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Abstract
Storage deduplication has received recent interest in the
research community. In scenarios where the backup pro-
cess has to complete within short time windows, inline
deduplication can help to achieve higher backup through-
put. In such systems, the method of identifying duplicate
data, using disk-based indexes on chunk hashes, can cre-
ate throughput bottlenecks due to disk I/Os involved in
index lookups. RAM prefetching and bloom-filter based
techniques used by Zhu et al. [41] can avoid disk I/Os on
close to 99% of the index lookups. Even at this reduced
rate, an index lookup going to disk contributes about
0.1msec to the average lookup time – this is about 1000
times slower than a lookup hitting in RAM. We propose
to reduce the penalty of index lookup misses in RAM
by orders of magnitude by serving such lookups from a
flash-based index, thereby, increasing inline deduplica-
tion throughput. Flash memory can reduce the huge gap
between RAM and hard disk in terms of both cost and
access times and is a suitable choice for this application.

To this end, we design a flash-assisted inline dedu-
plication system using ChunkStash1, a chunk metadata
store on flash. ChunkStash uses one flash read per chunk
lookup and works in concert with RAM prefetching
strategies. It organizes chunk metadata in a log-structure
on flash to exploit fast sequential writes. It uses an in-
memory hash table to index them, with hash collisions
resolved by a variant of cuckoo hashing. The in-memory
hash table stores (2-byte) compact key signatures instead
of full chunk-ids (20-byte SHA-1 hashes) so as to strike
tradeoffs between RAM usage and false flash reads. Fur-
ther, by indexing a small fraction of chunks per con-
tainer, ChunkStash can reduce RAM usage significantly
with negligible loss in deduplication quality. Evaluations
using real-world enterprise backup datasets show that
ChunkStash outperforms a hard disk index based inline
deduplication system by 7x-60x on the metric of backup
throughput (MB/sec).

1 Introduction

Deduplication is a recent trend in storage backup systems
that eliminates redundancy of data across full and incre-
mental backup data sets [30, 41]. It works by splitting
files into multiple chunks using a content-aware chunk-

1stash: A secret place where something is hidden or stored.

ing algorithm like Rabin fingerprinting and using 20-byte
SHA-1 hash signatures [34] for each chunk to determine
whether two chunks contain identical data [41]. In inline
storage deduplication systems, the chunks arrive one-at-
a-time at the deduplication server from client systems.
The server needs to lookup each chunk hash in an index
it maintains for all chunks seen so far for that storage
location (dataset) instance. If there is a match, the in-
coming chunk contains redundant data and can be dedu-
plicated; if not, the (new) chunk needs to be added to
the system and its hash and metadata inserted into the
index. The metadata contains information like chunk
length and location and can be encoded in up to 44 bytes
(as in [41, 30]). The 20-byte chunk hash (also referred
to as chunk-id) is the key and the 44-byte metadata is the
value, for a total key-value pair size of 64 bytes.

Because deduplication systems currently need to scale
to tens of terabytes to petabytes of data volume, the
chunk hash index is too big to fit in RAM, hence it is
stored on hard disk. Index operations are thus through-
put limited by expensive disk seek operations which are
of the order of 10msec. Since backups need to be com-
pleted over tight windows of few hours (over nights and
weekends), it is desirable to obtain high throughput in in-
line storage deduplication systems, hence the need for a
fast index for duplicate chunk detection. The index may
be used in other portions of the deduplication pipeline
also. For example, a recently proposed algorithm for
chunking the data stream, called bimodal chunking [27],
requires access to the chunk index to determine whether
an incoming chunk has been seen earlier or not. Thus,
multiple functionalities in the deduplication pipeline can
benefit from a fast chunk index.

RAM prefetching and bloom-filter based techniques
used by Zhu et al. [41] can avoid disk I/Os on close
to 99% of the index lookups and have been incorpo-
rated in production systems like those built by Data Do-
main. Even at this reduced rate, an index lookup going
to disk contributes about 0.1msec to the average lookup
time – this is about 103 times slower than a lookup hit-
ting in RAM. We propose to reduce the penalty of index
lookup misses in RAM by orders of magnitude by serv-
ing such lookups from a flash memory based key-value
store, thereby, increasing inline deduplication through-
put. Flash memory is a natural choice for such a store,
providing persistency and 100-1000 times lower access
times than hard disk. Compared to DRAM, flash access



times are about 100 times slower. Flash stands in the
middle between DRAM and disk also in terms of cost
[29] – it is about 10x cheaper than DRAM, while about
10x more expensive than disk – thus, making it an ideal
gap filler between DRAM and disk and a suitable choice
for this application.

1.1 Estimating Index Lookup Speedups us-
ing Flash Memory

We present a back-of-the-envelope calculation for de-
crease in average chunk index lookup time when flash
memory is used as the metadata store for chunk-id
lookups. This can be viewed as a necessary sanity check
that we undertook before plunging into a detailed de-
sign and implementation of a flash-assisted inline storage
deduplication system. We use the fundamental equation
for average access time in multi-level memory architec-
tures. Let the hit ratio in RAM be hr. Let the lookup
times in RAM, flash, and hard disk be tr, tf , and td re-
spectively.

