
Complexity and algorithms for monomial and

clausal predicate abstraction

Shuvendu K. Lahiri and Shaz Qadeer

Microsoft Research

Abstract. In this paper, we investigate the asymptotic complexity of
various predicate abstraction problems relative to the asymptotic com-
plexity of checking an annotated program in a given assertion logic. Un-
like previous approaches, we pose the predicate abstraction problem as
a decision problem, instead of the traditional inference problem. For as-
sertion logics closed under weakest (liberal) precondition and Boolean
connectives, we show two restrictions of the predicate abstraction prob-
lem where the two complexities match. The restrictions correspond to the
case of monomial and clausal abstraction. For these restrictions, we show
a symbolic encoding that reduces the predicate abstraction problem to
checking the satisfiability of a single formula whose size is polynomial in
the size of the program and the set of predicates. We also provide a new
iterative algorithm for solving the clausal abstraction problem that can
be seen as the dual of the Houdini algorithm for solving the monomial
abstraction problem.

1 Introduction

Predicate abstraction [8] is a method for constructing inductive invariants for
programs or transition systems over a given set of predicates P . It has been
an enabling technique for several automated hardware and software verification
tools. SLAM [1], BLAST [11] use predicate abstraction to construct invariants
for sequential software programs. Predicate abstraction has also been used in
tools for verifying hardware descriptions [12] and distributed algorithms [14].
Although predicate abstraction is an instance of the more general theory of
abstract interpretation [5], it differs from most other abstract interpretation
techniques (e.g. for numeric domains [6], shape analysis [17]) in that it does not
require a fixed abstract domain; it is parameterized by decision procedures for
the assertion logic in which the predicates are expressed.

Most previous work on predicate abstraction has been concerned with con-
structing an inductive invariant over a set of predicates P using abstract inter-
pretation techniques. A (finite) abstract domain over the predicates is defined
and the program is executed over the abstract domain until the set of abstract
states do not change. At that point, the abstract state can be shown to be an
inductive invariant. These techniques are usually eager in that the inductive
invariant is computed without recourse to the property of interest. The prop-
erty directedness is somewhat recovered using various forms of refinements (e.g.

counterexample-guided [13, 3, 11], or proof-guided [10] refinements) by varying
the set of predicates. However, these techniques do not usually address the prob-
lem for the case of a fixed set of predicates.

In this paper, we study the problem of predicate abstraction as a decision
problem. For a given program Prog(pre, post , body)

{pre}
while (∗) do body
{post}

where pre and post are assertions, body is loop-free code, and a set of predicates
P , we are interested in the question:

Does there exist a loop invariant I over P such that program Prog can
be proved correct?

We define this decision problem to be InferPA(Prog ,P). By posing the prob-
lem as a decision problem, we do not have to adhere to any particular way to
construct the loop invariant I (say using abstract interpretation), and it allows
us to study the complexity of the problem. Besides, the problem formulation
requires us to search for only those I that can prove the program. This problem
formulation has been first proposed in the context of the annotation inference
problem in ESC/Java [7] for a restricted case, and more recently by Gulwani et
al. [9]. Although the latter has the same motivation as our work, they do not
study the complexity of the predicate abstraction problems.

In this paper, we study the asymptotic complexity of the decision problem
InferPA(Prog ,P) relative to the decision problem Check (Prog , I) which checks
if I is a loop invariant that proves the program correct. Throughout the pa-
per, we assume that the assertion logic of assertions in pre, post and predicates
in P is closed under weakest (liberal) precondition predicate transformer wp,
and also closed under Boolean connectives. The assertion logic determines the
logic in which Check (Prog , I) is expressed. We are also most interested in logics
for which the decision problem is Co-NP complete— this captures a majority
of the assertion logics for which efficient decision procedures have been imple-
mented using Satisfiability Modulo Theories (SMT) solvers [20]. In addition to
propositional logic, this includes the useful theories of uninterpreted functions,
arithmetic, select-update arrays, inductive datatypes, and more recently logics
about linked lists [15] and types in programs [4].

For such assertion logics, we show that if checking Check (Prog , I) is in
PSPACE, then checking InferPA(Prog ,P) is PSPACE complete. We also
study the problem of template abstraction [19, 21] where the user provides a for-
mula J with some free Boolean variablesW , and is interested in finding whether
there is a valuation σW of W such that Check (Prog , J [σW/W]) is true. We call
this decision problem InferTempl(Prog , J,W), and show InferTempl(Prog , J,W)
is ΣP

2
complete (NPNP complete), when Check (Prog , I) is in Co-NP.

Given that the general problem of predicate or template abstraction can be
much more complex than checking Check (Prog , I), we focus on two restrictions:

x, y ∈ Scalars
X,Y ∈ Maps
e ∈ Expr ::= x | c | e± e | sel(E, e)
E ∈ MapExpr ::= X | upd(E, e, e)
s, t ∈ Stmt ::= skip | assert φ | assume φ | x := e | X := E

havoc x | havoc X | s; s | s � s

φ, ψ ∈ Formula ::= e ≤ e |φ ∧ φ | ¬φ | . . .

