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ABSTRACT

We investigate using state-of-the-art speaker diarinatiotput for
speech recognition purposes. While it seems obvious thegcsp
recognition could benefit from the output of speaker dididra
(“Who spoke when”) for effective feature normalization anddel
adaptation, such benefits have remained elusive in the Yatleag-
ing domain of meeting recognition from distant micropharieghis
study, we show that recognition gains are possible by chpefst-
processing of the diarization output. Still, recogniti@taracy may
suffer when the underlying diarization system performssgedhan
expected, even compared to far less sophisticated spelaistering
techniques. We obtain a more accurate and robust overadimysy
combining recognition output with multiple speaker segtaons

Table 1. Comparison of key NIST RT evaluation set properties

RT-07 RT-09
No. meetings 8 7
Avg./max. no. of speakers per meeting4.38/6 | 5.43/11
Total duration 180 mins| 181 mins
Total speech duration 147 mins| 164 mins
Total no. of words 35882 40110

error recognition, and found that properly tuned pauseemg and
padding parameters were the most important factors whéringi
diarization system output for STT.

For many years, as a matter of practical experience, oupgrou
at SRl and ICSI have fielded both speech recognition andzdigon

and clusterings. We evaluate our methods on data from th® 20Qystems that had state-of-the-art performance in NISTuatiahs.

NIST Rich Transcription meeting recognition evaluation.

Index Terms— speech processing, speaker diarization, meetin
recognition, rich transcription, system combination.

1. INTRODUCTION

Recognition of free-form, multiparty meetings remains ofi¢he
most challenging tasks that is formally studied and evaltiay the
speech recognition community, especially when recognisgper-
formed by microphones at a distance from, and shared byptsks
ers. This scenario has been studied in a series of NIST diaisa
on conference-style meeting data [1], but is also very selevo
what has been described as “broadcast conversation,” sutika
and call-in shows. Along with automatic speech-to-textsiiption
(STT), NIST evaluates speaker diarization (i.e., speetdution and
speaker tracking to answer the question “who spoke when”).

It seems natural that STT systems should directly benefit fro
proper diarization. First, most recognizers perform moceua
rately and efficiently when applied to audio segments the¢ bhaen
trimmed of nonspeech regions (except for short inter-wadses
and a small amount of padding at the edges). Further, speaeh f
tures are best normalized by speaker, and acoustic modetdida
usually works best on homogeneous speaker clusters.

However, for many reasons, the relationship between ditoiz
quality and STT accuracy is not straightforward. For examaldi-
arization system that over-hypothesizes speech is notchadane
that misses it, because the STT system provides anothecehan
classify nonspeech as such. Also, sub-clustering speaiérsuffi-
cient data might well be beneficial, as the STT system canatept
to variable acoustic conditions (such as environmentaeor posi-
tion relative to the microphone). The study in [2] foundditor no
correlation between the standard diarization error metnid word

Yet, in previous years, our STT system always worked besnwhe

?)ased on a rather simple, ad-hoc diarization system (desthe-

ow), and no gains were realized when coupling it with thepatiof
our best diarization system. Undaunted, we pursued suching
again for the 2009 NIST Rich Transcription (RT-09) evaloatius-
ing the techniques described here.

2. DATA AND METRICS

Our data is drawn from the two most recent NIST Rich Transiorip
(RT) conference meeting evaluation sets, RT-07 and RT-08te N
that each set contains 20- to 30-minute-long excerpts gdomeet-
ings, but only the regions defined for evaluation purposeao-
cessed by our systems; while using data outside those seFde-
gal, little or no benefit was found doing so, for either diatian or
recognition. Statistics of these test sets are summariz&alile 1.

Diarization and recognition were evaluated under sevei@aim
phone conditions. The two conditions of interest heresargle dis-
tant microphone (SDM) andmultiple distant microphones (MDM).

In both cases, microphones were placed on tables at whicheké
ing participants were sitting. Type, placement, and nungfoar
MDM) of microphones was variable across meetings.

