
A Randomized Scheduler with
Probabilistic Guarantees of Finding Bugs

Sebastian Burckhardt
Microsoft Research

Pravesh Kothari
Indian Institute of Technology

Kanpur

Madanlal Musuvathi
Microsoft Research

Santosh Nagarakatte
University of Pennsylvania

ABSTRACT
This paper presents a randomized scheduler for finding con-
currency bugs. The scheduler improves upon current stress-
testing methods by finding bugs more effectively, and by per-
mitting us to quantify the probability of missing bugs. Key
to its design is the characterization of the depth of a bug as
the minimum number of scheduling constraints required to
find it. In a single run of a program with n threads and k
steps, our scheduler detects a bug of depth d with probabil-
ity at least 1/nkd−1. We hypothesize that in practice, many
bugs (including well-known types such as ordering errors,
atomicity violations, and deadlocks) have small bug-depths,
and we confirm the efficiency of our schedule randomization
by detecting previously unknown and known concurrency
bugs in several production-scale concurrent programs.

1. INTRODUCTION
Concurrent programming is known to be error prone. Con-
currency bugs can be hard to find and are notorious for hid-
ing in rare thread schedules. The goal of concurrency test-
ing is to swiftly identify and exercise these buggy schedules
from the astronomically large number of possible schedules.
Popular testing methods involve various forms of stress test-
ing where the program is run for days or even weeks under
heavy loads with the hope of hitting buggy schedules. This
is a slow and expensive process. Moreover, any bugs found
are hard to reproduce and debug.

In this paper, we present PCT (Probabilistic Concurrency
Testing), a randomized algorithm for concurrency testing.
Given a concurrent program and an input test harness, PCT
randomly schedules the threads of the program during each
test run. In contrast to prior randomized testing techniques,
PCT uses randomization sparingly and in a disciplined man-
ner. As a result, PCT provides efficient mathematical prob-
ability of finding a concurrency bug in each run. Repeated
independent runs can increase the probability of finding bugs
to any user-desired level of certainty. In this paper, we
demonstrate the ability of PCT to find bugs both theoret-
ically, by stating and proving the probabilistic guarantees,
and empirically, by applying PCT to several production-
scale concurrent programs.

At the outset, it may seem impossible to provide effective
probabilistic guarantees without exercising an astronomical
number of schedules. Let us take a program with n threads
that together execute at most k instructions. This program,
to the first-order of approximation, has nk possible thread

schedules. If an adversary picks any one of these schedules
to be the only buggy schedule, then no randomized scheduler
can find the bug with a probability greater than 1/nk. Given
that realistic programs create tens of threads (n) and can
execute millions, if not billions, of instructions (k), such a
bound is not useful.

PCT relies on the crucial observation that bugs in practice
are not adversarial. Concurrency bugs typically involve un-
expected interactions among few instructions executed by a
small number of threads [20, 22]. If PCT is able to sched-
ule these few instructions correctly, it succeeds in finding
the bug irrespective of the numerous ways it can schedule
instructions irrelevant to the bug. The following characteri-
zation of concurrency bugs captures this intuition precisely.

We define the depth of a concurrency bug as the minimum
number of scheduling constraints that are sufficient to find
the bug. Intuitively, bugs with a higher depth exhibit in
fewer schedules and are thus inherently harder to find. Fig. 1
explains this through a series of examples. The bug in
Fig. 1(a) manifests whenever Thread 2 accesses t before the
initialization by Thread 1. We graphically represent this
ordering constraint as an arrow. Any schedule that satis-
fies this ordering constraint finds the bug irrespective of the
ordering of other instructions in the program. By our defini-
tion, this bug is of depth 1. Fig. 1 shows two more examples
of common concurrency errors, an atomicity violation in (b)
and a deadlock in (c). Both these errors require two ordering
constraints and are thus of depth 2.

On each test run, PCT focuses on probabilistically finding
bugs of a particular1 depth d. PCT is a priority-based sched-
uler and schedules the runnable thread with the highest pri-
ority at each scheduling step. Priorities are determined as
follows. On thread creation, PCT assigns a random prior-
ity to the created thread. Additionally, PCT changes the
thread priorities at d− 1 randomly chosen steps during the
execution.

These few but carefully designed random choices are prov-
ably effective for finding concurrency bugs of low depth.
Specifically, when run on a program that creates at most
n threads and executes at most k instructions, PCT finds

1For exposition, we assume that the bug depth parameter
d is provided as an input by the user. In practice, our tool
chooses d automatically from an appropriate random distri-
bution.

Thread 2
…
…
if (t->state == 1)
…

…

Thread 1
…
t = new T()
…
…
…

Thread 2
…
…
if (x != null)

x->print();
…

Thread 1
…
…
x = null;
…
…

Thread 2
…
…
lock(b);
…
lock(a);

Thread 1
…
lock(a);
…
lock(b);
…

(a) (b) (c)

Figure 1: Three typical concurrency bugs, and ordering edges sufficient to find each. (a) This ordering bug
manifests whenever the test by thread 2 is executed before the initialization by thread 1. (b) This atomicity
violation manifests whenever the test by thread 2 executed before the assignment by thread 1, and the latter
is executed before the method call by thread 2. (c) This deadlock manifests whenever thread 1 locks a before
thread 2, and thread 2 locks b before thread 1.

a bug of depth d with a probability of at least 1/nkd−1.
For small d, this bound is much better than the adversar-
ial bound 1/nk. In particular, for the cases d = 1 and
d = 2 (which cover all examples in Fig. 1), the probabil-
ity for finding the bug in each run is at least 1/n and 1/nk,
respectively.2

We describe the randomized algorithm informally in Sec-
tion 2 and the formal treatment with the proof of the bound
in Section 3. As described above, the scheduler is simple
and can readily be implemented on large systems without
knowledge of the proof mechanics. Note that the proof was
instrumental to the design of PCT because it provided the
insight on how to use randomization sparingly, yet effec-
tively.

The probabilistic bound implies that on average, one can
expect to find a bug of depth d within nkd−1 independent
runs of PCT. As our experiments show (Section 5), PCT
finds depth 1 bugs in the first few runs of the program.
These bugs are certainly not trivial and were discovered by
prior state-of-art research tools [26, 22] in well-tested real-
world programs.

Our implementation of PCT, described in Section 4, works
on executables compiled from C/C++ programs. In addi-
tion to the base algorithm described in Section 2, our imple-
mentation employs various optimizations including one that
reduces k to the maximum number of synchronization oper-
ations (rather than the number of instructions) performed
in any run for a given test input.

We evaluate PCT on six benchmarks from prior work [26,
23] that contain known concurrency bugs. This includes the
open source program PBZIP2 [26], three SPLASH2 bench-
marks [26], an implementation of a work stealing queue [23],
and Dryad Channels [23]. PCT finds all of the known bugs
much faster than respectively reported in prior work. We
also find two new bugs that were missed by prior work in
these benchmarks. To test our scalability, we ran PCT on
unmodified recently-shipped versions of two popular web

2In theory, d can be as large as k. In this case, our bound
(as required) is worse than 1/nk. However, we consider a
depth k bug a practical impossibility, especially for modern
software that is built from a large number of loosely-coupled
components.

browsers Mozilla and Internet Explorer. We find one previ-
ously unknown bug in each of them. Finally, we empirically
demonstrate that PCT often detects bugs with probabilities
greater than the theoretical worst-case bound.

