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Delay Aware Querying with Seaweed

Abstract Large highly distributed data sets are poorly
supported by current query technologies. Applications
such as endsystem-based network management are char-
acterized by data stored on large numbers of endsys-
tems, with frequent local updates and relatively infre-
quent global one-shot queries. The challenges are scale
(103 to 109 endsystems) and endsystem unavailability.
In such large systems, a significant fraction of endsys-
tems and their data will be unavailable at any given
time. Existing methods to provide high data availabil-
ity despite endsystem unavailability involve centralizing,
redistributing or replicating the data. At large scale these
methods are not scalable.

We advocate a design that trades query delay for
completeness, incrementally returning results as endsys-
tems become available. We also introduce the idea of
completeness prediction, which provides the user with
explicit feedback about this delay/completeness trade-
off. Completeness prediction is based on replication of
compact data summaries and availability models. This
metadata is orders of magnitude smaller than the data.

Seaweed is a scalable query infrastructure supporting
incremental results, online in-network aggregation and
completeness prediction. It is built on a distributed hash
table (DHT) but unlike previous DHT based approaches
it does not redistribute data across the network. It ex-
ploits the DHT infrastructure for failure-resilient meta-
data replication, query dissemination, and result aggre-
gation. We analytically compare Seaweed’s scalability
against other approaches and also evaluate the Seaweed
prototype running on a large-scale network simulator
driven by real-world traces.

1 Introduction

Querying endsystem data on large networks such as data
centers, enterprise networks, or the Internet requires a
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scalable distributed query infrastructure. Recent research
has looked at building such infrastructures [1,16,22,31,
32]. The challenges are availability and scalability. A sig-
nificant fraction of endsystems will be unavailable at any
given time due to network outages, endsystem failures,
and scheduled downtimes, which means the system must
tolerate the unavailability of some fraction of the data.
Additionally, any query infrastructure must scale, i.e. the
bandwidth overheads of query execution and background
maintenance must not become prohibitive at large scale.

Currently proposed solutions to the problem of data
unavailability require centralization, redistribution, or repli-
cation of the data. These techniques do not scale well
with data size per endsystem or data update rate per
endsystem. An example of such a system is PIER [16],
where every endsystem periodically re-injects all its tu-
ples into the network, requiring network bandwidth lin-
ear in the product of network size, per-endsystem data
size, and refresh rate. We believe that storing data any-
where but on the endsystem where it is produced funda-
mentally limits scalability.

In this paper we present Seaweed, a scalable query
infrastructure which solves the problem of data unavail-
ability by allowing queries to persist until unavailable
data becomes available. By querying data entirely in-
situ, Seaweed scales well with network size, data size,
and data update rate. Query results are updated incre-
mentally with completeness improving over time, where
completeness is defined as the ratio of tuples processed
to the total number of tuples relevant to the query. Sea-
weed addresses data unavailability through an explicit
trade-off between completeness and delay, by providing
the user with estimates of current completeness and pre-
dictions of future completeness.

1.1 Our contributions

Previous approaches have addressed the problem of data
unavailability using data replication which fundamen-
tally limits scalability. We introduce the novel concept
of delay aware querying with completeness prediction.
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Delay aware querying is scalable and solves the prob-
lem of data unavailability by explicitly trading query de-
lay for completeness, exposing to the user a prediction
of the expected delay to reach any given level of com-
pleteness. This is achieved by estimating the amount of
data relevant to a query held by each currently unavail-
able endsystem, and also predicting when it will next
become available. This in turn requires replication of a
small amount of per-endsystem metadata consisting of a
compact data summary and an availability model.

We describe the Seaweed architecture which uses an
application level overlay or distributed hash table (DHT).
Unlike other DHT-based approaches, Seaweed does not
use the DHT to replicate or redistribute the dataset but
to replicate the metadata. Data is queried in-situ and
Seaweed leverages the overlay structure to build efficient,
failure-resilient protocols for query dissemination and re-
sult aggregation.

We show through analytic models that Seaweed scales
better with network size, data size, and data update rate
than approaches based on data replication, centraliza-
tion, or redistribution. We also show through simulation
results that Seaweed efficiently disseminates queries, gen-
erates accurate completeness predictors, and aggregates
query results.

1.2 Applications

Many applications are enabled by scalable query infras-
tructures. We are particularly interested in endsystem
and network management at different scales. At the small
scale many Internet services, such as Google, Amazon
and MSN, run multiple data centers at geographically
distributed locations, each containing thousands of endsys-
tems. Each endsystem can generate large amounts of
fine-grained performance data of interest to human op-
erators and automated support systems. Effective analy-
sis and diagnosis based on this data requires distributed
querying support.

At the next order of magnitude, we have large en-
terprise networks with hundreds of thousands of endsys-
tems. The original motivation for Seaweed was to sup-
port Anemone, an endsystem-based network measure-
ment and monitoring system [26] for such enterprise net-
works. Endsystems in enterprise networks can capture
and store data about local resource usage, network activ-
ity, running applications, etc. For example, Anemone can
store network information at the per-flow and per-packet
level. This data can then be queried by the network op-
erator for aggregate statistics, diagnostics, or historical
exploration.

Finally, at Internet scale, applications such as Dr. Wat-
son [25] report crash dump data from millions of Win-
dows machines worldwide to a single centralized site for
subsequent analysis. The amount of data uploaded is lim-
ited by available bandwidth: an in-situ approach would

allow queries over a richer dataset with lower network
overheads.

These applications are characterized by their scale,
as well as the need to support one-shot queries and not
just streaming queries. Simple streaming queries might
be used to monitor aggregate statistics over time. How-
ever, when an operator observes an unexpected reading
they need to perform one or more retrospective one-
shot queries over the stored data to diagnose the is-
sue. If the issue being diagnosed relates to availability
(e.g. “why did I get no results from rack 10 between 8:30
and 9:00?”), then the streaming results will provide lit-
tle helpful information. Hence there is a need for a scal-
able, efficient infrastructure supporting one-shot queries
on distributed stored data.

1.3 Limitations

We restrict Seaweed queries to be either local or read-
only: Seaweed does not support distributed updates. Stan-
dard techniques for distributed updates such as distributed
locks and 2-phase commit do not scale well, and our
design philosophy was to eschew any functionality that
would limit scalability. Our current prototype also does
not support distributed joins as they are difficult to make
scalable. For example, joins in PIER [16] can require
cross-network bandwidth linear in the size of the base ta-
bles. By restricting read-only queries to be single-table
and updates to be single-endsystem, we gain scalabil-
ity at the cost of restricted query functionality. This
seems an acceptable trade-off for the applications we
have examined. Functionality such as distributed up-
dates or joins over small numbers of endsystems could
be provided in a layer above Seaweed for applications
that require it.