Diarization performance is measured by the NI@arization
error rate (DER), which is the total audio duration that is mistakenly
classified as speech or nonspeech or assigned to the wroakespe
cluster, divided by the total speech duration. Similarly,TSvord
error rate (WER) is computed as the total number of incorrectly rec-
ognized or deleted words, divided by the total number ofreafee
words. One additional parameter in error metrics for megatatog-
nition is the maximum allowed number of overlapping spesk&n
“overlap-N" metric includes all reference speech segments with up
to N speakers talking simultaneously.
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In the multiple microphone condition, time-delay-of-aaiifea-
tures are computed between a reference channel (seledtedaiu
ically) and each of the other available channels, at a ratOofis,
with an analysis window of 500 ms. These delays are inputtho
clustering system as an extra feature vector and are motglad
HMM model using the same topology as the cepstral featusisgu
one Gaussian per cluster. In both the Viterbi decoding aadiic
comparison, we used a weighted combination of the two models

The algorithm is initialized using the prosodic-featuneiial-
ization scheme presented in [7, 8]. Each cluster is modei#dav
Gaussian mixture model (GMM). The algorithm then perforhres t
following iterations:

Re-Segmentation: Run Viterbi alignmentto find the optimal path
of frames and models. As classifications based on 10 ms frarees
very noisy, a minimum duration of 2.5 s is assumed for eachape

Fig. 1. The ICSI speaker diarization engine as configured for th%egment.

RT-09 evaluation, MDM condition
3. SPEECH PROCESSING

Prior to diarization and recognition, the audio signal isqassed as
follows. In the SDM condition, a dynamic range compresssoap-
plied to normalize energy variance caused by different oplbone
distances. Then, the signal is Wiener-filtered [3]. In theNMIBon-
dition, the signal is then beamformed using BeamFormIt2]0 [

3.1. Baseline speech detection and clustering

The standard speech detection and clustering process as8d T
purposes was developed without regard to diarization osetand
optimized purely with respectto STT accuracy. First, theuinis
segmented into speech and nonspeech portions by decodimg wi

Re-Training: Given the new segmentation of the audio track,
compute new GMMs for each of the clusters.

Cluster Merging: Given the new GMMs, try to find the two
clusters that most likely represent the same speaker. Fhisiie
by computing a score based on the Bayesian informationriorite
(BIC) of each of the clusters and the BIC score of a new GMM
trained on the merged segments for two clusters. If the Biffesc
of the merged GMM is larger than or equal to the sum of the in-
dividual BIC scores, the two models are merged and the dfgori
continues at the re-segmentation step using the merged Givid.
pair such is found, the algorithm stops.

A more detailed description can be found in [9, 10]. As a resul
of various optimization approaches [11], our current immatation
runs at about 0.6 times real time.

two-class GMM acoustic model based on standard Mel frequenc3.3. Other diarization systems

cepstral coefficient (MFCC) features. The HMM structure asgs
some minimum duration constraints and penalizes transitioe-
tween speech and nonspeech classes. The resulting spgetEnie
are combined and padded to satisfy some duration constraiot

For analysis purposes, we also experimented with two addi-
tional diarization outputs. As an upper bound on what cowdd b
achieved with perfect diarization, we use the NIST scoriefgr

pauses longer than 0.4s, no segments longer than 60's, gl 0.08NCces as a “cheating” diarization system, providing closgerfect

nonspeech at the beginning and end of segments.

speech/nonspeech and speaker assignment. Second, wesaésb t

Second, the resulting speech segments from a given meeting uPUr algorithms on output provided by the Institute for Infoum

dergo agglomerative clustering based on acoustic sittyildéoilow-
ing a method previously developed for broadcast news retogn
[5]. To define a distance between segments a single GMM isetdai
per meeting, with a separate mixture weight vector per segriée
distance between two segments is then defined as the weilgirted
counts increase in entropy of the mixture weight distributiue to
clustering two segments. As a stopping criterion, a fixedt lion
the increase in entropy can be chosen. However, probablyadue
the typical makeup of RT evaluation meetings, in past evalng
we had obtained best results by fixing the number of clustdeaig
and we stuck to this choice.

3.2. ICSl diarization system

In contrast to the baseline approach, we also used the |@8rali
tion system as developed for the RT-09 evaluation, whicH s@p-
er” diarization system optimized for the error metric enygd by
NIST. The system architecture is depicted in Figure 1. Frioenat-
dio, 19th-order MFCC features are extracted with a frame siz

Research/Nanyang Technological University (IIR/NTURdgpore
[12], which had outstanding performance on the RT-09 diion
tasks.