In the hard disk index based deduplication system de-
scribed in Zhu et al. [41], prefetching of chunk index por-
tions into RAM is shown to achieve RAM hit ratios of
close to 99% on the evaluated datasets. Lookup times
in RAM can be estimated at tr = 1µsec, as validated
in our system implementation (since it involves several
memory accesses, each taking about 50-100nsec). Hard
disk lookup times are close to td = 10msec, composed
of head seek and platter rotational latency components.
Hence, the average lookup time in this case can be esti-
mated as

tr + (1− hr) ∗ td = 1µsec + 0.01 ∗ 10msec = 101µsec

Now let us estimate the average lookup time when flash
is used to serve index lookups that miss in RAM. Flash
access times are around tf = 100µsec, as obtained
through measurement in our system. Hence, the aver-
age lookup time in a flash index based system can be
estimated as

tr + (1− hr) ∗ tf = 1µsec + 0.01 ∗ 100µsec = 2µsec

This calculation shows a potential speedup of 50x using
flash for serving chunk metadata lookups vs. a system
that uses hard disk for the same. That is a speedup of
more than one order of magnitude. At 50x index lookup
speedups, other parts of the system could become bot-
tlenecks, e.g., operating system and network/disk bottle-
necks for data transfer. So we do not expect the overall
system speedup (in terms of backup throughput MB/sec)
to be 50x in a real implementation. However, the point
we want to drive home here is that flash memory tech-
nology can help to get the index lookup portion of in-

line storage deduplication systems far out on the scaling
curve.

1.2 Flash Memory and Our Design

There are two types of popular flash devices, NOR and
NAND flash. NAND flash architecture allows a denser
layout and greater storage capacity per chip. As a result,
NAND flash memory has been significantly cheaper than
DRAM, with cost decreasing at faster speeds. NAND
flash characteristics have led to an explosion in its us-
age in consumer electronic devices, such as MP3 players,
phones, and cameras.

However, it is only recently that flash memory, in the
form of Solid State Drives (SSDs), is seeing widespread
adoption in desktop and server applications. For exam-
ple, MySpace.com recently switched from using hard
disk drives in its servers to using PCI Express (PCIe)
cards loaded with solid state flash chips as primary stor-
age for its data center operations [6]. Also very recently,
Facebook announced the release of Flashcache, a sim-
ple write back persistent block cache designed to accel-
erate reads and writes from slower rotational media (hard
disks) by caching data in SSDs [7]. These applications
have different storage access patterns than typical con-
sumer devices and pose new challenges to flash media to
deliver sustained and high throughput (and low latency).

These challenges arising from new applications of
flash are being addressed at different layers of the storage
stack by flash device vendors and system builders, with
the former focusing on techniques at the device driver
software level and inside the device, and the latter driv-
ing innovation at the operating system and application
layers. The work in this paper falls in the latter cate-
gory. To get the maximum performance per dollar out of
SSDs, it is necessary to use flash aware data structures
and algorithms that work around constraints of flash me-
dia (e.g., avoid or reduce small random writes that not
only have a higher latency but also reduce flash device
lifetimes through increased page wearing).

To this end, we present the design and evaluation of
ChunkStash, a flash-assisted inline storage deduplication
system incorporating a high performance chunk meta-
data store on flash. When a key-value pair (i.e., chunk-
id and its metadata) is written, it is sequentially logged
in flash. A specialized RAM-space efficient hash table
index employing a variant of cuckoo hashing [35] and
compact key signatures is used to index the chunk meta-
data stored in flash memory and serve chunk-id lookups
using one flash read per lookup. ChunkStash works in
concert with existing RAM prefetching strategies. The
flash requirements of ChunkStash are well within the
range of currently available SSD capacities – as an exam-
ple, ChunkStash can index order of terabytes of unique
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(deduplicated) data using order of tens of gigabytes of
flash. Further, by indexing a small fraction of chunks
per container, ChunkStash can reduce RAM usage sig-
nificantly with negligible loss in deduplication quality.

In the rest of the paper, we use NAND flash based
SSDs as the architectural choice and simply refer to it
as flash memory. We describe the internal architecture of
SSDs in Section 2.

1.3 Our Contributions
The contributions of this paper are summarized as fol-
lows:

• Chunk metadata store on flash: ChunkStash or-
ganizes key-value pairs (corresponding to chunk-id
and metadata) in a log-structured manner on flash
to exploit fast sequential write property of flash de-
vice. It serves lookups on chunk-ids (20-byte SHA-
1 hash) using one flash read per lookup.

• Specialized space efficient RAM hash table in-
dex: ChunkStash uses an in-memory hash table to
index key-value pairs on flash, with hash collisions
resolved by a variant of cuckoo hashing. The in-
memory hash table stores compact key signatures
instead of full keys so as to strike tradeoffs between
RAM usage and false flash reads. Further, by in-
dexing a small fraction of chunks per container,
ChunkStash can reduce RAM usage significantly
with negligible loss in deduplication quality.

• Evaluation on enterprise datasets: We compare
ChunkStash, our flash index based inline dedupli-
cation system, with a hard disk index based sys-
tem as in Zhu et al. [41]. For the hard disk in-
dex based system, we use BerkeleyDB [1], an em-
bedded key-value store application that is widely
used as a comparison benchmark for its good per-
formance. For comparison with the latter system,
we also include “a hard disk replacement with SSD”
for the index storage, so as to bring out the perfor-
mance gain of ChunkStash in not only using flash
for chunk metadata storage but also in its use of
flash aware algorithms. We use three enterprise
backup datasets (two full backups for each) to drive
and evaluate the design of ChunkStash. Our evalua-
tions on the metric of backup throughput (MB/sec)
show that ChunkStash outperforms (i) a hard disk
index based inline deduplication system by 7x-60x,
and (ii) SSD index (hard disk replacement but flash
unaware) based inline deduplication system by 2x-
4x.

The rest of the paper is organized as follows. We pro-
vide an overview of flash-based SSD in Section 2. We

Figure 1: Internal architecture of a Solid State Drive
(SSD).

develop the design of ChunkStash in Section 3. We eval-
uate ChunkStash on enterprise datasets and compare it
with our implementation of a hard disk index based in-
line deduplication system in Section 4. We review related
work in Section 5. Finally, we conclude in Section 6.