Seaweed’s query dissemination is scalable with re-
spect to network size and resilient to faults in the net-
work. However, it disseminates queries to all endsystems,
which must perform at least the minimal processing to
determine if they have data matching the query. This
could cause significant overheads at high query rates,
where approaches such as distributed indexes [22,27] might
prove useful. Currently we target applications with a
small number of human users such as network admin-
istrators who issue one-shot queries. We evaluated the
benefits of maintaining distributed indexes for these ap-
plications and concluded that they do not justify the
resulting overheads and complexity.

1.4 Map

The remainder of the paper is organized as follows. Sec-
tion 2 describes the design philosophy, high level design
decisions, and novel features of Seaweed. Section 3 de-
scribes the detailed design of our prototype, including
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the protocols used for query dissemination and result
aggregation. Section 4 compares analytic models of Sea-
weed with three alternative architectures, demonstrat-
ing the superior scalability of Seaweed. It also provides
simulation results quantifying the network overheads of
various components of Seaweed and the accuracy of com-
pleteness prediction. Section 5 summarizes related work,
and Section 6 concludes the paper.

2 Design principles and insights

For simplicity, we use standard data models and query
languages for our implementation. We assume that data
is relational and that for any given application there is
a standard schema across endsystems. The data thus
consists of a set of tables, each of which is horizontally
partitioned across a large number of endsystems. Each
endsystem is capable of executing relational queries and
updates on its local data. For many applications, there
may be data integration issues which render such a model
over-simplistic [14]; these are outside the scope of this
paper.

Our query language is a subset of SQL. Read-only
queries may be distributed across endsystems but must
not perform distributed joins. Updates are constrained
to a single endsystem at a time.

A Seaweed query is inserted into the system by the
application layer on any endsystem. Seaweed dynami-
cally builds an application-level query distribution tree
that disseminates the query to all available endsystems,
which then return completeness predictors that are ag-
gregated back up to the root. The predictor at the root
can estimate the completeness of the incremental result
at any time and also its expected future progress.

Meanwhile, endsystems also execute the query locally
and generate results. These results are propagated to the
root using another tree which is built dynamically from
the leaf level upward. If the query uses standard aggre-
gation operators, results are aggregated in the tree to
reduce bandwidth usage. Any new or previously unavail-
able endsystem that joins Seaweed receives a list of cur-
rently active queries for which it generates results which
are propagated to the root using the tree. Incremental
results will thus continue to arrive for any query until it
times out or is explicitly canceled.

2.1 Availability and delay-aware querying

Endsystem availability is a major challenge for any dis-
tributed query infrastructure. Studies of endsystem avail-
ability in widely deployed peer-to-peer applications such
as Gnutella [29] and Overnet [5] show that there is sig-
nificant churn in the set of available endsystems. Even
studies of more benign enterprise network environments
show that a significant fraction of endsystems is unavail-
able at any time. Figure 1, reproduced from one such

 0

 0.2

 0.4

 0.6

 0.8

 1

Sat
Aug 07

Sat
Jul 31

Sat
Jul 24

Sat
Jul 17

Sat
Jul 10

F
ra

ct
io

n 
of

 m
ac

hi
ne

s 
re

ac
ha

bl
e

Time

Fig. 1: Availability of 51,663 endsystems on the Microsoft
corporate network in July/August 1999.

study [8], shows the availability of 51,663 endsystems
on the Microsoft corporate network, July–August 1999.
Each endsystem was probed once per hour to test its
availability. On average, 81% of the endsystems were
available at any time. Further, a clear periodic pattern
suggests endsystem availability is predictable.

Therefore a guiding principle for all scalable distributed
query systems is to design for unavailability. Solutions
involving replication of all data in a large system place
a prohibitive load on the network, even if the amount
of data per endsystem is relatively small. This observa-
tion is validated by our analysis in Section 4 as well as
other studies on wide-area distributed applications [7].
This motivated our design decision not to replicate the
raw data but to address the availability problem through
delay aware querying.

A key component of delay aware querying is com-
pleteness prediction. Completeness predictors are com-
puted at endsystems from the replicated metadata and
aggregated up the query distribution tree. A complete-
ness predictor is a cumulative histogram of expected row
count over time. For example, a user could use it to es-
timate that 80% of the rows are immediately available,
99% within 1 hour, but 100% only after several days.
She might then decide to accept the results after 1 hour
and then cancel the query rather than waiting for per-
fect completeness. Completeness predictors are query-
specific: they depend on the data rows that are relevant
to the query and also on the distribution of these rows
across available and unavailable endsystems. Figure 2
shows an example completeness predictor.

2.2 Scalability

Seaweed’s design achieves scalability through a combi-
nation of two factors. First, by not replicating the data
the network overheads of dealing with unavailability are
vastly reduced: the replicated metadata is several orders
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Fig. 2: Example of a completeness predictor.

of magnitude smaller than the raw data. Second, Sea-
weed’s tree protocols are designed to be both scalable
and fault-tolerant, with each endsystem only sending or
receiving a small number of messages per query.

2.3 Consistency

A highly distributed system precludes certain kinds of
consistency such as ACID. Even snapshot validity, which
guarantees that a read-only query sees a snapshot at a
single time across the entire system, cannot be guaran-
teed under a relaxed asynchronous model of distributed
systems [4]. Systems such as PIER [16] provide relaxed
consistency in the form of a ‘dilated reachable snapshot’
where only available endsystems will respond to a query,
and the ‘snapshot’ across these endsystems will be di-
lated by clock skew.

Seaweed provides more precise guarantees than ‘di-
lated reachable snapshot’ on the set of endsystems that
will respond to a query. We define our consistency in
terms of single-site validity [4]. We define the set HC(t1, t2)
as the set of hosts that were available at all instants in
the time range [t1, t2]. Note that Seaweed does not dis-
tinguish between unreachable and unavailable endsys-
tems: an available endsystem is reachable within Sea-
weed by definition. We define HU (t1, t2) as the set of
hosts that were available at some instant in [t1, t2] for
sufficient time to execute a query. Consider a user who
injects a query into Seaweed at time 0 and observes the
partial result at time T generated by some set of endsys-
tems H. Single-site validity would guarantee only that
HC(0, T ) ⊆ H ⊆ HU (0, T ) whereas Seaweed guarantees
H = HU (0, T ), a strictly stronger semantics.