Fig. 1. A simple programming language SimpPL and an extensible assertion logic
Formula.

– InferMonome(Prog ,P): Given a set of predicates P , does there exist aR ⊆ P
such that Check (Prog ,

∧
p∈R p) is true, and

– InferClause(Prog ,P): Given a set of predicates P , does there exist a R ⊆ P
such that Check (Prog ,

∨
p∈R p) is true.

These problems can also be seen as restrictions on the template abstraction
problem. For example, the problem InferMonome(Prog ,P) can also be inter-
preted as InferTempl(Prog , J,W) where J is restricted as (

∧
p∈P bp =⇒ p) and

W = {bp|p ∈ P}.
We show that for both InferMonome(Prog ,P) and InferClause(Prog ,P), the

complexity of the decision problem matches the complexity of Check (Prog , I).
For instance, when the complexity of Check (Prog , I) is Co-NP complete, both
InferMonome(Prog ,P) and InferClause(Prog ,P) are Co-NP complete. We ob-
tain these results by providing a symbolic encoding of both problems into logical
formulas, such that the logical formulas are satisfiable if and only if the infer-
ence problems return false. The interesting part is that these logical formulas
are polynomially bounded in Prog and P .

The symbolic encoding of the inference problems also provides algorithms
to answer these decision problems, in addition to establishing the complexity
results. In the process, we also describe a new iterative algorithm for check-
ing InferClause(Prog ,P) that can be seen as the dual of an existing algorithm
Houdini [7] that checks InferMonome(Prog ,P).

2 Background

We describe some background on programs and their correctness, assertion log-
ics, weakest liberal preconditions, and motivate the inference problems.

2.1 A simple programming language for loop-free programs

Figure 1 describes a simple programming language SimpPL for loop-free pro-
grams. The language supports scalar variables Scalars and mutable maps or
arrays Maps . The language supports arithmetic operations on scalar expressions

Expr and select-update reasoning for array expressions MapExpr . The symbols
sel and upd are interepreted symbols for selecting from or updating an array.
The operation havoc assigns a type-consistent (scalar or map) arbitrary value
to its argument. s; t denotes the sequential composition of two statements s and
t, s � t denotes a non-deterministic choice to either execute statements in s
or t. This statement along with the assume models conditional statements. For
example, the statement if (e) {s} is desugared into {assume e; s} � assume ¬e.

wp(skip, φ) = φ
wp(assert ψ, φ) = ψ ∧ φ
wp(assume ψ, φ) = ψ =⇒ φ
wp(x := e, φ) = φ[e/x]
wp(X := E,φ) = φ[E/X]

wp(havoc x, φ) = φ[v/x]
wp(havoc X, φ) = φ[V/X]
wp(s; t, φ) = wp(s,wp(t, φ))
wp(s � t, φ) = wp(s, φ) ∧ wp(t, φ)

Fig. 2. Weakest liberal precondition for the logic without any extensions. Here v and
V represent fresh symbols.

The assertion language in Formula is extensible and contains the theories
for equality, arithmetic, arrays, and is closed under Boolean connectives. Any
formula φ ∈ Formula can be interpreted as a set of states of a program that
satisfy φ. For any s ∈ Stmt, and φ ∈ Formula, the weakest liberal precondition
wp(s, φ) corresponds to a formula such that from any state in wp(s, φ), the
statement s does not fail any assertions and any terminating execution ends in
a state satisfying φ. For our assertion logic (without any extensions), Figure 2
shows the wp for statements in the programming language. For more complex
extensions to the assertion logic (e.g. [15]), the rule for wp(X := E, φ) is more
complex. Although applying wp can result in an exponential blowup in the size
of a program, standard methods generate a linear-sized formula that preserves
validity by performing static single assignment (SSA) and introducing auxiliary
variables [2].

We say that the assertion logic is closed under wp (for SimpPL) when for
any φ ∈ Formula and for any s ∈ Stmt, wp(s, φ) ∈ Formula. In the rest of the
paper, we will abstract from the details of the particular assertion logic, with
the following restrictions on the assertion logic:

– the assertion logic is closed under Boolean connectives (i.e. subsumes propo-
sitional logic).

– the assertion logic is closed under wp.

– wp distributes over ∧, i.e., wp(s, φ ∧ ψ) ≡ wp(s, φ) ∧ wp(s, ψ).

A modelM assigns a type-consistent valuation to symbols in a formula. Any
model assigns the standard values for interpreted symbols such as =, +, −, sel,
upd, and assigns an integer value to symbols in Scalars and function values
to symbols in Maps . For a given model M, we say that the model satisfies a
formula φ ∈ Formula (written asM |= φ) if and only if the result of evaluating

φ inM is true; in such a case, we say that φ is satisfiable. We use |= φ to denote
that φ is valid when φ is satisfiable for any model.