2. PCT OVERVIEW
In this section we provide necessary background and an in-
formal description of our algorithm.

2.1 Concurrency Testing
The general problem of testing a program involves many
steps. In this paper, we focus on concurrency testing. We
define a concurrency bug as one that manifests on a strict
subset of possible schedules. Bugs that manifest in all sched-
ules are not concurrency bugs. The problem of concurrency
testing is to find schedules that can trigger these bugs among
the vast number of potential schedules.

We assume that inputs to our program are already provided,
and the only challenge is to find buggy schedules for that in-
put. Determining bug-triggering inputs for concurrent pro-
grams is a challenging open problem beyond the scope of
this paper. Our assumption is validated by the fact that
there already exists large suites of stress tests carefully con-
structed by programmers over the years.

2.2 State of the Art
We identify the following basic strategies for flushing out
concurrency bugs. We describe them in detail in Section 6.

Stress Testing relies on repetition and heavy load to find
bug-triggering schedules by chance. The schedules explored
are not uniformly distributed and are determined by the
chaotic noise in the system.

Heuristic-Directed Testing improves upon stress testing
by using runtime monitors and heuristics to (1) detect suspi-
cious activity in a program (such as variable access patterns
that indicate potential atomicity violations [26], or lock ac-
quisition orderings that indicate potential deadlocks [17]),
and (2) direct the schedule towards suspected bugs.

Systematic Scheduling controls the scheduler to system-
atically enumerates possible schedules either exhaustively or
within some bound (such as a bound on the number of pre-
emptions) [23].

Filewriter Thread
…
mutex.unlock()

Main Thread
…
free(mutex)
exit(0);

Figure 2: An example of a bug of depth 2 we found in
pbzip. The bug surfaces if (1) the mutex is unlocked
after it is freed, and (2) the mutex is unlocked before
the main thread terminates the process by calling
exit.

Randomized Scheduling is similar to stress testing, but
attempts to amplify the ’randomness’ of the OS scheduler[2].
It can do so by inserting random delays, context switches,
or thread priority changes.

PCT falls in the last category. But unlike all the meth-
ods above, PCT provides a guaranteed probability of find-
ing bugs in every run of the program. Our experiments
validate this guarantee. Note that PCT is orthogonal to
heuristic-directed testing methods above, in the sense that
the analysis used in these methods can be used to further
improve PCT.

2.3 Bug Depth
We classify concurrency bugs according to a depth met-
ric. Intuitively, deeper bugs are inherently harder to find.
PCT is designed to provide better guarantees for bugs with
smaller depth.

Concurrency bugs happen when instructions are scheduled
in an order not envisioned by the programmer. We identify
a set of these ordering constraints between instructions from
different threads that are sufficient to trigger the bug. It is
possible for different sets of ordering constraints to trigger
the same bug. In such a case, we focus on the set with lesser
number of constraints. We define the depth of a concur-
rency bug as the minimum number of ordering constraints
sufficient to find the bug.

For example, Fig. 1 shows examples of common concurrency
errors with ordering constraints, represented by arrows, that
are sufficient to find the bug. Any schedule that satisfies
these ordering constraints is guaranteed to find the bug ir-
respective of how it schedules instructions not relevant to
the bug. For the examples in Fig. 1 the depth respectively
is 1, 2, and 2. We expect many concurrency bugs to have
small depths. This is further validated by our experimental
results.

2.3.1 Relationship with Prior Classification
Fig. 1 also demonstrates how previous classifications of con-
currency bugs correspond to bugs of low depth. For exam-
ple, ordering bugs [20] have depth 1, atomicity violations and
non-serializable interleavings [26], in general, have depth 2,
and deadlocks caused by circular lock acquisition [17] have
depth 2, or more generally n if n threads are involved. How-
ever, this classification is not strict. For instance, not all
atomicity violations have a depth 2, and in fact, three of
the bugs reported by prior work as atomicity violations [26]
have a depth 1.

Thread 2
…
…
Wait(e);
t->state == 1
…

Thread 1
…
Set(e);
t = new T()
…
…

Figure 3: A variation of the example in Fig. 1(a).
This bug requires Thread 1 to be preempted right
after the instruction that sets the event e. Hence
this bug has a preemption bound of 1 while the bug
in Fig. 1(a) has a preemption bound of 0. Both bugs
are of depth 1.

However, our notion of bug depth is more general and can
capture concurrency bugs not classified before. Fig. 2 shows
an example of a bug of depth 2 that does not directly fall
into any of the mentioned categories. In particular, the or-
dering constraints do not have to be between instructions
that access the same variable.

Another characterization of a concurrency bug is its preemp-
tion bound [22]. A preemption bound is the smallest number
of preemptions sufficient to find a concurrency bug. To the
best of our knowledge, there exists no relation between the
preemption bound and the depth of a bug for arbitrary con-
current programs. For instance, Fig. 3 and Fig. 1(a) describe
bugs that have the same bug depth but different preemption
bounds.

2.3.2 Interaction with Control Flow
Fig. 4 shows a slight modification to Fig. 1(a). In this exam-
ple, the program (incorrectly) maintains a Boolean variable
init to indicate whether t is initialized or not. Now, the
single ordering constraint (black arrow) between the initial-
ization and access of t is not sufficient to find the bug. The
scheduler should also ensure the right ordering constraint
between init accesses (grey arrow). Thus, the presence of
control flow increases the bug depth to 2.

This example brings out two interesting points. First, the
notion of bug depth is inherently tied to the difficulty of the
concurrency bug. Fig. 4 is arguably a more subtle bug than
Fig. 1(a). Second, in a program with complex control flow,
the depth of a bug might not be readily apparent to the
programmer. However, our technique does not require the
programmer or a prior program analysis to identify these
constraints explicitly. It relies on the mere existence of the
right number of ordering constraints.

2.4 Naive Randomization
Using a randomized scheduler may appear like an obvious
choice. However, it is not a priori clear how to design such a
scheduler with a good detection probability for concurrency
bugs. For illustration purposes, let us consider the simple
case of a program shown in Fig. 5 with two threads contain-
ing a bug of depth 1, shown by the black arrow. (Neglect
the grey arrow for now.) Even this simple bug can frustrate
a naive randomization technique.

Thread 2
…
…
if (init)
 t->state == 1
…

Thread 1
…
init = true
t = new T()
…
…

Figure 4: Although it may seem like one constraint
(black arrow) is sufficient to find this bug, an ex-
tra constraint (gray arrow) is needed to ensure that
thread 2 really executes the access of t. Thus, the
depth of this bug is 2.

