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Abstract

We propose the first differentially private aggregation algorithm for distributed time-series data that
offers good practical utility without any trusted server. This addresses two important challenges in
participatory data-mining applications where (i) individual users wish to publish temporally correlated
time-series data (such as location traces, web history, personal health data), and (ii) an untrusted third-
party aggregator wishes to run aggregate queries on the data.

To ensure differential privacy for time-series data despite the presence of temporal correlation, we
propose the Fourier Perturbation Algorithm (FPAk). Standard differential privacy techniques perform
poorly for time-series data. To answer n queries, such techniques can result in a noise of Θ(n) to each
query answer, making the answers practically useless if n is large. Our FPAk algorithm perturbs the
Discrete Fourier Transform of the query answers. For answering n queries, FPAk improves the expected
error from Θ(n) to roughly Θ(k) where k is the number of Fourier coefficients that can (approximately)
reconstruct all the n query answers. Our experiments show that k ¿ n for many real-life data-sets
resulting in a huge error-improvement for FPAk.

To deal with the absence of a trusted central server, we propose the Distributed Laplace Perturbation
Algorithm (DLPA) to add noise in a distributed way in order to guarantee differential privacy. To the
best of our knowledge, DLPA is the first distributed differentially private algorithm that can scale with
a large number of users: DLPA outperforms the only other distributed solution for differential privacy
proposed so far, by reducing the computational load per user from O(U) to O(1) where U is the number
of users.

1 Introduction

The ever increasing instrumentation of the physical and the virtual world has given us an unprecedented op-
portunity to collect useful data from diverse sources and to mine it for understanding important phenomena.
Consider the following examples of participatory data mining applications.

E1: In participatory sensing applications such as CarTel [16], BikeNet [8], PEIR [26], WeatherUn-
derground1, participants contribute various time-series data, e.g., their current locations, speeds, weather
information, images, etc. These data can be aggregated and mined for useful information such as community
interests (e.g., popular places), congestion patterns in roads, micro-weather, etc.

E2: A Web browser can install plug-ins to monitor users’ browsing behaviors such as the numbers of
different types of web pages a user visits, the types of products he buys from online stores, etc. Historical
data from such plug-ins can be aggregated to understand user behaviors for improving search results or for
better targeted advertisement delivery [14].

E3: Health-care applications such as Microsoft HealthVault2 and Google Health3 allow users to period-
ically upload data such as their weights, occurrences of diseases, amounts of exercise, food and drug intake,

1http://www.weatherunderground.com
2http://www.healthvault.com
3https://www.google.com/health
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Centralized Distributed

Relational data
E.g., [7, 15, 28]
Inaccurate for long time-series
query sequences

E.g., [6, 9, 12,29]
Either inefficient or inaccurate [9] for a
large number of users

Time-series data
E.g., [11,22]
No formal privacy guarantees

This paper
Accurate & efficient answers for time-series
query sequences under differential privacy

Table 1: The design space and existing works

etc. PIER [26] allows individual users to store such data locally in personal data vaults. Such data can be
mined in combination to understand disease outbreaks, distribution of weights, relationship of weight gain
and drug intake, etc.

As the above examples suggest, aggregate statistics computed from data contributed by a large number
of individual participants can be quite useful. However, data owners or publishers may not be always willing
to reveal the true values due to various reasons, most notably privacy considerations. The goal of our work
is to enable third parties to compute useful aggregates over, while guaranteeing the privacy of, the data from
individual publishers.

A widely employed and accepted approach for partial information hiding is based on random perturbation,
which introduces uncertainty about individual values. Prior work has shown how to perturb relational
data for useful aggregation [7, 9, 20, 27]. However, participatory data mining applications have two unique
characteristics that make existing privacy mechanisms inadequate for these applications.

• Time-series data: The applications generate time series numerical or categorical data. Data at successive
timestamps from the same source can be highly correlated.

• Distributed sources: Data publishers may not trust any single third party to see their true data. This
means, the querier needs to be able to compute useful aggregates without seeing the true data values.

The above characteristics make most existing privacy solutions, which assume relational data with negligible
correlations across tuples [9,20,27] or existence of a central trusted entity for carefully introducing noise [7,
15,28], inadequate for our target applications (as summarized in Table 1).

Thus, to realize widespread adoption of participatory data mining applications, the first challenge that
one needs to address is to ensure privacy for time-series data. One factor that makes it challenging is the
strong correlation among successive values in the series. This correlation makes answers to different queries
over time-series data to also become correlated, e.g. a sequence of queries computing the average weight of
a community at successive weeks.

One possible way for achieving privacy is to perturb the answers to such queries independently of one
another, thereby ensuring that even revealing a few true answers does not help infer anything about the
perturbation of other answers. However, [22] pointed out that if the time-series exhibit certain patterns,
then independent perturbation of query answers can be distinguished from the original answers and filtered
out. Authors in [11, 22] consider perturbing time series data to defend against several privacy attacks, but
they do not provide any formal privacy guarantee, without which data owners may not publish sensitive
data in the fear of unforeseen privacy attacks.

On the other hand, formal privacy guarantees like differential privacy that work well for relational data,
seem too hard to achieve for time series data. For instance, standard differentially private techniques [7] can
result in a noise of Θ(n) to each query answer, where n is the number of queries to answer, making the query
answers practically useless if a long sequence of queries is to be answered.

The second challenge arises from the absence of a trusted aggregator. Most previous works assume that
a trusted aggregator, who has access to the raw data, computes target functions on the data and then
perturbs the results [7,20,27]. In the absence of a trusted aggregator, users need to perturb their data before
publishing it to the aggregator [9]. However, if users perturb data independently, the noise variance in the
perturbed estimate grows linearly with the number of users, reducing the utility of the aggregate information.
To improve utility, cryptographic techniques like Secure Multiparty Computation [6, 12, 29] can be used to
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Figure 1: System Model (U users with data I1, . . . , IU . The aggregator issues recurring query Q =
Q1, . . . , Qn. No trusted server has I = I1 ∪ I2 . . . ∪ IU to evaluate Q(I))

compute accurate perturbed estimates in a distributed setting. However the computational performance of
such cryptographic techniques does not scale well with a large number of users.

In this paper, we address these two challenges of distributed time-series data. We use the state-of-the-art
differential privacy as the privacy requirement, and make the following contributions:

I To answer multiple queries over time-series data under differential privacy, we propose the FPAk

algorithm that perturbs the Discrete Fourier Transform (DFT) of the query answers. For answering n
queries, FPAk improves the error from Θ(n) (error of standard differential privacy techniques) to roughly
Θ(k) where k is the number of DFT coefficients that can (approximately) reconstruct all the n query
answers. Our experiments show that a small k ¿ n is sufficient for many real-life datasets, resulting in
a huge error-improvement for FPAk. To the best of our knowledge, FPAk is the first differentially private
technique (unlike [11,22]) that offers practical utility for time-series data.

I We propose the DLPA algorithm that adds noise in a distributed way for providing differential privacy.
To the best of our knowledge, DLPA is the first distributed differentially private algorithm that scales with
a large number of users: DLPA outperforms the only other proposed distributed algorithm [6], by reducing
the computational load per user from O(U) to O(1) where U is the number of users.

I Our distributed solution combines the FPAk and DLPA algorithms to get the accuracy benefits of
the former and the scalability of the latter. We empirically evaluate our solution over three real time-series
datasets, namely, GPS traces, daily body-weight readings, and traffic volumes. Our experiments show that
our solution improves accuracy of query answers by orders of magnitude and also scales well with a large
number of users.

We believe that our work is an important first step towards practical participatory data mining appli-
cations. We have implemented some of our techniques in a real online participatory sensing application,
which has been publicly available for last three years with several hundreds data publishers. Our privacy
techniques now allow users to publish private data without revealing the true values and our application to
compute useful aggregates over private data.

2 Preliminaries

2.1 Problem Setup and System Model

Motivated by the participatory applications in Section 1, we consider a system model as shown in Figure 1.
The system has two types of parties involved: a set of U users and an aggregator. The figure shows U
users locally storing their personal weight time-series data. We will use the weight time-series as a running
example throughout the paper. In general, we model each user u’s data as a (uni- or multi-variate) time
series data, and denote it as Iu. We also denote I = I1 ∪ I2 . . . ∪ IU the combined time-series data of all
users. There is no trusted central server, and hence I is never computed. The aggregator, however, wishes
to compute aggregate queries over I.
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Types of queries. An aggregate query can be a snapshot query that returns a single number, e.g., the
current average weight over all users. A query can also be recurring and ask for periodic answers, e.g.,
the average weight of all users computed once every month of the year. We model a recurring query as a
sequence of queries Q = {Q1, . . . , Qn} where each Qi is a snapshot query. We denote Qi(I) the value of the
snapshot query Qi on input I, and Q(I) the vector {Q1(I), . . . , Qn(I)}.

A recurring query can be historical that focuses on past data only, or real-time that runs on data as it
arrives. The data-mining applications we consider are primarily concerned with historical recurring queries,
and we develop new algorithms to answer them accurately. Real-time queries are supported only as a
sequence of snapshot queries.

Distributed Computation. If a query Q contains predicates on public static attributes, it can be forwarded
only to users satisfying the predicates. Otherwise, Q needs to be forwarded to all users. Upon receiving the
query Q, a user evaluates Q on his own time series, Iu, perturbs the result, and sends the perturbed results
back to the aggregator. The aggregator combines the perturbed results from all users to produce the final
result.

A prerequisite for such a distributed system is that the true query answer, Q(I), is computable distribut-
edly. Of all such queries, we consider only queries of the general form Q(I) =

∑
u fu(Iu), where fu is an

arbitrary function that maps user u’s data, Iu, to numbers.4 Such queries, called aggregate-sum queries, are
quite general, and as explained in [3], are powerful tools for learning and statistical analysis: many algorithms
like correlation, PCA, SVD, decision tree classification, etc. can be implemented using only aggregate-sum
queries as a primitive. Queries not included in this class are queries that require a non-sum function to be
evaluated collectively over multiple users’ data (e.g., aggregate-max or min queries).

