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Abstract. The choice of where a thread scheduling algorithm preempts
one thread in order to execute another is essential to reveal concurrency
errors such as atomicity violations, livelocks, and deadlocks. We present
a scheduling strategy called preemption sealing that controls where and
when a scheduler is disabled from preempting threads during program
execution. We demonstrate that this strategy is effective in addressing
two key problems in testing industrial-scale concurrent programs: (1)
tolerating existing errors in order to find more errors, and (2) composi-
tional testing of layered, concurrent systems. We evaluate the effective-
ness of preemption sealing, implemented in the Chess tool, for these two
scenarios on newly released concurrency libraries for Microsoft’s .NET
framework.

1 Introduction

Concurrent programs are difficult to design, implement, test, and debug. Fur-
thermore, analysis and testing tools for concurrent programs lag behind similar
tools for sequential programs. As a result, many concurrency bugs remain hidden
in programs until the software ships and runs in environments that differ from
the test environment.

Systematic concurrency testing offers a promising solution to the problem of
identifying and resolving concurrency bugs. We focus on systematic concurrency
testing as implemented in Chess [16], a tool being used to test concurrent pro-
grams at Microsoft. A Chess user provides a collection of tests, each exploring
a different concurrency scenario for a program. A concurrency scenario might
range from a simple harness that calls into a concurrent data structure, to a web
browser starting up and rendering a web page. Given such a scenario, Chess

repeatedly executes the program so that each run of the program explores a
different thread schedule, using novel stateless exploration algorithms [14, 15].

Of course, selecting which thread schedules are most useful among the ex-
ponentially many possible schedules is a central problem for the effectiveness of
a tool like Chess. We faced the following two related problems when deploying
Chess at Microsoft, which helped motivate this work:

1. Users want the ability to find multiple distinct bugs so they can pipeline the
testing process and not be blocked waiting for bug fixes.



Fig. 1. Dependencies among .NET 4.0 concurrency classes. SemaphoreSlim, Barrier,
and ManualResetEventSlim are synchronization primitives (SYN, purple). Blocking
Collection, ConcurrentDictionary, and ConcurrentBag are concurrent data struc-
tures (CDS, orange). Task and TaskScheduler are part of a task parallel library (TPL,
green). PLINQ and Parallel.For are parallel versions of LINQ and for-loops (blue).

2. Users want to perform compositional testing so they can focus the test on
the components they are responsible for.

The first problem arises because many different thread schedules may man-
ifest the same bug. Thus, even if the systematic search continues after finding
a bug, that same bug may cause the system to crash repeatedly. This problem
is important because large software systems often have a large number of bugs,
some known and many unknown. Known bugs can be in various life stages: the
tester/developer might be debugging, finding the root cause, designing a fix, or
testing the fix. Depending on its severity, a bug may be fixed immediately or
the fix may be deferred to a future release. As a result, it may be several weeks
or even months before a bug is fixed. Thus, a tool such as Chess will be most
useful if it finds new bugs while avoiding schedules that trigger known bugs.

The second problem arises because a systematic search tests all possible
schedules, even those that are irrelevant to the part of the system being tested.
Well-engineered software consists of layered modules where upper layers depend
on the services of lower layers, but not vice versa. Figure 1 shows an example of
such a layered system from the .NET 4.0 libraries, which we will return to later
in the paper. Usually, different teams are responsible for developing and testing
different layers. A testing tool should allow users to “focus” the exploration on
specific layers. If a particular layer, such as a low-level concurrency library, has
been extensively tested or verified, then repeatedly testing its functionality when
called from higher layers is a waste of valuable testing resources.



Preemption sealing is a simple but effective strategy to address these prob-
lems. A preemption is an unexpected interruption of a thread’s execution caused,
for example, by the thread’s time slice expiring or a hardware interrupt occur-
ring. A preemption-sealing scheduler disables preemptions in a particular scope
of program execution, resorting to non-preemptive scheduling within that scope.

By resorting to non-preemptive scheduling, a preemption-sealing scheduler
avoids exposing concurrency bugs that require at least one preemption within a
given scope. To identify multiple errors, we seal preemptions in a scope related
to the root cause of a bug. For example, if an error-inducing schedule contains
a preemption in method m, we can instruct the scheduler to seal preemptions
whenever control is within the scope of m in subsequent runs. To enable com-
positional testing, the user provides a set of methods or types that already have
undergone thorough testing. By sealing preemptions in these scopes, the sched-
uler conserves valuable testing time.