2 Flash-based SSD

Figure 1 gives a block-diagram of a NAND flash-based
Solid State Drive (SSD). An SSD consists of flash chip(s)
and flash translation layer (FTL). In a flash chip, data is
stored in an array of flash memory blocks. Each block
spans 32-64 pages, where a page is the smallest unit of
read and write operations. In flash memory, unlike disks,
random read operations are as fast as sequential read op-
erations as there is no mechanical head movement. How-
ever, unlike disk, read and write operations do not ex-
hibit symmetric behavior. This asymmetry arises as flash
memory does not allow in-place update (i.e., overwrite)
operations. Page write operations in a flash memory must
be preceded by an erase operation and within a block
pages need to be written sequentially. Read and write
operations are performed in page-level, while erase op-
erations are performed in block-level. In addition, before
the erase is being done on a block, the valid (i.e., not
over-written) pages from that block need to be moved
to a new pre-erased blocks. Thus, a page update oper-
ation incurs lot of page read and write operations. The
typical access latencies for read, write, and erase opera-
tions are 25 microseconds, 200 microseconds, and 1500
microseconds, respectively [9]. Besides the in-place up-
date problem, flash memory exhibits another limitation
– a flash block can only be erased for limited number of
times (e.g., 10K-100K) [9].

The Flash Translation layer (FTL) is an intermediate
software layer inside an SSD, which hides the limitations
of flash memory and provides a disk like interface. FTL
receives logical read and write commands from the ap-
plications and converts them to the internal flash memory
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commands. To emulate disk like in-place update opera-
tion for a logical page (Lp), the FTL writes data into a
new physical page (Pp), maintains a mapping between
logical pages and physical pages, and marks the previ-
ous physical location of Lp as invalid for future garbage
collection. FTL uses various wear leveling techniques
to even out the erase counts of different blocks in the
flash memory to increase its overall longevity [20]. Thus,
FTL allows current disk based application to use SSD
without any modifications. However, it needs to inter-
nally deal with current limitations of flash memory (i.e.,
constraint of erasing a block before overwriting a page
in that block). Recent studies show that current FTL
schemes are very effective for the workloads with se-
quential access write patterns. However, for the work-
loads with random access patterns, these schemes show
very poor performance [21, 23, 26, 28, 32]. One of the
design goals of ChunkStash is to use flash memory in an
FTL friendly manner.

3 Flash-assisted Inline Deduplication Sys-
tem

We follow the overall framework of production storage
deduplication systems currently in the industry [41, 30].
Data chunks coming into the system are identified by
their SHA-1 hash [34] and looked up in an index of cur-
rently existing chunks in the system (for that storage lo-
cation or stream). If a match is found, the metadata for
the file (or, object) containing that chunk is updated to
point to the location of the existing chunk. If there is
no match, the new chunk is stored in the system and
the metadata for the associated file is updated to point
to it. (In another variation, the chunk hash is included
in the file/object metadata and is translated to chunk lo-
cation during read access.) Comparing data chunks for
duplication by their 20-byte SHA-1 hash instead of their
full content is justified by the fact that the probability of
SHA-1 hash match for non-identical chunks is less by
many orders of magnitude than the probability of hard-
ware error [36]. We allocate 44 bytes for the metadata
portion. The 20-byte chunk hash is the key and the 44-
byte metadata is the value, for a total key-value pair size
of 64 bytes.

Similar to [41] and unlike [30], our system targets
complete deduplication and ensures that no duplicate
chunks exist in the system after deduplication. However,
we also provide a technique for RAM usage reduction in
our system that comes at the expense of marginal loss in
deduplication quality.

We summarize the main components of the system
below and then delve into the details of the chunk
metadata store on flash which is a new contribution of

this paper.

Data chunking: We use Rabin fingerprinting based
sliding window hash [37] on the data stream to identify
chunk boundaries in a content dependent manner. A
chunk boundary is declared when the lower order bits of
the Rabin fingerprint match a certain pattern. The length
of the pattern can be adjusted to vary the average chunk
size. The average chunk size in our system is 8KB as
in [41]. Ziv-Lempel compression [42] on individual
chunks can achieve an average compression ratio of 2:1,
as reported in [41] and also verified on our datasets, so
that the size of the stored chunks on hard disk averages
around 4KB. The SHA-1 hash of a chunk serves as its
chunk-id in the system.

On-disk Container Store: The container store on hard
disk manages the storage of chunks. Each container
stores at most 1024 chunks and averages in size around
4MB. (Because of the law of averages for this large
number (1024) of chunks, the deviation of container size
from this average is relatively small.) As new (unique)
chunks come into the system, they are appended to the
current container buffered in RAM. When the current
container reaches the target size of 1024 chunks, it
is sealed and written to hard disk and a new (empty)
container is opened for future use.

Chunk Metadata Store on Flash (ChunkStash): To
eliminate hard disk accesses for chunk-id lookups, we
maintain, in flash, the metadata for all chunks in the
system and index them using a specialized RAM index.
The chunk metadata store on flash is a new contribution
of this paper and is discussed in Section 3.1.

Chunk and Container Metadata Caches in RAM: A
cache for chunk metadata is also maintained in RAM
as in [41]. The fetch (prefetch) and eviction policies
for this cache are executed at the container level (i.e.,
metadata for all chunks in a container). To implement
this container level prefetch and eviction policy, we
maintain a fixed size container metadata cache for the
containers whose chunk metadata are currently held in
RAM – this cache maps a container-id to the chunk-ids
it contains. The size of the chunk metadata cache is
determined by the size of the container metadata cache,
i.e., for a container metadata cache size of C containers,
the chunk metadata cache needs to hold 1024*b chunks.
A distinguishing feature of ChunkStash (compared to
the system in [41] is that it does not need to use bloom
filters to avoid secondary storage (hard disk or flash)
lookups for non-existent chunks.

Prefetching Strategy: We use the basic idea of
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predictability of sequential chunk-id lookups during
second and subsequent full backups exploited in [41].
Since datasets do not change much across consecutive
backups, duplicate chunks in the current full backup are
very likely to appear in the same order as they did in the
previous backup. Hence, when the metadata for a chunk
is fetched from flash (upon a miss in the chunk metadata
cache in RAM), we prefetch the metadata for all chunks
in that container into the chunk metadata cache in RAM
and add the associated container’s entry to the container
metadata cache in RAM. Because of this prefetching
strategy, it is quite likely that the next several hundreds
or thousand of chunk lookups will hit in the RAM chunk
metadata cache.