3.4. Speech Recognition

The STT system for all our experiments is the meeting recmgni
system jointly developed by SRI and ICSI for the distant icr
phone, conference meeting conditions in the NIST RT-07 imget
recognition evaluation [13]. The recognizer performs altof eight
decoding passes with alternating acoustic front-ends: based
on telephone-band MFCCs augmented with multilayer-peroap
(MLP) features, and one based on full-band perceptual dipes
diction (PLP) features. Acoustic models are cross-adagteihg
recognition to output from previous recognition stages, e out-
put of the three final decoding steps is combined via confuséai-
works. The MFCC models are trained on telephone conversatio
and then adapted to about 200 hours of meeting data. The PHP mo
els, by contrast, are originally trained on broadcast d&arious

30 ms and a step size of 10 ms. Speech activity regions are detaliscriminative techniques are used in training and adimptét4].

mined using a state-of-the-art speech/nonspeech de{é¢tofhe
nonspeech regions are then excluded from the agglomerdtise
tering as described below.

Language models (LMs) consist of a mixture of genre-spemiéid-
els for meeting transcripts, telephone conversationsdirast news,
and web data.



Table 2. DER and WER results for different diarization methods

Diarization RTO07 MDM RT07 SDM RT09 MDM RT09 SDM
metric | DER | WER | WER | DER | WER | WER | DER | WER | WER | DER | WER | WER
overlap 1 4 1 4 1 4 1 4

Baseline 309 | 26.2 | 405 | 539 | 331 | 452 | 37.3 | 34.0 | 429 | 37.3 | 41.3 | 499

ICSI 8.6 259 | 378 | 17.2 | 325 | 442 | 172 | 359 | 43.0 | 31.3 | 446 | 51.6

IIR/NTU n/a n/a n/a n/a n/a n/a 9.2 347 | 434 | 16.0 | 409 | 494

Reference 0 246 | 39.2 0 30.7 | 44.6 0 31.7 | 439 0 39.5 | 50.0

Table 3. WER (overlap-1) results for different diarization fromtds
Speech detection Clustering RTO7
MDM | SDM
Baseline Baseline 26.2 | 33.1
ICSI Baseline 264 | 33.1
ICSI ICSI 259 | 325
The

degradation for MDM). Note that the ICSI speaker clusterivas
optimized to operate on ICSI segmentation; therefore, wadat
safest to adopt both segmentation and clustering from trézdtion
system.

Table 2 shows DER and WER results for different diarization
methods. (The IIR/NTU diarization output was only avai@lfibr
the RT-09 test set.) The main observation is that the RT-Q8 da
was much more challenging for diarization, and using itpottor

recognition system assumes that speech is first separatgTT leads to a loss compared to the baseline. A likely reason f

from nonspeech and segmented into segments of moderath lenghe greater difficulty is that the RT-09 evaluation set ciorstanore
(up to 60 seconds). Further, the system assumes that thehspegpeakers (cf. Table 1) and, most importantly, a much largeruat

segments are clustered into equivalence classes thatlyjdsach

pertain to a single speaker. Thgmeudo speaker clusters are then
used to perform vocal tract length normalization, and capstean

and variance normalization. In later recognition passespseudo
speaker clusters also form the units on which unsupervisedsa

tic adaptation is performed. In each MLLR step of the mudtsp

recognition systems, separate adapted models are conipugsth

of the speaker clusters.

Recognition for single and multiple distant microphone aien
tions differs only in the preprocessing of the signal, usivigner
filtering and beamforming as for the diarization system.cessing
time is about 3.8 times real time on an 8-core, 3.1-GHz Ibéeled
server.