Definition 1. For any φ, ψ ∈ Formula and s ∈ Stmt, the Floyd-Hoare triple
{φ} s {ψ} holds if and only if the logical formula φ =⇒ wp(s, ψ) is valid.

Intuitively, the Floyd-Hoare triple {φ} s {ψ} captures the specification that
from a state satisfying φ, no execution of s fails any assertions and every ter-
minating execution ends in a state satisfying ψ. Given our assumptions on the
assertion logic Formula, checking the correctness of a program in SimpPL re-
duces to checking validity in the assertion logic.

2.2 Loops and loop invariants

Having defined the semantics of loop-free code blocks, consider the following class
of programs Prog(pre, post , body) below (ignore the annotation {inv I} initially)
where pre, post ∈ Formula and body ∈ Stmt:

{pre}
while (∗){inv I} do body
{post}

Since this program can have unbounded computations due to the while loop,
generating a verification condition requires a loop invariant. This is indicated by
inv annotation. The loop invariant I is a formula in Formula. The Floyd-Hoare
triple for Prog holds if and only if there exists a loop invariant I such that the
three formula are valid:

|= pre =⇒ I
|= I =⇒ wp(body , I)
|= I =⇒ post

For any such program Prog(pre, post , body), we define Check (Prog , I) to re-
turn true if and only if all the three formulas are valid. Intuitively, Check (Prog , I)
checks whether the supplied loop invariant I holds on entry to the loop, is pre-
served by an arbitrary loop iteration and implies the postcondition.

We now define the decision problem that corresponds to inferring the loop in-
variant I for Prog . For a given program Prog(pre, post , body), Infer(Prog) returns
true if and only if there exists a formula I ∈ Formula such that Check (Prog , I)
is true.

Although Check (Prog , I) is efficiently decidable for our programming lan-
guage for a rich class of assertions (including the one shown in Figure 1), check-
ing Infer(Prog) is undecidable even when Prog consists of only scalar integer
variables and include arithmetic operations — one can encode the reachability
problem for a two counter machine, checking which is undecidable. Therefore,
most approaches search for I within some restricted space. Predicate abstraction
is one such technique that searches for an I within a finite space.

3 Complexity of predicate and template abstraction

In this section, we study the complexity of two inference techniques (relative to
the complexity of Check (Prog , I)) that search for loop invariants over a finite
space:

1. The first technique is based on predicate abstraction, where the loop invariant
is searched over Boolean combination of an input set of predicates.

2. The second technique is based on templates, where the loop invariant is
searched over the valuations of a set of free Boolean variables in a candidate
template assertion.

3.1 Predicate abstraction

Predicate abstraction [8], an instance of the more general theory of abstract in-
terpretation [5], is a mechanism to make the Infer(Prog) problem more tractable
by searching for I over restricted formulas. In predicate abstraction, in addition
to Prog , we are given a set of predicates P = {p1, . . . , pn} where pi ∈ Formula.
Throughout this paper, we assume that the set P is closed under negation, i.e.,
if p ∈ P then ¬p ∈ P . Instead of looking for a loop invariant I over arbitrary
formulas, predicate abstraction restricts the search to those formulas that are
a Boolean combination (using ∨ or ∧) over the predicates in P . More formally,
for a program Prog(pre, post , body) and a set of predicates P , InferPA(Prog ,P)
returns true if and only if there exists a formula I ∈ Formula which is a Boolean
combination over P such that Check (Prog , I) is true.

Theorem 1. If checking Check (Prog , I) is in PSPACE in the size of Prog
and I, then checking InferPA(Prog ,P) is PSPACE complete in the size of Prog
and P.

Proof sketch. Showing that InferPA(Prog ,P) is PSPACE hard is easy. We
can encode the reachability problem for a propositional transition system (which
is PSPACE complete) into InferPA(Prog ,P) by encoding the transition system
as Prog , and setting P to be the set of state variables in the transition system.

To show that InferPA(Prog ,P) is in PSPACE, we will provide a non-
deterministic algorithm for checking if ¬post can be reached by an abstract
interpretation of the program {pre} while (∗) do body {post} over the set of
predicates in P . Moreover, the algorithm will only use polynomial space in Prog
and P .

The abstract state of the program corresponds to an evaluation of the pred-
icates in P to {true, false}. The algorithm performs an abstract run of size
upto 2|P| to determine if ¬post can be reachable starting from pre. The non-
deterministic algorithm returns false if and only if some abstract run ends up in
a state satisfying ¬post .

We need to store two successive states in a run and the length of the run,
both of which only require linear space over the inputs. Moreover, to check that
an abstract state is a successor of another, one needs to make a query to check

that there is some concrete transition in Prog between the concretizations of the
two abstract states — this can be done in PSPACE since the decision problem
is in PSPACE. ut

3.2 Template abstraction

In template abstraction [18, 9, 21], the user provides a template formula J ∈
FormulaW in addition to Prog(pre, post , body), where

– W = {w1, w2, . . . , wm} is a set of Boolean valued symbols, and
– FormulaW extends Formula to contain formulas whose symbols range over

both state variables (Scalars and Maps) and W .