RAM Chunk Metadata Cache Eviction Strategy: The
container metadata cache in RAM follows a Least Re-
cently Used (LRU) replacement policy. When a con-
tainer is evicted from this cache, the chunk-ids of all the
chunks it contains are removed from the chunk metadata
cache in RAM.

3.1 ChunkStash: Chunk Metadata Store
on Flash

As a new contribution of this paper, we present the ar-
chitecture of ChunkStash, the on-flash chunk metadata
store, and the rationale behind some design choices. The
design of ChunkStash is driven by the need to work
around two types of operations that are not efficient on
flash media, namely:

1. Random Writes: Small random writes effectively
need to update data portions within pages. Since
a (physical) flash page cannot be updated in place,
a new (physical) page will need to be allocated and
the unmodified portion of the data on the page needs
to be relocated to the new page.

2. Writes less than flash page size: Since a page
is the smallest unit of write on flash, writing an
amount less than a page renders the rest of the
(physical) page wasted – any subsequent append to
that partially written (logical) page will need copy-
ing of existing data and writing to a new (physical)
page.

Given the above, the most efficient way to write flash
is to simply use it as an append log, where an append
operation involves one or more flash pages worth of
data (current flash page size is typically 2KB or 4KB).
This is the main constraint that drives the rest of our
key-value store design. Flash has been used in a log-
structured manner and its benefits reported in earlier
work ([22, 40, 33, 15, 11]. We organize chunk metadata

Figure 2: ChunkStash architectural overview.

storage on flash into logical page units of 64KB which
corresponds to the metadata for all chunks in a single
container. (At 1024 chunks per container and 64 bytes
per chunk-id and metadata, a container’s worth of chunk
metadata is 64KB in size.)

ChunkStash has the following main components, as
shown in Figure 2:

RAM Chunk Metadata Write Buffer: This is a
fixed-size data structure maintained in RAM that buffers
chunk metadata information for the currently open
container. The buffer is written to flash when the current
container is sealed, i.e., the buffer accumulates 1024
chunk entries and reaches a size of 64KB. The RAM
write buffer is sized to 2-3 times the flash page size so
that chunk metadata writes can still go through when
part of the buffer is being written to flash.

RAM Hash Table (HT) Index: The index structure, for
chunk metadata entries stored on flash, is maintained in
RAM and is organized as a hash table with the design
goal of one flash read per lookup. The index maintains
pointers to the full (chunk-id, metadata) pairs stored on
flash. Key features include resolving collisions using
a variant of cuckoo hashing and storing compact key
signatures in memory to tradeoff between RAM usage
and false flash reads. We explain these aspects shortly.

On-Flash Store: The flash store provides persistent stor-
age for chunk metadata and is organized as an append
log. Chunk metadata is written (appended) to flash in
units of a logical page size of 64KB, corresponding to
the chunk metadata of a single container.

3.2 Hash Table Design for ChunkStash

We outline the salient aspects of the hash table design
for ChunkStash.
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Resolving hash collisions using cuckoo hashing: Hash
function collisions on keys result in multiple keys map-
ping to the same hash table index slot – these need
to be handled in any hashing scheme. Two common
techniques for handling such collisions include linear
probing and chaining [25]. Linear probing can increase
lookup time arbitrarily due to long sequences of colliding
slots. Chaining hash table entries in RAM, on the other
hand, leads to increased memory usage, while chaining
buckets of key-value pairs is not efficient for use with
flash, since partially filled buckets will map to partially
filled flash pages that need to be appended over time,
which is not an efficient flash operation. Moreover, the
latter will result in multiple flash page reads during key
lookups and writes, which will reduce throughput.

ChunkStash structures the HT index as an array of
slots and uses a variant of cuckoo hashing [35] to resolve
collisions. Cuckoo hashing provides flexibility for each
key to be in one of n ≥ 2 candidate positions and for
later inserted keys to relocate earlier inserted keys to any
of their other candidate positions – this keeps the linear
probing chain sequence upper bounded at n. In fact, the
value proposition of cuckoo hashing is in increasing hash
table load factors while keeping lookup times bounded to
a constant. A study [43] has shown that cuckoo hashing
is much faster than chained hashing as hash table load
factors increase. The name “cuckoo” is derived from the
behavior of some species of the cuckoo bird – the cuckoo
chick pushes other eggs or young out of the nest when it
hatches, much like the hashing scheme kicks previously
inserted items out of their location as needed.

In the variant of cuckoo hashing we use, we work with
n random hash functions h1, h2, . . . , hn that are used to
obtain n candidate positions for a given key x. These
candidate position indices for key x are obtained from
the lower-order bit values of h1(x), h2(x), . . . , hn(x)
corresponding to a modulo operation. During insertion,
the key is inserted in the first available candidate slot.
When all slots for a given key x are occupied during in-
sertion (say, by keys y1, y2, . . . , yn), room can be made
for key x by relocating keys yi in these occupied slots,
since each key yi has a choice of (n− 1) other locations
to go to.

In the original cuckoo hashing scheme [35], a recur-
sive strategy is used to relocate one of the keys yi – in the
worst case, this strategy could take many key relocations
or get into an infinite loop, the probability for which can
be shown to be very small and decreasing exponentially
in n [35]. In our design, the system attempts a small
number of key relocations after which it makes room by
picking a key to move to an auxiliary linked list (or, hash
table). In practice, by dimensioning the HT index for a
certain load factor and by choosing a suitable value of n,
such events can be made extremely rare, as we investi-

gate in Section 4.4. Hence, the size of this auxiliary data
structure is small. The viability of this approach has also
been verified in [24], where the authors show, through
analysis and simulations, that a very small constant-sized
auxiliary space can dramatically reduce the insertion fail-
ure probabilities associated with cuckoo hashing. (That
said, we also want to add that the design of ChunkStash
is amenable to other methods of hash table collision res-
olution.)