For completeness prediction we can offer a stronger
guarantee yet. The metadata replicas for any endsys-
tem that was ever available in the past remain available
with high probability. Thus, if Seaweed provides the ag-
gregated predictor for the query at time Te ≤ T , then

the set of endsystems H contributing to this predictor
will with high probability satisfy HU (−∞, 0) ⊆ H ⊆
HU (−∞, Te). In practice, Te is on the order of seconds,
and the difference between the upper and lower bounds
is small.

Seaweed is able to provide these semantics because
with high probability each endsystem’s contribution to
the result is counted exactly once provided it becomes
available during the lifetime of the query, [0, T ], and re-
mains available for long enough to receive and process
the query. This property is provided by the distributed
data structures described in the next section. At-least-
once counting results from the property that any endsys-
tem in Seaweed available for sufficient time will have
a path to the root with high probability. At-most-once
counting is achieved through persistent, replicated ver-
sioning of messages in the aggregation tree.

3 Seaweed design

Seaweed is implemented on top of Pastry [28], a scalable,
self-organizing, structured overlay network. We provide
a brief overview of Pastry before describing the three
main components of Seaweed: replication of availability
models and data summaries; query dissemination and
completeness prediction; and result aggregation.

3.1 Background: Pastry

Endsystems and objects in Pastry are assigned random
identifiers, known as endsystemIds or object keys respec-
tively, from a large sparse circular namespace. Keys and
endsystemIds are 128 bits in length and can be thought
of as a sequence of digits in base 2b, where b is a con-
figuration parameter with a typical value of 4. Given a
message and a key, Pastry routes the message to the
key’s root: the endsystem with the endsystemId numer-
ically closest to the key. When a message is delivered
successfully it is then passed to the application running
on that endsystem.

Messages can be routed from any endsystem to any
other. Each endsystem maintains a routing table of size
O(log2b N), where N is the total number of endsystems
in the system, and a leafset of the l/2 neighboring endsys-
tems clockwise and counter-clockwise in the namespace.
The leafset size l is a configuration parameter typically
set to 8. Using these data structures, Pastry is expected
to deliver messages in O(log2b N) hops.

Our Seaweed implementation is built on the MSPas-
try [9] implementation of Pastry. MSPastry provides a
low-level key-based routing (KBR) API [12] which is
used by Seaweed. MSPastry has low overhead and pro-
vides reliable message delivery under adverse network
conditions: even with network message loss rates as high
as 5% together with high overlay membership churn, the
incorrect delivery rate is only 1.6× 10−5 [9].
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3.2 Metadata replication

In order to be able to generate completeness predictors,
metadata consisting of the data summaries and avail-
ability model of each endsystem is actively replicated.
Seaweed provides an application-independent metadata
replication service, where the metadata consists of col-
umn histograms and availability models. The replica-
tion frequency and the set of histograms are application-
specific parameters. This proactively replicated meta-
data is query-independent and allows us to compute query-
specific completeness predictors when a query is injected.

For any endsystem with endsystemId x, Seaweed repli-
cates the metadata on the k numerically closest endsys-
tems to x. As endsystems join and fail new replicas are
generated as necessary to ensure that this holds. The k
endsystems storing the metadata for x form its replica
set. The replication messages are routed in a single Pas-
try hop, and thus both the network latency and the band-
width usage are small. When x becomes unavailable any
of the k members of x’s replica set can generate a com-
pleteness predictor for any query on behalf of x.

3.2.1 Availability model

For each unavailable endsystem the availability model is
used to determine when it is likely to become available
again. In particular, if an endsystem has currently been
unavailable for time t, what is the likely duration before
it becomes available once more? Availability prediction
must be done on a per-endsystem basis since the effect of
an endsystem’s availability on completeness depends on
the number of query-relevant rows on that endsystem.

Two distributions are maintained per-endsystem: down
duration and up-event by hour of day. The down dura-
tion captures the length of time for which an endsystem
stays unavailable, and the up-event distribution captures
the hour of day (0–23) at which it comes back up.

Many endsystems follow a periodic cycle, e.g. peo-
ple turning their desktop machine on when they arrive
at work. If the up event distribution for an endsystem
is heavily concentrated in a certain hour (if the peak-
to-mean ratio exceeds 2), we classify it as periodic and
use the up event distribution for availability prediction.
Otherwise, we use the down duration distribution for
prediction: in this case, the prediction also takes into ac-
count the time for which the endsystem has currently
been unavailable.

The two distributions are persisted at each endsys-
tem and dynamically updated over time. Whenever an
endsystem becomes available, it updates the distribu-
tions and locally classifies itself as periodic or non-periodic.
It then pushes out the relevant distribution to its replica
set.

When a member y of the replica set notices that an
endsystem x is unavailable, it records the time at which
this occurred. Subsequently it can predict when x will

next become available based on its copy of x’s availability
model.

3.2.2 Data summaries

Each endsystem x pushes its data summary to its replica
set when it (re)joins the network; the summary is also
pushed to new replica set members when the replica set
changes due to failure. Additionally, endsystems period-
ically push their summary to the replica set if the data
has changed.

In Seaweed the summary currently consists of his-
tograms on indexed columns of the local database. When
an available endsystem generates a row count estimate
for a query on its own behalf, it queries the local DBMS
for the estimate. When row count estimation is done on
behalf of an unavailable endsystem, it uses standard row
count estimation techniques on the replicated histogram
information.

Currently we take the conservative approach of push-
ing the histogram periodically if there is any change in
the data. We are looking at methods to dynamically vary
the push rate based on the data change rate, as well
as sending delta-encoded histograms which could reduce
network overhead compared to pushing the entire his-
togram.

Replication of column histograms can be viewed as
a special case of selective replication. One could imagine
an application designer specifying any subset of the data
(e.g. projection) or derived values (e.g. views) for repli-
cation. Queries on the replicated portion alone would be
answered with relatively low latency, albeit with some
staleness dependent on the replication frequency. Obvi-
ously careless selection of data for replication could result
in an unscalable application.

3.3 Query dissemination and completeness
prediction

When a query is submitted to Seaweed the first stage is
to disseminate it to all available endsystems and generate
the completeness predictor. The query is assigned a key,
its SHA-1 hash, referred to as the queryId. The query
must be reliably disseminated to the available endsys-
tems and estimates must be generated on behalf of the
unavailable endsystems. The dissemination algorithm must
ensure that exactly-once semantics are maintained even
as endsystems concurrently join and fail during the pro-
cess.

