiable in the theory.

2. Model Generation: If a formula in the theory is satisfiable, find values for the symbols
that appear in the theory that makes it satisfiable. This is crucial for applications that
use theorem provers for test-case generation.

3. Equality Generation: The Nelson-Oppen framework for combining decision procedures [16]
requires that each theory (at least) produces the set of equalities over variables that are
implied by the constraints.

4. Proof Generation: Proof generation can be used to certify the output of a theorem
prover [15]. Proofs are also used to construct conflict clauses efficiently in a lazy SAT-
based theorem proving architecture [11].

3 Difference Logic and Satisfiability

Difference logic is a simple yet useful fragment of linear arithmetic, where the atomic formulas
are of the form x 1y + ¢, where z, y are variables, <€ {<, <} and ¢ is a rational constant.
Any equality x = y+ ¢ is represented as a conjunction of x < y+c and y < x — ¢. Constraints
like = > ¢ are handled by adding a special variable zy to denote the constant 0, and rewriting
the constraint as x 1 zg + ¢ [21]. To simplify our discussion, we assume that there are no
strict inequalities. This poses no problems as one can simply reduce the bound ¢ by a small
amount [20]. The function symbol “+” and the predicate symbols {<, <} are the interpreted
symbols of this theory.

Given a set of difference constraints ¢, we can construct a graph G4(V, E), where the
vertices of the graph are the variables in ¢ and there is a directed edge in the graph from x
to y of weight ¢, if y < a + ¢ € ¢. For each edge e € F, we denote s(e), d(e) and w(e) to be
the source, destination and the weight of the edge.

A simple path P in G, is a sequence of edges [e1, ..., e,] such that d(e;) = s(e;+1), for
all 1 < < n—1, and no vertex is repeated. We always refer to a simple path as a path,

unless otherwise mentioned. For a path P = [ey,...,e,], s(P) denotes s(ey), d(P) denotes
d(ey) and w(P) denotes the sum of the weights on the edges in the path, i.e. Xi<;<p,w(e;). A
simple cycle C is a sequence of edges [eq,. .., e,] where s(e;) = d(e,) and no vertex appears

as a source or destination twice in the path. We use u ~ v in E to denote that there is a
path from u to v through edges in F.

It is well known [6] that a set of difference constraints ¢ is unsatisfiable if and only the
graph G, has a simple cycle C, such that w(C') < 0. Hence, checking satisfiability can be
reduced to checking for negative cycles in the graph Gy. The Bellman-Ford [3,12] algorithm
described below is a way to detect negative cycles in a directed graph. Although the algorithm
is well known, we describe it here because it will be used in subsequent sections (e.g. while
describing the proof of unsatisfiability).

3.1 Bellman-Ford algorithm

Given a directed graph G (possibly with negative weights), Bellman-Ford algorithm detects
the single source shortest path from any given vertex s to all other vertices in the graph.
The algorithm returns false when there is a negative cycle in the graph, and true otherwise.
For any vertex v € V, §(v) denotes the weight of a shortest path from s to v, upon the
completion of the algorithm with true. In that case, the map p(v) denotes the parent of



1. Initialize:
— Set §(s) < 0. For any vertex v € V' \ {s}, set §(v) « oco. For any vertex v € V, set p(v) <
nil.
2. Fori=1to |V|—1do:
(a) For each edge (u,v) € E
i. If 6(v) > 0(u) + w(u,v) then
— Set §(v) «— 6(u) + w(u,v).
— Set p(v) «— u.
3. For each edge (u,v) € E:
(a) If 6(v) > 6(u) + w(u,v) then
i. return false.
4. return true.