The number of hash function computations during
lookups can be reduced from the worst case value of
n to 2 using the standard technique of double hashing
from the hashing literature [25]. The basic idea is that
two hash functions g1 and g2 can simulate more than
two hash functions of the form hi(x) = g1(x) + ig2(x).
In our case, i will range from 0 to n− 1. Hence, the use
of higher number of hash functions in cuckoo hashing
does not incur additional hash function computation
overheads but helps to achieve higher hash table load
factors.

Reducing RAM usage per slot by storing compact key
signatures: Traditional hash table designs store the re-
spective key in each entry of the hash table index [25].
Depending on the application, the key size could range
from few tens of bytes (e.g., 20-byte SHA-1 hash as
in storage deduplication) to hundreds of bytes or more.
Given that RAM size is limited (commonly in the order
of few to several gigabytes in servers) and is more expen-
sive than flash (per GB), if we store the full key in each
entry of the RAM HT index, it may well become the bot-
tleneck for the maximum number of entries on flash that
can be indexed from RAM before flash storage capacity
bounds kick in. On the other hand, if we do not store the
key at all in the HT index, the search operation on the HT
index would have to follow HT index pointers to flash to
determine whether the key stored in that slot matches the
search key – this would lead to many false flash reads,
which are expensive, since flash access speeds are 2-3
orders of magnitude slower than that of RAM.

To address the goals of maximizing HT index capacity
(number of entries) and minimizing false flash reads,
we store a compact key signature (order of few bytes)
in each entry of the HT index. This signature is derived
from both the key and the candidate position number
that it is stored at. In ChunkStash, when a key x is
stored in its candidate position number i, the signature
in the respective HT index slot is derived from the
higher order bits of the hash value hi(x). During a
search operation, when a key y is looked up in its
candidate slot number j, the respective signature is
computed from hj(y) and compared with the signature
stored in that slot. Only if a match happens is the
pointer to flash followed to check whether the full key
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Figure 3: Flowchart of deduplication process in
ChunkStash.

matches. We investigate the percentage of false reads
as a function of the compact signature size in Section 4.4.

Storing key-value pairs on flash: Chunk-id and meta-
data pairs are organized on flash in a log-structure in the
order of the respective write operations coming into the
system. The HT index contains pointers to (chunk-id,
metadata) pairs stored on flash. We use a 4-byte pointer,
which is a combination of a logical page pointer and a
page offset. With 64-byte key-value pair sizes, this is
sufficient to index 256GB of chunk metadata on flash –
for an average chunk size of 8KB, this corresponds to
a maximum (deduplicated) storage dataset size of about
33TB. (ChunkStash reserves the all-zero pointer to indi-
cate an empty HT index slot.)

3.3 Putting It All Together

To understand the hierarchical relationship of the differ-
ent storage areas in ChunkStash, it is helpful to under-
stand the sequence of accesses during inline deduplica-
tion. A flowchart for this is provided in Figure 3. Recall
that when a new chunk comes into the system, its SHA-1
hash is first looked up to determine if the chunk is a du-
plicate one. If not, the new chunk-id is inserted into the
system.

A chunk-id lookup operation first looks up the RAM
chunk metadata cache. Upon a miss there, it looks up the
RAM chunk metadata write buffer. Upon a miss there,

it searches the RAM HT Index in order to locate the
chunk-id on flash. If the chunk-id is present on flash,
its metadata, together with the metadata of all chunks in
the respective container, is fetched into the RAM chunk
metadata cache.

A chunk-id insert operation happens when the chunk
coming into the system has not been seen earlier. This
operation writes the chunk metadata into the RAM chunk
metadata write buffer. The chunk itself is appended to
the currently open container buffered in RAM. When the
number of chunk entries in the RAM chunk metadata
write buffer reaches the target of 1024 for the current
container, the container is sealed and written to the con-
tainer store on hard disk, and its chunk metadata entries
are written to flash and inserted into the RAM HT index.

3.4 RAM and Flash Capacity Considera-
tions

The indexing scheme in ChunkStash is designed to use a
small number of bytes in RAM per key-value pair so as to
maximize the amount of indexable storage on flash for a
given RAM usage size. The RAM HT index capacity de-
termines the number of chunk-ids stored on flash whose
metadata can be accessed with one flash read. The RAM
size for the HT index can be determined with application
requirements in mind. With a 2-byte compact key signa-
ture and 4-byte flash pointer per entry, the RAM usage
in ChunkStash is 6 bytes per entry as shown in Figure 4.
For a given average chunk size, this determines the rela-
tionship among the following quantities – RAM and flash
usage per storage dataset and associated storage dataset
size.

For example, a typical RAM usage of 4GB per ma-
chine for the HT index accommodates a maximum of
about 716 million chunk-id entries. At an average of
8KB size per data chunk, this corresponds to about 6TB
of deduplicated data, for which the chunk metadata occu-
pies about 45GB on flash. This flash usage is well within
the capacity range of SSDs shipping in the market today
(from 64GB to 640GB). When there are multiple such
SSDs attached to the same machine, additional RAM is
needed to fully utilize their capacity for holding chunk
metadata. Moreover, RAM usage by the HT index in
ChunkStash can be further reduced using techniques dis-
cussed in Section 3.5.