For robust query dissemination and completeness pre-
dictor generation, Seaweed dynamically builds a distri-
bution tree. For ease of explanation we describe the tree
here as a binary tree; our implementation uses a 2b-ary
tree (where b is typically 4). The root of the tree is the
endsystem with the endsystemId numerically closest to
the queryId. The root initiates an efficient broadcast
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using a divide-and-conquer approach. Each broadcast
message contains an explicit namespace range for which
predictions are required; at the root level, this corre-
sponds to the entire namespace range of Pastry. When an
endsystem receives a broadcast, it subdivides the range
into two equal ranges, and sends one message for each of
the subranges. One of the messages will be sent to itself,
and the other will be routed towards the midpoint of the
other subrange. This will eventually reach an endsystem
within that subrange, within one Pastry hop in the com-
mon case where the sender has a Pastry routing table
entry for a live endsystem within that subrange.

When an endsystem detects that it is the only live
endsystem in a range or that it is the numerically closest
live endsystem to a range containing no live endsystems,
it takes responsibility for all unavailable endsystems in
that range, and generates completeness predictors for
them from the replicated metadata. If it lies within the
range it also generates its own completeness predictor
based on row count estimates from its local DBMS. This
recursive process creates a tree with depth O(log2b N),
which determines the latency of query dissemination.

The endsystem row count estimates are aggregated to
a cumulative distribution of row counts against predicted
time of availability, where time is on a log scale to ac-
commodate wide variations in availability ranging from
seconds to days. These row-count distributions are the
per-endsystem completeness predictors. They are prop-
agated and aggregated up the tree, with each endsystem
transmitting the predictor to its parent: the endsystem
that originally sent it the query. The predictors are ag-
gregated at each step and are thus maintained at con-
stant size.

In order to make this process robust endsystems send
heartbeats to their parents. If an endsystem does not re-
ceive a heartbeat or predictor within a specified period
then it reissues the request for that sub-range. Since pre-
dictor generation takes place on the order of seconds,
there will typically be very little churn during this win-
dow, and thus the retransmission costs will be low.

The protocol also exploits the structure of Pastry
routing tables to achieve a message overhead of O(N).
It relies on the property that when a broadcast is for-
warded by endsystem x to a subrange, with high prob-
ability x’s routing table contains a live endsystem y in
that subrange. Thus each step of the divide-and-conquer
dissemination is O(1).

3.4 Result aggregation

Once the completeness predictor is generated, each avail-
able endsystem generates the result for the query. While
predictor generation takes place in seconds, incremen-
tal result generation can span hours. As endsystems be-
come available their results need to be included in the re-
sult, and results submitted by endsystems need to persist

even if the endsystem fails. This means that a different
tree must be built since churn now becomes a significant
factor. Simply relying on aggressive retransmission for
failure-resilience is infeasible.

The result aggregation tree must also ensure that
once an endsystem becomes available and submits its
result, it must be counted exactly once in the result at
the root. Maintaining a list at the root of all endsystems
that have contributed results is not feasible, as this will
result in messages of size O(N).

Instead, we dynamically build an aggregation tree
from the leaves upwards, maintaining O(1) information
in each endsystem in the aggregation tree: the current
results received from each child. When new results are
received from any child, this list of child results is up-
dated, and a new aggregate is computed and forwarded
up the tree.

The aggregation tree is embedded in the Pastry names-
pace and is unique for each queryId. Each tree vertex is
a key in the Pastry namespace, referred to as a vertexId.
Given a vertexId each endsystem is able to determine its
parent vertexId in the tree, using a deterministic func-
tion: V (queryId, vertexId) 7→ vertexId. Many different
functions could be used, which provide different proper-
ties. We use a simple function that provides good load
distribution:

V(queryId,vertexId)
int len := PrefixLength(queryId,vertexId)
return Prefix(vertexId, 128

b -(len+1)) +
Suffix(queryId, len+1)

where PrefixLength(idA,idB) returns the length of
the common prefix match between the keys idA and
idB (expressed in base 2b). Prefix(id, count) and Suf-
fix(id, count) return the prefix and suffix of key id
of length count, respectively. The operator + concate-
nates a suffix and prefix to generate a vertexId key. When
endsystem x submits a result to the aggregation tree it
determines its parent in the tree using V(queryId,x).
In general, given a vertexId any endsystem can deter-
mine the parent vertexId. The function ensures that the
vertexId of the root is queryId. Due to the Pastry names-
pace being sparsely populated with endsystems, we op-
timize the function to create a tree of depth O(log N)
rooted at the query originator, where N is the number
of endsystems. When an endsystem x submits its result,
it repeatedly applies V (starting from its own endsys-
temId x) until it generates a vertexId to which x is no
longer the numerically closest endsystemId. It then per-
sists that vertexId with the query and submits its result
to that vertexId. At higher levels in the tree, the func-
tion V is applied exactly once to compute the parent’s
vertexId. This optimization ensures that the tree has N
leaves, and hence a depth of O(log N).

The aggregation protocol guarantees that results are
generated exactly once for each endsystem when it be-
comes available, assuming that there are no failures in
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the interior nodes of the tree. To provide this property,
we implement each interior vertex as a failure-resilient
replica group.

Each group is represented by a primary with m back-
ups. The primary is always the endsystem whose endsys-
temId is numerically closest to the vertexId, thus guar-
anteeing that messages sent to the vertexId are always
routed to the primary. The primary replicates its state to
the backups before acknowledging any message or trans-
mitting any message to its parent. If any member of the
group fails then a new endsystem joins the group and
a new primary is selected automatically if necessary, al-
ways with the property that the primary has the endsys-
temId closest to the vertexId.

This protocol provides exactly-once semantics with
very high probability: for an entire vertex to fail, the pri-
mary and all backups would have to fail within a short
period of time determined by the Pastry leafset heart-
beat interval, currently 30 seconds.

The same protocol can be extended easily to support
continuous queries in a failure-resilient manner. However
this is outside the scope of this paper.

4 Evaluating Seaweed

In this section we present simplified analytical models of
Seaweed’s scalability, and evaluate them against three al-
ternative architectures. Our aim is to understand the in-
herent trade-offs and limitations with respect to network
overheads, network size, data size, data update rate, and
endsystem churn.

These analytical models simplify many of the engi-
neering issues involved in building real distributed sys-
tems. To better understand the performance of Seaweed
in a real application scenario, we also present an evalu-
ation of Seaweed running in a network simulator driven
by real-world traces.

Seaweed can be compiled to run in the simulator or
stand-alone. We do not present results from the stand-
alone version, as our focus is in this paper is scalability,
and we do not have a large-scale deployment.

Before describing the analytical models we briefly de-
scribe the application we use to drive this evaluation.

4.1 Application

In this paper, we use Anemone [26], an endsystem-based
network management application, as our driving applica-
tion for Seaweed. In Anemone, each endsystem captures
its network activity into two tables, Packet and Flow.
Each record in Packet contains a timestamp, the source
and destination IP addresses and ports, the protocol, the
direction of the packet (Rx or Tx), and the size in bytes.
Flow is a per-flow summary of the packet data, which
periodically records for each active flow the timestamp,

the interval of measurement, the IP addresses, ports, and
protocol, and the number of bytes and packets sent and
received. The flow measurement interval is currently set
to 5 min.