Thread 2
assert(a != 0)
step(1);
step(2);
…
…
step(n);
b = 0;

Thread 1
assert(b != 0)
step(1);
step(2);
…
step(m);
a = 0;

Figure 5: A program with two bugs of depth 1 that
are hard to find with naive randomized schedulers
that flip a coin in each step. PCT finds both these
bugs with a probability 1/2.

Consider a naive randomized scheduler that flips a coin in
each step to decide which thread to schedule next. This
scheduler is unlikely to detect the bug in Fig. 5 even though
its depth is only 1. To force the black constraint, this sched-
uler has to consistently schedule Thread 1 for m + 2 steps,
resulting in a probability that is inverse exponential in m
— a small quantity even for moderate m. One could then
try to improve this scheduler by biasing the coin towards
Thread 1 to increase the likelihood of hitting this bug. This
still contains an exponential in m. But more importantly,
any bias towards the black constraint, will be equally biased
against the second bug represented by the grey constraint.

In contrast, our PCT scheduler will find both bugs (and
all other bugs with depth 1) with probability 1/2 for this
program.

2.5 The PCT Randomized Scheduler
We now describe our key contribution, a randomized sched-
uler that detects bugs of depth d with a guaranteed proba-
bility in every run of the program. Our scheduler is priority-
based. The scheduler maintains a priority for every thread,
where lower numbers indicate lower priorities. During exe-
cution, the scheduler schedules a low priority thread only
when all higher priority threads are blocked. Only one
thread is scheduled to execute in each step. A thread can
get blocked if it is waiting for a resource, such as a lock that
is currently held by another thread, or more generally if it
is performing some blocking synchronization of any kind.

Threads can change priorities during execution when they
pass a priority change point. Each such point is a step
in the dynamic execution and has a predetermined prior-

ity value associated with it. When the execution reaches a
change point, the scheduler changes the priority of the cur-
rent thread to the priority value associated with the change
point.

Given inputs n, k, and d, PCT works as follows.

1. Assign the n priority values d, d+1, . . . , d+n randomly
to the n threads (we reserve the lower priority values
1, . . . , (d− 1) for change points).

2. Pick d− 1 random priority change points k1, . . . , kd−1

in the range [1, k]. Each ki has an associated priority
value of i.

3. Schedule the threads by honoring their priorities. When
a thread reaches the i-th change point (that is, when
it executes the ki-th step of the execution), change the
priority of that thread to i.

This randomized scheduler provides the following guarantee.

Given a program that creates at most n threads and ex-
ecutes at most k instructions, PCT finds a bug of depth
d with probability at least 1/nkd−1.

2.6 Intuition Behind the Algorithm
See Fig. 6 for an illustration of how our algorithm finds the
errors in Fig. 1. This figure shows the initial thread priori-
ties in white circles and the priority change points in black
circles. To understand the working of the scheduler, observe
that a high priority thread runs faster than a low priority
thread. So, barring priority inversion issues, an ordering
constraint a→ b is satisfied if a is executed by a higher pri-
ority thread. In Fig. 6(a), the bug is found if PCT chooses
a lower priority for Thread 1 than Thread 2. The probabil-
ity of this is 1/2 and thus PCT is expected to find this bug
within the first two runs.

If there are more than two threads in the program in Fig. 6(a),
then the algorithm has to work harder because of priority
inversion issues. Even if Thread 1 has a lower priority than
Thread 2, the latter can be blocked on a resource held by
another thread, say Thread 3. If Thread 3 has a priority
lower than Thread 1, then this priority inversion can al-
low Thread 1 to execute the initialization before Thread 2
reads t. However, such a priority inversion cannot happen
if Thread 1 has the lowest priority of all threads in the pro-
gram. The probability of this happening is 1/n which is our
guarantee.

For bugs with depth greater than 1, we need to under-
stand the effects of priority change points. (Our algorithm
does not introduce priority change points when d = 1.) In
Fig. 6(b), the atomicity violation is induced if PCT inserts
a priority change point after the null check but before ex-
ecuting the branch. The probability of this is 1/k as PCT
will pick the change point uniformly over all dynamic in-
structions. In addition, PCT needs to ensure the first con-
straint by running Thread 1 with lowest priority till Thread
2 does the null check. Together, the probability of finding
this atomicity violation is at least 1/nk.

Thread 2
…
…
if (t->state == 1)
…

…

Thread 1
…
t = new T()
…
…
…

Thread 2
…
…
if (x != null)

x->print();

Thread 1
…
…
x = null;
…
…

Thread 2
…
…
lock(b);
…
lock(a);

Thread 1
…
lock(a);
…
lock(b);
…

1 2 2 3

1
1

23

d=1 d=2 d=2

(a) (b) (c)

Figure 6: Illustration on how our randomized scheduler finds bugs of depth d, using the examples from Fig. 1.
The scheduler assigns random initial thread priorities {d, . . . , d + n − 1} (white circles) and randomly places
d− 1 priority change points of values {1, . . . , d− 1} (black circles) into the execution. The bug is found if the
scheduler happens to make the random choices shown above.

The same argument holds for the deadlock in Fig. 6(c). PCT
has to insert a priority change point after Thread 1 acquires
the first lock before acquiring the second. The probabilis-
tic guarantee of our algorithm with multiple priority change
points in the presence of arbitrary synchronizations and con-
trol flow in the program, and issues of priority inversion is
not readily apparent from the discussion above. Section 3
provides a detailed formal proof that accounts for all these
complications.

2.7 Probabilistic Worst-Case Bound
The probabilistic guarantee provided by PCT is a worst-case
bound. In other words, for any program than an adversary
might pick, and for any bug of depth d in that program,
PCT is guaranteed to find the bug with a probability not
less than 1/nkd−1. This bound is also tight. There exists
programs, such as the one in Fig. 4, for which PCT can do
no better than this bound.

In practice, it is possible for PCT to perform better than this
worst-case bound. Our experiments in Section 5 validate
this possiblity. Here are several reasons as to why PCT
performs better than the worst-case bond. (1) Sometimes
it is good enough for priority change points to fall in some
range of instructions. For example, Thread 1 in Fig. 6(c)
may perform lots of instructions between the two acquires.
PCT will find the deadlock if it picks any one of them to be
a priority change point. (2) Sometimes a bug can be found
in different ways. For instance, in Fig. 6(c), there exists
a symmetric case in which PCT inserts a priority change
point in Thread 2. (3) Sometimes a buggy code fragment
is repeated many times in a test, by the same thread or by
different threads, and thus offers multiple opportunities to
trigger the bug.

3. ALGORITHM
In this section, we build a formal foundation for describing
our scheduler and prove its probabilistic guarantees. For
conciseness, some technical proofs are available in the full
version of the paper [1].