Attack Model. We allow both users and the aggregator to be malicious. A malicious user can be of two
kinds: (i) Liar: a user who lies about his values, but otherwise follows the protocol correctly, or (ii) Breaker:
a user who breaks the protocol, e.g., sends wrong messages. A malicious aggregator can break the protocol.
In addition, it can collude with other malicious users.

To ensure privacy for users, we make a flexible assumption that at least a fraction of users (e.g., a
majority) are honest. The lower bound h of the number of honest users is known a priori during deciding
the noise generation parameters of the system. Remaining users and the aggregator can be arbitrarily
malicious. (Similar assumption is generally made in cryptographic solutions.) The assumption is practical
and flexible—for a user to know that his true values will remain private, he only needs to know that at least
a certain fraction of other users are honest; he does not need to trust any single entity s.a. the aggregator.

On the other hand, to ensure a good utility guarantee for the aggregator, we assume that the aggregator
queries a set of users that it generally trusts. Of the users the aggregator chooses to query, there can be
at most l liars (l is small) and the remaining users are either honest or colluding/collaborating with the
aggregator. There is fundamentally no way to ensure good utility if a large number of users lie about their
data.The same is true if even a single user introduces an arbitrarily large noise. So we assume that there are
no breakers: in practice, this can be arranged by ensuring that users’ messages sent to the aggregator are
generated and digitally signed by a trusted software implementing the protocol.5

In summary, our privacy guarantees hold even if a large number of users are malicious. This is crucial to
make new privacy-aware users feel comfortable to join the system. Our utility guarantees hold if a small (< l)
number of users lie and try to disrupt the final aggregate. This leaves the responsibility to the aggregator
for choosing a good set of users to query. For example, if the aggregator can identify a malicious user (e.g.,
via some out-of-band mechanism), it can blacklist the user and exclude him from its queries. Our attack
model is stronger than many previous techniques [12] that use the honest-but-curious model and disallow
malicious agents.

Privacy Goals. We aim to enable the aggregator to estimate answers to aggregate queries. At the same
time, an aggregator should not learn anything more, other than the aggregate answer, about honest individual

4Our techniques can support arbitrary queries if run on a centralized server.
5Many software security systems rely on trusted software, for instance the clients’ antivirus software, to work with untrusted

clients [14].
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users. Moreover, no user should learn anything about the values of other honest users, even if he colludes
with the aggregator or other malicious users. We formalize our privacy requirement using differential privacy,
which we discuss next.

2.2 Privacy Definition and Background

We now discuss differential privacy [5] that we use as our privacy definition and also review the standard
perturbation technique [7] used for achieving differential privacy.

Differential Privacy. Informally, an algorithm is differentially private if its output is insensitive to changes
in the data Iu of any single user u. This provides privacy because if similar databases, say differing in the
data of one user, produce indistinguishable outputs, then the adversary cannot use the output to infer any
single user’s data. To formalize this notion, denote I = I1 ∪ I2 . . .∪ IU the combined data form U users and
nbrs(I) the data obtained from adding/removing one user’s data from I, i.e. nbrs(I) consists of I ′ such that
either I ′ = I ∪ Iu for u /∈ {1, . . . , U} or I ′ = I − Iu for some u ∈ {1, . . . , U}.
Definition 2.1 (ε-differential privacy [5]). Denote A(I) the output of an algorithm A on input data I. Then
A is ε-differentially private if all I, I ′ such that I ′ ∈ nbrs(I), and any output x, the following holds:

Pr[A(I) = x] ≤ eεPr[A(I ′) = x]

where Pr is a probability distribution over the randomness of the algorithm.

Query Sensitivity. We now look at a standard technique proposed by Dwork et al. [7] for differential
privacy. It can be used to answer any query whether it is just a single snapshot query, Qi, or a recurring
query sequence, Q = Q1, . . . , Qn.

The technique works by adding random noise to the answers, where the noise distribution is carefully
calibrated to the query. The calibration depends on the query sensitivity—informally, the maximum amount
the query answers can change given any change to a single user’s data Iu. If Q is a query sequence, Q(I) and
Q(I ′) are each vectors. Sensitivity then measures the distance between the two vectors. This is typically
done using the L1 distance metric, denoted as |Q(I)−Q(I ′)|1, that measures the Manhattan distance∑

i |Qi(I) − Qi(I ′)| between these vectors. In this paper, we also use the L2 distance metric, denoted as
|Q(I)−Q(I ′)|2 that measures the Euclidean distance

√∑
i(Qi(I)−Qi(I ′))2.

Definition 2.2 (Sensitivity [7]). Let Q be any query sequence. For p ∈ {1, 2}, the Lp sensitivity of Q,
denoted ∆p(Q), is the smallest number such that for all I and I ′ ∈ nbrs(I),

|Q(I)−Q(I ′)|p ≤ ∆p(Q)

For a single snapshot query Qi, the L1 and L2 sensitivities are the same, and we write ∆(Qi) = ∆1(Qi) =
∆2(Qi).

Example 2.1. Consider a query Q counting the number of users whose weight in month 1 is greater than
200 lb. Then ∆(Q) is simply 1 as Q can differ by at most 1 on adding/removing a single user’s data. Now
consider Q = Q1, . . . ,Qn, where Qi counts users whose weight in month i is greater than 200 lb. Then ∆1(Q)
is n (for the pair I,I ′ which differ in a single user having weight > 200 in each month i) and ∆2(Q) =

√
n (for

the same pair I,I ′).

Laplace Perturbation Algorithm (LPA). To guarantee differential privacy in presence of a trusted
server, [7] proposes the LPA algorithm that adds suitably-chosen noise to the true answers. The noise is
generated according to the Laplace distribution. Denote Lap(λ) a random variable drawn from the Laplace
distribution with PDF: Pr(Lap(λ) = Z) = 1

2λe−ε|Z|/λ. Lap(λ) has mean 0 and variance 2λ2. Also denote
Lapn(λ) to be a vector of n independent Lap(λ) random variables.

The LPA algorithm takes as input a query sequence Q and parameter λ controlling the Laplace noise.
LPA first computes the true answers, Q(I), exactly and then perturbs the answers by adding independent
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Lap(λ) noise to each query answer in Q(I). More formally, it computes and outputs Q̃ = Q(I) + Lapn(λ).
Differential privacy is guaranteed if the parameter λ of the Laplace noise is calibrated according to the L1

sensitivity of Q. The following theorem shown in [7] formalizes this intuition.

Theorem 2.1 (Privacy [7]). LPA(Q, λ) is ε-differentially private for λ = ∆1(Q)/ε.

Analyzing accuracy. To analyze the accuracy of the perturbed estimates returned by an algorithm, we
quantify their error in the following way.

Definition 2.3 (Utility). Let A(Q) be an algorithm that returns a perturbed estimate Q̃ = Q̃1, . . . , Q̃n for an
input sequence Q = Q1, . . . ,Qn. We denote errori(A) = EA|Q̃i − Qi(I)| the expected error in the estimate
of the ith query Qi. Here EA is the expectation taken over the possible randomness of A. Also denote
error(A) =

√∑n
i=1 errori(A)2 the total L2 error between Q and Q̃.

For example, errori(LPA) = E|Q̃i − Qi| = E|Lap(λ)| = λ. Next we discuss the utility of the LPA
algorithm while satisfying ε-differential privacy.

Theorem 2.2 (Utility [7]). Fix λ = ∆1(Q)/ε so that LPA(Q, λ) is ε-differentially private. Then for all
i ∈ {1, . . . , n}, errori(LPA) = ∆1(Q)/ε.

Example 2.2. Recall the recurring query Q of Eg. 2.1 that counts users having weight > 200 in each month
i = {1, . . . , n}. Then ∆1(Q) = n and LPA gives an errori(LPA) = n/ε in each query Qi for ε-differential
privacy. Also, the total L2 error is error(LPA) =

√∑n
i=1 n2/ε2 = n3/2/ε

3 Sketch of our solution

Before discussing our solution for differential privacy over distributed time-series data, we provide an out-
line for it in this section. Our solution uses several existing primitives including Discrete Fourier Trans-
form (DFT), homomorphic encryption (that allows aggregation of encrypted values without decryption),
and threshold encryption (that requires a threshold number of users for decryption). We will review these
techniques in Sections 4 and 5.

Our solution for answering a query sequence Q of n queries consists of the following two protocol stages.
The first stage is a method to improve the accuracy of query answers and is described using a trusted central
server. The second stage is then used to obtain a distributed solution.

1) Fourier Perturbation Algorithm (FPAk). To answer Q with small error under differential privacy,
we design the FPAk algorithm. FPAk is based on compressing the answers, Q(I), of the query sequence using
an orthonormal transformation. Intuitively, this means finding a k-length query sequence Fk = Fk

1 , . . . , Fk
k,

where k ¿ n, such that the answers, Fk(I), can be used to approximately compute Q(I). Then we can
perturb Fk(I) instead of Q(I) using a lower noise (the noise actually reduces by a factor of n/k) while
preserving differential privacy. An additional error creeps in since Fk(I) may not be able to reconstruct Q(I)
exactly, but for the right choice of Fk, this reconstruction error is significantly lower than the perturbation
error caused by adding noise directly to Q(I). A good Fk can be found using any orthonormal transformation
and we use the Discrete Fourier Transform (DFT) in our algorithm. How to perturb the DFT query sequence
Fk to ensure differential privacy is an important challenge that distinguishes our solution from other Fourier-
based perturbation approaches [22]. We discuss this in detail in Sec. 4.

2) Distributed LPA (DLPA). To answer an aggregate-sum query sequence Q distibutedly under dif-
ferential privacy, we propose the DLPA algorithm, a distributed version of the LPA algorithm discussed in
Sec. 2.2. Our complete solution comprises of using FPAk for improving accuracy together with DLPA for
distributed noise-addition. We describe how they are combined in a moment, but first we explain the DLPA
algorithm. We explain DLPA for a single aggregate-sum query Q: the generalization to the sequence Q
is straight-forward and just requires n separate invocations, once for each query Qi in Q. Since Q is an
aggregate-sum query, Q(I) =

∑U
u=1 fu(Iu) where the function fu maps user u’s data to numbers. Denote

xu = fu(Iu), so that Q(I) =
∑U

u=1 xu.
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Figure 2: Basic Distributed Protocol (homomorphic property exploited to aggregate users’ encryption & threshold

property to combine users’ decryption shares)

The basic protocol is based on threshold homomorphic encryption and is shown in Fig. 2. To perturb
Q(I) =

∑U
u=1 xu, each user u adds a share of noise, nu, to his private value xu. To keep the estimation

error small, the noise shares are chosen such that
∑U

u=1 nu is sufficient for differential privacy, but nu alone
is not sufficient: thus the value xu + nu can not directly be sent to the aggregator. To address this, the user
u computes encryptions of xu and nu and sends it to the aggregator. Due to encryption, the aggregator
can not learn anything about xu. However, using the homomorphic property, it can compute the encryption
of the sum of all received values from all users thereby getting an encryption E of Q̃ =

∑
u(xu + nu).