A typical query on Flow by a network operator might
be:
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80
AND ts <= NOW() AND ts >= NOW() - 86400
which gives an idea of the total amount of web activ-
ity in the network in the last 24 hrs. Note that NOW()
will be generated using the querying endsystem’s times-
tamp and compared locally against each endsystem’s
local timestamp, assuming loose clock synchronization
across endsystems.

Seaweed will disseminate the query to all endsystems;
generate a predictor of completeness over time; and prop-
agate incremental results as they become available. In
this case, since the query uses a standard aggregation
operator, these incremental results will be aggregated
in-network to minimize network overheads.

4.2 Modeling

In this section we present analytical models of Seaweed
and three alternative designs: centralized, DHT-replicated,
and PIER. For each design we derive formulas for the
background maintenance overhead in terms of network
bandwidth measured in bytes per second transferred system-
wide.

All the models are driven by system parameters that
characterize the network size, availability characteristics,
data size, and data update rate. We denote the network
size — the total number of endsystems — by N . Of these,
we expect some fraction fon to be available on average
at any given time. The churn rate c is the average rate at
which any single endsystem switches between available
and unavailable. It measures the dynamics of availability,
i.e. the rate at which endsystems change between avail-
able/unavailable. Since we assume fon remains stable, we
assume that the system-wide rates of joining and leaving
are equal, and we add them to get the total churn Nc.
The data update rate u measures the average amount of
new data generated by each endsystem per second; we
assume here that only available systems generate data.
The database size d measures the average amount of data
stored by each endsystem.

For each of these parameters, we choose values based
on real-world enterprise networks. The availability pa-
rameters are derived from the Farsite availability traces [8],
a 4-week long measurement of availability characteristics
across an enterprise network. The data update rate and
data size are based on our measurements of Anemone
packet data, with each endsystem storing its local packet
data for 1 month. Table 1 summarizes these parameters
as well as additional model-specific parameters used in
some of the models.
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Variable Description Value Source

N Number of endsystems 300,000 Microsoft CorpNet
fon Fraction of available endsystems 0.81 Farsite
c Churn rate 6.9× 10−6 s−1 Farsite
u Data update rate per endsystem 970 bytes/s Anemone
d Database size per endsystem 2.6 GB Anemone
k Number of replicas stored 4 Farsite
h Size of data summary 6,473 bytes Seaweed/Anemone
a Size of availability model 48 bytes Seaweed
p Summary push rate 0.033 s−1 Seaweed (30 s period)
r PIER data refresh rate 0.0033 s−1 or 0.00028 s−1 PIER (5mins or 1 hr period)

Table 1: Model parameters

4.2.1 Centralized

This is the simple “data warehousing” model where all
available endsystem data is backhauled onto a single cen-
tral repository before being queried. The maintenance
costs thus lie in backhauling all the generated data, and
are given by:
fonNu (1)

4.2.2 Seaweed

The maintenance costs of Seaweed are driven by the
replication of metadata. They also depend on the repli-
cation factor k. When an endsystem fails, the metadata
stored by it must be replicated on some other endsystem
to maintain k replicas. If all k replicas fail during the win-
dow of vulnerability between failure and replication, the
data will become unavailable. Thus the choice of k is a
trade-off between overhead and availability, and depends
on the environment. Typical values of k are between 3
and 8; here we choose a value of 4.

Seaweed replicates both availability models and data
summaries, which have average sizes a and h respectively.
Here h is the total compressed size per endsystem of all
metadata, i.e. the histograms on all indexed columns;
in the Anemone case there are 5 such histograms per
endsystem. Each available endsystem proactively pushes
its metadata to its replicas at rate p, at a bandwidth
cost of fonNkph. Additionally, Seaweed incurs the cost
of replicating metadata whenever an endsystem joins or
leaves the system. In the first case, the joiner must ac-
quire the metadata that it will be responsible for. In the
second case, the metadata held by the leaving endsystem
must be re-replicated on some other endsystem. Since
each endsystem has h + a bytes of metadata on aver-
age which must be replicated k times, the total amount
of replicated data is Nk(h + a). This metadata must be
replicated on the available endsystems, each of which will
store on average 1

fon
k(h+ a) bytes. These bytes must be

transferred on each churn event at a bandwidth cost of
1

fon
Nck(h + a). Thus Seaweed’s total maintenance over-

head is:

fonNkph +
1

fon
Nck(h + a) (2)

4.2.3 DHT-replicated

Here we consider using a typical DHT approach to store
the data: each tuple is mapped onto a key in the DHT
based on its primary key, regardless of where it was gen-
erated. The tuple is k-way replicated on a replica set de-
termined by the DHT key. This incurs the cost of trans-
ferring each new tuple from the generating endsystem to
the k replicas, which is fonNku.

Additionally, the DHT must re-replicate data when-
ever endsystems join or leave. The average amount of
replicated data stored per endsystem is 1

fon
kd, thus the

bandwidth consumption of re-replication is 1
fon

Nckd. Thus
DHT-replication requires a total maintenance bandwidth
of:

fonNku +
1

fon
Nckd (3)

This ignores the overhead of discovering the root of each
tuple, each of which would typically require an O(log N)
lookup over the network. We simplify the model by as-
suming this overhead to be negligible.

4.2.4 PIER

PIER [16] uses a DHT but does not replicate data as
described above. Instead, each available endsystem pe-
riodically re-inserts its data into the DHT, with tuples
mapped to DHT keys according to their primary keys.
This refresh process serves to maintain the freshness of
the data as well as to provide additional availability
when endsystems fail. Thus the maintenance overheads
in PIER are independent of endsystem churn, and only
depend on the data size d and the refresh rate r. The
overhead is:

fonNdr (4)

Note that avoiding churn-related overheads comes at a
price: PIER cannot provide the same availability in the
face of churn as k-way replication.The root correspond-
ing to any key will change whenever the current root be-
comes unavailable or a new endsystem whose ID is closer
to the key becomes available. Tuples with that key will
then be unavailable for querying until the next refresh.
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Time since last refresh 5min 1 hour 12 hours
Availability (Farsite) 99.8% 98.0% 78.9%
Availability (Gnutella) 97.3% 71.6% 1.8%

Table 2: Expected availability in PIER

For each source, the expected fraction of available tuples
decays exponentially as e−ct where c is the churn rate
and t is the time since the last refresh by that source.