3.1 Definitions
We briefly recount some standard notation for operations
on sequences. Let T be any set. Define T ∗ to be the set of
finite sequences of elements from T . For a sequence S ∈ T ∗,
define length(S) to be the length of the sequence. We let ε
denote the sequence of length 0. For a sequence S ∈ T ∗ and

Require: program P , d ≥ 0
Require: n ≥ maxthreads(P), k ≥ maxsteps(P)
Require: random variables k1, . . . , kd−1 ∈ {1, . . . , k}
Require: random variable π ∈ Permutations(n)

1: procedure RandS(n, k, d) begin
2: var S : schedule
3: var p : array[n] of N
4: S ← ε

// set initial priorities
5: for all t ∈ {1, . . . , n} do
6: p[t]← d+ π(t)− 1
7: end for
8: while enP (S) 6= ∅ do
9: /* schedule thread of maximal priority */

10: t← element of enP (S) such that p[t] maximal
11: S ← S t

/* are we at priority change point? */
12: for all i ∈ {1, . . . , d− 1} do
13: if length(S) = ki then
14: p[t] = d− i
15: end if
16: end for
17: end while
18: return S
19: end

Figure 7: The randomized scheduler.

a number n such that 0 ≤ n < length(S), let S[n] be the
n-th element of S (where counting starts with 0). For t ∈ T
and S ∈ T ∗, we write t ∈ S as a shorthand for ∃m : S[m] =
t. For any S ⊂ T ∗ and for any n,m such that 0 ≤ n ≤
m ≤ length(S), let S[n,m] be the contiguous subsequence
of S starting at position n and ending at (and including)
position m. For two sequences S1, S2 ∈ T ∗, we let S1S2

denote the concatenation as usual. We do not distinguish
between sequences of length one and the respective element.
We call a sequence S1 ∈ T ∗ a prefix of a sequence S ∈ T ∗ if
there exists a sequence S2 ∈ T ∗ such that S = S1S2. A set
of sequences P ⊆ T ∗ is called prefix-closed if for any S ∈ P ,
all prefixes of P are also in P .

Definition 1. Define T = N to be the set of thread iden-
tifiers. Define Sched = T ∗ to be the set of all schedules.
Define a program to be a prefix-closed subset of Sched. For

a given program P ⊆ Sched, we say a schedule S ∈ P is
complete if it is not the prefix of any schedule in P beside
itself, and partial otherwise.

Thus, we represent a program abstractly by its schedules,
and each schedule is simply a sequence of thread identifiers.
For example, the sequence 1 2 2 1 represents the schedule
where thread 1 takes one step, followed by two steps by
thread 2, followed by another step of thread 1. We think
of schedules as an abstract representation of the program
state. Not all threads can be scheduled from all states, as
they may be blocked. We say a thread is enabled in a state
if it can be scheduled from that state.

Definition 2. Let P ⊆ Sched be a program. For a sched-
ule S ∈ P , define enP (S) to be the set {t ∈ T | S t ∈
P}. Define maxsteps(P) = max{length(S) | S ∈ P} and
maxthreads(P) = max{S[i] | S ∈ P} (or ∞ if unbounded).

Finally, we represent a concurrency bug abstractly as the
set of schedules that find it:

Definition 3. Let P ⊆ Sched be a program. Define a
bug B of P to be a subset B ⊂ P .

3.2 The Algorithm
We now introduce the randomized scheduler (Fig. 7). It
operates as described informally in Section 2.5. We expect
RandS(n, k, d) to be called with a conservative estimate for
n (number of threads) and k (number of steps). During the
progress of the algorithm, we store the current schedule in
the variable S, and the current thread priorities in an array p
of size n. The thread priorities are initially assigned random
values (chosen by the random permutation π). In each iter-
ation, we pick an enabled thread of maximal priority t and
schedule it for one step. Then we check if we have reached
a priority change point (determined by the random values
ki), and if so, we change the priority of t accordingly. This
process repeats until no more threads are enabled (that is,
we have reached a deadlock or the program has terminated).

3.3 Probabilistic Coverage Guarantee
In this section, we precisely state and then prove the prob-
abilistic coverage guarantees for our randomized scheduler,
in three steps. First, we introduce a general mechanism for
identifying dynamic events in threads, which is a necessary
prerequisite for defining ordering constraints on such events.
Next, we build on that basis to define the depth of a bug
as the minimum number of ordering constraints on thread
events that will reliably reveal the bug. Finally, we state
and prove the core theorem.

3.3.1 Event Labeling
The first problem is to clarify how we define the events that
participate in the ordering constraints. For this purpose, we
introduce a general definition of event labeling. Event labels
must be unique within each execution, but may vary across
executions. Essentially, an event labeling E defines a set of
labels LE (where each label a ∈ LE belongs to a particular

thread threadE(a)) and a function nextE(S, t) that tells us
what label (if any) the thread t is going to emit if scheduled
next after schedule S. More formally, we define:

Definition 4. Let P be a program. An event labeling E
is a triple (LE , threadE ,nextE) where LE is a set of labels,
threadE is a function LE → T , and nextE is a function
P ×T → (LE ∪{⊥}), such that the following conditions are
satisfied:

1. (Affinity) If nextE(S, t) = a for some a ∈ LE, then
threadE(a) = t.

2. (Stability) If nextE(S, t) = a for some a ∈ LE, and if
t 6= t′, then nextE(S t′, t) = a.

3. (Uniqueness) If nextE(S1, t) = nextE(S1S2, t) = a for
some a ∈ LE, then t /∈ S2.

4. (NotFirst) nextE(ε, t) =⊥ for all t ∈ T .

Sometimes, we would like to talk about labels that have
already been emitted in a schedule. For this purpose we
define the auxiliary functions labelE and labelsE as follows.
For S ∈ P and 0 ≤ m < length(S), we define labelE(S,m) =
a if the label a is being emitted at position m, and we define
labelsE(S) to be the set of all labels emitted in S (more
formally, labelE(S,m) = a if there exists k < m and an
a ∈ LE such that nextE(S[0, k], S[m]) = a and S[m] /∈ S[k+
1,m− 1], and labelE(S,m) =⊥ otherwise; and labelsE(S) =
{labelE(S,m) | 0 ≤ m < length(S)}).

3.3.2 Bug Depth
We now formalize the notion of ’ordering constraints’ and
’bug depth’ that we motivated earlier. Compared to our
informal introduction from Section 2.3, there are two varia-
tions worth mentioning. First, we generalize each edge con-
straint (a, b) (where a and b are event labels) to allow mul-
tiple sources (A, b), where A is a set of labels all of which
have to be scheduled before b to satisfy the constraint. Sec-
ond, because we are using dynamically generated labels as
our events, we require that the ordering constraints are suf-
ficient to guide the scheduler to the bug without needing to
know about additional constraints implied by the program
structure (as motivated by the example in Fig. 4).

We formulate the notion of a directive D of size d, which
consists of a labeling and d constraints. The idea is that a
directive can guide a schedule towards a bug, and that the
depth of a bug is defined as the minimal size of a directive
that is guaranteed to find it.

Definition 5. A directive D for a program P is a tuple
(E,A1, b1, A2, b2, . . . , Ad, bd) for some d ≥ 1 (called the size
of D, and denoted by size(D)) where E is an event labeling
for P , where A1, . . . , Ad ⊆ LE are sets of labels, and where
b1, . . . bd ∈ LE are labels that are pairwise distinct (bi 6= bj
for i 6= j).