Preemption sealing builds upon prior work on preemption bounding [14], a
technique that first explores executions containing fewer preemptions. The hy-
pothesis of preemption bounding is that most concurrency errors surface in ex-
ecutions that contain few preemptions. This hypothesis has been validated by
various researchers [2, 14, 12]. Accordingly, a preemption-bounded scheduler ex-
plores executions with fewer preemptions first. Preemption bounding and pre-
emption sealing are orthogonal scheduling strategies that combine naturally.

We implement preemption sealing in the Chess concurrency testing tool
and evaluate its effectiveness on a set of platform libraries for .NET that provide
essential concurrency constructs to programmers. Testers for these libraries have
been using Chess over the past year to more thoroughly test these critical
platform layers. We leverage 74 of their concurrency unit tests and use them
to demonstrate preemption sealing’s effectiveness in finding multiple errors and
enabling compositional testing. Our experiments show that Chess successfully
finds multiple errors by sealing methods containing bug-inducing preemptions.
Also, on average, compositional testing with preemption sealing cuts the number
of executions explored during testing by more than half.

In the remainder of the paper, we formalize preemption-bounded scheduling
(Section 2), define preemption sealing (Section 3), justify its use for finding
multiple errors (Section 3.1) and compositional testing (Section 3.2), describe
our implementation of preemption sealing and evaluate it on a set of .NET
concurrency platform libraries (Section 4), discuss related work (Section 5), and
conclude (Section 6).

2 Preemption-Bounded Scheduling

We model the execution of a concurrent program as a sequence of events, each
corresponding to an operation performed by a thread. We represent an event with
a five-tuple (tid, ctx, op, loc, blk), where tid is the thread id, ctx is the context of
the thread including its program counter (ctx.pc) and its call stack (ctx.stack),
op is the operation performed, loc is the (shared) memory location or object



on which the operation is performed, and blk is a boolean flag that indicates
whether the thread is blocked while performing the operation or not. We use |E|
to denote the length of execution E and E[i] to denote the event at position i in
execution E. We access the components of an event e with ’.’ notation:

(e.tid, e.ctx, e.op, e.loc, e.blk)

An event e is blocking if e.blk is true. A completing event for a blocking event e

is the event (e.tid, e.ctx, e.op, e.loc, false). A sequence is well-formed if for every
blocking event e in an execution E, the next event performed by thread e.tid

in E, if any, is the completing event for e. We only consider executions that are
well-formed. Also, we use to denote the op and loc components of events that
do not access shared state.

A context switch in an execution E is identified by an index c such that
0 ≤ c < |E|− 1 and E[c].tid 6= E[c+1].tid. A context switch c is said to be non-

preemptive if E[c].blk is true or E[c].op is the thread “exit” operation, signaling
the end of the execution of thread E[c].tid. Otherwise the context switch is said
to be preemptive. We call a preemptive context switch a preemption, for short.

The preemption bound of an execution E is the number of preemptions
in E. Preemption-bounded scheduling ensures that each execution contains at
most P preemptions, where P is a number chosen by the tester. Note that a pre-
emption bound of zero simply means that the scheduler runs non-preemptively,
executing the current thread until it blocks and then switching to a different (en-
abled) thread. If non-preemptive scheduling is unable make progress (because
all threads are blocked), then the program contains a deadlock. Thus, when a
preemption-bounded scheduler runs out of preemptions, it simply resorts to non-
preemptive scheduling until the end of execution or a deadlock is encountered.

In addition to the choice of where to place preemptive context switches,
the scheduler also has the choice of which enabled thread to execute after a
context switch. This latter choice is typically constrained by a desire for fair
scheduling, but fairness is beyond the scope of this paper (for more details about
fair stateless model checking, see [15]). In this paper, we assume the scheduler
is free to schedule any enabled thread after a context switch.

Figure 2(a) shows a buggy “bank account” class Acct and a test method
TestAcct containing a test scenario. The test scenario creates three threads
that test the class Acct. Thread t1 withdraws from the bank account, thread
t2 reads the account balance, and thread t3 deposits to the account.