Since PIER is targeted at Internet environments, the
recommended policy is aggressive refresh, with a period
of 5 min. However, this can have substantial network
overheads: in this paper we evaluate PIER both with
a 5 min period and a less aggressive 1 hour period.

This analysis assumes that source endsystems are al-
ways able to refresh periodically. In reality, even enter-
prise networks have significant numbers of endsystems
that become unavailable for much longer than the re-
fresh period: e.g. desktop machines might be turned off
overnight.

Table 2 shows the expected availability of a source
endsystem’s tuples 5min, 1 hour, and 12 hours after the
last refresh. These values represent a short refresh pe-
riod, a long refresh period, and a long downtime re-
spectively. We show this for two values of churn: a low
value from the Farsite enterprise network study [8], and
a higher value from Gnutella traces [29].

4.2.5 Comparison

We use the four models to compare the scalability of the
different solutions. Specifically, we compare the scala-
bility of maintenance overheads with increasing network
size (N), database size per endsystem (d), data update
rate per endsystem (u), and endsystem churn rate (c),
in each case keeping all the other parameters constant
with the values in Table 1. We show PIER configured
with two different refresh periods: 5min and 1 hour. The
former setting causes a higher network overhead, but the
latter results in increased staleness of queryable data and
reduces availability when endsystems fail.

Figure 3(a) shows how these different systems scale
with network size N . Both axes are on a log scale to illus-
trate the order-of-magnitude effects involved. The total
system bandwidth for all the designs increases linearly
with N , but there are order-of-magnitude differences in
the constant factors involved. PIER endsystems must pe-
riodically refresh all their data at a rate r, causing a very
high overhead. The DHT-replication scheme must repli-
cate each endsystem’s data at a rate proportional to the
churn rate c. The factor for the centralized system is
the data update rate u. Finally, Seaweed’s overhead de-
pends on the churn rate c and the metadata size. Since
the metadata is orders of magnitude smaller than the
data, Seaweed has correspondingly lower overhead: 10
times lower than the centralized solution, and 1000 or
more times lower than the other distributed solutions.

Figure 3(b) shows the system-wide bandwidth in bytes
per second for each of the models as u, the number
of bytes generated per second per online endsystem, is
varied. PIER’s overhead is independent of u but ex-
tremely large, due to the periodic reinsertion of the entire
database into the network. Even if we increase the rein-
sertion period from the default 5 min to 1 hour, PIER’s
overheads are still typically orders of magnitudes larger
than the other designs. DHT-replication incurs both the
overhead of replicating fresh data, which depends on u,
and of replicating on endsystem churn, which is inde-
pendent of u. Thus DHT-replication outperforms PIER
by two orders of magnitude at low update rates but
approaches and then exceeds the overhead of PIER at
high update rates. The centralized system has no churn-
related overheads, and its overhead scales linearly with
the data update rate. Finally, Seaweed overheads are in-
dependent of data update rate, and also several orders of
magnitude lower than either DHT-replicated or PIER.

When the update rate u is low, the centralized ap-
proach will require lower overhead than Seaweed. As the
data rate increases, the overhead of metadata replication
becomes small compared to that of sending the data to
the centralized database. At the Anemone update rate
of 970 bytes per second per endsystem, a relatively mod-
est rate for today’s endsystems, Seaweed already out-
performs the centralized solution by a factor of 10. Thus
Seaweed scales better than the centralized approach and
has orders of magnitude lower overhead than the other
distributed approaches.

Figure 3(c) shows the scalability of the four designs
with increasing database size per endsystem d. PIER’s
overhead is dominated by the cost of periodic reinsertion,
which is linear in d. DHT-replication’s overhead is due to
re-replication of data on churn, also linear in d but with
a much smaller constant factor than PIER. The cost of
the centralized solution is independent of d, depending
only on the data update rate u. Finally, Seaweed’s over-
head is also independent of d, and is orders of magnitude
lower than that of the other designs except for very small
values of d.

Figure 3(d) shows the overhead as a function of the
churn rate c: the number of endsystem departures and
arrivals per second, as a fraction of the total number
of endsystems. PIER’s overhead is independent of churn
but very high, since it periodically refreshes data regard-
less of churn. DHT-replication has an overhead that is
linear in the churn rate, since data must be re-replicated
on each churn event. The centralized case has a fixed,
churn-independent overhead. Finally, Seaweed’s overhead
is low, and mostly due to periodic metadata replication;
the re-replication induced by churn is significant only at
very high churn rates (a churn rate of 1 × 10−2 corre-
sponds to a mean endsystem lifetime of only 200 s).

Figure 4 shows the same analysis but with a smaller
database size per endsystem (100MB rather than 2.6GB)
and a smaller update rate (10 rather than 970 bytes/s).
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Fig. 3: Scalability of network overheads
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In general, a small database favors PIER over the other
systems, and a small update rate favors the centralized
approach. We see that the centralized approach is the
best at these low update rates, since it has high availabil-
ity and the lowest overheads. As before, PIER has com-
petitive overheads only at small database sizes; further,
it provides lower availability than centralized or DHT-
replicated and unlike Seaweed provides no feedback on
availability.

The other component of overhead is the foreground or
per-query overhead. The centralized solution does not in-
cur any networking costs for querying, whereas all three
decentralized architectures have a cost that increases
with network size. Simple analytical models of Seaweed’s
per-query overhead are difficult to derive: the overhead
depends on the number of retransmissions and hence
on the endsystem failure patterns. However, our simu-
lation results show that in practice, Seaweed’s per-query
overheads are three orders of magnitude smaller than its
background maintenance overhead, and hence will not
be significant until there are thousands of active queries
in the system at the same time.

4.2.6 Summary

Our simplified analytic models do not capture many real-
world engineering optimizations that each implementa-
tion could employ. However, we believe that they cap-
ture the general scalability issues of each approach. Our
analysis shows that Seaweed’s design is much more scal-
able in terms of maintenance overhead than the other
approaches. Although this increases query latency com-
pared to the centralized and DHT-replicated solutions,
we believe that for truly scalable, highly distributed query-
ing, this price must be paid to avoid prohibitive network
costs.

4.3 Simulation

Here we present results from a discrete event simulator
that allows us to evaluate the scaling properties of Sea-
weed. The simulations are driven by real-world applica-
tion data, traces of endsystem availability, and network
topologies.

The difficulties of running a discrete event simula-
tor at this scale should not be underestimated: we have
thousands of endsystems, the events to be simulated oc-
cur at the granularity of milliseconds and we simulate
them over a period of 4 weeks. We made some optimiza-
tions that would not affect our evaluation metrics. We
pre-computed the results of each query as well as the his-
tograms on all endsystem data, by loading each endsys-
tem’s data into SQL Server 2005, running the queries on
them and also extracting all histograms on indexed at-
tributes. This enabled the simulation to run much faster

by not executing a large number of database queries dur-
ing the simulation.