Given J , the goal is to infer a loop invariant I by searching over the different
valuations of the symbols in W .

For a set of symbols X , let σX denote an assignment of values of appropriate
types to each symbols inX . For any expression e and an assignment σX , e[σX/X]
replaces a symbol x ∈ X in e with σX(x). For a program Prog and a template
J ∈ FormulaW , InferTempl(Prog , J,W) returns true if and only if there exists
an assignment σW to the symbols inW such that Check (Prog , J [σW/W]) is true.

Example 1. Consider the simple program {x = 0∧y = 10} while (y 6= 0) do x :=
x+1; y := y−1; {x = 10}. In our language, the program would be written as {x =
0∧y = 10} while (∗) do assume y 6= 0;x := x+1; y := y−1; {y = 0 =⇒ x = 10}.
A potential loop invariant that proves the program is x+y = 10. A template J for
which InferTempl(Prog , J,W) is true is (w1 =⇒ x+ y = 10)∧(w2 =⇒ x = y).
Clearly, for the assignment σw1

= true and σw2
= false, the template is a loop

invariant.

The complexity class ΣP

2
contains all problems that can be solved in NP

using an NP oracle.

Theorem 2. If checking Check (Prog , I) is in Co-NP in the size of Prog and I,
then checking InferTempl(Prog , J,W) is ΣP

2
complete in Prog, J , and W.

Proof. The problem is in ΣP

2
because we can non-deterministically guess an

assignment of W and check if the resulting J is an inductive invariant. The NP
oracle used in this case is a checker for ¬Check (Prog , I).

On the other hand, one can formulate InferTempl(Prog , J,W) as the formula
∃W .Check (Prog , J). Given a quantified Boolean formula (QBF) ∃X.∀Y.φ(X,Y)
where φ is quantifier-free, for which checking the validity is ΣP

2
complete, we

can encode it to InferTempl(Prog , J,W), by constructing pre = post = true,
body = skip, W = X and J = φ(X,Y). ut

Having shown that the complexity of both predicate abstraction and template
abstraction are considerably harder than checking an annotated program, we
will focus on two restricted versions of the abstraction problem for monomials
and clauses. As mentioned in the introduction, these problems can be seen as
restrictions of either predicate abstraction or template abstraction.

4 Monomial abstraction

For any set R ⊆ P , a monome over R is the formula
∧

p∈R p. For a set of
predicates P , let us define InferMonome(Prog ,P) to return true if and only if
there exists R ⊆ P such that Check (Prog ,

∧
p∈R p) is true.

4.1 Houdini algorithm

FailsCheck(S ,M)
4
=M |= (

∧
q∈S

q) ∧ ¬post

RemovesPredicate(S ,M, p)
4
= ∨M |= pre ∧ ¬p
∨M |= (

∧
q∈S

q) ∧ ¬wp(body , p)

proc FindInvAux (R)
if (exists a model M s.t. FailsCheck(R,M))
Mguess ←M;
return FAIL;

if (exists q ∈ R and model M s.t. RemovesPredicate(R,M, q))
Mguess ←M;
Qguess+1 ← Qguess ∪ {q};
guess ← guess + 1;
return FindInvAux (R \ {q});

return SUCCESS(R);

proc FindInv(P)
guess ← 1;
Qguess ← {};
FindInvAux (P);

Fig. 3. Procedure to construct either a monomial invariant or a witness to show its
absence. The shaded lines represent extensions for computing the witness.

Figure 3 describes an algorithm FindInv for solving the InferMonome prob-
lem. Initially, ignore the shaded regions of the algorithm. The algorithm itera-
tively prunes the set of predicates in the invariant starting from P , removing a
predicate whenever RemovesPredicate holds. The algorithm terminates with a
FAIL when FailsCheck holds, denoting that there is no monomial invariant that
satisfies the postcondition post . On the other hand, the algorithm terminates
with SUCCESS(R) when it finds an invariant. It is easy to see that the proce-
dure FindInvAux terminates within a recursion depth of |P| since its argument
R monotonically decreases along any call chain.

Lemma 1. The procedure FindInv(P) satisfies the following:

1. FindInv (P) returns FAIL if and only if InferMonome(Prog ,P) is false.
2. If FindInv(P) returns SUCCESS (R), then for any S ⊆ P such that

Check (Prog ,
∧

p∈S p), we have S ⊆ R.

The algorithm is a variant of the Houdini algorithm in ESC/Java [7], where
RemovesPredicate considers each predicate p in isolation instead of the conjunc-
tion (

∧
q∈S q). The Houdini algorithm solves the InferMonome(Prog ,P) problem

with at most |P| number of theorem prover calls. However, this only provides
an upper bound on the complexity of the problem. For example, making |P|
number of queries to a Co-NP complete oracle (a theorem prover) does not
establish that the complexity of the inference problem is Co-NP complete; it
only establishes that the upper bound of the complexity is PNP.