To reap the full performance benefit of ChunkStash for
speeding up inline deduplication, it is necessary for the
entire chunk metadata for the (current) backup dataset
to fit in flash. Otherwise, when space on flash runs out,
the append log will need to be recycled and written from
the beginning. When a page on the flash log is rewrit-
ten, the earlier one will need to be evicted and the meta-
data contained therein written out to a hard disk based
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compact key signature pointer to key-value pair on flash

≈

≈
≈ ≈

≈ ≈2-byte  4-byte  

Figure 4: RAM HT Index entry and example sizes in
ChunkStash. (The all-zero pointer is reserved to indicate
an empty HT index slot.)

index. Moreover, during the chunk-id lookup process, if
the chunk is not found in flash, it will need to be looked
up in the index on hard disk. Thus, both the chunk-id
insert and lookup pathways would suffer from the same
bottlenecks of disk index based systems that we sought
to eliminate in the first place.

ChunkStash uses flash memory to store chunk meta-
data and index it from RAM. It provides flexibility for
flash to serve, or not to serve, as a permanent abode for
chunk metadata for a given storage location. This deci-
sion can be driven by cost considerations, for example,
because of the large gap in cost between flash memory
and hard disk. When flash is not the permanent abode for
chunk metadata for a given storage location, the chunk
metadata log on flash can be written to hard disk in one
large sequential write (single disk I/O) at the end of the
backup process. At the beginning of the next full backup
for this storage location, the chunk metadata log can be
loaded back into flash from hard disk in one large se-
quential read (single disk I/O) and the containing chunks
can be indexed in RAM HT index. This mode of op-
eration amortizes the storage cost of metadata on flash
across many backup datasets.

3.5 Reducing ChunkStash RAM Usage

The largest portion of RAM usage in ChunkStash comes
from the HT index. This usage can be reduced by in-
dexing in RAM only a small fraction of the chunks in
each container (instead of the whole container). Flash
will continue to hold metadata for all chunks in all con-
tainers, not just the ones indexed in RAM; hence when
a chunk in the incoming data stream matches an indexed
chunk, metadata for all chunks in that container will be
prefetched in RAM. We use an uniform chunk sampling
strategy, i.e., we index every i-th chunk in every con-
tainer which gives a sampling rate of 1/i.

Because only a subset of chunks stored in the system
are indexed in the RAM HT index, detection of dupli-
cate chunks will not be completely accurate, i.e., some
incoming chunks that are not found in the RAM HT in-
dex may, in fact, have appeared earlier and are already

stored in the system. This will lead to some loss in dedu-
plication quality, and hence, some amount of duplicate
data chunks will be stored in the system. In Section 4.6,
we study the impact of this on deduplication quality (and
backup throughput). We find that the loss in deduplica-
tion quality is marginal when about 1% of the chunks
in each container are indexed and becomes negligibly
small when about 10% of the chunks are indexed. The
corresponding RAM usage reductions for the HT index
are appreciable at 99% and 90% respectively. Hence, in-
dexing chunk subsets in ChunkStash provides a powerful
knob for reducing RAM usage with only marginal loss in
deduplication quality.

In an earlier approach for reducing RAM usage re-
quirements of inline deduplication systems, the method
of sparse indexing [30] chops the incoming data into
multiple megabyte segments, samples chunks at random
within a segment (based on the most significant bits of
the SHA-1 hash matching a pattern, e.g., all 0s), and uses
these samples to find few segments seen in the recent
past that share many chunks. In contrast, our sampling
method is deterministic and samples chunks at uniform
intervals in each container for indexing. Moreover, we
are able to match incoming chunks with sampled chunks
in all containers stored in the system, not just those seen
in the recent past. In our evaluations in Section 4.6,
we show that our uniform sampling strategy gives bet-
ter deduplication quality than random sampling (for the
same sampling rate).

4 Evaluation

We evaluate the backup throughput performance of a
ChunkStash based inline deduplication system and com-
pare it with our implementation of a disk index based
system as in [41]. We use three enterprise datasets and
two full backups for our evaluations.

4.1 C# Implementation

We have prototyped ChunkStash in approximately 8000
lines of C# code. MurmurHash [5] is used to realize the
the hash functions used in our variant of cuckoo hash-
ing to compute hash table indices and compact signa-
tures for keys; two different seeds are used to generate
two different hash functions in this family for use with
the double hashing based simulation of n hash func-
tions, as described in Section 3.2. In our implementa-
tion, writes to the on-disk container store are performed
in a non-blocking manner using a small pool of file
writer worker threads. The metadata store on flash is
maintained as a log file in the file system and is cre-
ated/opened in non-buffered mode so that there are no
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Trace Size (GB) Total Chunks #Full Backups
Dataset 1 8GB 1.1 million 2
Dataset 2 32GB 4.1 million 2
Dataset 3 126GB 15.4 million 2

Table 1: Properties of the three traces used in the per-
formance evaluation of ChunkStash. The average chunk
size is 8KB.

buffering/caching/prefetching effects in RAM from within
the operating system.

4.2 Comparison with Hard Disk Index
based Inline Deduplication

We compare ChunkStash, our flash index based inline
deduplication system, with a hard disk index based sys-
tem as in Zhu et al. [41]. The index used in [41] appears
to be proprietary and no details are provided in the paper.
Hence, for purposes of comparative evaluation, we have
built a hard disk index based system incorporating the
ideas in [41] with the hard disk index implemented by
BerkeleyDB [1], an embedded key-value database that
is widely used as a comparison benchmark for its good
performance. For comparison with the latter system, we
also include a “hard disk replacement with SSD” for the
index storage, so as to bring out the performance gain of
ChunkStash in not only using flash for chunk metadata
storage but also in its use of flash aware algorithms.

BerkeleyDB does not use flash aware algorithms but
we used the parameter settings recommended in [3] to
improve its performance with flash. We use BerkeleyDB
in its non-transactional concurrent data store mode that
supports a single writer and multiple readers [39]. This
mode does not support a transactional data store with the
ACID properties, hence provides a fair comparison with
ChunkStash . BerkeleyDB provides a choice of B-tree
and hash table data structures for building indexes – we
use the hash table version which we found to run faster.
We use the C++ implementation of BerkeleyDB with C#
API wrappers [2].