Figure 2(b) shows an execution of this program that exposes an assertion
failure. For brevity, we represent the context by the program label and use the
string “acc” to refer to the single instance of the Acct class. For example, the
operation at label L2 is a lock operation on the object acc, while the operation at
label L4 is a read operation on the field acc.bal. In this execution, the transition
from (t1,L5, , ,F) to (t3,L6,lock,acc,F) represents a preemption. Thread
t1 is preempted at label L5 of the Readmethod after reading the account balance,
but before acquiring the lock on acc at label L2 of the Withdraw method. Next,
thread t3 executes the entire Deposit method. Then, because thread t3 has



(a) public class Acct {

volatile int bal;

public Acct(int n) {

bal = n;

}

public void Withdraw(int n) {

L1: int tmp = Read();

L2: lock (this) {

bal = tmp - n;

L3: }

}

public int Read() {

L4: return bal;

L5: }

public void Deposit(int n) {

L6: lock (this) {

var tmp = bal;

bal = 0;

L7: bal = tmp + n;

LU: }

L8: }

}

void TestAcct() {

var acc = new Acct(10);

var t1 = new Thread(o =>

{ (o as Acct).Withdraw(2);

L9: });

var t2 = new Thread(o =>

{ var b = (o as Acct).Read();

LA: assert(b>=8);

LB: });

var t3 = new Thread(o =>

{ (o as Acct).Deposit(1);

LC: });

t1.Start(acc); t2.Start(acc);

t3.Start(acc);

t1.Join(); t2.Join(); t3.Join();

LD: assert(account.Read() == 9);

LE:

}

(b)

(t2,L4,read,acc.bal,F) (t2,L5, , ,F) (t2,LA, , ,F) (t2,LB, , ,F)

(t1,L1, , ,F) (t1,L4,read,acc.bal,F) (t1,L5, , ,F) (t3,L6,lock,acc,F)

(t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F) (t3,L8, , ,F) (t3,LC, , ,F)

(t1,L2,lock,acc,F) (t1,L3,unlock,acc,F) (t1,LA, , ,F) (t0,LD, , ,F)

(c)
(t3,L6,lock,acc,F) (t3,L7,write,acc.bal,F) (t3,LU,unlock,acc,F)

(t2,L4,read,acc.bal,F) (t2,L5, , ,F) (t2,LA, , ,F)

Fig. 2. (a) Simple bank account example with two bugs and (b)-(c) two executions
demonstrating the two bugs.

completed, a non-preemptive context switch returns control to thread t1, which
acquires the lock at label L2 and executes to completion. This execution violates
the assertion at label LD because thread t3’s deposit is lost.

3 Preemption Sealing

Preemption sealing uses information associated with events to determine whether
an event meets certain criteria, which we call a “scope”. If an event is within
scope, preemption sealing prevents the scheduler from performing a preemption
prior to that event.

A scope is a function F that takes an event as input and returns true if that
event is “in scope” and false otherwise. The function F may examine any data



associated with an event e, such as its thread id, e.tid, its operation, e.op, etc.
In this paper, we assume a finite set of scopes, given by a finite set of functions.
Thus, a scope F identifies a subsequence of an execution E containing those
events E[i] such that F (E[i]) is true. Operationally, for each event executed,
we can apply the function F to determine if it is in the scope of F or outside
it, though we use more efficient means in practice. Preemptions are disabled at
events that are “in scope” and are enabled at events that are not in any scope.

By disabling preemptions in certain scopes, the scheduler effectively focuses
its search on other parts of the search space. Disabling preemptions does not
introduce new deadlocks. As noted in the previous section, when a scheduler has
no preemptions to use, it simply resorts to non-preemptive scheduling. Thus,
the only way the scheduler cannot make progress in the presence of preemption
sealing is if the program deadlocks. Also, it is straightforward to see that dis-
abling preemptions does not introduce additional behaviors in the program and
thus does not introduce safety violations.

Preemption sealing can be seen as an extension of previous work that ad-
dresses the relationship between data races and the placement of preemptions [14].
In that work, Musuvathi and Qadeer partition the world of all objects into syn-
chronization objects and data objects, as is typical when defining data races.
They show that if a program is data-race free then it is possible to disable pre-
emptions at operations on data objects without missing errors in the program.