In the next subsection, we provide a model-theoretic justification for the
correctness of FindInv . Our construction will provide insight into the complexity
of InferMonome(Prog ,P) relative to the complexity of Check (Prog , I).

4.2 A model-theoretic proof of FindInv

For a guess ∈ N, an indexed set of models {Mi}i, an indexed set of sets of
predicates {Qi}i, we define a predicate NoMonomeInv (P , guess , {Mi}i, {Qi}i),
that is true if and only if:

1. 1 ≤ guess ≤ |P|+ 1, and
2. Q1 = {}, and
3. For 1 ≤ i < guess, Qi+1 \ Qi = {pi} for some pi ∈ P , and
4. For each 1 ≤ i < guess , and for pi ∈ Qi+1 \ Qi, either Mi |= pre ∧ ¬pi or
Mi |= (

∧
p∈P\Qi

p) ∧ ¬wp(body , pi), and

5. Mguess |= (
∧

p∈P\Qguess
p) ∧ ¬post .

The following three lemmas, whose proofs are given in the appendix, es-
tablish the connection between the InferMonome problem, the NoMonomeInv
predicate, and the FindInv algorithm.

Lemma 2. If FindInv (P) returns FAIL, then NoMonomeInv (P , guess , {Mi}i, {Qi}i)
holds on the values computed by the procedure.

Lemma 3. If NoMonomeInv (P , guess, {Mi}i, {Qi}i) holds for some guess ∈
N, a set of models M1, . . . ,Mguess, and sets of predicates Q1, . . . ,Qguess , then
InferMonome(Prog ,P) is false.

Lemma 4. If FindInv (P) returns SUCCESS (R), then Check (Prog ,
∧

p∈R p) is
true, and therefore InferMonome(Prog ,P) is true.

The proofs of these lemmas requires the use of the additional shaded lines
in the Figure 3, which compute the witness to show that no monomial invariant
suffices to prove the program. Together, these three lemmas allow us to conclude
that InferMonome(Prog ,P) is false iff NoMonomeInv (P , guess , {Mi}i, {Qi}i)
holds for some guess ∈ N, a set of models M1, . . . ,Mguess, sets of predicates
Q1, . . . ,Qguess . This fact is used to define the symbolic encoding of the problem
InferMonome(Prog ,P) in the next subsection.

4.3 Symbolic encoding and complexity of InferMonome(Prog , P)

In this section, we provide a symbolic encoding of InferMonome(Prog ,P). That
is, given a program Prog(pre, post , body) and a set of predicates P , we will con-
struct a formula SymbInferMonome(Prog ,P) which is satisfiable if and only if
InferMonome(Prog ,P) is false. The formula can be seen as a symbolic encoding
of an iterative version of the FindInv algorithm that symbolically captures all ex-
ecutions of the algorithm for any input. Finally, we will use the encoding to relate
the complexity of InferMonome(Prog ,P) to the complexity of Check (Prog , I).

The following notations are used:

– The set of predicates is P , and n = |P|
– For any formula φ, φi represents the formula with any variable x is replaced

with a fresh variable xi. We will use this for each predicate p ∈ P , pre, post
and wp(body , p).

– The symbols bjp for a predicate p denotes that the predicate p was removed
from consideration for the invariant in the j-th iteration.

For each p ∈ P and i ∈ [1, n+ 1], we define

present i
p

4
=

∧
j∈[0,i) ¬b

j
p

For each i ∈ [1, n], we define

iter i
4
= ∨ prei ∧

∧
p∈P(bip =⇒ ¬pi)

∨
∧

p∈P((present i
p =⇒ pi) ∧ (bip =⇒ ¬wp(body , p)i))

For each i ∈ [1, n+ 1], we define

check i
4
=

∧
p∈P(present i

p =⇒ pi) ∧ ¬post i

Finally, the desired symbolic encoding SymbInferMonome(Prog ,P) is the
following formula:

∧ 1 ≤ guess ≤ n+ 1
∧

∧
p∈P ¬b

0
p

∧ (
∧

i∈[1,n] i < guess =⇒ Σp∈Pb
i
p = 1) ∧ (

∧
p∈P Σi∈[1,n](i ≤ guess ∧ bip) ≤ 1)

∧
∧

i∈[1,n] i < guess =⇒ iter i

∧
∧

i∈[1,n+1] i = guess =⇒ check i

To get some intuition behind the formula, observe that each of the five con-
juncts in this formula resembles closely the five conjuncts in the definition of
NoMonomeInv (P , guess, {Mi}i, {Qi}i). The symbols shared across the differ-
ent i ∈ [1, n+ 1] are the bip symbols and guess . This is similar to the definition
of NoMonomeInv (P , guess , {Mi}i, {Qi}i), where the different models in {Mi}i
only agree on the evaluation of the sets Qi and guess . The role of the bip variable

is precisely to encode the sets Qi+1; b
i
p = true denotes that {p} = Qi+1 \Qi. The

second conjunct denotes that Q1 = {} where no predicate has been removed.
The third conjunct has two parts. The first part i < guess =⇒ Σp∈Pb

i
p = 1

denotes that Qi+1 and Qi differ by exactly one predicate, for any i < guess .
The second part

∧
p∈P Σi∈[1,n](i ≤ guess ∧ bip) ≤ 1 denotes that a predicate is

removed at most once in any one of the guess iterations. Similarly, the fourth
conjunct justifies the removal of the predicate in Qi+1 \ Qi.