Definition 6. Let P be a program and let D be a direc-
tive for P . We say a schedule S ∈ P violates the directive D

Require: program P , d ≥ 0
Require: n >= maxthreads(P)
Require: k1, . . . , kd−1 ≥ 1
Require: π ∈ Permutations(n)
Require: random variables k1, . . . , kd−1 ∈ {1, . . . , k}
Require: random variable π ∈ Permutations(n)
Require: bug B
Require: directive D = (E,A1, b1, . . . , Ad, bd) for B

1: procedure DirS(n, k, d,D) begin
2: var S : schedule
3: var p : array[n] of N
4: S ← ε

// set initial priorities
5: for all t ∈ {1, . . . , n} do
6: p[t]← d+ π(t)− 1
7: end for
8: [assert: p[threadE(b1)] = d]
9: while enP (S) 6= ∅ do

/* schedule thread of maximal priority */
10: t← element of enP (S) such that p[t] maximal
11: S ← S t

/* change priority first time we peek a b-label */
12: for all i ∈ {1, . . . , d− 1} do
13: if nextE(S, t) = bi+1 and p[t] 6= d− i then
14: p[t] = d− i
15: [assert: length(S) = ki]
16: end if
17: end for
18: end while
19: return S
20: end

Figure 8: The directed scheduler.

if either (1) there exists an i ∈ {1, . . . , d} and an a ∈ Ai such
that bi ∈ labelsE(S), but a /∈ labelsE(S), or (2) there exist
1 ≤ i < j ≤ d such that bj ∈ labelsE(S), but bi /∈ labelsE(S).
We say a schedule S ∈ P satisfies D if it does not violate
D, and if bi ∈ labelsE(S) for all 1 ≤ i ≤ d.

Definition 7. Let P be a program, B be a bug of P , and
D be a directive for P . We say D guarantees B if and only
if the following conditions are satisfied:

1. For any partial schedule S ∈ P that does not violate
D, there exists a thread t ∈ enP (S) such that S t does
not violate D.

2. Any complete schedule S that does not violate D does
satisfy D and is in B.

Definition 8. Let P be a program, and let B be a bug of
P . Then we define the depth of B to be

depth(B) = min{size(D) | D guarantees B}

3.3.3 Coverage Theorem
The following theorem states the key guarantee: the proba-
bility that one invocation RandS(n, k, d) of our randomized
scheduler (Fig. 7) detects a bug of depth d is at least 1

nkd−1 .

Theorem 9. Let P be a program with a bug B of depth
d, let n ≥ maxthreads(P), and let k ≥ maxsteps(P). Then

Pr[RandS(n, k, d) ∈ B] ≥ 1

nkd−1

Proof. Because B has depth d, we know there exists a
directive D for B of size d. Of course, in any real situation,
we do not know D, but by Def. 8 we know that it exists,
so we can use it for the purposes of this proof. Essentially,
we show that even without knowing D, here is a relatively
high probability that RandS(n, k, d) follows the directive D
by pure chance. To prove that, we first construct an auxil-
iary algorithm DirS(n, k, d,D) (Fig. 8) that uses the same
random variables as RandS , but has knowledge of D and
constructs its schedule accordingly.

Comparing the two programs, we see two differences. First,
Line 13 uses a condition based on D to decide when to
change priorities. In fact, this is where we make sure the
call to DirS(n, k, d,D) is following the directive D: when-
ever we catch a glimpse of thread t executing one of the
labels bi (for i > 1), we change the priority of t accord-
ingly. Second, DirS has assertions which are not present
in RandS . We use these assertions for this proof to reason
about the probability that DirS guesses the right random
choices. The intended behavior is that DirS fails (terminat-
ing immediately) if it executes a failing assertion.

The following three lemmas (the proofs are available in the
full version [1]) are key for our proof construction:

Lemma 10. DirS succeeds with probability ≥ 1
nkd−1 .

Lemma 11. If DirS succeeds, it returns a schedule that
finds the bug

Lemma 12. If DirS succeeds, it returns the same schedule
as RandS.

We can formally assemble these lemmas into a proof as fol-
lows. Our sample space consists of all valuations of the
random variables π and k1, . . . , kd−1. By construction, each
variable is distributed uniformly and independently (thus,
the probability of each valuation is equal to n!kd−1). Define
S to be the event (that is, set of all valuations) such that
DirS(n, k, d,D) succeeds, and let S be its complement.

Pr[RandS(n, k, d) ∈ B]

= Pr[RandS(n, k, d) ∈ B | S] · Pr[S]

+ Pr[RandS(n, k, d) ∈ B | S] · Pr[S]

≥ Pr[RandS(n, k, d) ∈ B | S] · Pr[S]

= Pr[DirS(n, k, d,D) ∈ B | S] · Pr[S] (by Lemma 12)

= 1 · Pr[S] (by Lemma 11)

≥ 1

nkd−1
(by Lemma 10)

4. IMPLEMENTATION
This section describes our implementation of the PCT sched-
uler.

4.1 Design Choices
The PCT scheduler, as informally described in Section 2,
is based on thread priorities. The obvious way to imple-
ment PCT would be to reuse the priority mechanisms al-
ready supported by modern operating systems. We chose
not to for the following reason. The guarantees provided
by PCT crucially rely on a low priority thread proceeding
strictly slower than a high priority thread. OS priorities do
not provide this guarantee. In particular, priority boost-
ing [15] techniques can arbitrarily change user-intended pri-
orities. Similarly, our scheduler would not be able to control
the relative speeds of two threads with different priorities
running concurrently on different processors.

For fine-grained priority control, we implemented PCT as a
user-mode scheduler. PCT works on unmodified x86 bina-
ries. It employs binary instrumentation to insert calls to the
scheduler after every instruction that accesses shared mem-
ory or makes a system call. The scheduler gains control of
a thread the first time the thread calls into the scheduler.
From there on, the scheduler ensures that the thread makes
progress only when all threads with higher priorities are dis-
abled. Thread priorities are determined by the algorithm as
described in Section 2.

Our scheduler is able to reliably scale to large programs. We
are successfully able to run unmodified versions of Mozilla
Firefox and Internet Explorer, two popular web browsers,
and find bugs in them. Our initial prototype slows down the
execution of the program by 2 to 3 times. This is well within
the expected slowdowns for any binary instrumentation tool.

One challenge we identified during our implementation is the
need for our scheduler to be starvation free. It is common
for concurrent programs to use spin loops. If, under PCT, a
high priority thread spins waiting for a low priority thread,
the program will livelock — to guarantee strict priorities,
PCT would not schedule the low priority thread required
for the high priority thread to make progress. To avoid such
starvation, PCT uses heuristics to identify threads that are
not making progress and lowers their priorities with a small
probability.

4.2 Optimizations
The base algorithm described in Section 2 requires that the
scheduler have the capability of inserting a priority change
point at randomly selected instructions. This has two dis-
advantages. First, the need to insert a change point at an
arbitrary instruction requires PCT to insert a callback after
every instruction, slowing down the performance. Second,
by counting the number of instructions executed the large
value for the parameter k can reduce the effectiveness espe-
cially for bugs with depth ≥ 2. We introduced the optimiza-
tions below to address this problem.