4.3 Evaluation Platform and Datasets
We use a standard server configuration to evaluate the in-
line deduplication performance of ChunkStash and com-
pare it with the disk index based system that uses Berke-
leyDB. The server runs Windows Server 2008 R2 and
uses an Intel Core 2 Duo E6850 3GHz CPU, 4GB RAM,
and fusionIO 160GB flash drive [4] attached over PCIe
interface. Containers are written to a RAID4 system us-
ing five 500GB 7200rpm hard disks. A separate hard
disk is used for storing disk based indexes. For the fusio-

nIO drive, write buffering inside the device is disabled
and cannot be turned on through operating system set-
tings. The hard drives used support write buffering inside
the device by default and this setting was left on. This
clearly gives some advantage to the hard disks for the
evaluations but makes our comparisons of flash against
hard disk more conservative.

To obtain traces from backup datasets, we have built a
storage deduplication analysis tool that can crawl a root
directory, generate the sequence of chunk hashes for a
given average chunk size, and compute the number of
deduplicated chunks and storage bytes. The enterprise
data backup traces we use for evaluations in this paper
were obtained by our storage deduplication analysis tool
using 8KB (average) chunk sizes (this is also the chunk
size used in [30]). We obtained two full backups for three
different storage locations, indicated as Datasets 1, 2, and
3 in Table 1. The number of chunks in each dataset (for
each full backup) are about 1 million, 4 million, and 15
million respectively.

We compare the throughput (MB/sec processed from
the input data stream) on the three traces described in Ta-
ble 1 for the following four inline deduplication systems:

• Disk based index (BerkeleyDB) and RAM bloom
filter [41] (Zhu08-BDB-HDD),

• Zhu08-BDB system with SSD replacement for
BerkeleyDB index storage (Zhu08-BDB-SSD),

• Flash based index using ChunkStash (ChunkStash-
SSD),

• ChunkStash with the SSD replaced by hard disk
(ChunkStash-HDD).

Some of the design decisions in ChunkStash also work
well when the underlying storage is hard disk and not
flash (e.g., log structured data organization and sequen-
tial writes). Hence, we have included Chunkstash run-
ning on hard disk as a comparison point so as to bring
out the impact of log structured organization for a store
on hard disk for the storage deduplication application.
(Note that BerkeleyDB does not use a log structured stor-
age organization.)

All four systems use RAM prefetching techniques for
the chunk index as described in [41]. When a chunk hash
lookup misses in RAM (but hits the index on hard disk or
flash), metadata for all chunks in the associated container
are prefetched into RAM. The RAM chunk metadata
cache size for holding chunk metadata is fixed at 20 con-
tainers, which corresponds to a total of 20,480 chunks.
In order to implement the prefetching of container meta-
data in a single disk I/O for Zhu08-BDB, we maintain, in
addition to the BerkeleyDB store, an auxiliary sequential
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log of chunk metadata that is appended with container
metadata whenever a new container is written to disk.

Note that unlike in [41], our evaluation platform is
not a production quality storage deduplication system but
rather a research prototype. Hence, our throughput num-
bers should be interpreted in a relative sense among the
four systems above, and not used for absolute compari-
son with other storage deduplication systems.

4.4 Tuning Hash Table Parameters

Before we make performance comparisons of
ChunkStash with the disk index based system, we
need to tune two parameters in our hash table design
from Section 3.2, namely, (a) number of hash functions
used in our variant of cuckoo hashing, and (b) size of
compact key signature. These affect the throughput of
read key and write key operations in different ways that
we discuss shortly. For this set of experiments, we use
one of the storage deduplication traces in a modified
way so as to study the performance of hash table insert
and lookup operations separately. We pre-process the
trace to extract a set of 1 million unique keys, then insert
all the key-value pairs, and then read all these key-value
pairs in random order.

As has been explained earlier, the value proposition of
cuckoo hashing is in accommodating higher hash table
load factors without increasing lookup time. It has been
shown mathematically that with 3 or more hash functions
and with load factors up to 91%, insertion operations
succeed in expected constant time [35]. With this prior
evidence in hand, we target a maximum load factor of
90% for our cuckoo hashing implementation. Hence,
for the dedup trace used in this section with 1 million
keys, we fix the number of hash table slots to 1.1 million.

Number of Hash Functions. When the number of hash
functions n is small, the performance of insert operations
can be expected to degrade in two ways as the hash ta-
ble loads up. First, an insert operation will find all its n
slots occupied by other keys and the number of cascaded
key relocations required to complete this insertion will
be high. Since each key relocation involves a flash read
(to read the full key from flash and compute its candi-
date positions), the insert operation will take more time
to complete. Second, with an upper bound on the num-
ber of allowed key relocations (which we set to 50 for
this set of experiments), the insert operation could lead
to a key being moved to the auxiliary linked list – this in-
creases the RAM space usage of the linked list as well
as its average search time. On the other hand, as the
number of hash functions increase, lookup times will in-
crease because of increasing number of hash table posi-
tions searched. However, the latter undesirable effect is

not expected to be as degrading as those for inserts, since
a lookup in memory takes orders of magnitude less time
than a flash read. We study these effects to determine a
suitable number of hash functions for our design. (Note
that because of our use of double hashing, the number of
hash function computations per lookup does not increase
with n.)

In Figure 5(a), we plot the average number of key re-
locations (hence, flash reads) per insert operation as keys
are inserted into the hash table (for n = 16 hash func-
tions). We see that the performance of insert operations
degrades as the hash table loads up, as expected because
of the impact of the above effect. Accordingly, for the
following plots in this section, we present average num-
bers between 75% and 90% load factors as the insert op-
erations are performed.

In Figure 5(b), we plot the average number of key relo-
cations per insert operation as the number of hash func-
tions n is varied, n = 4, 8, 16, 24, 32. At and beyond
n = 16 hash functions, the hash table incurs less than 0.1
key relocations (hence, flash reads) per insert operation.
Figure 5(c) shows that there is no appreciable increase in
average lookup time as the number of hash functions in-
crease. (The slight decrease in average lookup time with
increasing number of hash functions can be attributed to
faster search times in the auxiliary linked list, whose size
decreases as number of hash functions increases.)