This encryption is then sent back to all users who use the threshold property to compute their respective
decryption shares. Finally, the decryption shares are sent to the aggregator who combines them to compute
the final decryption. The end result is a noisy differentially private estimate Q̃ of Q(I).

There are two challenges with the basic protocol described above. Firstly, the noise shares have to be
generated in a way so that their sum is sufficient for differential privacy. Secondly, the aggregator can be
malicious: the distributed protocol requires the aggregator to compute an encryption E of Q̃ =

∑
u(xu +nu)

and send a decryption request to the users to help him decrypt E. But, the aggregator can cheat and request
the decryption of wrong values, for instance, the encrypted private value of a single user, in which case the
users will be inadvertently decrypting the private value of that user. We discuss how to solve these challenges
in Sec. 5.

Putting the two together. Now we explain how FPAk and DLPA together give the complete solution.
To answer a query sequence Q of n aggregate-sum queries, the aggregator first uses FPAk to compute the
k-length sequence Fk. Due to the linearity of the DFT transformation, Fk is another aggregate-sum query
sequence. Now FPAk requires to perturb the answers of the query sequence Fk in order to get differential
privacy. This is done by applying the DLPA algorithm on Fk. The end result of DLPA is that the aggregator
gets a noisy differentially estimate F̃k of Fk(I). Then the aggregator computes the inverse DFT to reconstruct
an estimate Q̃ from F̃k. The final estimate Q̃ has error characteristics of the FPAk algorithm, but has been
computed in a distributed way using DLPA.

We discuss FPAk and DLPA in detail in next two sections.

4 Fourier Perturbation Algorithm

We nows describe in detail the FPAk algorithm for improving accuracy of query answers for long sequences.
In this section, we assume a central trusted server: how to distribute the algorithm using DLPA was briefly
mentioned in the solution sketch and will be discussed in detail in Sec. 5. The FPAk algorithm is based on
the Discrete Fourier Transform, which we review briefly below.

4.1 The Discrete Fourier Transform

The DFT of a n-dimensional sequence X is a linear transform giving another n-dimensional sequence,
DFT(X), with jth element given as: DFT(X)j =

∑n
i=1 e

2π
√−1
n jiXi. Similarly one can compute the Inverse

DFT as IDFT(X)j = 1
n

∑n
i=1 e

2π
√−1
n jiXi. Furthermore, IDFT(DFT(X)) = X.

7



 0

 50

 100

 150

 200

 250  500  750  1000  1250  1500 1750

# 
of

 u
se

rs
 w

ith
 w

ei
gh

t >
 2

00

Time (# of days since joining website)

X (n=2000)
X’ (k=20)

Figure 3: Reconstructed sequence X′ vs. original X

Algorithm 4.1 FPAk(Inputs: sequence Q, parameter λ)

1: Compute Fk = DFTk(Q(I)).
2: Compute F̃k = LPA(Fk, λ)
3: Return Q̃ = IDFT(PADn(F̃k))

Denote DFTk(X) as the first k elements of DFT(X). The elements of DFTk(X) are called the Fourier
coefficients of the k lowest frequencies and they compactly represent the high-level trends in X. An ap-
proximation X′ to X can be obtained from DFTk(X) as follows: Denoting PADn(DFTk(X)) the sequence
of length n obtained by appending n − k zeros to DFTk(X), compute X′ = IDFT(PADn(DFTk(X))).
Obviously X′ may be different form X as ignoring the last n − k Fourier coefficients may introduce some
error. We denote REk

i (X), short for reconstruction error at the ith position, to be the value |X′i −Xi|.
Example 4.1. To give a sense of the reconstruction error, we consider a sequence X of length n = 2000
representing the number of people with weight > 200 in a real dataset (more details in Section 7), counted once
every day over 2000 days. Fig. 3 shows the reconstructed sequence, X′, using k = 20 DFT coefficients along
with the original sequence X. X shows the temporal trend in the # of overweight people in the dataset. As
shown, X′ captures the trend accurately showing that the reconstruction error is small even when compressing
from n = 2000 to k = 20 DFT coefficients.

4.2 The Algorithm

FPAk is shown in Algorithm 4.1. It begins by computing a sequence Fk, comprising the first k Fourier
coefficients in the DFT of Q(I). Then it perturbs Fk using the LPA algorithm with parameter λ to compute
a noisy estimate F̃k. This perturbation is done to guarantee differential privacy. Finally, the algorithm
computes the inverse DFT of PADn(F̃k) to get Q̃, an approximation to the original query answers Q(I).

As with LPA, the parameter λ in FPAk needs to be adjusted in order to get ε-differential privacy. Since
FPAk perturbs the sequence Fk, λ has to be calibrated according to the L1 sensitivity, ∆1(Fk), of Fk. Next
we discuss the value of λ that makes FPAk(Q, λ) differentially private.

Theorem 4.1. Denote Fk = DFTk(Q(I)) the first k DFT coefficients of Q(I). Then, (i) the L1 sensitivity,
∆1(Fk), is at most

√
k times the L2 sensitivity, ∆2(Q), of Q, and (ii) FPAk(Q, λ) is ε-differentially private

for λ =
√

k∆2(Q)/ε.

Proof (i) holds since ∆2(Fk) ≤ ∆2(Q) (as the n Fourier coefficients have the same L2 norm as Q, while Fk

ignores the last n− k Fourier coefficients), and ∆1(Fk) ≤
√

k∆2(Fk) (due to a standard inequality between
the L1 and L2 norms of a sequence). (ii) follows since for λ =

√
k∆2(Q)/ε ≥ ∆1(Fk)/ε, F̃k = LPA(Fk, λ)

computed in Step 2 is ε-differentially private, and Q̃ in step 3 is obtained using F̃k only.
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4.3 Analyzing accuracy

Example 2.2 gives an instance of a n-length query sequence for which LPA results in an error of n/ε to
each query answer, making the answers useless for a large n. Intuitively speaking, FPAk applies LPA on
a length-k sequence. Hence the noise added during perturbation should be smaller. On the other hand,
ignoring n − k DFT coefficients in FPAk results in an additional (but often much smaller) reconstruction
error. Below we formalize this argument to compare the errors for the two algorithms in greater detail.

In general, LPA results in a large noise whenever the L1 sensitivity of the query sequence is high. We
define below irreducible query sequences that have the worst-possible L1 sensitivity behavior.

Definition 4.1 (Irreducible queries). A query sequence Q = Q1, . . . ,Qn is irreducible if its L1 sensitivity,
∆1(Q), is equal to the sum,

∑n
i=1 ∆(Qi), of the sensitivities of its constituent queries Qi’s.

For all sequences Q, ∆1(Q) ≤ ∑n
i=1 ∆(Qi). Hence irreducible queries have the worst-possible L1 sensitiv-

ities among all query sequences. Recurring queries over time-series data are often irreducible: one instance is
the recurring query Q of Example 2.2. The improvement of FPAk over LPA is the most on irreducible query
sequences (since LPA has the least accuracy for such queries). We compare the accuracies over irreducible
queries below (note however that irreducibility is not required for FPAk).

For simplicity, we assume W.L.O.G that the sensitivity ∆(Qi) = 1 for all Qi ∈ Q. If not, we can
rescale the queries by defining the sequence Q′ = {Q′1, . . . , Q′n} given as Q′i = Qi/∆(Qi). Then ∆(Q′i) =
∆(Qi/∆(Qi)) = ∆(Qi)/∆(Qi) = 1. Furthermore, Q(I) can be computed from Q′(I) by just multiplying
with ∆(Qi) at the ith position. We call such sequences as normalized query sequences.

With this simplification, ∆1(Q) = n (as irreducibility means ∆1(Q) =
∑n

i=1 ∆(Qi) =
∑n

i=1 1 = n).
Applying Theorem 2.2, we know that errori(LPA) = n/ε in each query Qi. On the other hand the following
theorem shows the error of the FPAk algorithm. Recall that REk

i (Q(I)) is the reconstruction error for the
ith query, Qi, caused by ignoring n− k DFT coefficients of Q(I) and then computing the inverse DFT.

Theorem 4.2. Fix λ =
√

k∆2(Q)/ε so that FPAk(Q, λ) is ε-differentially private. Then for all i ∈
{1, . . . , n}, the errori(FPAk) is k/ε + REk

i (Q(I)).

Due to lack of space, the proof of the above theorem is deferred to the Appendix (Sec. A). The theorem
shows that the error by FPAk for each query is k/ε+REk

i (Q(I)), while we know that LPA yields an error of
n/ε. Since the reconstruction error, REk

i (Q(I)), is often small even for k << n, we expect the error in FPAk

to be much smaller than in LPA. This hypothesis is confirmed in our experiments that show that FPAk gives
orders of magnitude improvement over LPA in terms of error.

Choosing the Right k. So far we have assumed that k is known to us. Since errori(FPAk) is k/ε +
REk

i (Q(I)), a good value of k is important in obtaining a good trade-off between the perturbation error,
k/ε, and the reconstruction error, REk

i (Q(I)). If k is too big, the perturbation error becomes too big (giving
the performance of LPA), while if k is too small the reconstruction error becomes too high.

We can often choose k based on prior assumptions about Q(I). For instance, if Q(I) is such that the
Fourier coefficients corresponding to Q(I) decrease exponentially fast, then only a constant number (say
k=10) of Fourier coefficients need to be retained during perturbation. Our experiments show that this naive
method is applicable in many practical scenarios as Fourier coefficients of many real-word sequences decrease
very rapidly [1].