Identifying Synchronization Operations: The first
optimization relies on identifying synchronization operations
and inserting prority change points only at these operations.

We first classify thread operations into two classes: synchro-
nization operations and local operations. A synchroniza-
tion operation can be used to communicate between threads,
while a local operation is used for local computation within
a thread. Synchronization operations include system calls,
calls to synchronization libraries (such as pthreads), and
hardware synchronization instructions (such as interlocked
instructions). In addition, we also treat accesses to flag vari-
ables, volatile accesses, and data races (both programmer
intended and unintended) as “shared-memory synchroniza-
tion.” Our classification reflects the fact that these memory
accesses result in communication between the threads. Local
operations include instructions that do not access memory
and memory accesses that do not participate in a data race
(such as accessing the stack or accessing consistently pro-
tected shared memory). Any of the existing data-race detec-
tion tools [10, 12] or hardware mechanisms [24] can be used
to classify memory accesses into local or synchronization op-
erations. Other forms of synchronization are straightforward
to identify from the program binary.

This optimization relies on the following observation. For
every execution in which a priority change point occurs be-
fore a local operation, there exists a behaviorally-equivalent
execution in which the priority change point occurs before
the synchronization operation following the local operation.
This is because the two executions differ only in the order of
local operations. This means that we only need to insert pri-
ority change points before synchronization operations. This
effectively reduces k in the probabilistic bound by several
orders of magnitude, from the maximum number of instruc-
tions executed by the program to the maximum number of
syncrhonization operations. In the rest of the paper, we only
report the number of synchronization operations as k.

Identifying Sequential Execution: We observed for some
benchmarks that a significant portion of a concurrent ex-
ecution is actually sequential where there is only one en-
abled thread. Inserting priority change points during this
sequential execution is not necessary. The same effect can
be achieved by reducing the priority at the point the sequen-
tial thread enables/creates a second thread.

Identifying Join Points: Programs written with a fork-
join paradigm typically have multiple phases where a single
thread waits for a flurry of concurrent activity belonging to
one phase to finish before starting the next phase. This is
also a typical behavior of long running stress tests that per-
form multiple iterations of concurrency scenarios. Our im-
plementation of PCT identifies these phases whenever the
program enters a state with one thread enabled. The effec-
tive k is the maximum number of synchronization operations
performed per phase.

Final Wait: Some concurrency bugs might manifest much
later than when they occur. We found that PCT missed
some of the manifestations as the main thread exits prema-
turely at the end of the program. Thus, we artificially insert
a priority change point for the main thread before it exits.

5. EXPERIMENTS
In this section, we describe the evaluation of our PCT sched-
uler on several real-world programs of varying complexity.

Programs Bug
Manifestation Known?

Splash-FFT Platform dependent macro YES
Splash-LU missing a wait leading to YES
Splash-Barnes order violations NO∗

Pbzip2 Crash during decompression YES
Work Steal Queue Internal assertion fails due NO∗

to a race condition
Dryad Use after free failing an YES

internal assertion
IE Javascript parse error NO
Mozilla Crash during restoration NO

Table 1: Concurrency benchmarks and bugs. NO∗

indicates both known and unknown bugs.

Programs LOC d n k keff
Splash-FFT 1200 1 2 791 139
Splash-LU 1130 1 2 1517 996
Splash-Barnes 3465 1 2 7917 318
Pbzip2 1978 2 4 1981 1207
Work Steal Queue 495 2 2 1488 75
Dryad 16036 2 5 9631 1990
IE - 1∗ 25 1.4M 0.13M
Mozilla 245172 1∗ 12 38.4M 3M

Table 2: Characteristics of various benchmarks.
Here 1M means one million operations. 1∗ indicates
that the previously unknown bug was found while
running with a bug depth of 1.

All experiments were conducted on an quad-core Intel Xeon
L5420 running at 2.50GHz, with 16GB of RAM running 64-
bit Windows Server Enterprise operating system.

5.1 Experimental Setup
5.1.1 Benchmarks and Bugs

In our evaluation, we used open source applications such
as Mozilla Firefox code-named Shiretoko, a commercial web
browser-Internet Explorer, a parallel decompression utility
- Pbzip2, three Splash benchmarks (FFT, LU, Barnes), a
work stealing queue implementation [13] and a component
of Dryad [16]. We used these applications as most of these
were used in prior work on discovering concurrency bugs [26,
22]. Table 1 lists the manifestation of the bug in these ap-
plications and also reports whether the bug was previously
known. PCT discovered all previously known bugs faster
than reported in respective prior work [26, 22]. We also find
new bugs in work stealing queue and Barnes benchmark that
were missed by prior work. Finally, we find previously un-
known bugs in Firefox and Internet Explorer.

Table 2 also lists the various properties of the benchmarks.
The table lists the number of threads (n), the total number
of synchronization operations executed (k), and the depth
of the bug (d) in the application. It also shows the effective
number of operations after optimization (keff) described
in Section 4. It is interesting to note that our prototype
detected the bugs in Mozilla and Internet Explorer even
though, it has a large value of k. Moreover, Mozilla Firefox
and Internet Explorer are large applications and the ability
to detect bugs in these large applications demonstrates the
scalability of the tool.

Programs Stress Random PCT
Sleep Empirical Bound

Splash-FFT 0.06 0.27 0.50 0.5
Splash-LU 0.07 0.39 0.50 0.5
Splash-Barnes 0.0074 0.0101 0.4916 0.5
Pbzip2 0 0 0.701 0.0001
Work Steal Queue 0 0.001 0.002 0.0003
Dryad 0 0 0.164 2× 10−5

Table 3: Empirical probability of finding the bug
with various methods such as Stress, Random de-
lay insertion methods and PCT and the worst-case
bound (based on n, k and d in Table 2).

5.1.2 Comparing Other Techniques
As a point of comparison, we also ran the benchmarks in
Table 3 with our stress testing infrastructure. Our stress
infrastructure ran all these benchmarks under heavy load a
million times. We made a honest, good-faith effort to tune
our stress infrastructure to increase its likelihood of find-
ing bugs. Our effort is reflected by the fact that our stress
infrastructure detected the known bugs in the benchmarks
with a higher probability and a lot quicker than prior stress
capabilities reported in literature [26].

As another interesting comparison, we implemented a scheme
that introduces random sleeps at synchronization operations
with a certain probability [2]. The experiments are sensitive
to the particular probability of sleep. Again, we made a
good-faith effort to find the configuration that works best
for our benchmarks. We experimentally discovered a prob-
ability of 1/50 performed reasonable well in detecting bugs.

These two reflect the state of the art concurrency testing
techniques that we are able to recreate in our setting. Heuristic-
directed testing [26, 17] and systematic scheduling [23] re-
quire sophisticated analysis and we are currently unable to
perform quantitative experiments with these techniques. We
compare with these techniques qualitatively.