These optimizations did prevent us from supporting
data updates during simulation. In our experiments we
pessimistically assume the total data size as of the end
of the trace, i.e. containing all the packet and flow data
irrespective of the query time. Further, since we could
no longer tell if the histogram data would change in any
given push interval, we push the histograms with an av-
erage period of 17.5 min, with each endsystem choosing
its push time randomly to avoid spikes in network band-
width.

4.3.1 Experimental setup

We generated an Anemone application data set for the
endsystems by instrumenting the network routers in our
building. We captured a complete packet trace of all
inter-LAN traffic for the period 30 Aug 2005–20 Sep 2005
for 456 workstations and servers. This is representative of
though not identical with the data from a full endsystem-
based deployment of Anemone. The raw packet data was
processed to generate per-endsystem Flow and Packet
tables.

Simulated endsystem availability is based on the Far-
site trace of endsystem availability gathered over approx-
imately 4 weeks in July/August 1999 in the Microsoft
corporate network [8]. The trace was generated using
hourly pings to test the availability of each of 51,663
endsystems on the network.

The network simulation results presented here use
the CorpNet topology, which has 298 routers generated
from measurements of the world-wide Microsoft corpo-
rate network. The topology includes the minimum round
trip time (RTT) per link and this is used as the proximity
metric in the simulations. Each endsystem was directly
attached by a LAN link with delay of 1 ms to a randomly
chosen router.

Our simulations were run at a number of different
network sizes. In each simulation, each endsystem was
randomly assigned an availability profile from the avail-
ability trace and an endsystem data set from the Anemone
data.

MSPastry was configured to use a base b = 4, a leafset
size of l = 8, and a leafset heartbeat period of 30 seconds.
Seaweed was configured with a replication factor of m =
3 for the result tree vertexes and k = 8 for the metadata.

4.3.2 Completeness prediction

The first set of experiments evaluates the ability of Sea-
weed to generate accurate completeness predictions. The
experiments were run using the full Farsite set of 51,633
endsystems. Since packet-level network simulation is ex-
pensive to run on a large data set, and we wished to ex-
periment with multiple queries as well as multiple query
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(c) Prediction error for different injection times

Fig. 5: SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80

start times, these experiments used a simplified simula-
tor that correctly captures the effect of availability on
completeness but does not do packet-level simulation.

We simulated from the 6th July 1999 onward and
injected queries into the system at various points dur-
ing the work week starting Monday 19th July 1999. The
warmup period allowed each endsystem to learn an avail-
ability model. For each injected query we generated the
completeness predictor and then monitored the actual
results returned over the 48 hours after injection, after
which the query was terminated.

Figure 5(a) compares the completeness predictions
generated when the query is injected with the actual

completeness observed over time. The query was injected
on Tuesday 20th July 1999 at 00:00, and the query was:
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80
which captures the amount of http traffic in the net-
work. The completeness prediction is shown as a cumu-
lative function of rows queried against time: we see that
it matches the observed result well. Note that when the
query is first injected only 81% of the matching rows are
available. After approximately 8 hours, when the employ-
ees arrive at work there is a significant increase in the
number of rows queried, which is accurately predicted.

Figure 5(b) shows the relative error of prediction for
this query at different points during the query lifetime:
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(b) Prediction error for different injection times

Fig. 6: SELECT COUNT(*) FROM Flow WHERE Bytes > 20000
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(b) Prediction error for different injection times

Fig. 7: SELECT AVG(Bytes) FROM Flow WHERE App=’SMB’
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immediately after the query is injected, after 1 hour, af-
ter 2 hours etc., as well as the prediction error on the
total row count for this query. To test the effects of any
weekly patterns, we show the errors measured on four
consecutive weekdays. We also tested the effect of diurnal
patterns, by varying the injection time by 2-hour inter-
vals from midnight on Tuesday 20th July to the following
midnight: the resulting errors are shown in Figure 5(c).
The prediction error is consistently low, less than 5% in
all cases.

Figures 6–8 show similar results for three other queries
which compute respectively the number of flows with
significant amounts of traffic, the average per-host SMB
traffic, and the number of packets with privileged port
numbers. The left-hand graphs show predicted versus ac-
tual rows for the query injected on Tuesday 20th July
1999 at 00:00, and the right-hand graphs show the pre-
diction error for query injection times of 00:00, 06:00,
12:00 and 18:00. Again, the prediction error is under 5%
in all cases.

The main source of error for these queries is in the
availability prediction. In other words, we accurately pre-
dict the number of relevant rows on each endsystem: the
prediction error for total row count is under 0.5% in
all cases. However, we cannot exactly predict the time
at which endsystems will next become available, due to
variation in diurnal patterns, unpredictable failures, etc.

Row count estimation based on histograms is ex-
tremely accurate for queries such as these with range
predicates on a single indexed column. We are currently
exploring summarization techniques that will enable ac-
curate estimation for more sophisticated queries.

4.3.3 Performance overheads

The second set of experiments measures the bandwidth
overhead of running Seaweed at different network sizes,
using the packet-level simulator. For each run we simu-
lated from the 6th July 1999 to the 9th August 1999. We
injected the query
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80
on Tuesday 20th July 1999 at 00:00. We allowed the
query to run until the end of the simulation.

Figure 9(a) shows the overhead in bytes per second
per online endsystem when running with 20,000 endsys-
tems. On average there are 16,080 endsystems online.
The overhead is sub-divided into the MSPastry overhead,
the Seaweed maintenance overhead and the query over-
head. The mean overhead of all three components put
together is 69 bytes per second per endsystem. The Sea-
weed maintenance traffic is the highest overhead and is
dominated by the cost of periodically replicating the in-
dexed attribute histograms, and could be substantially
reduced by using some form of delta encoding between
successive histogram versions. However, even without this
optimization the overhead is low.

Figure 9(b) shows the cumulative distribution of load
across endsystems and time, aggregated by 1-hour inter-
vals for 20,000 endsystems. Each sample in this distribu-
tion is the average bandwidth used by a single endsys-
tem in a single hour of the trace period. A transmis-
sion bandwidth of zero bytes in some hour indicates that
the endsystem was unavailable in that hour: hence the
y-intercept of this line is the mean unavailability. The
99th percentile of this distribution is only 178 bytes per
endsystem per second, and the mean is 69 bytes per on-
line endsystem per second. The distribution of receive
bandwidth usage is similar, with a 99th percentile of
195 bytes per endsystem per second and a mean of 69
bytes per online endsystem per second. This shows that
the overhead is not only low overall but also evenly dis-
tributed across endsystems and across time.