Preemption sealing builds upon this work by disabling preemptions at opera-
tions on synchronization objects when those operations occur within a particular
scope. We discuss circumstances under which preemption sealing can be done
safely without missing errors. In the two scenarios we consider, finding multiple
errors and compositional testing, we find that preemption sealing improves the
efficiency and efficacy of systematic search by eliminating thread interleavings
that fall within a well-defined scope.

3.1 Detecting Multiple Errors

Detecting multiple errors is a difficult problem because many different thread
interleavings may expose the same bug. To alleviate this problem, preemption
sealing capitalizes on the observation that during a preemption-bounded search,
the preemptions involved in a failure-inducing schedule are good indicators of
the root cause of the failure. This observation is a consequence of the following
two reasons: (1) the scheduler always has a choice regarding whether or not to
introduce a preemption prior to a given event and (2) the scheduler carefully
exercises this choice to explore executions with fewer preemptions first. Thus,
the preemptions in a failure-inducing schedule are crucial to expose the bug.
Otherwise, the scheduler would have found the same bug with fewer preemptions.

We return to the bank account example in Figure 2(a) to illustrate the prob-
lem of finding multiple errors. Figure 2(b) shows an execution that ends in an
assertion failure at label LD because the bank account balance is incorrect. This
failure occurs because the Withdraw method does not contain proper synchro-
nization, which makes its effect appear non-atomic. A preemption at label L2 in



the Withdraw method, followed by complete execution of the Deposit method,
will cause the assertion failure.

Figure 2(c) shows an execution that fails due to another defect in the class
Acct. Because the Read method does not use synchronization, it may observe an
intermediate value of the account balance (after it has been set to zero by the
Deposit method). This execution leads to an assertion failure at label LA.

We wish to find both errors rather than first finding one, asking the program-
mer to fix it, waiting for the fix, and then running again to find the second error.
We would like the search to avoid known errors once they have been identified
by “tolerating” the error in a temporary way.

Our idea is inspired by the observation that programmers intend many, if not
most, methods to appear atomic in their effect when executed concurrently [6].
Thus, once we find an error that requires a preemption in method m to surface,
we wish to seal method m from being preempted in the rest of the search.
Effectively, this means that once the scheduler starts executing method m, it
executes it to completion (modulo the case where m blocks). Note that we could
seal just at the specific program counter where the preemption took place, but
there are likely many other preemption points in the same method that will
expose the same error. The above observation implies that methods are a natural
scope in which to seal preemptions.

We generalize this idea to multiple preemptions. Assume a preemption bounded
search that explores all executions with P preemptions before exploring any ex-
ecutions with P + 1 preemptions. Thus, if no errors were found with P preemp-
tions, then an error found with P +1 preemptions could not be found with P or
fewer preemptions. If an error surfaces in execution E with preemption set S of
size |S|, then at most |S| methods must be sealed. The preemption methods are
the active methods (methods on top of the call stack) in which the preemptions
occur: {m | s ∈ S, E[s].ctx.stack.top = m}. If two different tests fail with the
same set of preemption methods, the failures are likely due to the same error.

Note that preemption sealing at the method level may not eliminate the
failure. For example, suppose method m calls method n and a preemption in
either method leads to the same failure. If the preemption in method n occurs
first, then sealing only method n will not prevent the failure. If the preemption
in method m occurs first, however, and we use dynamic scope when sealing
the preemption in method m, then we will ensure that method n will not be
preempted when called from m. Thus, we use dynamic scoping when sealing
preemption methods.

3.2 Compositional Testing

Strict layering of software systems is a basic software engineering practice. Upper
layers depend on the services of lower layers, but not vice versa. Different teams
may develop and test the different layers. The efficiency of testing the entire
system depends greatly on eliminating redundant tests. This observation implies
that in a layered system, tests for the upper layers need not (indeed, should not)
perform redundant tests on the functionality of the lower layers.



Complicating matters, each layer of a system may be “thread-aware”, pro-
tecting its data from concurrent accesses by an upper layer’s threads, while
explicitly creating threads itself to perform its tasks more efficiently.

However, although one may imagine and craft arbitrarily complicated in-
teractions between layers, in practice, function calls into lower layers are often
meant to appear atomic to the upper layers. In fact, several dynamic analysis
tools (such as SideTrack [18], Atomizer [6], and Velodrome [8]) rely on this pro-
gramming practice, as they are designed to check the atomicity of such function
calls. What this means for preemption sealing is that

if we can establish or trust the lower-level functions to be atomic, it is

safe to disable preemptions in the lower layer while testing the upper

layer.