Theorem 3. The formula SymbInferMonome(Prog ,P) is satisfiable if and only
if InferMonome(Prog ,P) is false.

Proof sketch. We provide a proof sketch in this paper.
“ =⇒ ”: Let us assume that SymbInferMonome(Prog ,P) is satisfiable. Given

a satisfying model M to SymbInferMonome(Prog ,P), one can split M into a
set of models {Mi}i where Mi assigns values to the i-th copy of the variables
in φi, only agreeing on the values of bip and guess. Also, the valuation of the bip
can be used to construct the sets Qi; Qi+1 ← Qi ∪ {p} when bip is true in M.

“⇐=”: Let us assume that InferMonome(Prog ,P) returns false. Then by
Lemma 2, we can construct a model M by the union of the models {Mi}i,
and construct an evaluation for bip as follows: If Qi+1 \ Qi = {p}, then as-

sign bip to true. In all other cases, assign bip to be false. The model M satisfies
SymbInferMonome(Prog ,P). ut

Theorem 4. For an assertion logic closed under wp and Boolean connectives,
the complexity of InferMonome(Prog ,P) matches the complexity of Check (Prog , I).

Proof sketch. Since SymbInferMonome(Prog ,P) results in a formula which is
polynomial in P and the size of wp(body , p) for any predicate p ∈ P , the com-
plexity of checking the satisfiability of SymbInferMonome(Prog ,P) is simply the
complexity of checking assertions in the assertion logic in which Check (Prog , I)
is expressed. ut

Corollary 1. If the decision problem for Check(Prog , I) is Co-NP complete,
then the decision problem for InferMonome(Prog ,P) is Co-NP complete.

The encoding SymbInferMonome(Prog ,P) can also be seen as an alternative
algorithm for the InferMonome(Prog ,P) problem. However, when the formula
SymbInferMonome(Prog ,P) is unsatisfiable, it does not readily provide us with
the invariant I. We believe this can be extracted from the unsatisfiable core, and
we are currently working on it.

5 Clausal abstraction

For any set R ⊆ P , a clause over R is the formula
∨

p∈R p. For a program
Prog(pre, post , body) and a set of predicates P , let us define InferClause(Prog ,P)
to return true if and only if there exists a R ⊆ P such that Check (Prog ,

∨
p∈R p)

is true.

5.1 Dual Houdini algorithm

First, let us describe an algorithm for solving the InferClause(Prog ,P) problem.
Recall that the Houdini algorithm for solving the InferMonome(Prog ,P) prob-
lem starts with the conjunction of all predicates in P and iteratively removes
predicates until a fixpoint is reached. Conversely, the dual Houdini algorithm
starts with the disjunction of all predicates in P and removes predicates until a
fixpoint is reached. The algorithm invokes FindInv (P) (in Figure 3), only this
time using the following definitions of FailsCheck and RemovesPredicate macros:

FailsCheck (S,M)
4
=M |= (

∧
q∈S ¬q) ∧ pre

RemovesPredicate(S,M, p)
4
= ∨M |= ¬post ∧ p
∨M |= ¬wp(body ,

∨
q∈S q) ∧ p

In the remainder of this section, we let FindInv (P) denote the algorithm
with the above definitions of FailsCheck (S,M) and RemovesPredicate(S,M, p),
rather than those given in Figure 3.

Theorem 5. The procedure FindInv(P) enjoys the following properties:

1. FindInv (P) returns FAIL if and only if InferClause(Prog ,P) is false.
2. If FindInv(P) returns SUCCESS (R), then for any S ⊆ P such that

Check (Prog ,
∨

p∈S p), we have S ⊆ R.

The theorem signifies that the dual Houdini constructs the weakest clause
I that satisfies Check (Prog , I), as opposed to Houdini, which computes the
strongest monome I that satisfies Check (Prog , I). This is not surprising because
Houdini solves the problem in the forward direction starting from pre, whereas
the dual algorithm solves the problem backwards staring from post .

The structure of the rest of the section is similar to Section 4. For brevity,
we mostly state the analogues of lemmas, theorems and symbolic encoding in
the next two subsections, without details of the proofs.