Fig. 1. Bellman-Ford(G(V, E),s): Bellman-Ford Algorithm for computing single-source shortest
path.

the vertex v in the shortest path tree rooted at s. Figure 1 describes the the algorithm
Bellman-Ford(G(V, E), s) to compute the shortest path from s to each of the vertices in G:
To detect negative cycles in the graph Gy, the first step is to add a new vertex Tz
to the graph, and add edges of weight zero from x,,.; to all other vertices in G4. Let Hy
be the new graph. The graph G, contains a negative cycle if and only if the algorithm
Bellman-Ford(Hy, T pmaz) returns false. The runtime of the algorithm is O(|V| * |E|).

Proposition 1. When the Bellman-Ford algorithm returns true, then for any edge (u,v) €
E, §(v) < (u) + w(u,v).

Let us define the slack sl(u, v) for any edge (u,v) (after Bellman-Ford algorithm returns
true) as: sl(u,v) = 0(u)—d(v)+w(u, v). It is easy from Proposition 1 to see that sl(u,v) > 0,
for any edge (u,v).

Proposition 2. For any cycle C = [eq, ..., e,] in Gy, w(C) = Xe,ccsl(e;).

4 Equality Generation for Difference Constraints

In this section, we illustrate how to generate all the variable equalities implied by the con-
straint ¢. We assume that ¢ is satisfiable — i.e. that the Bellman-Ford algorithm has returned
true on the graph G4(V, E) constructed as shown in Section 3. Now, one can always pro-
duce such equalities by performing a transitive closure of the constraints in ¢ and checking
if z < y and y < x have been derived. However, the algorithm suffers from worst case
O(|V|?) time and O(|V|?) space complexity. We show an algorithm to derive all such equal-
ities in O(|V| 4 |E|) average case space and time, after the completion of the Bellman-Ford
algorithm. This algorithm assumes an average constant time for hash table insertions and
lookups. Without this assumption, our algorithm has a time complexity O(|V| * logC + |E|)
where C' is the weight of the maximum weighted path in Gg.

Figure 2 describes the algorithm EqGen(Gy,d) for generating equalities over the variables
in V.

Theorem 1. Let £ be the set of equalities generated by the EqGen(Gg,d) procedure. For
any equality x =y over V, ¢ = x =y if and only if E = x =y.

We will use a few intermediate lemmas before proving the above theorem.

Lemma 1. 4 cycle C = [e1,...,e,] in Gy has w(C) = 0, if and only if C is a cycle in G.



1. Let E’ be set of edges in G such that an edge e € E’ if and only if si(e) = 0.

2. Create the induced subgraph G (V, E') from G4(V, E).

3. Group the vertices in G into strongly connected components (SCCs). Vertices v and v are in
the same SCC if and only if u ~» v and v ~» w in E’. This can be done in linear time [22].

4. For each SCC S, let V' = {x |z € S and &(x) = d}. This can be done in average linear time
using a hash table.

5. For each V¥ = {x1,...,x1}, where k > 2, generate the equalities z1 = 2o, T2 = 3,...,Tp_1 =
Tk.

Fig. 2. Algorithm EqGen(Gg,9).

Lemma 2. An edge e in G4 representing y < x + ¢, e; can be strengthened to represent
y =+ ¢ (called an equality-edge), if and only if e lies in a cycle of weight zero.

Lemma 2 implies that the equality edges in G are exactly those edges in G;5 that are
present in the SCCs of G/¢~ Since SCCs preserve the cycles in G/, any edge e in G lies in a
zero-weight cycle if and only if e lies in some SCC in G;).

Lemma 3. For two variables x and y in V, ¢ = x =y if and only if x and y lie in some

SCC of G, and 6(x) = 6(y).

Finally, the proof of Theorem 1 follows easily from Lemma 1 and Lemma 3. Note that
for any pair of vertices z and y, « and y lie in a cycle of weight zero and d(x) = 0(y) = d if
and only if {z,y} C V., for some SCC S. Therefore, either z = y is present in &, or follows
from &£ by using symmetry and transitivity.