Although this claim may be simple to understand intuitively, it should be un-
derstood in the context of prior work on atomicity [6]. This work derives the
definition of atomicity from the classic definition of conflict-serializability and
treats all function calls into the lower layer as transactions.

The concept of layering means that we partition the code into an upper layer
A and a lower layer B such that A calls into B, B never calls into A, and
execution starts and ends in A. For an execution E, defined earlier as a sequence
of events, we label all events as A-events or B-events. For simplicity, we assume
that each thread executes at least one A-event or B-event in between any pair
of calls/returns that transition between layers.

For a fixed execution E we define transactions as follows. Let Et be the
sequence of events by thread t. More formally, Et is the maximal subsequence of
E consisting of events by only t. We then define a transaction of thread t to be
a maximal contiguous subsequence of Et consisting of only B-events. Atomicity
is now characterized as follows, in reverse order of logical dependency:

– The layer B is atomic if all executions E are serializable.
– An execution E is serializable if it is equivalent to a serial execution.
– Two executions are equivalent if one can be obtained from the other by

repeatedly swapping adjacent independent events.
– Two events are dependent if either (1) they are executed by the same thread,

(2) they are memory accesses that target the same location and at least one
writes to the location, (3) they are operations on the same synchronization
object, and are not both side-effect-free.3

– An execution E is called serial if there are no context switches within trans-
actions. For any context switch at position c, the event E[c] is either not
part of any transaction, or is the last event of a transaction.

Thus, if B is atomic, then for any execution that reveals a bug, there exists an
equivalent serial execution that also reveals the bug. Such a serial execution does
not contain any preemptions inside B, so the search will still cover this serial
execution even when sealing preemptions in B.

3 An example of a side-effect-free operation is a failed (blocking) lock acquire opera-
tion.



4 Implementation and Evaluation

We implemented preemption sealing in Chess, a tool for concurrency test-
ing [14]. Chess repeatedly executes a concurrency unit test and guarantees
that each execution takes a different thread schedule. Chess records the current
thread schedule so that when it finds an error, it can reproduce the schedule
that led to the error. Chess detects errors such as assertion failures, deadlocks,
and livelocks, as well as data races, which are often the cause of other failures.
Chess contains various search strategies, one of which is preemption bounding.

After finding an error, Chess runs in “repro” mode to reproduce the error
by replaying the last stored schedule. During this repro execution Chess col-
lects extensive context information, such as the current call stack, to produce
an attributed execution trace for source-level browsing. During this execution,
Chess also outputs preemption methods from the stored schedule. The preemp-
tion methods consist of methods in which Chess placed a preemption.

To implement preemption sealing, we extended Chess’s API with methods
to enable and disable preemptions. We implemented a preemption sealing strat-
egy via a Chess monitor that tracks context information, such as which method
is currently on the top of the call stack, and makes calls to the new API to en-
able/disable preemptions. Command-line parameters to Chess enable preemp-
tion sealing based on assembly name, namespace, class name, or method name.
For the purposes of this paper, we use two options: /dpm:M for “disable/seal pre-
emptions in method M”; /dpt:T for “disable/seal preemptions in all methods
in type T”4. As currently implemented, we disable preemptions in the dynamic
scope of a method, which suits our two applications (as discussed previously).
Other scoping strategies are possible within the framework we implemented.

We evaluated preemption sealing’s ability to find multiple errors and enable
compositional testing on new parallel framework libraries available for .NET.
These libraries include:

– Concurrency and Coordination Runtime (CCR) provides a highly concurrent
programming model based on message-passing with powerful orchestration
primitives enabling coordination of data and work without the use of manual
threading, locks, semaphores, etc. (http://www.microsoft.com/ccrdss/)

– New synchronization primitives (SYN), such as Barrier, CountdownEvent,
ManuelResetEventSlim, SemaphoreSlim, SpinLock, and SpinWait;

– Concurrent data structures (CDS), such as BlockingCollection,ConcurrentBag,
ConcurrentDictionary, etc.

– Task Parallel Library (TPL) supports imperative task parallelism.
– Parallel LINQ (PLINQ) supports declarative data parallelism.