However, for optimal performance, we need to adjust the value of k depending on the exact nature of
Q(I). Computing k after looking at Q(I), however, compromises differential privacy. An algorithm to
efficiently compute k in a differentially private way is described in Sec. 6.1.1.

5 Distributed LPA (DLPA)

In both LPA and FPAk, we assumed a trusted central server that stores the entire database I, computes
the true answers Q(I), and adds noise for privacy. Next we discuss how to adapt these algorithms for the
distributed setting, i.e. database I = I1 ∪ I2 . . .∪ IU where Iu is the data of user u that she keeps to herself.
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We restrict ourselves to aggregate sum queries:6 i.e. Q is such that Q(I) =
∑U

u=1 fu(Iu) where fu is an
arbitrary function that maps user u’s database Iu to numbers.

We first construct the distributed LPA algorithm (DLPA for short) and then use it to construct distributed
FPAk. As discussed in Sec. 2, our algorithms guarantee privacy even against a malicious aggregator and
malicious users as long as a majority of honest users exist. For the utility of the aggregate estimate to be
good, we assume that among the malicious users, there are no breakers and at most l liars.

We explain DLPA over a single aggregate-sum query Q: the generalization to query sequences is straight-
forward and just requires multiple invocation of the algorithm, once for each query in the sequence. In this
section, we also make a simplifying assumption that there are no communication failures: all links between
the users and aggregator are maintained throughout the time required to answer the query. We relax this
assumption and discuss fault tolerance in Sec. 6.2.

5.1 Basics: Encryption Scheme

DLPA is built upon several cryptographic primitives. Before describing DLPA, we first discuss the encryp-
tion technique used in it: the threshold Paillier cryptosystem [10]. The cryptosystem is set up by choosing
an integer m such that (i) m = pq where p and q are strong primes (i.e p = 2p′+ 1 and q = 2q′+ 1), and (ii)
gcd(m,φ(m)) = 1. Once m is chosen, any number in Zm (the set {0, 1, . . . , m− 1}) can be encrypted. Also
denote Z∗m the subset of numbers in Zm that have a multiplicative inverse modulo m (eg. 0 does not have
an inverse, but 1 has).

Key generation Choose a random element β ∈ Z∗m and set λ = β × lcm(p, q). λ is the private key. Also
set g = (1 + m)abm mod m2 for some randomly chosen (a, b) ∈ Z∗m × Z∗m. The triplet (m, g, gλ) forms the
public key.

Encryption The encryption function Enc maps a plaintext message t ∈ Zm to ciphertext c ∈ Z∗m2 . Enc(t)
is computed as gtrm mod m2 where r ∈ Z∗m is a randomly chosen number.

Decryption Denote L the function L(u) = (u− 1)/m for any u = 1 mod m. The decryption of ciphertext
c ∈ Z∗m2 is the function Dec(c) = L(cλ mod m2)

L(gλ mod m2)

The encryption scheme has the following properties.

Homomorphic addition If ci is a ciphertext for message ti for i ∈ 1, 2, then c1 · c2 is a ciphertext for
message t1 + t2.

Distributed decryption Suppose the private key λ is shared by U users as λ =
∑

u λu where λu is the
private key for user u. Then decryption of a ciphertext c can be done distributedly (i.e. without any party
knowing λ) as:

• Each user u computes his decryption share cu = cλu .

• The decryption shares are combined as c′ =
∏U

u=1 cu.

• Finally the decryption t = L(c′ mod m2)
L(gλ mod m2)

is computed.

5.2 Protocol for Computing Exact Sum

Let Q =
∑U

u=1 fu(Iu) be the aggregate-sum query that we wish to answer. For simplicity of presentation, we
assume fu returns numbers in the set {1, 2, . . . , l}: our techniques work for any finite D ⊆ R. Denote xu =
fu(Iu). Then Q =

∑U
u=1 xu. We first start with a protocol for computing Q at the aggregator exactly. We

will subsequently enhance the protocol to include noise addition. As discussed in the solution sketch (Sec. 3),

6Note that FPAk itself is more general and can support arbitrary queries when used in a centralized setting.
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Algorithm 5.1 Encrypt-Sum(xu, ru)
1: User u generates a random ru ∈ Zm computes cu = Enc(xu + ru), and sends cu to the aggregator.
2: The aggregator computes c =

∏U
u=1 cu.

computing even exact sum is difficult against a malicious aggregator: instead of the aggregator computing
the encrypted sum and sending it to the users for decryption, it can send false decryption requests (say the
encrypted private value of a single user) and break privacy.

We use the threshold Paillier scheme for the protocol. In a key generation phase, the private key λ
is generated and distributed among the users as λ =

∑U
i=u λu. Thus the users all together can perform

distributed decryption using their keys λu. Note that since the key generation needs to be done only
once (irrespective of the # of queries to be answered), expensive secret-sharing protocols [25] can be used
for this purpose.

The protocol executes in two phases. In the first phase, the aggregator computes the required Q in
encrypted form. Then in the second phase, a distributed decryption protocol is run to recover Q from the
encrypted form.

The first phase is shown in Algorithm 5.1. We call it Encrypt-Sum(xu, ru): each user u encrypts his
private value, xu, added to a randomly generated ru. Note that ru is known only to user u. The aggregator
obtains all the encryptions and multiples them to compute c. Due to the homomorphic properties of the
encryption, the obtained c is an encryption of

∑U
u=1(xu + ru) = Q +

∑U
u=1 ru. Since ru’s are not known to

the aggregator, decrypting c would not reveal any information about Q. However, the following modification
of the distributed decryption protocol can be used to obtain Q exactly. Note that gλ is publicly known.

Algorithm 5.2 Decrypt-Sum(c, ru)
1: The aggregator sends c to each user u for decryption.
2: User u computes decryption share c′u = cλug−ruλ.
3: The aggregator collects c′u from each user, combines them to get c′ =

∏U
i=u c′u, and computes the final

decryption Q = L(c′ mod m2)
L(gλ mod m2)

The above protocol is a minor modification of distributed decryption: user u multiplies an additional
factor of g−ruλ while generating his decryption share (step 2). We call this protocol Decrypt-sum(c, ru). The
following proposition shows the correctness of the protocol.

Proposition 5.1. Let c = Encrypt-sum(xu, ru) and Q be the decryption computed by Decrypt-sum(c, ru).
Then Q = Q =

∑U
u=1 xu.

Proof Sketch: The proof appears in the Appendix (Sec. B). Here we give a sketch. As mentioned earlier,
c obtained from Encrypt-sum(xu, ru) is an encryption of Q +

∑U
u=1 ru. Each user u corrects for his ru in

Step 2 of Decrypt-sum(c, ru). Thus the final Q obtained is equal to Q.

Finally, we show that even though the Encrypt-sum and Decrypt-sum protocols can be used to compute
the sum,

∑U
u=1 xu, no other linear combinations can be computed. We saw that to compute the sum, the

aggregator computed c =
∏

u cu, where cu is the encryption received by the aggregator from user u in the
Encrypt-sum protocol (Step 2). Next we show that virtually no other encryption computed from these cu’s
can be decrypted in order to breach privacy.

Theorem 5.1. Suppose that the aggregator runs Encrypt-sum(xu, ru) protocol followed by Decrypt-sum(c′, ru)
protocol for some c′ of his choice. Let c′ =

∏U
u=1 cau

u (where cu are the encryptions sent by user u during
Encrypt-sum protocol) such that au − 1 has an inverse mod m2 (which implies au 6= 1) for some u. If the
Decrypt-sum protocol decrypts c′ correctly to give

∑U
u=1 auxu, then there exists an attacker that breaks the

security of the original distributed Paillier cryptosystem.
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Proof Sketch: The formal proof of security is quite involved and appears in the Appendix (Sec. B): here we
just highlight the intuition. Let c = Encrypt-sum(xu, ru). Suppose the aggregator runs Decrypt-sum(c′, ru)
for c′ 6= c, i.e. he sends wrong request for decryption, say the encryption of a single user’s data (i.e., au = 0
for all users but one). In Step 2 of Decrypt-sum(c′, ru) protocol, other users will wrongly be correcting for
their random ru’s that are not present in c′, making the decrypted value Q completely random and useless.

5.3 Protocol for Computing Noisy Sum

Now we describe how to add noise in the distributed setting. As mentioned earlier, LPA requires us to
compute Q̃ = Q + Lap(λ) where Lap(λ) is a Laplace random variable with mean 0 and variance λ2. Denote
N(µ, σ) to be a Gaussian random variable with mean µ and variance σ2. We shall generate Laplace noise
using 4 Gaussian variables by exploiting the following property (proved in the Appendix (Sec. B)).

Proposition 5.2. Let Yi ∼ N(0, λ) for i ∈ {1, 2, 3, 4} be four Gaussian random variables. Then Z =
Y 2

1 + Y 2
2 − Y 2

3 − Y 2
4 is a Lap(2λ2) random variable.

The advantage of this decomposition is that Gaussian variables can be generated in a distributed fashion:
To generate a N(0, λ) variable, each user can generate a N(0, λ/h) variable (h = U/2 is a lower bound on
the number of honest users, i.e. a honest majority exists) and then the sum of these h, N(0, λ/h), random
variables gives the right N(0, λ) variable. However, to compute a Lap(λ) variable by Theorem 5.2, we need
to compute squares of Gaussian random variables: for this we extend the Encrypt-Sum protocol described
in the previous section to compute the encryption of (

∑U
u=1 yu)2 where yu is the private N(0, λ/h) of each

user.
The protocol requires two randomly generated private keys au, bu ∈ Zm for each user u. The keys bu

are such that their sum for all users,
∑U

u=1 bu, is 0. Denote a the sum
∑U

u=1 au. Enc(a2) is computed and
made public in a key generation phase. The keys au, bu need to be generated only once and expensive secret
sharing protocols [25] can be used for this purpose. The protocol is shown below.

Algorithm 5.3 Encrypt-Sum-Squared(yu, ru) Protocol
1: User u computes cu = Enc(yu + au + bu) and sends it to the aggregator.
2: The aggregator computes c =

∏U
u=1 cu and sends it to each user u.