5.2 Model-theoretic proof

For a guess ∈ N, an indexed set of models {Mi}i, an indexed set of sets of
predicates {Qi}i, we define a predicate NoClauseInv(P , guess , {Mi}i, {Qi}i),
that is true if and only if the following conditions hold:

1. 1 ≤ guess ≤ |P|+ 1,
2. Q1 = {},
3. For 1 ≤ i < guess, Qi+1 \ Qi = {pi} for some pi ∈ P ,
4. For each 1 ≤ i < guess , and for pi ∈ Qi+1 \ Qi, either Mi |= ¬post ∧ pi or
Mi |= ¬wp(body ,

∨
p∈P\Qi

p) ∧ pi, and

5. Mguess |= (
∧

p∈P\Qguess
¬p) ∧ pre.

The following three lemmas establish the connection between the InferClause
problem, the NoClauseInv predicate, and the FindInv algorithm.

Lemma 5. If FindInv (P) returns FAIL, then NoClauseInv(P , guess, {Mi}i, {Qi}i)
holds on the values computed by the procedure.

Lemma 6. If NoClauseInv(P , guess, {Mi}i, {Qi}i) holds for some guess ∈ N,
a set of models M1, . . . ,Mguess, and sets of predicates Q1, . . . ,Qguess , then
InferClause(Prog ,P) is false.

Lemma 7. If FindInv (P) returns SUCCESS (R), then Check (Prog ,
∨

p∈R p) is
true, and therefore InferClause(Prog ,P) is true.

5.3 Symbolic encoding

Similar to the monomial abstraction, we define the SymbInferClause(Prog ,P)
which is satisfiable if and only if InferClause(Prog ,P) returns false. The symbolic
encoding for clausal abstraction retains the structure of the symbolic encoding for
monomial abstraction. The only difference is that the definitions of the predicates
iter i and check i change as follows:

For each i ∈ [1, n], we define

iter i
4
= ∨ ¬post i ∧

∧
p∈P(bip =⇒ pi)

∨ ¬wp(s,
∨

p∈P present i
p ∧ p)

i ∧
∧

p∈P(bip =⇒ pi)

For each i ∈ [1, n+ 1], we define

check i
4
=

∧
p∈P(present i

p =⇒ ¬pi) ∧ prei

Finally, the analogues of Theorem 3, Theorem 4, and Corollary 1 can be
shown for the clausal abstraction as well.

Theorem 6. The formula SymbInferClause(Prog ,P) is satisfiable if and only
if InferClause(Prog ,P) is false.

Theorem 7. For an assertion logic closed under wp and Boolean connectives,
the complexity of InferClause(Prog ,P) matches the complexity of Check (Prog , I).

Corollary 2. If the decision problem for Check(Prog , I) is Co-NP complete,
then the decision problem for InferClause(Prog ,P) is Co-NP complete.

6 Conclusions

Formulation of predicate abstraction as a decision problem allows us to infer an-
notations for programs in a property guided manner, by leveraging off-the-shelf
and efficient verification condition generators. In this work, we have studied the

complexity of the decision problem of predicate abstraction relative to the com-
plexity of checking an annotated program. The monomial and clausal restrictions
considered in this paper are motivated by practical applications, where most in-
variants are monomes and a handful of clauses [16]. We have also provided a
new algorithm for solving the InferClause(Prog , I) problem.

There are several questions that are still unanswered. We would like to con-
struct an invariant from the unsatisfiable core, when the symbolic encoding of
the InferMonome(Prog ,P) or InferClause(Prog ,P) returns unsatisfiable. It is
also not clear what the complexity is for inferring invariants that are either a
disjunction of up to c monomes, or a conjunction of up to c clauses, for a fixed
constant c.

References

1. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), pages 203–213, 2001.

2. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In Program Analysis For Software Tools and Engineering (PASTE ’05), pages 82–
87, 2005.

3. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification (CAV ’00), LNCS 1855,
pages 154–169, 2000.

4. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and
property checking for low-level code. In Principles of Programming Languages
(POPL ’09), pages 302–314, 2009.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
the static analysis of programs by construction or approximation of fixpoints. In
Principles of Programming Languages (POPL ’77), pages 238–252, 1977.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Principles of Programming Languages (POPL ’78),
pages 84–96, 1978.

7. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.
In International Symposium of Formal Methods Europe (FME ’01), pages 500–517,
2001.

8. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In Computer-
Aided Verification (CAV ’97), LNCS 1254, pages 72–83, June 1997.

9. S. Gulwani, S. Srivastava, and R. Venkatesan. Constraint-based invariant infer-
ence over predicate abstraction. In Verification, Model Checking, and Abstract
Interpretation (VMCAI ’09), LNCS 5403, pages 120–135, 2009.

10. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In Principles of Programming Languages (POPL), pages 232–244, 2004.

11. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Principles of Programming Languages (POPL ’02), pages 58–70, 2002.

12. H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke. Word level predicate ab-
straction and refinement for verifying rtl verilog. In Design Automation Conference
(DAC ’05), pages 445–450. ACM, 2005.

13. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1995.

14. S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via predicate
abstraction. In Verification, Model Checking and Abstract Interpretation (VMCAI
’04), LNCS 2937, pages 267–281, 2004.

15. S. K. Lahiri and S. Qadeer. Back to the future: Revisiting precise program verifi-
cation using SMT solvers. In Principles of Programming Languages (POPL ’08),
pages 171–182, 2008.

16. S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and T. Wies. Intra-module
inference. In Computer-Aided Verification (CAV ’09), LNCS (to appear), July
2009.

17. S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in lan-
guages with destructive updating. ACM Transactions on Programming Languages
and Systems (TOPLAS), 20(1):1–50, 1998.

18. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based linear-
relations analysis. In Static Analysis Symposium (SAS ’04), LNCS 3148, pages
53–68, 2004.

19. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In Verification, Model Checking, and
Abstract Interpretation (VMCAI ’05), LNCS 3385, pages 25–41, 2005.

20. Satisfiability Modulo Theories Library (SMT-LIB). Available at
http://goedel.cs.uiowa.edu/smtlib/.

21. A. Solar-Lezama, R. M. Rabbah, R. Bod́ık, and K. Ebcioglu. Programming by
sketching for bit-streaming programs. In Programming Language Design and Im-
plementation (PLDI ’05), pages 281–294. ACM, 2005.

Appendix

Proof of Lemma 2

Proof. The first four conditions of NoMonomeInv (P , guess, {Mi}i, {Qi}i) are
easily satisfied by construction. The fifth condition can be shown by observing
that Qguess ∪R = P is a precondition to FindInvAux . ut

Proof of Lemma 3

Proof. Let us assume that there exists guess , {Mi}i∈[1,guess], {Qi}i∈[1,guess] sat-
isfying NoMonomeInv (P , guess , {Mi}i, {Qi}i). We will show that in such a case,
InferMonome(Prog ,P) returns false.

We will prove this by contradiction. Let us assume that there is a R ⊆ P such
that Check (Prog ,

∧
p∈R p) holds. Let I =

∧
p∈R p. We claim thatR∩Qguess = {}.

We will prove this by induction on i for 1 ≤ i ≤ guess , showing R ∩ Qi = {}.
The base case for i = 1 holds vacuously since Q1 = {}. Let us assume that the
induction hypothesis holds for all j ≤ i. Consider the set {pi} = Qi+1 \ Qi. We
show that pi cannot be in R. Consider the two cases how pi gets removed.

– If Mi |= pre ∧ ¬pi, then we know that 6|= pre =⇒ pi. If pi ∈ R, then
|= pre =⇒ pi, which is a contradiction.

– On the other hand, supposeMi |= (
∧

p∈P\Qi
p)∧¬wp(body , pi). By induction

hypothesis, we know that R ∩Qi = {}, therefore R ⊆ P \ Qi. This implies
Mi |= (

∧
p∈R p) ∧ ¬wp(body , pi). If pi ∈ R, then we can conclude that

Mi |= (
∧

p∈R p)∧¬(
∧

p∈R wp(body , p)). Since wp distributes over ∧, we have∧
p∈R wp(body , p)) = wp(body ,

∧
p∈R p) and thus Mi |= I ∧ ¬wp(body , I).

Since I satisfies Check (Prog , I), we have arrived at a contradiction.

Having shown that R ∩ Qguess = {}, we know that R ⊆ P \ Qguess . Since
Mguess |= (

∧
p∈P\Qguess

p) ∧ ¬post , it implies that Mguess |= (
∧

p∈R p) ∧ ¬post ,

which in turn implies 6|= I =⇒ post , which contradicts our assumption that
Check (Prog , I). ut

Proof of Lemma 4

Proof. Let FindInvAux return SUCCESS (R) for an argumentR to FindInvAux .
Since both the if branches are not taken, all the following conditions hold:

1. |= (
∧

q∈R q) =⇒ post .
2. For each q ∈ R, |= pre =⇒ q, and therefore |= pre =⇒ (

∧
q∈R q).

3. For each q ∈ R, |= (
∧

p∈R p) =⇒ wp(body , q). Since wp distributes over ∧,
this implies |= (

∧
p∈R p) =⇒ wp(body , (

∧
p∈R p)).

These conditions mean that Check (Prog ,
∧

q∈R q) holds. ut

Proof of Lemma 1

Proof. Part (1) is proved easily by combining Lemmas 2, 3, and 4.
To prove part (2), we establish the following precondition for FindInvAux

procedure: For any set of predicates S ⊆ P such that Check (Prog ,
∧

p∈S p)
holds, S ∩ Qguess = {}. The proof follows by induction on guess similar to
the proof of Lemma 3. Similarly, R ∪ Qguess = P is another precondition for
FindInvAux . Therefore, whenever FindInvAux returns SUCCESS (R), (

∧
p∈R p)

is the strongest monomial invariant over P that satisfies the program. ut