In all of the experimental results below, we ran Chess with its default set-
tings: preemptions are possible at all synchronization operations, interlocked
operations, and volatile memory accesses; the scheduler can use at most two
preemptions per test execution.

4 The sense for these switches could trivially be switched so that the user could disable
preemptions everywhere except the specified scope.



Sealed methods/types Asserts Timeouts Livelocks Deadlocks Leaks OK

∅ 5 3 40 0 0 5

+ DQueue.TryDequeue 6 5 0 1 1 40

+ TEW.WaitForTask 5 5 0 2 1 40

+ Port.RegisterReceiver

+ Port.PostInternal
5 5 0 0 0 43

DQueue 5 5 0 2 0 41

Table 1. Evaluation of preemption sealing for detecting multiple errors (Rows 1-4),
and for compositional testing (Row 5).

4.1 Discovering Multiple Unique Errors

We first evaluate preemption sealing’s ability to discover multiple unique errors
on the CCR code base, which has an accompanying set of concurrency unit tests.
Most of these tests ran without modification under Chess. The only modifica-
tion we made was to decrease the iteration count for certain loops. Some tests
contained high-iteration count loops to increase the likelihood of new thread in-
terleavings. Because Chess systematically searches the space of possible thread
interleavings, this repetition is unnecessary within a single test. We took all of
the CCR unit tests from its CoreSuite, CausalitySuite, SimpleExamples, and
TaskTest suites, which resulted in 53 independent concurrency unit tests.

Table 1 shows the results of running Chess on each of the 53 tests. The first
column shows the set of preemption-sealed methods/types (initially empty). The
next five columns show the number of tests that failed: Asserts occur when a
test assertion fails; Timeouts occur when a test execution takes longer than ten
seconds (Chess default); Livelocks occur when a test executes over 20,000 syn-
chronization operations (Chess default, most concurrency unit tests, including
those in CCR, execute hundreds of synchronization operations); Deadlocks are
self explanatory; Leaks means that the test terminates with child threads alive
- Chess requires that all child threads complete before the test terminates. The
final column (OK) contains the number of tests for which Chess successfully
explored all schedules within the default preemption bound (of two) without
finding an error.

During the first Chess run (Row 1) we see five assertion failures. All of these
failures occurred on the first test execution, which never contains a preemption.
These five failures represent errors in the test harness code. The three timeouts
also occur on the first execution. These timeouts have a single root cause, which
is a loop in the CCR scheduler that contains no synchronization operations,
and that does not yield the processor (a violation of the “Good Samaritan”
principle [15]). Because these assertion failures and timeouts occurred on the
initial execution, which contains no preemptions, they were not candidates for
preemption sealing.

The 40 tests that failed with a livelock all failed well into Chess testing. Each
failure was found in a schedule containing a single preemption in the method
DQueue.TryDequeue, as output by Chess during the repro phase. To evaluate



preemption sealing, we ran Chess on the 53 tests again, sealing only the method
DQueue.TryDequeue (Row 2). The effect of sealing is stark: all 40 of the tests
that previously livelocked were able to avoid the livelock.5 While sealing only
one method, Chess was able to avoid a livelock in 40 tests, verify 35 of those
tests correct within the default preemption bound, and detect five new failures:
one assertion failure, one deadlock, one thread leak, and two timeouts. The five
new failures all have associated preemption methods, output by Chess (TEW =
TaskExecutionWorker):

– Assertion failure: TEW.WaitForTask, TEW.Signal;
– Timeouts: TEW.WaitForTask;
– Deadlock: Port.RegisterReceiver, Port.PostInternal;
– Thread Leak: TEW.WaitForTask, Port.PostInternal;

Based on these results, we performed two more runs of Chess (Rows 3 and 4 of
Table 1). In the third run, we sealed the additional method TEW.WaitForTask.
This converted one test from an assertion failure into a deadlock. In the fourth
run, we additionally sealed the methods that contained preemptions leading to
the first deadlock: Port.RegisterReceiver and Port.PostInternal. As seen
in Row 4, sealing these methods eliminated both deadlocks and the thread leak,
converting both into passing tests.

The results of this experiment show the efficacy of preemption sealing at the
method level for the CCR code base. Without any code modification, sealing the
method that led to 40 livelocking tests resulted in five new bugs and 35 passing
tests. Further sealing exposed an additional deadlock, and enabled more tests to
run to completion.