3: Each user u generates a random ru ∈ Zm, computes cu = cyu−au+buEnc(ru).
4: The aggregator collects cu from each user and computes c′ = (

∏U
u=1 cu)Enc(a2)

We call the above protocol Encrypt-Sum-Squared(yu, ru). Due to the homomorphic properties of the
encryption, the final c obtained in Encrypt-Sum-Squared(yu, ru) can be shown to be an encryption of
(
∑

u yu)2 +
∑

u ru.
Finally we can discuss the the noisy-sum protocol to add Lap(λ) noise. The protocol is shown in Algo-

rithm 5.4 and is called Encrypt-Noisy-Sum(xu, ru): each user generates 4 Gaussian, N(0,
√

2λ/U), random
variables in Step 2. Each of these 4 Gaussian variable is used to generate an encryption of a N(0,

√
λ/2)

Gaussian random variable in Step 3 using the Encrypt-Sum-Squared protocol. Then the user u generates an
encryption for his private value xu using the Encrypt-Sum protocol in Step 4. The random variables ri

u are
generated so as to force the right encryption to be computed by the aggregator in Step 5: the aggregator can
only compute c = c1c2c5

c3c4 ; all others would have some ri
u unbalanced. Due to the homomorphic properties of

the encryption, the obtained c is an encryption of
∑

u xu+(
∑

u y1
u)2+(

∑
u y2

u)2−(
∑

u y3
u)2−(

∑
u y4

u)2+
∑

u ru.
Also this c can be decrypted using decrypt-sum(c, ru) protocol (Algorithm 5.2).

Next we state theorems showing the privacy and utility of the protocol. Due to space constraints, the
proofs are deferred to the Appendix (Sec. B).

Theorem 5.2 (Privacy). Let c =Encrypt-Noisy-Sum(xu,ru) and Q̃ =decrypt-sum(c, ru). If there are at least
U/2 honest users, then Q̃ = Q + Lap(λ)+Extra-Noise, where Lap(λ) is the noise generated by honest users
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Algorithm 5.4 Encrypt-Noisy-Sum(xu, ru)
1: User u chooses five random numbers r1

u, r2
u, . . . , r5

u from Zm and computes ru = r1
u + r2

u − r3
u − r4

u + r5
u.

2: User u generates four N(0,
√

2λ/U) random variables y1
u, . . . , y4

u.
3: Let cj =Encrypt-Sum-Squared(yj

u, rj
u) for j ∈ {1, 2, 3, 4}.

4: Let c5 =Encrypt-Sum(xu, r5
u)

5: Aggregator computes c = c1c2c5

c3c4 .

and the Extra-Noise is that generated by malicious users. Thus for λ = ∆(Q)/ε, ε-differential privacy is
guaranteed independent of what the malicious users and aggregator choose to do.

Theorem 5.3 (Utility). Let c =Encrypt-Noisy-Sum(xu,ru) and Q̃ =decrypt-sum(c, ru). If there are no
malicious users, then Q̃ = Q + Lap(2λ). Finally, in presence of l malicious users that are all liars and no
breakers, Q̃ can deviate from Q + Lap(2λ) by at most l ×∆(Q).

Distributed FPAk. Above we discussed how to compute the perturbed estimate Q̃ for a single query Q. As
mentioned earlier, extending distributed LPA for a n-length query sequence Q is straightforward: apply the
Encrypt-Noisy-Sum protocol n times, once for each Qi ∈ Q. This works since LPA consists of n independent
perturbations for each of the n queries in the sequence.

Implementing FPAk over the distributed setting is slightly more involved. Each user u first computes
the answers of Q over his data Iu. We denote the answers as Q(Iu) = Q1(Iu), . . . , Qn(Iu). Next the user u
computes the first k DFT coefficients of the answers Q(Iu). Let us denote these k DFT coefficients by the
sequence Fk(Iu). Recall that Fk(I) are the k DFT coefficients of Q(I), where Q(I) are the answers of Q
over the complete database I. By linearity of the DFT transform, we know that Fk(I) =

∑U
u=1 Fk(Iu): thus

Fk is another aggregate-sum query. Then distributed LPA can be used by the aggregator to compute the
perturbed estimate F̃k for Fk(I). Finally, the aggregator takes the inverse DFT transform of F̃k to compute
Q̃, a perturbed estimate of Q.

6 Extensions

We now describe two useful extensions of our algorithm. The first extension enables us to choose a good
value of the parameter k (# of DFT coefficients used in FPAk) if a central trusted server exists, while the
second extension allows us to tolerate failures of users during the execution of the DLPA algorithm.

6.1 Choosing a Good Value of k

So far we have assumed that the value k is known to us before executing FPAk. This was unavoidable in the
distributed setting as each user needs to know k before computing his k DFT coefficients Fk(Iu). However,
assuming a central server holds all the data I, then the server can compute k depending on the exact nature
of Q(I). Computing k after looking at Q(I), however, compromises differential privacy. We present here an
algorithm to efficiently compute k in a differentially private way. This algorithm can be used instead of LPA
to accurately answer long query sequences in the centralized setting.

6.1.1 Differentially-private Sampling

Denote F = DFT(Q(I)), and Fk (resp. Fn−k) the first k (resp. last n− k) Fourier coefficients in F. Next
we discuss a sampling procedure that computes k and the perturbed differentially private estimate, F̃k, for
the first k Fourier coefficients.

Theorem 6.1. Denote U(k, F̃k) the function |Fn−k|2+ |F̃k−Fk|2. Then sampling k and F̃k with probability
proportional to e−U(k,F̃k)/λ satisfies ε-differential privacy for λ =

√
2∆2(Q)/ε.
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Algorithm 6.1 SPA(Inputs: Q(I), parameter λ)
1: Compute F = DFT(Q(I))
2: Denote U ′(k) the function |Fn−k|2 + k

√
n/ε.

3: Sample a k ∈ {1, . . . , n} with probability ∝ e−U ′(k)/λ.
4: Let g be a G(1/λ2, (k + 1)/2) random variable
5: Compute F̃k = Fk + Nk(0,

√
g)

6: Compute Q̃ = IDFT(PADn(F̃k)).

Theorem 6.1 (proved in the Appendix C.1) shows a differentially private way of sampling k and F̃k.
However, the sampling may not be efficient. This is because, even assuming that k has been sampled
already, sampling F̃k needs to be done with probability proportional to e|F̃

k−Fk|2/λ. In other words, F̃k

has to be sampled with probability based on its L2 distance with another sequence Fk. This is difficult as
now elements of the sequence F̃k cannot be sampled independently: if Pr is the sampling distribution, then
Pr(F̃

k

i = x|F̃k

j = y) 6= Pr(F̃
k

i = x). On the other hand, in FPAk, F̃k was generated independently by adding
Lapk(λ) random variables to Fk. Nevertheless we discuss next an efficient way to sample from U(k, F̃k).

6.1.2 Sampling Perturbation Algorithm (SPA)

Before giving the algorithm, we recall two kinds of random variables: (i) N(µ, Σ), that represents a normal
random variable with mean µ and variance σ2 (additionally, denote Nk(µ, σ) a vector of k i.i.d normal
variables), and (ii) G(θ, r), that represents a Gamma random variable with PDF given as 1

Γ(r)θr xr−1e−r/θ,
where θ > 0, and r > 0 are parameters, and Γ(.) is the gamma function. This PDF is similar to the
exponential distribution except for an extra factor of xr−1.

Our sampling-based perturbation algorithm (SPA) is shown in Algorithm 6.1. In the first step it computes
the entire DFT of Q. Then in steps 2 and 3, it samples a value of k. Intuitively speaking, U ′(k) =
|Fn−k|2 + k

√
n/ε computed in the step 2 is the sum of the reconstruction error, |Fn−k|2 (this is the loss

incurred by ignoring all elements in Fn−k), and the perturbation error, k
√

n/ε (an additional factor of
√

n
appears as this is the perturbation error for the whole sequence). In step 3, those values of k are more likely
to be picked that give a lower U ′(k), i.e. give a better tradeoff between the reconstruction error and the
perturbation error.

Once k has been sampled, the algorithm continues to sample F̃k. This is done by first picking a gamma
random variable g in Step 4, and then perturbing Fk by adding Nk(0,

√
g) noise vector in Step 5. Even

though, Nk represents a vector of k independent normal variables, the F̃k vector has not been generated in
an independent fashion: g generated in Step 4 makes all elements of F̃k correlated (for instance if g is picked
to be 0, then all F̃k = Fk). This makes sure that F̃k has been generated in the right way, confirmed by the
following theorem proved in the Appendix C.1.

Theorem 6.2 (Privacy). SPA(Q, λ) is ε-differentially private for λ =
√

2∆2(Q)/ε.

Finally, we show that it always makes sense to run our SPA algorithm as opposed to LPA. If Q is
compressible, SPA will sample a good k << n decreasing the error significantly (as confirmed in our experi-
ments). However, if Q is not compressible, the following theorem (proved in the Appendix C.1) shows that
no matter what the total error of SPA would be at most a factor

√
2 log n times worse than LPA for any

normalized irreducible query sequence7 Q.

Theorem 6.3 (Utility). Let Q be any normalized irreducible query sequence. Fix λ1 = ∆1(Q)/ε and
λ2 =

√
2∆2(Q)/ε such that LPA(Q, λ1) and FPAk(Q, λ2) are ε-differentially private. Then error(SPA) ≤√

2 · (log n) · error(LPA).

7Recall that normalized query sequences have individual query sensitivities rescaled to 1 while irreducible sequences have
L1 sensitivity equal to the sum of individual query sensitivities.
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6.2 Fault-tolerance

Our distributed protocol has two phases. In the Encrypt-Noisy-Sum(xu, ru) phase, the aggregator computes
an encryption c for the noisy sum of the private values, xu, and the random values, ru, of all users. Then in
the Decrypt-Sum phase, all users need to correct for their respective random values ru. In addition, since the
secret key λ is shared as the sum

∑U
u=1 λu of the private keys λu’s, all users need to send their decryption

shares in order to decrypt. This makes the protocol susceptible to failures: if a single user does not respond
in the decrypt-sum phase, no decryption can be obtained.