5 Proof generation

When Bellman-Ford algorithm returns false, there is a negative cycle in the graph Gg.
This negative cycle is the proof of unsatisfiability. The cycle can be obtained by simply
traversing the p pointers. Let v be the vertex such that §(v) > §(u) +w(u, v) in step 3(i). Let
up = p(u),uz = p(u1),...,ur = p(uk—1),... be the vertices that are obtained by following
the parent pointer p. For this sequence, there exists 1 < i < j, such that u; = u;. The set of
edges [(uj,u;—1), (uj—1,uj—2), ..., (uit1,u;)] forms a negative cycle in G.

One the other hand, when the procedure generates an equality © = v, we have to provide
a proof for the equality. We will use the SCC computation phase to enable generating the
cycle in G;S containing u and v. To do this, we briefly look at the main steps of the algorithm
for generating SCCs.

The algorithm SCC(G(V, E)) (described in Figure 3), computes the SCCs for a graph
G(V, E). Similar to the Bellman-Ford algorithm, we maintain parent pointers p for each
vertex.

For an SCC S, let root(.S) denote the root of the tree for S (that also corresponds to the
node with the highest f value in S). For any vertex u, define u; = p(u), us = p(uy),... and

u_y =p(u), u_o =pT(u_y),....

Lemma 4. For any SCC S (with size at least two), and for any pair of distinct vertices
u and v in S, the sequence of edges [(u,u—_1),(u—_1,u_2),...,(u_k, 100t(S))] followed by
[(root(S), vm), (Vm, Vm—1), .-, (vs,v)] forms a path (not necessarily simple) from u to v in
E.

Lemma 5. If the SCC algorithm is run on G'¢, then for every pair of vertices u and v in
an SCC S with 6(u) = 6(v), a path from u to v (and from v to u) with weight zero can be
constructed using p and p* pointers in O(|V|) time.



1. Perform a depth-first search (DFS) on G.

— Record the finishing time f[v] for each vertex v in G. Intuitively, the finishing times in-
dicate the order in which the vertices were popped from the stack (after exploring all its
descendants) during the traversal of the graph.

— During the DFS, update the parent pointer p of any vertex v, p(v) « u, where v was first
visited through the edge (u,v) € E.

2. Construct GT = G(V, ET), where ET = {(v,u) | (u,v) € E}. Let p” be the parent pointers for
the graph G7.

3. Perform DFS on G7T in the order of decreasing f[v]. Update the parent pointers p” (u) for each
vertex as before.

4. The DFS on G7 induces a set of trees. The set of nodes in each tree represents an SCC.

Fig. 3. Algorithm SCC(G(V, E)).

Thus, if v and v belong to the same SCC in the graph G/, and 6(u) = §(v), then the
path from u to v of weight zero will derive v < u and the path from v to u of weight zero
will derive v < v. This will constitute the proof of u = v.

Theorem 2. For every equality u = v implied by ¢, the proof of uw = v can be generated in
O(|V]) time.

6 Model Generation

For a conjunction of difference constraints ¢, the § values computed by the Bellman-Ford
algorithm satisfies all the constraints in ¢. However, this is not sufficient to produce a model in
the Nelson-Oppen combination framework. Consider the following example where a formula
involves the logic of equality with uninterpreted functions (EUF) and difference constraints.

Let v = (f(x) # f(y) A < y) be a formula in the combined theory. Nelson-Oppen
framework will add ¢ = f(x) # f(y) to the EUF theory (T}) and v = x < y to the
difference logic theory (T5). Since there are no equalities implied by either theory, and each
theory T; is consistent with 1);, the formula v is satisfiable. Now, the difference logic theory
generates the model (z — 0,y — 0) for 1)5. However, this is not a model for ).

To generate an assignment for the variables that are shared across two theories, each
theory T; needs to ensure that the variable assignment p for T; assigns two shared variables
x and y equal values if and only if the equality « = y is implied by the constraints in theory
T;. We call such assignments as diverse.