4.2 Compositional Testing

When evaluating preemption sealing for compositional testing, we consider two
metrics: (1) what is the bug yield relative to testing without preemption sealing?;
(2) for tests that produce the same results with and without sealing, what is the
run-time benefit of preemption sealing?

We take another look at CCR before moving to the other .NET libraries. CCR
uses a queue (implemented by DQueue) containing tasks for the CCR scheduler
to run. The scheduler removes tasks from this queue, while other CCR primitives
create new tasks that are placed in the queue. Using the terminology from Sec-
tion 3.2, the class DQueue is layer B, and the other components (the scheduler
and the CCR primitives) are layer A, which make use of the services of B.

The last row in Table 1 shows the results of running Chess with preemp-
tion sealing on all methods in the class DQueue. As expected, preemption sealing
at this level will not find the livelock because the method DQueue.TryDequeue

5 An interesting twist to the livelock bug is that while the developer agreed that there
was a potential performance problem, he thought it would not occur very often and
decided not to address the issue. In this case, the ability to avoid the livelock without
requiring a change to the code was crucial to make progress finding more bugs.



Test
Sealed Result Executions Seconds Execs/sec Speed-
scope N S N S N S N S up

BlkCol1 SemSlim D D 59167 18733 527.0 206.0 112.3 91.0 2.6

BlkCol2 ” P P 258447 106608 2128.0 1181.0 121.4 90.3 1.8

BlkCol3 ” D D 265 265 1.8 2.2 147.2 120.5 0.8

BlkColRC1 ” P P 1114 364 8.8 4.5 126.6 80.8 2.0

BlkColRC2 ” P P 2406 510 22.8 7.2 105.5 70.8 3.2

BlkColRC3 ” P P 6084 2391 49.0 33.9 124.1 70.5 1.4

BlkColRC4 ” P P 5003 1012 36.9 13.7 135.6 73.9 2.7

BlkColRC5 ” D D 1 1 0.2 0.3 5.0 3.3 0.7

BarrierRC1 MRES P P 776 109 5.5 1.5 141.1 72.7 3.7

BarrierRC2 ” P P 166 92 1.7 1.0 97.6 92.0 1.7

BarrierRaw ” A A 96 33 0.7 0.7 137.1 47.1 1.0

CBagRC1 CDict P P 559 375 3.7 3.7 151.1 101.4 1.0

CBagRC2 ” P P 559 375 3.8 3.9 147.1 96.2 1.0

CBagAPC ” P P 6639 4168 46.0 39.0 144.3 106.9 1.2

CBagACTA ” P P 8230 5727 58.0 57.0 142.9 100.5 1.0

CBagTTE ” P P 1212 793 7.6 7.5 159.5 105.7 1.0

CBagTTP ” P P 1529 775 12.9 5.6 118.5 138.4 2.3

NQueens1 TSchd L L 1145 1318 19.4 61.8 59.0 21.3 0.3

NQueens2 ” T T 10146 1027 182.1 55.8 55.7 18.4 3.2

NQueens3 ” T T 9887 1027 181.8 56.4 54.4 18.2 3.2

PLINQ ” P P 3668 1031 33.1 12.9 110.8 79.9 2.6

Table 2. Evaluation of preemption sealing for compositional testing. Columns la-
beled ’S’ use preemption sealing and columns labeled ’N’ do not. Abbreviations: Blk-
Col (BlockingCollection), CBag (ConcurrentBag), SemSlim (SemaphoreSlim), MRES
(ManualResetEventSlim), CDict (ConcurrentDictionary), TSchd (TaskScheduler), P
(Pass), D (Deadlock), A (Assert), L (Livelock), T (Thread leak).

is sealed. However, Chess discovers both deadlocks, which indicates that these
deadlocks are due to defects in layer A. The analysis in the previous section
confirms this result. For the two deadlocks, Chess with the DQueue class sealed
found them in 4,662 schedules (59 seconds) and 142 scheules (2 seconds), re-
spectively. The runs that found the deadlocks without sealing DQueue took 9,774
schedules (126 seconds) and 10,525 schedules (330 seconds), respectively.