The solution is to (i) use a (T, U)-threshold decryption [10] scheme in which any T valid decryption
shares out of U possible ones can be used to decrypt, and (ii) instead of choosing a completely random
ru ∈ Zm during the encrypt-sum protocol, a user chooses ru ∼ Lap(∆(Q)/ε), i.e. ru is chosen from the
Laplace distribution sufficient for guaranteeing differential privacy. This ru is sufficient: to minimize noise
the aggregator has an incentive for adding all users’ data when computing the aggregate encryption to be sent
back for decryption, and leaving out a single user’s data results in a Laplace noise sufficient for differential
privacy.

Having seen the extensions still ensure privacy, let us see how they help in case of failures. Firstly, if f
users fail to send their decryption shares, the (T,U)-threshold property ensures that a decryption can still
be computed as long as f < U − T . Furthermore, not using the decryption share of f users means that
the random value ru of each of the f users is left uncorrected for, at the end of decryption. This results in
an extra noise of f Lap(∆(Q)/ε) variables. It can be shown that the expected sum of of these f variables
increases as

√
f∆(Q)/ε. In other words, the noise increases as the square root of the number of user failures

f as demonstrated in our experiments. As long as f is small, this behavior is acceptable. For a large f , the
distributed protocol for computation of Q has to be repeated.

Note that in the above solution, we are concerned about failures of users that happen after the first phase
and before the second phase of our protocol. Failures that happen before or after the complete execution
of the protocol for a query do not affect the accuracy of our protocol. Since execution of our protocol for a
single query takes less than a few seconds in practice, failures within this small time window is rare and are
of small size. In Section 7.4, we experimentally show that the impact of such failures is small.

7 Experiments

We have implemented our algorithms in Java, using the BigInteger library for cryptographic components of
the algorithms. This section evaluates our prototype using a 2.8 GHz Intel Pentium PC with 1GB RAM.

Data sets. We use three real data sets in our evaluation.

• GPS: This is the GPS trace from Microsoft’s Multiperson Local Survey (MLS) project [18]. The GPS trace
was collected from 253 voluntary drivers, mostly in the Seattle, Washington area, covering about 135,000
kilometers of driving. The entire trace has approximately 2.3 million timestamped latitude/longitude points
comprising about 16,000 discrete trips. The median interval between recorded points on a trip is 6 seconds
and 62 meters. Thus, successive points on a trip are highly correlated.

• Weight: This is trace of body weights, collected from an online weight-monitoring website8. The trace
contains daily weight data of about 300 users for a period of up to 5 years.

• Traffic: This data, collected from Department of Transportation of San Antonio, Texas9, reports volume
and speed data at about 30 intersections in the city. We use a 6-months long trace, where data is reported
once every 15 minutes.

Queries. For evaluating utility, we consider the following 6 query sequences. The first two queries are on
the GPS data set, the next two queries are on the Weight data set, and the last two queries are on the
Traffic dataset.

8http://www.hackersdata.com
9http://www.transguide.dot.state.tx.us/
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Figure 4: Average errors of FPAk and LPA

• Query G1: A query sequence whose value at each timestamp is an histogram over locations counting the
number of people at each location. The locations are obtained by dividing the map into a 50 × 50 grid.
The query sequence has 2000 different timestamps spread uniformly over 2 weeks.

• Query G2: The number of people at a fixed location evaluated at 2000 different timestamps spread uni-
formly over 2 weeks.

• Query W1: Number of people with weight > 200 lb on each day for a total of 2000 days.

• Query W2: A query sequence whose value at each timestamp is the correlation coefficient between two
month-long time-series: (i) people with weight > 200 on day i of the month, and (ii) people with weight
decreasing on day i of the month.

• Query T1 and Query T2: Occupancy at two different city intersections with an interval of 15 minutes for
a total of 6 months.

As the examples suggest, our algorithm can support a wide variety of queries. Unless otherwise stated, we
use k = 30 for the FPAk algorithm and 1-differential privacy (ε = 1) as the privacy requirement in our
experiments.

7.1 Accuracy of Answers

We first evaluate the accuracy of outputs of our FPAk algorithm and compare it with the LPA algorithm.
We report error percentage of a sequence of output estimate, which is the total L2 error in the estimate (See
Def. 2.3) normalized by the maximum possible L2 value of a query answer.

Figure 4 reports the average error percentage of FPAk and LPA algorithms for the 6 query sequences.
Average error percentage is computed as the average over 100 runs of each algorithm, the variance in
the error percentages are represented by the error bars. As shown, FPAk has orders of magnitude better
error percentage than LPA (graph shows y-axis using a log-scale). In fact, LPA has an error percentage
À 100% showing that estimates obtained are completely meaningless.10 On the other hand, FPAk has error
percentages of < 20% that are mostly acceptable in practice.

Figure 5 demonstrates the errors of both algorithms more visually. Fig 5(a) and (c) plot outputs of the
FPAk algorithm along with the exact answers of W1 and G2. Fig 5(b) and (d) plot the estimates obtained by
LPA for the same two queries for the same privacy parameter. The graphs show that FPAk estimates follow
the curve of the exact answer very closely, while LPA results in estimates that are practically meaningless.

7.2 Effect of DFT Parameters

Value of k. To understand the impact of k on the accuracy of FPAk, we vary the value of k in evaluating the
query W1. Fig. 6(a) demonstrates the results. It shows that as k increases the total error decreases at first,
then reaches a minimum, and finally increases. This is because the total error of FPAk is a combination of

10Laplace noise can send query answers outside their range making the error > 100%. Truncation at range boundaries can
make error = 100%, but is not done here to reflect the true magnitude of the noise.
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Figure 6: Effect of DFT parameters

reconstruction error and perturbation error. Reconstruction error decreases with increasing values of k (also
shown in Figure 6(a)), while perturbation error increases with increasing k. The total error is minimized
for an optimal value of k that finds a sweet spot between these two types of errors. This highlights the
importance of choosing a good value of k for FPAk.

In the distributed case, there is no way to choose the best k by looking at query answers. Thus k has to
be predetermined, which is the reason we used a fixed value of k = 30 in our previous experiments (and it
worked reasonably well for all queries). However the graph shows that for the W1 query, k = 10 would have
given a better trade-off, and the results of FPAk would have been better if we used k = 10. In a centralized
setting, our sampling perturbation algorithm (SPA) can be used to privately sample the value of k. The
error for that algorithm is also shown in the figure by the horizontal line and it is quite near the optimal
error for k = 10.

First-k vs. Top-k DFT coefficients. Our algorithms, both FPAk and SPA, choose the first k DFT
coefficients, for a given value of k. The choice of leading coefficients is unavoidable in a distributed setting
since all the users need to pick the same k DFT coefficients for our algorithms to work. Even in the presence of
the centralized server, choosing the best set of k DFT coefficients in a differentially private way is inefficient.
However, if possible, it is always better to choose the k largest DFT coefficients (i.e., top-k coefficients), since
they give lower reconstruction error than the first-k coefficients. This leads to the natural question: how
much do we sacrifice in accuracy for using the first-k DFT coefficients (which gives us differential privacy)
instead of using the top-k coefficients (which does not give differential privacy)?

Figure 6(b) answers the above question. It shows the errors of FPAk for different queries and compares
it with the errors of a hypothetical algorithm that uses the top-k DFT coefficients (but may not necessarily
be differentially private). Both the algorithms use k = 30 coefficients. The graph shows (with a linear
scale for y-axis) that we do not loose much even if we just pick the first k coefficients (indicating that they
generally are the largest coefficients). A substantial difference occurs only in T1 and T2 queries since they
have periodic behavior at slightly higher frequencies indicating there largest coefficients are not the first k.
Even for these queries, the difference is less than 5%.
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Figure 7: Evaluation of Distributed LPA

7.3 Computation & Communication Overhead

Fig. 7(a) shows the computational overhead of our algorithm for computing a single aggregate-sum query. The
graph shows the computation times (averaged over 100 runs) at a user and at the aggregator, as a function
of the number of users involved in the query. The average computation time at a user is independent of
the number of users and remains nearly constant. On the other hand, the time required by the aggregator
increases linearly with the number of users. In all cases, the computation overhead is quite small, most
of which is spent for cryptographic operations. We have also measured the communication overhead of
our prototype and found that the algorithm has a small overhead: 0.5 Kb for each user (considering both
incoming and outgoing messages) and 0.5 Kb times the # of users for the aggregator.

7.4 Effect of Failures

Fig. 7(b) shows the fault-tolerance behavior of our algorithm based on the extensions described in Sec. 6.2.
The fault-tolerant algorithm is implemented and used to answer the W1 query of length n = 2000 using
k = 30 DFT coefficients. We again report the percentage error: the total L2 error in the computed estimate
normalized by the maximum L2 value of Q. The percentage user failure is the percentage of users who fail
during the protocol.

The graph shows that the error increases with the square root of the number of users failing and is quite
reasonable with even say 5% failure rate. Note that the accuracy of our algorithm is affected only by the
failures that happen during execution of the algorithm to answer a query, which is typically less than a few
seconds in a distributed system. Failure within this short time should be rare and small in size in practice.
In a very rare occasion, if a large number of users fail during this small time window, the algorithm should
be started from the beginning.

8 Related Work

Relational Data. Many approaches for relational data have been proposed that support formal definitions
of privacy s.a. differential privacy [7, 15, 28], ρ1ρ2 breach [9], adversarial privacy [23, 24], etc. Among these,
most relevant to our work are those that focus on query answering [7,15,28]. [7] proposes the LPA algorithm
that adds independent Laplace noise to each query answer. The noise is calibrated according to the L1

sensitivity. Recurring query sequences over time-series data have high L1 sensitivity (O(n) for a n length
sequence) and thus LPA does not accurately answer such queries.

To improve accuracy of query answers under differential privacy, [28] focuses on range-count queries,
i.e. count queries where the predicate on each attribute is a range. The main idea is to take a sequence
of range-count queries that are disjoint and then perturb the entire Discrete Wavelet Transform of the
sequence. Such disjoint range-count queries have a L1 sensitivity of O(1) and can be accurately answered
using their technique. However the technique can not be used to answer recurring sequences over time-series
data accurately, owing to their high L1 sensitivity.
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Another approach for answering query sequences accurately is proposed in [15], where constraints over
the answers of multiple queries are exploited to improve accuracy. Usually no constraints exist over recurring
query sequences and thus the method is largely inapplicable for time-series data.