5.2 Effectiveness
5.2.1 Comparison with worst-case bound

Apart from discovering known and unknown bugs, to evalu-
ate whether our prototype attains the theoretical guarantees
discussed in Section 3, we calculated empirical probabilities
of detecting the bug with our prototype. In this experi-
ment, our prototype ran each application one million times
with each run having a different random seed. The rela-
tive frequency of occurrence of the bug in these runs repre-
sents the empirical probability. Table 3 reports the empirical
and the expected theoretical probability of finding the bug
with PCT. The theoretical probability is computed using the
bound 1/nkd−1 obtained in Section 3. We report the empir-
ical probabilities only for applications where it was feasible
to do one million runs.

Table 3 reveals that our prototype meets and exceeds the
theoretical worst-case bound. For Barnes, LU and FFT that
have 2 threads, our implementation finds the bug with a
probability approximately half. For the Barnes benchmark,
PCT slightly misses the worst-case bound. This is the effect
of priority perturbations introduced to guarantee starvation-

freedom, as discussed in Section 4.

For benchmarks with a 2 depth bug, namely Pbzip2, Work
Steal Queue, and Dryad, our implementation is orders of
magnitude better than the worst-case bound. The Pbzip2
bug, shown in Fig. 2 requires an extra constraint that the
main thread does not prematurely die before the error man-
ifests. Since PCT guarantees this by default (Section 4),
PCT finds the bug as if it was a depth 1 bug. Both Work
Steal Queue and Dryad demonstrate the effect of optimiza-
tions that reduce k. We study our results with the Work
Steal Queue in detail in Section 5.3.

5.2.2 Comparison to other techniques
Table 3 summarizes our experiments comparing PCT with
stress, synchronization based random sleeps. Our sophisti-
cated stress infrastructure has trouble finding bugs of depth
one which are trivially caught by PCT. Note, that our stress
infrastructure detects bugs of in FFT, LU and Barnes much
more successfully than reported in prior literature [26]. Stress
simply does not find bugs of higher depth.

Our random sleep scheme detects bugs in FFT, LU, Barnes
way quicker than stress. It also detected the 2-edge bug in
work stealing queue albeit with a low probability. However
it runs out of luck with Pbzip and Dryad for all probabilities
we experimented with. To summarize, PCT scheduler dis-
covers bugs with a higher probability and much more quickly
than the state of the art stress infrastructure and other com-
petitor schemes such as random sleep.

CHESS [23] finds the Work Steal Queue and the Dryad bug
after (approx.) 200 and 1000 runs of the program respec-
tively. The PCT scheduler detects the same bug in the 6th

and 35th run of the program respectively. We were unable
to run CHESS on other benchmarks. As the next section
shows, PCT scales much better if one increases the number
of threads, while we expect CHESS to perform exponentially
worse.

In comparison to CTrigger [26], PCT finds the bug in the
benchmarks common to both well within the first three iter-
ations. This is more efficient as we do not require a separate
profiling run required by CTrigger.

5.3 Work Steal Queue Case Study
As a case study, we discuss the impact of increasing the
number of synchronization operations and the number of
threads with the PCT scheduler for the applications in Ta-
ble 3. Due to space constraints, we report the behavior only
with the work stealing queue program. Other benchmarks
show similar behavior.

Work Steal Queue program implements a queue of work
items and was originally designed for the Cilk multithreaded
programming system [13]. In this queue, there are two kinds
of threads namely victims and stealers. Victim pushes and
pops from the tail of the queue and a stealer steals from
the head of the queue. The application uses sophisticated
lock-free synchronization to protect the queue. To study
the impact of increased threads, we increased the number of
stealers and the number of items being pushed and popped.

0

0.005

0.01

0.015

0.02

0.025

2 3 5 9 17 33 65

P
ro

b
ab

ili
ty

 o
f

fi
n

d
in

g
th

e
 b

u
g

Number of Threads

4 items

16 items

64 items

Figure 9: Probability of finding bugs with an in-
crease in the number of threads and number of
items.

5.3.1 Effect of Execution Size on PCT
Figure 9 shows the probability of finding the bug with our
prototype implementing the PCT scheduler with an increase
in the number of threads and the number of operations for
the work stealing queue program. In this experiment, we
increase n by increasing the number of stealers. (The pro-
gram requires that there is exactly one victim.) Each stealer
does two steal attempts, while the victim pushes and pops a
specified number of items. We increase k by increasing the
number of items.

Figure 9 reveals that the probability of finding the bug ac-
tually increases with the increase in the number of threads.
Moreover, the probability of finding the bug is same irrespec-
tive of the number of operations. We were initially surprised
by this result as we expected PCT to perform a lot worse
with an increase n and k as the theory predicts a probability
of 1/nk for finding this depth 2 bug.

However, as the number of threads and the operations in-
crease, there are many opportunities to find the bug. PCT
needs to find the race condition when any one of the stealer
is interfering while attempting to steal any of the items.
These events, however, are not completely independent dur-
ing the execution and thus we are not able to theoretically
justify the result in Fig. 9.

5.3.2 PCT vs Stress
Figure 10 shows the probability of finding the bug with the
PCT scheduler and Stress testing with an increase in the
number of threads for the work stealing queue program. In
this experiment, the number of stealers was varied from 2
to 64 with total number of items being pushed and popped
by another thread at a constant four items. As discussed
earlier, the probability of PCT increases with the number of
threads. However, the interesting thing to note, even with
the sophisticated stress testing framework, the probability
of detecting the bug with stress is low and is highly non-
deterministic. Irrespective of the system load, PCT Sched-
uler has the same probability of detecting the bug when
given the same random seed. Even though the inefficacy of
stress has been highly discussed, it is important to note that
the stress does detect bugs in practice [26, 23]. The primary

0

0.005

0.01

0.015

0.02

0.025

2 3 5 9 17 33 65

P
ro

b
ab

ili
ty

 o
f

fi
n

d
in

g
th

e
b

u
g

Number of Threads

PCT

Stress

Figure 10: Probability of finding bugs with PCT
and Stress with increase in threads and number of
threads

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
in

te
rl

e
av

in
gs

 c
o

ve
re

d

Iteration

PCT

Stress

Figure 11: Coverage of various thread events with
the specified number of program runs with PCT and
Stress for the work stealing queue program.

problem with stress is with reproduction of the bug.

5.3.3 Interleaving Coverage
To evaluate the coverage of thread events with PCT, we
instrumented the work stealing queue program with twenty
events, fourteen events in the main thread which does the
pushes and the pops and six events in the stealer thread.
There were a total of 168 unique event pairs possible in this
setting. Figure 11 plots the cumulative percentage of the
events covered as the program is run specified number of
times. The horizontal axis represents the number of times
the program was run (in logarithmic scale). We restrict the
horizontal axis to the 8192 runs as stress did not explore any
new event pair beyond those already explored in the new
runs after that and PCT eventually explored all the event
pairs. Figure 10 showed that stress had a low probability of
catching the bug. Figure 11 shows that stress does not cover
more than 20% of the event pairs, few of which result in a
bug. Thus, stress’s inability/ineffectiveness to detect the
bug is highly correlated with the event pairs not covered.
The ability to cover almost all the event pairs enables PCT
to detect the bug.