4. COMBINING DIARIZATION AND RECOGNITION

From prior experience (our own as well as others’ [2]), godd S
performance requires postprocessing of the speech red&iasted
by the diarization system. The parameters of this postssing
were optimized on a previous NIST evaluation set (RT-06) T
sulting steps for segmentation postprocessing were s\l

of overlapping speech (up to 37% in one meeting) than allipusv
evaluation and development sets. Even using the [IR/NTUtesys
with much lower DER than ICSI, gives no gain in the MDM condi-
tion, even though a 0.4% improvement is found for SDM. Alsteno
that, as expected, the baseline system has very high DERlymos
because of poor speaker clustering (by diarization staisjlar

The reference diarization provides substantial benefits fo
overlap-1 WER: 2.3% lower WER for MDM and 1.8% for SDM.
Note that the overlap-4 WER results with reference diaioraare
not easily interpreted since the reference output contaiedapping
speaker segments, but the STT system has no special prugéssi
such overlaps (it assumes the speakers are strictly ndappérg).
None of the actual diarization systems produce overlapgiregker
labelings.

5. COMBINING MULTIPLE DIARIZATIONS

To extract larger STT gains from diarization output, we mayne
bine STT outputs from multiple STT systems, each based on dif
ferent diarizations. This approach is motivated by two iprésults:
Cambridge U. reported gains from combining hypothesedrudxda

1. Merge segments assigned to the same speaker if they are sepased on different broadcast news segmentations [15], ratitei
rated by less than 0.4 s nonspeech, and as long as the rgsultin007 evaluation, we had seen gains by combining systemsifhat

segment is shorter than 60 s long.
2. Discard segments with less than 0.2 s of speech

3. Pad segments with 0.2s of nonspeech at the beginning
end.

After optimizing these steps based on the ICSI diarizatiotpat

fered only in their pseudo-speaker clustering parameaerrding

to the baseline algorithm [13]. In this study, we combined &1 T

systems at a time. One was always based on the baseline segmen
arﬂgtion and clustering method (in hindsight this was a goodiazh

because the baseline system seems quite robust even thalais t

difficult to diarize). The other STT systems made use of onbef

on RT-06 data, we kept them constant for all subsequent iexperdiarization outputs, as described before.

ments with other diarization systems and reference outplitse
speaker assignments of the diarization system can be eéraedfto

Hypotheses from the component systems were then combined
using one of two methods. The first was the NIST ROVER algo-

the STT system because the segment postprocessing nevginesm rithm [16], which aligns the hypothesized 1-best words asbives

segments from different speakers.
Table 3 shows the STT results with various combinations
baseline and ICSI processing for speech segmentation asteecl

disagreements based on word confidences. We used the waed pos
ofrior probabilities generated during the final confusionvak (CN)
combination stage in each of the STT systems as confideniee est

ing. A small gain (0.3% for MDM, 0.6% for SDM) is seen with mates.

ICSI diarization compared to the baseline. However, we ats®
that this gain can be credited fully to the improved speakester-
ing from the diarization system. The updated segmentaties dot

The second method was confusion network combination (CNC),
whereby the CNs from both STT systems are aligned, and alil wor
hypotheses (not just the 1-best) vote with their posteriobabilities

seem to yield an improvement, and it might even hurt STT (0.2%oward a new best hypothesis [17]. CNC requires a consisegt



Segmentation A
Segmentation B

Consensus

Fig. 2. Consensus segmentation for CNC from differing diarizagio

Table 4. STT WER results combining diarization methods

Diarization RT09 MDM | RT09 SDM
overlap 1 4 1 4
Baseline 34.0| 429 | 413 49.9
ICSI 35.9| 43.0| 446 | 51.6
Base+ICSI (ROVER) | 34.2 | 43.8 | 42.2| 51.1
Base+ICSI (CNC) 33.3| 43.0| 40.8| 50.1
IIR/NTU 34.7| 43.4 | 409 | 49.4
Base+lIR/NTU (CNC)| 32.7 | 41.5 | 40.0 | 48.8

mentation of hypotheses across the combined system, ahelrés t
fore not directly applicable to our case. Stringing all tlegraent-

level CNs from one system together would not be feasiblehas t
CNC algorithm is quadratic in the length of the inputs. As a so

lution, we concatenate CNs according tocasensus segmentation
(i.e., a set of segments bounded by nonspeech regions ¢hstiared
among all input systems, as depicted in Figure 2), and thefarpe

CNC on the matching concatenated CNs. Finally, the new 1-bes

words are force-aligned to the consensus waveform segrteols
tain word times.
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