Distributed protocols. Many Secure Multiparty Computation (SMC) techniques have been proposed to
evaluate functions securely over data from multiple users [12]. In general, such techniques are slow [29]
and infeasible for practical scenarios. However, if the function to be evaluated is a sum function, then
efficient techniques using threshold homomorphic functions have been proposed [4, 13]. Such techniques
often require a communication mechanism with a broadcast facility, or a mechanism enabling a user to verify
the computation done by other users. This is not possible in our setting where the aggregator does all the
computations and the users do not have enough resources to check whether those computations are correct.
In addition, we need to compute noisy sum (in order to guarantee differential privacy) which is more difficult
than computing just the sum of the inputs. To the best of our knowledge, [6] is the only known technique
that computes noisy sum. However, it uses expensive secret-sharing protocols leading to a computation load
of O(U) per user, where U is the number of users. This makes the technique infeasible for large U .

Techniques for Time-series data. Most work on time-series data assume the centralized setting: a trusted
server publishes an anonymized version of the data of all users and aggregate queries can then be run on
the published data. [11] publishes data by adding a virtual user whose data is sampled from a public noise
distribution. [22] works on a single time-series data by obtaining an orthonormal transform (s.a. DFT), then
adding noise only to large coefficients of the transform, and finally obtaining the inverse transform. The main
difference between our technique and theirs is the lack of formal privacy guarantee. Techniques [11,22] show
privacy by protecting against specific attacks (s.a. linear least-square regression or linear filtering in [22]),
however no formal privacy guarantee (s.a differential privacy) is provided. Furthermore no distributed
solution is discussed. Same holds for most works on location data privacy (See [19] and the references
therein).

9 Conclusion

We have proposed novel algorithms to privately answer queries on distributed time-series data. Our first
algorithm FPAk can answer long query sequences over correlated time series data in a differentially private
way. FPAk perturbs k DFT coefficients of an answer sequence, thereby improving the accuracy for an
n-length query sequence from Θ(n) of existing algorithms to roughly Θ(k), if the k DFT coefficients can
accurately reconstruct all the query answers. For achieving differential privacy in distributed setting, we
propose DLPA algorithm that implements Laplace noise addition in a distributed way with O(1) complexity
per user. Our experiments with three real data sets show that our solution improves accuracy of query
answers by orders of magnitude and also scales well with a large number of users.

Acknowledgements. We would like to thank Josh Benaloh, Melissa Chase, Seny Kamara, Frank McSherry,
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A Fourier Perturbation Algorithm (FPAk)

In this section, we prove Theorem 4.2. We first restate it below.

Theorem (4.2). Fix λ =
√

k∆2(Q)/ε so that FPAk(Q, λ) is ε-differentially private. Then for all i ∈
{1, . . . , n}, the errori(FPAk) is k/ε + REk

i (Q(I)).

Proof: Let Q̃ = FPAk(Q, λ) be the perturbed query responses {Q̃1, . . . , Q̃n} returned by the FPAk algo-
rithm. The variance and expected error in each Q̃i is calculated below. Recall that Q̃i is obtained by using
the IDFT of the perturbed k DFT coefficients F̃k.

V ar(Q̃i) =
k∑

j=1

V ar(F̃
k

j )
n2

=
kλ2

n2
=

k(k∆2
2(Q)/ε2)
n2

=
k2n2/ε2

n2
= k2/ε2.

The above holds because W.L.O.G, we assume ∆(Qi) = 1 for all i ∈ {1, . . . , n}, and thus ∆2
2(Q) = n.

Now, denoting µi = EQ̃i and REk
i (Q(I)) the error obtained due to ignoring n − k Fourier coefficients, we

have:

errori(FPAk) = E|Q̃i −Qi| ≤ E|µi −Qi|+ E|Q̃i − µi| = REk
i (Q(I)) + E|Q̃i − µi|

≤ REk
i (Q(I)) +

√
E|Q̃i − µi|22 (By Jensens′ inequality)

= REk
i (Q(I)) +

√
V ar(Qi) = REk

i (Q(I)) + k/ε

Hence proved.

B Distributed Laplace Perturbation Algorithm (DLPA)

B.1 Protocol for Exact Sum

In this section, we give the proofs of Proposition 5.1 and Theorem 5.1. We first restate Proposition 5.1
below.

Proposition (5.1). Let c = Encrypt-sum(xu, ru) and Q be the decryption computed by Decrypt-sum(c, ru).
Then Q = Q =

∑U
u=1 xu.

Proof: Denote R =
∑U

u=1 ru. Let c′ be the product of decryption shares obtained in Step 3 of Decrypt-
sum(c, ru). Then, we know that:

c′ =
U∏

u=1

c′u =
U∏

u=1

cλug−ruλ = c
∑U

u=1 λug−λ
∑U

u=1 ru = cλg−λR (1)

Since, c =Encrypt-sum(xu, ru), we know that c is an encryption of
∑U

u=1(xu + ru) = Q + R. Hence,
cλ = gλ(Q+R) mod m2. From Eq (1), we know that c′ = cλg−λR, and hence doing multiplications in Zm2

we have

c′ = cλg−λR = gλ(Q+R)g−λR = gλQ

Thus L(c′ mod m2)
L(gλ mod m2)

= λQ
λ = Q. Hence proved.

Next, we restate Theorem 5.1 and prove it.
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Theorem (5.1). Suppose that the aggregator runs Encrypt-sum(xu, ru) protocol followed by Decrypt-sum(c′, ru)
protocol for some c′ of his choice. Let c′ =

∏U
u=1 cau

u (where cu are the encryptions sent by user u during
Encrypt-sum protocol) such that au − 1 has an inverse mod m2 (which implies au 6= 1) for some u. If the
Decrypt-sum protocol decrypts c′ correctly to give

∑U
u=1 auxu, then there exists an attacker that breaks the

security of the original distributed Paillier cryptosystem.

Proof: Recall that cu = Enc(xu + ru) is the encryption sent by the user u in the Encrypt-sum(xu,ru)
protocol. Suppose the aggregator is able to decrypt an encryption c̃ =

∏n
i=1 cau

u such that au − 1 has an
inverse mod m2 some u ∈ {1, . . . , U}. W.L.O.G we assume that u is the last user U , i.e. aU 6= 1. If this
is possible, we show how this can be used by an attacker to break the security of the original distributed
Paillier cryptosystem. More formally, we prove that if the attacker A1 exists then so does attacker A2.

Attacker A1: Let cu = Enc(xu + ru) and c̃ =
∏U

u=1 cau
u where aU − 1 has an inverse mod m2. Given

c̃′u = c̃λug−ruλ for u ∈ {1, . . . , U}, A1 can compute
∑U

u=1 auxu.
Attacker A2: Let ĉu be an encryption of xu. Given ĉu for u ∈ {1, . . . , U} and private key shares λu for

u ∈ {1, . . . , U − 1}, A2 can compute
∑U

u=1 auxu.
Note that A2 only uses U − 1 decryption keys to decrypt. This should not be possible for a (U,U)-

threshold system in which the private key λ is unknown and distributed as
∑U

u=1 λu. Now let us suppose
attacker A1 exists. We describe below how A2 can use A1 to launch his attack.

Algorithm B.1 A2’s simulation of A1

1: A2 receives an encryption ĉu = Enc(xu) for u ∈ {1, . . . , U} and U − 1 private key shares λ1, . . . , λU−1

2: A2 generates U numbers r1, . . . , rU chosen uniformly at random from Zm.
3: A2 computes c̃ =

∏U
u=1(ĉugru)au . Thus c̃ is an encryption of

∑U
u=1 au(xu + ru).

4: A2 generates U − 1 decryption shares as c̃′u = c̃λug−λru for u = {1, . . . , U − 1}.
5: A2 chooses r ∈ Zm uniformly at random, and generates the U th decryption share as c̃′u = c̃−

∑U−1
u=1 λug−λr.

6: A2 sends these shares c̃′1, . . . , c̃
′
U to A1 who computes

∑U
u=1 auxU .

Proof of correct simulation: Now we show that c̃′1, . . . , c̃
′
U are correct inputs to A1. It is easy to see that

c̃ is an encryption of
∑U

u=1 au(xu + ru). Furthermore, c̃′u for u ∈ 1, . . . , U − 1 have been generated correctly,
i.e. exactly as generated in the Decrypt-sum protocol (Step 2). The only remaining share is c̃′U , which has
been generated using only c̃λ1 , . . . , c̃λU−1 in the simulation above (as A2 does not know λU ) and thus may
not be equal to c̃λU g−λrU as required by the Decrypt-sum protocol. However we show that c̃′U generated in
the above simulation is statistically indistinguishable from c̃λU g−λrU . Note that

c̃λU g−λrU = c̃λ−∑U−1
u=1 λug−λrU = c̃−

∑U−1
u=1 λu c̃λg−λrU

= c̃−
∑U−1

u=1 λugλ(
∑U

u=1 au(xu+ru))g−λrU = c̃−
∑U−1

u=1 λugλt+λ(aU−1)rU

Here t =
∑U−1

i=1 au(xu +ru). Also denote C = c̃−
∑U−1

u=1 λu . So from the above equations, we have c̃λU g−λrU =
Cgλt+λ(aU−1)rU .

Now we needed to show the indistinguishability of c̃λU g−λrU and c̃′U . Thus we need to show indistin-
guishability of Cgλt+λ(aU−1)rU and c̃′U . As c̃′U = c̃−

∑U−1
u=1 λug−λr = Cg−λr in the above simulation, we need

to show indistinguishability of Cg(λt+λ(aU−1)rU and Cg−λr.
We show this in two steps. First we show the following lemma:

Lemma B.1. For any rU and r′U in Zm, let c̃ and c̃′ be encryptions of t+aU (xU +rU ) and t+aU (xU +r′U ),
respectively. Denote C = c̃−

∑U−1
u=1 λu and C′ = c̃′−

∑U−1
u=1 λu . Then Cgλt+λ(aU−1)rU is indistinguishable from

C′gλt+λ(aU−1)rU .