The other concurrency libraries that we consider include the layers illustrated
in Figure 1. This figure shows dependencies among a subset of the classes in these
libraries. At the lowest level are the new synchronization primitives (SYN) and
the concurrent data structures (CDS, mostly lock-free). On top of these two
libraries sits a new task scheduler (TPL), with a set of primitives for task paral-
lelism. Finally, on top of TPL sits the implementation of parallel LINQ (PLINQ)
for querying LINQ data providers, and parallel for loops for data parallelism.
The test team for these libraries explicitly developed Chess tests for most of
these classes. We used their tests, unmodified, for our experiments.



Table 2 shows the results of these experiments. The first column is the test
name, which indicates the class being tested. Sealed scope lists the class that
we told Chess to seal based on the dependencies shown in Figure 1 (see caption
for abbreviations). The next three columns, Result, Executions, and Seconds,
present results for two Chess runs, one without sealing (columns labeled ’N’)
and one with sealing (columns labeled ’S’). The column Execs/sec shows the
executions per second for both runs. Finally, the last column is the speedup in
total execution time attained via preemption sealing.

For example, the first row shows that Chess found a deadlock in the test
BlockCol1 both with and without preemption sealing. With class SemaphoreSlim
sealed, however, Chess found the deadlock after exploring one-third as many
test executions, and 2.6 times faster.

The Result columns validate that preemption sealing at lower layers did not
mask errors in higher layers. Chess reported the same result for all tests both
with and without preemption sealing. On average, preemption sealing reduced
the number of executions explored by more than half. In all but three tests,
preemption sealing reduced the time taken for Chess to finish or left it the same,
resulting in an average speedup of 1.83. We expect these numbers to improve
if we optimize the instrumentation required to implement preemption sealing.
In particular, our instrumentation results in a prohibitive overhead in the TPL
tests, probably due to frequent calls to small methods.

5 Related Work

The main contribution of this paper is the concept of preemption sealing as
a solution to two important problems in concurrency testing—finding multiple
distinct bugs in a single test run, and compositional testing.

The idea of using preemption sealing to discover multiple distinct errors in
concurrent programs can be viewed as a root cause analysis for concurrency
errors. For sequential programs, using executions that pass to help localize the
cause of failures has been popular [1, 9]. For example, the SLAM software model
checker [1] determines which parts of an error trace are unique from passing
traces and places halt statements at these locations to guide the model checker
away from the error trace and towards other errors. This idea is analagous to
preemption sealing, but for the sequential rather than the concurrent case.

The idea of using preemption sealing for compositional testing is most closely
related to the use of atomicity for simplifying correctness proofs of multithreaded
programs (e.g., [7, 4]). However, that work used atomicity only for the purpose
of static verification; to the best of our knowledge, ours is the first effort to use
this idea in the context of runtime verification. Our use of atomicity for compo-
sitional testing is orthogonal to the large body of work on runtime verification
techniques for detecting atomicity violations (e.g., [13, 8, 5]). It is also worth
noting that while most work on static compositional verification of concurrent
programs requires manual specifications, our approach is fully automatic; we use
the preemption-sealed version of a component as its specification.



Delta-debugging can be used to identify, from a failing execution, the context
switch points that cause a multithreaded program to fail [3]. Our work exploits
preemption bounding to make this problem simpler. Since preemptions are the
likely causes of bugs and the erroneous execution discovered by Chess has few
preemptions, the problem of discovering the root cause is greatly simplified.
Finally, our goal goes beyond root-cause analysis to find multiple qualitatively
different bugs.

Apart from improving concurrency testing, preemption sealing can be used to
make programs more resilient to concurrency errors in a spirit similar to recent
work on tolerating locking-discipline violations [17] and deadlocks [20, 11].

Recent work has investigated techniques for creating real data-races [19] and
deadlocks [10] by using feedback from other conservative static or runtime anal-
ysis techniques. Our work is orthogonal and complementary to this work; while
they focus on where to place preemptions we focus on where not to place pre-
emptions, via preemption sealing.

6 Conclusions

Preemption sealing is a scheduling strategy that increases the efficiency and
efficacy of run-time tools for detecting concurrency errors. Preemption sealing
has many potential applications and we considered two of them in depth here:
tolerating existing errors in order to find more errors; and compositional testing
of layered systems. The power of preemption sealing is that it does not require
code modifications to the program under test and can be easily implemented in
existing schedulers, whether part of model checking, testing, or verification tools.
Our evaluation shows that preemption sealing is effective at finding multiple bugs
and testing layered concurrent systems more efficiently.
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