The following section describes a more general problem of generating models when a set
of disequalities I are explicitly specified. Assuming that the Bellman-Form algorithm has
been run, this algorithm generates a model in O(|V|+ |E|+|I'|) time. It is straightforward to
modify this algorithm to generate diverse models in O(|V|+|E|) time by implicitly specifying
disequalities for every pair of variables x # y, if = y is not implied by the set of constraints.

6.1 Model Generation with Disequalities

In this section, we describe rational model generation for a set of difference constraints @,
along with a set of disequalities I' = {x; # y;, ...} over variables. We assume that the set of
constraints @ U I" is satisfiable.

We assume that we have run Bellman-Ford algorithm on Gg to compute d(v) for each
vertex v € V. Also, assume that have constructed the graph G (described in Section 4) that
contains the vertices with zero-slack edges. Finally, we generate the SCC graph G5°¢ of Gl
as follows. The vertices S1,...,S, of G3C are the SCCs in the graph G%. Let SCC(v) be



1. Let € = min ({|6(z) —6(y)| |z € V,y € V,0(z) # d(y)} U {sl(e) | sl(e) # 0}). If the set of values
is {}, then return.
2. For each S € G5, set 4(S) «— 0
3. For each S in the topological order < in G3°¢ do:
(a) If there exists 7" such that S ¢ T A~(S) =~(T)
i y(S) —v(S) +¢/2
il. e ¢/2
(b) For each edge (S,U) € G5°°
i y(U) < maz(y(U),~(S))
4. For each v € V, output §'(v) = §(v) — v(SCC(v))

Fig. 4. Model generation algorithm with disequalities.

the SCC S to which the vertex v € V belongs to. For each edge (z,y) € E, GQE,CC contains
an edge (SCC(z), SCC(y)). It is well known that G3°C is a directed acyclic graph and can
generated from G in O(|V| + |E|) time.

The values 6(v) for each vertex v € V computed by the Bellman-Ford algorithm is a
feasible solution for @ as it satisfies all the constraints in @. However, these values might not
satisfy the disequalities in in I, i.e. it is possible for §(x) = §(y) for = # y € I'. To generate
a model for @ U I', we perturb the values §(v) for v € V so as to satisfy the disequalities in
I' as well as the constraints in @.

Given the SCC graph G2¢“, the model generation algorithm orders its vertices in topological-
sort order =<, where S < T for every edge (S,T) in G5°C. 2 Such an ordering can be per-
formed in linear time [13]. The model generation algorithm makes a single traversal in the
SCC graph G5°C in the topological sort order. During this traversal, the algorithm assigns
a value (S) for each S in G5¢C. This value represents the perturbation of all the vertices
in the SCC represented by S.

The disequalities in I" are captured in G3°C by the relation # as follows: For vertices
S and T in G5°¢, S # T exactly when there exists t € S, y € T, T < Sand x #y € I.
Figure 4 describes the model generation algorithm.

To prove that this algorithm generates a model form ¢UTI", we need the following lemmas.

Lemma 6. For each SCCs S, T in G3°C and for each x,y € V, the following holds

1. sl(z,y) £ 0 = e<sl(z,y)

2 6x) £6() = €< 15x) — 5()

3. 0<v(s) <e

4. For edge (S,T) in G3°C, 4(S) < ~(T)

Lemma 7. The assignment 0’ output by the algorithm satisfies all constraints in ®.
Lemma 8. Forx #y eI, §(x) # ' (y).

Theorem 3. The assignment &' at the end of the above algorithm satisfies ® U I,

7 Conclusion

We have presented an efficient decision procedure for handling difference constraints in a
decision procedure that operates in a SAT-based proof-explicating, Nelson-Oppen combina-
tion framework. The procedure also generates models in the presence of disequalities. The

2 In practice, it is very easy to modify the SCC algorithm to generate the SCCs in topological sort
order — a separate pass is not necessary.



overhead of equality generation, proof generation and model generation over satisfiability
checking (using Bellman-Ford algorithm) is only O(|V| + |E|) (both time and space) in the
average case.
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