Proof of Lemma: Suppose there exists a polynomial-time attacker B1 that can distinguish between
Cgλt+λ(aU−1)rU and C′gλt+λ(aU−1)rU . Then we construct a polynomial-time attacker B2 that can break
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the original Paillier cryptosystem, i.e. distinguish between the encryptions of two messages m and m′. To
construct B2 using B1, we will simply use m = t+aU (xU +rU ) and m′ = t+aU (xU +r′U ). Then c̃ and c̃′ are
the encryptions of m and m′ respectively. Then B2 will just compute C = c̃−

∑U−1
u=1 λu and C′ = c̃′−

∑U−1
u=1 λu .

Finally B2 will use B1 to distinguish between Cgλt+λ(aU−1)rU and C′gλt+λ(aU−1)rU . If B1 distinguishes
them correctly, then B2 correctly distinguishes between m and m′. Hence proved.

From Lemma B.1, we know that for arbitrary rU and r′U , Cgλt+λ(aU−1)rU and C′gλt+λ(aU−1)rU are
indistinguishable (recall that C is a power of an encryption of t + aU (xU + rU ), while C′ is that of t +
aU (xU + r′U )). In particular, if rU and r′U are both chosen uniformly at random, then Cgλt+λ(aU−1)rU

and C′gλt+λ(aU−1)rU are indistinguishable. On switching rU and r′U (as they are both chosen uniformly at
random) in C′gλt+λ(aU−1)rU , we get that C′gλt+λ(aU−1)rU is same as Cgλt+λ(aU−1)r′U . Thus Cgλt+λ(aU−1)rU

and Cgλt+λ(aU−1)r′U are indistinguishable.
Now denote r = −(t + (aU − 1)r′U ) mod m2. If r′U is chosen uniformly at random from Zm and aU − 1

has an inverse mod m2 (i.e., aU 6= 1 and aU is not 1 mod p or 1 mod q), then r also has uniform distribution
in Zm. Hence Cgλt+λ(aU−1)r′U and Cg−λr are indistinguishable. Finally, this gives that Cgλt+λ(aU−1)rU and
Cg−λr are indistinguishable, yielding that c̃u and c̃′u are indistinguishable.

B.2 Protocol for Computing Noisy Sum

We give here the proofs of Proposition 5.2 and Theorems 5.2, and 5.3.

Proposition (5.2). Let Yi ∼ N(0, λ) for i ∈ {1, 2, 3, 4} be four Gaussian random variables. Then Z =
Y 2

1 + Y 2
2 − Y 2

3 − Y 2
4 is a Lap(λ2/2) random variable.

Proof: Denote Z1 = Y 2
1 + Y 2

2 and Z2 = Y 2
3 + Y 2

4 . Then Z1 and Z2 are chi-square distributions with k = 2
degree of freedom, which is the same as a Exponential distribution with parameter 1/(2λ2) (See [17]). Fur-
thermore, if Z1 and Z2 follow exponential distributions then Z = Z1−Z2 follows the Lap(2λ2) distribution.
Hence Proved.

Theorem (5.2). Let c =Encrypt-Noisy-Sum(xu,ru) and Q̃ =decrypt-sum(c, ru). If there are at least U/2
honest users, then Q̃ = Q+Lap(λ)+Extra-Noise, where Lap(λ) is the noise generated by honest users and the
Extra-Noise is that generated by malicious users. Thus for λ = ∆(Q)/ε, ε-differential privacy is guaranteed
independent of what the malicious users and aggregator choose to do.

Proof: Due to the homomorphic properties, the encryption c obtained from Encrypt-Noisy-Sum(xu,ru)
is the encryption of

∑
u xu + (

∑
u y1

u)2 + (
∑

u y2
u)2 − (

∑
u y3

u)2 − (
∑

u y4
u)2 +

∑
u ru. W.L.O.G. assume

that {1, . . . , U/2} is the set of U/2 honest users. Since honest users follow the protocol correctly, yi
u is a

N(0,
√

2λ/U) random variable for i ∈ {1, 2, 3, 4} and u ∈ {1, . . . , U/2}. Thus, Yi =
∑U/2

u=1 yi
u are N(0,

√
λ/2)

random variables for i ∈ {1, 2, 3, 4}. Also since c is an encryption of
∑

u xu + (
∑

u y1
u)2 + (

∑
u y2

u)2 −
(
∑

u y3
u)2 − (

∑
u y4

u)2 +
∑

u ru, it is an encryption of
∑

u xu + Y 2
1 + Y 2

2 − Y 2
3 − Y 2

4 +
∑

u ru+Extra-Noise,
where Extra-noise are terms that contain the yi

u for possibly malicious users u ∈ {U/2 + 1, . . . , U}. Thus c
is an encryption of Q + Z + R+Extra-Noise, where Q =

∑
u xu, Z = Y 2

1 + Y 2
2 − Y 2

3 − Y 2
4 , and R =

∑
u ru.

Finally, since Yi is a N(0,
√

λ/2) random variable, applying Proposition 5.2, we get Z is a Lap(λ) variable.
Hence Q̃ =decrypt-sum(c, ru), the decryption of c, is Q + Lap(λ)+Extra-Noise.

Theorem (5.3). Let c =Encrypt-Noisy-Sum(xu,ru) and Q̃ =decrypt-sum(c, ru). If there are no malicious
users, then Q̃ = Q + Lap(2λ). Finally, in presence of l malicious users that are all liars and no breakers, Q̃
can deviate from Q + Lap(2λ) by at most l ×∆(Q).

Proof: Denote Y ′
i =

∑U
u=1 yi

u. If all users are honest, then c is an encryption of Q+Z+R, where Q =
∑

u xu,
Z = Y ′2

1 + Y ′2
2 − Y ′2

3 − Y ′2
4 , and R =

∑
u ru. Finally, since Y ′

i is a N(0,
√

λ) random variable, applying
Proposition 5.2, we get Z is a Lap(2λ) random variable. Hence Q̃ =decrypt-sum(c, ru), the decryption of c,
is Q + Lap(2λ).
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In presence of l liars, the value of Q can be distorted by at most l ×∆(Q), since each user can lie and
distort Q by at most its sensitivity. Also liars need to follow the protocol exactly, hence the noise will still
be Lap(2λ). Thus the decrypted value Q̃ can deviate from Q + Lap(2λ) by at most l ×∆(Q).

C Extensions

C.1 Sampling Perturbation Algorithm

We give here the proofs of Theorems 6.1, 6.2, and 6.3.

Theorem (6.1). Denote U(k, F̃k) the function |Fn−k|2+|F̃k−Fk|2. Then sampling k and F̃k with probability
proportional to e−U(k,F̃k)/λ satisfies ε-differential privacy for λ =

√
2∆2(Q)/ε.

Proof: The proof of this theorem follows from the privacy of exponential mechanism [21]. The only require-
ment is to show that the sensitivity of U(k, F̃k) = |Fn−k|2 + |F̃k − Fk|2 is

√
2∆2(Q). This is evident since

∆(|Fn−k|2 + |F̃k − Fk|2) ≤ ∆(|Fn−k|2 + |Fk|2) ≤ ∆(
√

2|F|2) = ∆(
√

2|Q|2) ≤
√

2∆2(Q). Hence proved.

Theorem (6.2). SPA(Q, λ) is ε-differentially private for λ =
√

2∆2(Q)/ε.

Proof: Recall that U(k, F̃k) = |Fn−k|2 + |F̃k − Fk|2. Denote Pr(k0, F̃k
0 ← U(k, F̃k)) the probability that

k = k0 and F̃k = F̃k
0 when sampling k and F̃k according to the function U(k, F̃k). Then Pr(k0, F̃k

0) =
e−U(k0,F̃k

0 )/λdF̃k, where, informally speaking, dF̃k denotes a infinitesimally small change in F̃k. Denote ∞k

the k-length vector with each element ∞. Denote Zk =
∫∞k

−∞k e−|F̃
k−Fk|/λdF̃k. Note that Zk is independent

of Fk: the integral corresponding to Zk is invariant under translations in F̃k. Denote zk = log Zk.
Define Ū(k, F̃k) = U(k, F̃k) − zk + k

√
n/ε. Then ∆(Ū(k, F̃k)) = ∆(U(k, F̃k)), which we know from

Theorem 6.1 to be
√

2∆2(Q)/ε = λ. Finally, we show below that SPA(Q, λ) samples k and F̃k according to
probability e−Ū(k,F̃k)/λ and hence by exponential mechanism [21] satisfies ε-differential privacy.

Firstly, note that Pr(k ← Ū(k, F̃k)) is proportional to e−Ū(k,F̃k)/λ. Plugging in the value of Ū(k, F̃k) from
above, we get that the probability is proportional to as e(−U(k,F̃k)+zk−k

√
n/ε)/λ. Simplifying this expression,

we get Pr(k ← Ū(k, F̃k)) is proportional to e−|F
n−k|2/λ · (−Zk) · ezk · e−k

√
n/(ελ), which is equal to e−U ′(k)/λ,

as in step 3 of SPA algorithm.
Finally, note that once k is fixed, the probability Pr(F̃k ← Ū(k, F̃k)|k) is simply proportional to

e|F̃
k−Fk|2/λ. Thus only thing we need to show is that the steps 4 and 5 of SPA compute an F̃k sampled

with probability proportional to e|F̃
k−Fk|2/λ. This follows from the fact that the distribution proportional

to e|F̃
k−Fk|2/λ corresponds to the multidimensional hyperbolic distribution, and steps 4 and 5 give a way of

sampling from the distribution, as shown in [2]. Hence proved.

Theorem (6.3). Let Q be any normalized irreducible query sequence. Fix λ1 = ∆1(Q)/ε and λ2 =√
2∆2(Q)/ε such that LPA(Q, λ1) and FPAk(Q, λ2) are ε-differentially private. Then error(SPA) ≤ √

2 ·
(log n) · error(LPA).

Proof: Since Q is a normalized query sequence, ∆1(Q) = n. Then λ = ∆1(Q)/ε = n/ε and error(LPA) =
n3/2/ε. Also if k is the value sampled by SPA, then error(SPA) is less than |Fn−k|+√2k

√
n/ε. In particular,

for k = n, we have error(SPA) =
√

2error(LPA). Since SPA samples k with probability proportional to
|Fn−k|+√2k

√
n/ε, it can be shown that expectation over k the value of |Fn−k|+√2k

√
n/ε can be no worse

that (
√

2n
√

n/ε) log n =
√

2 · (log n) · error(LPA). Hence proved.
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