6. RELATED WORK
Our work is closely related with concurrency verification and
testing techniques that aim to find bugs in programs. We
classify prior work and compare our work below.

Dynamic Scheduling: PCT is related to techniques
that control the scheduler to force the program along buggy
schedules. Stress testing is a commonly used method where
the program is subjected to heavy load in the presence of
artificial noise created by both running multiple unrelated
tests simultaneously and by inserting random sleeps, thread
suspensions, and thread priority changes. In contrast, PCT
uses a disciplined, mathematically-random priority mecha-
nism for finding concurrency bugs. This paper shows that
PCT outperforms stress theoretically and empirically.

Prior approaches for generating randomized schedules [9,
27] insert random sleep at synchronization points and use
heuristics based on various coverage criteria, concurrency
bug patterns and commutativity of thread actions to guide
the scheduler [11]. These approaches involve a random deci-
sion at every scheduling point. As shown in Section 2, even
simple concurrency bugs can frustrate these techniques. In
stark contrast, PCT uses a total of n + d − 1 random de-
cisions, together for the initial thread priorities and d − 1
priority change points. Our key insight is that these small
but calculated number random decisions are sufficient for
effectively finding bugs.

Researchers have also proposed techniques that actively look
for concurrency errors [26, 17]. They use sophisticated anal-
ysis, either by running profiling runs that detect suspicious
non-serializable access patterns [26], or use static or dynamic
analysis to find potential deadlocks [17]. In a subsequent
phase these techniques heuristically perturb the OS sched-
uler guided by the prior phase. Our technique does not re-
quire prior analysis but it still is comparable in bug-finding
power of these techniques. For instance, for the SPLASH2
benchmarks used in the former technique [26], PCT finds
the bug in the first few runs far less time than required for
the profiling runs in the previous approach. However, our
technique is orthogonal to these approaches and identifying
potential buggy locations can improve PCT as well.

Systematic Exploration: Model checking techniques [14,
23] systematically explore the space of thread schedules of a
given program in order to find bugs. These techniques can
prove the absence of errors only after exploring the state
space completely. In contrast, PCT provides a probabilis-
tic guarantee after every run of the program. With respect
to bug-finding capability, we have compared PCT with the
CHESS tool [23] on two benchmarks. PCT finds bugs much
faster than CHESS in both cases.

CHESS uses a heuristic of exploring schedules with fewer
number of preemptions. By default, CHESS explores exe-
cutions nonpreemptively except at few chosen steps where
it inserts preemptions. In contrast, PCT is a priority based
scheduler and can introduce arbitrary number of preemp-
tions in the presence of blocking operations even if the bug
depth is small. For instance, when a low-priority thread
wakes up a higher-priority thread, a priority-based sched-
uler preempts the former to scheduler the latter.

Concurrency Bug Detection: Our approach is also re-
lated to numerous hardware and software techniques that
find concurrency errors dynamically but without exercising
any scheduler control [29, 10, 12, 21]. PCT’s goal is to di-
rect the scheduler towards buggy schedules and requires that
these bugs are detected by other means, either by a program
assertion or with the use of these concurrency bug detection
engines.

7. CONCLUSION
This paper describes PCT, a randomized algorithm for con-
currency testing. PCT uses a disciplined schedule-randomization
technique to provide efficient probabilistic guarantees of find-
ing bugs during testing. We evaluate an implementation of
PCT for x86 executables on demonstrate its effectiveness
in finding several known and unknown bugs in large-scale
software.

Acknowledgements: We would like to thank Milo Mar-
tin, George Candea, Ras Bodik, Tom Ball, and numerous
anonymous reviewers for feedback on the initial versions of
this paper.

8. REFERENCES
[1] Available on request.

[2] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur.
Producing scheduling that causes concurrent programs
to fail. In PADTAD, pages 37–40, 2006.

[3] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards,
R. Murray, M. Drinić, D. Mihočka, and J. Chau.
Framework for instruction-level tracing and analysis of
program executions. In VEE, pages 154–163. ACM,
2006.

[4] R. H. Carver and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Softw., 8(2):66–74, 1991.

[5] J.-D. Choi and A. Zeller. Isolating failure-inducing
thread schedules. In ISSTA, pages 210–220, 2002.

[6] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
deterministic shared memory multiprocessing. In
ASPLOS, 2009.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling intrusion analysis
through virtual-machine logging and replay. In OSDI,
2002.

[8] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and
P. M. Chen. Execution replay of multiprocessor
virtual machines. In VEE 08: Virtual Execution
Environments, pages 121–130. ACM, 2008.

[9] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded java
programs. Concurrency and Computation: Practice
and Experience, 15(3-5):485–499, 2003.

[10] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a
race and transaction-aware java runtime. In PLDI,
2007.

[11] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In IPDPS, page 286, 2003.

[12] C. Flanagan and S. N. Freund. Fasttrack: efficient and
precise dynamic race detection. In PLDI, 2009.

[13] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In PLDI, pages 212–223. ACM Press, 1998.

[14] P. Godefroid. Model checking for programming
languages using Verisoft. In POPL 97: Principles of
Programming Languages, pages 174–186. ACM Press,
1997.

[15] J. L. Hellerstein. Achieving service rate objectives
with decay usage scheduling. IEEE Trans. Softw.
Eng., 19(8):813–825, 1993.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. Technical Report
MSR-TR-2006-140, Microsoft Research, 2006.

[17] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A
randomized dynamic program analysis technique for
detecting real deadlocks. In PLDI, pages 110–120,
2009.

[18] H. Jula, D. M. Tralamazza, C. Zamfir, and G. Candea.
Deadlock immunity: Enabling systems to defend
against deadlocks. In OSDI, pages 295–308, 2008.

[19] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE Trans.
Comput., 36(4):471–482, 1987.

[20] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. In ASPLOS, 2008.

[21] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting
atomicity violations via access-interleaving invariants.
IEEE Micro, 27(1):26–35, 2007.

[22] M. Musuvathi and S. Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. In PLDI, 2007.

[23] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In OSDI, 2008.

[24] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas.
Sigrace: signature-based data race detection. In ISCA,
2009.

[25] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
efficient deterministic multithreading in software. In
ASPLOS, 2009.

[26] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing
atomicity violation bugs from their hiding places. In
ASPLOS, 2009.

[27] K. Sen. Effective random testing of concurrent
programs. In ASE, 2007.

[28] M. Xu, R. Bodik, and M. D. Hill. A ”flight data
recorder” for enabling full-system multiprocessor
deterministic replay. In ISCA, 2003.

[29] M. Xu, R. Bod́ık, and M. D. Hill. A serializability
violation detector for shared-memory server programs.
In PLDI, 2005.

[30] J. Yu and S. Narayanasamy. A case for an interleaving
constrained shared-memory multi-processor. In ISCA,
2009.