Since our query protocols are based on the endsys-
temIds in the Pastry overlay, we verified that the re-
sults were not sensitive to different assignments of these.
We repeated the experiment with 8,000 endsystems and
five different random assignments of endsystemIds. Fig-
ure 9(c) shows the resulting cumulative distribution of
transmission bandwidth. The five curves are visually in-
distinguishable, with the maximum horizontal difference
between any two curves at any point being 1×10−6 bytes
per endsystem per second.

Figure 9(d) shows the overhead in transmitted bytes
per second per endsystem as the number of endsystems
in the network (N) is varied between 2,000 and 51,663.
The Seaweed maintenance overhead per endsystem, which
dominates, is O(1). The Seaweed query and MSPastry
overhead both grow as O(log N). However, the MSPas-
try overhead is an order of magnitude lower than the
Seaweed maintenance overhead, and the query overhead
is three orders of magnitude lower. This leads us to be-
lieve that the design will scale to 1,000,000+ endsystems.

We also evaluated the latency between query injec-
tion and returning the completeness predictions to the
user. With 2,000 endsystems the latency was 3.1 seconds,
rising to 12.0 seconds for 51,663 endsystems. We feel that
this is an acceptable latency for queries whose actual exe-
cution could take minutes or hours due to endsystem un-
availability. The network bandwidth consumed for query
dissemination with 20,000 endsystems was 1,043 bytes
per query per endsystem and that for completeness pre-
dictor aggregation was 776 bytes per query per endsys-
tem; these could be reduced further through packet for-
mat and protocol optimizations. For the usage scenar-
ios we are targeting, with new queries submitted infre-
quently by a small number of human users, we feel that
the cost of disseminating queries to all endsystems is jus-
tified by the resulting simplicity and high coverage.

Most Seaweed applications such as endsystem-based
network management are targeted at fairly stable enter-
prise networks with low churn rates. This is captured
by the Farsite availability traces with a mean endsys-
tem departure rate of 4.06× 10−6 departures per online
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endsystem per second. To measure Seaweed’s overhead
under high churn, we repeated the experiment using the
Gnutella activity traces [29]. We used a 60-hour trace
with 7,602 endsystems and an average departure rate
of 9.46× 10−5 departures per online endsystem per sec-
ond. Figure 10(a) shows the total overhead over time in
this case, and Figure 10(b) shows the cumulative distri-
bution across endsystems and time. The mean transmis-
sion bandwidth used was 472 bytes per second per online
endsystem and the 99th percentile was 1,515 bytes per
second, and the distribution of receive bandwidth was al-
most identical. Thus the mean overhead increased only
by a factor of 7 even though the departure rate per online
endsystem increased by a factor of 23.

4.4 Deployment

We currently have Seaweed and an Anemone client de-
ployed on approximately 30 machines in our office build-
ing. We are able to successfully inject queries and gen-
erate both completeness predictors and results for them.
The stand-alone version uses the same codebase as the
simulation results, but unfortunately, the scale of the
current deployment means that it exists as a proof-of-
concept rather than as a platform for running detailed
experiments. We hope to deploy Seaweed on a signifi-
cantly larger set of machines distributed across multiple
sites in the near future.

5 Related work

We have already discussed PIER [16]; here we mention
a selection of other related work.

Distributed information management. Systems
that support distributed information management such
as Astrolabe [31] and SDIMS [32] build aggregation trees
supporting continuous queries using user-defined aggre-
gation functions. Queries are injected into the system
and continuously compute summaries of data. In con-
trast, Seaweed aims to support one-shot queries across
stored data and so is principally concerned with prob-
lems due to data unavailability.

Distributed indexes. Earlier work in the field of
distributed databases provided index structures [19–21]
to enable efficient search for distributed data and dis-
tributed updates with strong consistency semantics. More
recently, distributed indexes using various peer-to-peer
structures have been designed [1,6,18,27]. These provide
efficient access to and range queries over data distributed
over many endsystems.

Seaweed replicates neither indexes nor data, aiming
for far greater scalability by only replicating compact
data summaries. Instead, it disseminates queries to all
endsystems. For applications with sufficiently high query

rates, distributed index structures may prove useful. How-
ever, a scalable design will still require that the data
remain on the producing endsystems.

Data stream management. Due partly to the re-
cent popularity of sensor networks, executing long-running
queries over multiple data streams is an extremely ac-
tive research area. Many large-scale systems route tu-
ples through long-standing pre-installed queries [2,3,10,
13,23,30]. Borealis [3] deals with data unavailability on
much smaller time scales than Seaweed, buffering stream
data to tolerate transient network failures on the order
of a minute.

In contrast, Seaweed leaves data where it is generated
and supports efficient, one-shot, select-project-aggregate
queries on stored data, which is sufficient for a wide va-
riety of useful and interesting applications. This requires
that we deal with endsystem unavailability on the scale
of hours to days.

Availability models and data summarization.
A key feature of Seaweed is the prediction of endsystem
availability and the ability to estimate row count from
data summaries. Seaweed uses a very simple availabil-
ity predictor. Concurrently with this work, others have
developed alternative predictors [24] which could poten-
tially improve Seaweed’s performance. Similarly, the data
summaries currently distributed in Seaweed are relatively
simple: just the histograms computed by the local DBMS
across manually selected attributes. PTQs [11] and histogram-
based approximation [17] are examples of more sophis-
ticated techniques that might support summary-based
estimation for a wider range of queries.

Online aggregation. Online aggregation was first
proposed by Hellerstein et al. [15] in the context of single-
site databases, along with statistical estimators of re-
sult accuracy. Seaweed uses row-count based estimates of
completeness rather than estimators of result accuracy
as there is no guarantee that incrementally processed tu-
ples will be in random order: the data being queried may
well be correlated with endsystem availability.

6 Conclusion

In this paper we describe Seaweed, a query infrastructure
for highly distributed data sets. The major challenge for
such systems is managing the unavailability of endsys-
tems in a scalable manner. Prior systems use replication,
which fundamentally limits their scalability.

Seaweed adopts a different approach, delay aware query-
ing. Rather than replicating the data, Seaweed replicates
only metadata and uses this to provide the user with a
completeness predictor. The predictor allows the user to
estimate the completeness of the result so far and also
the expected future progress. The Seaweed approach is
scalable but trades query latency for scalability.

Analysis and simulation show that Seaweed scales
well and that metadata replication enables the gener-
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ation of accurate completeness predictors. To conclude,
it seems that Seaweed represents a novel and interesting
point in the design space for query infrastructures for
highly distributed data sets.
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