Based on these effects, we choose n = 16 hash
functions in the RAM HT Index for our ChunkStash
implementation. Note that during a key lookup, all n
hash values on the key need not be computed, since the
lookup stops at the candidate position number the key
is found in. Moreover, because of the use of double
hashing, at most two hash function computations are
incurred even when all candidate positions are searched
for a key. We want to add that using fewer hash functions
may be acceptable depending on overall performance
requirements, but we do not recommend a number
below n = 8. Also, with n = 16 hash functions, we
observed that it is sufficient to set the maximum number
of allowed key relocations (during inserts) to 5-10 to
keep the number of inserts that go to the linked list very
small.

Compact Key Signature Size. As explained in Section
3.1, we store compact key signatures in the HT index
(instead of full keys) to reduce RAM usage. However,
shorter signatures lead to more false flash reads during
lookups (i.e., when a pointer into flash is followed be-
cause the signature in HT index slot matches, but the full
key on flash does not match with the key being looked
up). We study this effect in Figure 5(d) where we fix the
number of hash functions to n = 16. (We did not find
much variation in the fraction of false flash reads when
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Figure 5: Tuning hash table parameters in ChunkStash: (a) Average number of relocations per insert as keys are
inserted into hash table (for n = 16 hash functions); (b) Average number of relocations per insert vs. number of hash
functions (n), averaged between 75%-90% load factors; (c) Average lookup time (µsec) vs. number of hash functions
(n); (d) Percentage of false flash reads during lookup vs. signature size (bytes) stored in hash table.

number of hash functions is increased so long as n ≥ 8.)
We observe that the fraction of false reads drops sharply
to 0.01% when the number of signature bytes increases
from 1 to 2.

Since flash reads are expensive compared to RAM
reads, the design should strike a balance between reduc-
ing false flash reads and RAM usage. Based on the above
numbers, we fix the signature size to 2 bytes in our im-
plementation. Even a 1-byte signature size may be ac-
ceptable given that only 0.6% of the flash reads are false
in that case.

4.5 Backup Throughput

We ran the chunk traces from the the three datasets out-
lined in Table 1 on ChunkStash and our implementation
of the system in [41] using BerkeleyDB as the chunk
index on either hard disk or flash. We log the backup
throughput (MB of data backed up per second) at a pe-
riod of every 10,000 input chunks during each run and
then take the overall average over a run to obtain through-
put numbers shown in Figures 6, 7, and 8.

ChunkStash achieves average throughputs of about

190 MB/sec to 265 MB/sec on the first full backups
of the three datasets. The throughputs are about 60%-
140% more for the second full backup compared to the
first full backup for the datasets – this reflects the effect
of prefetching chunk metadata to exploit sequential pre-
dictability of chunk lookups during second full backup.
The speedup of ChunkStash over Zhu08-BDB-HDD is
about 30x-60x for the first full backup and 7x-40x for
the second full backup. Compared to the Zhu08-BDB-
SSD in which the hard disk is replaced by SSD for in-
dex storage, the speedup of ChunkStash is about 3x-4x
for the first full backup and about 2x-4x for the second
full backup. The latter reflects the relative speedup of
ChunkStash due to the use of flash-aware data structures
and algorithms over BerkeleyDB which is not optimized
for flash device properties.

We also run ChunkStash on hard disk (instead of flash)
to bring out the performance impact of a log-structured
organization on hard disk. Sequential writes of container
metadata to the end of the metadata log is a good de-
sign for and benefits hard disks also. On the other hand,
lookups in the log from the in-memory index may in-
volve random reads in the log which are expensive on

11



8

8690

275265

629

175

564

0

100

200

300

400

500

600

1st Full Backup 2nd Full Backup

Ba
cku

p T
hro

ug
hp

ut(
MB

/se
c) Dataset 1

Zhu08-BDB-HDD
Zhu08-BDB-SSD
ChunkStash-SSD
ChunkStash-HDD

Figure 6: Dataset 1: Comparative throughput (backup
MB/sec) evaluation of ChunkStash and BerkeleyDB
based indexes for inline storage deduplication.
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Figure 7: Dataset 2: Comparative throughput (backup
MB/sec) evaluation of ChunkStash and BerkeleyDB
based indexes for inline storage deduplication.

hard disks due to seeks – however, container metadata
prefetching helps to reduce the number of such ran-
dom reads to the log. We observe that the throughput
of ChunkStash-SSD is more than that of ChunkStash-
HDD by about 50%-80% for the first full backup and by
about 10%-20% for the second full backup for the three
datasets.

In Table 2, we show the RAM hit rates for chunk hash
lookups on the three traces for each full backup. The
RAM hit rate for the first full backup is indicative of the
redundancy (duplicate chunks) within the dataset – this
is higher for Datasets 1 and 3 and is responsible for their
higher backup throughputs. The RAM hit rate for the
second full backup is indicative of its similarity with the

Trace RAM Hit Rate
1st Full Backup 2nd Full Backup

Dataset 1 20% 97%
Dataset 2 2% 88%
Dataset 3 23% 80%

Table 2: RAM hit rates for chunk hash lookups on the
three traces for each full backup.
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Figure 9: Disk I/Os (reads and writes) in BerkeleyDB
relative to ChunkStash on the first full backup of the three
datasets. (Note that the y-axis is log scale.)

first full backup – this manifests itself during the second
full backup through fewer containers written and through
sequential predictability of chunk hash lookups (which is
exploited by the RAM prefetching strategy).

When compared to ChunkStash, the relatively worse
performance of a BerkeleyDB based chunk metadata in-
dex can be attributed to the increased number of disk I/Os
(random reads and writes). We measured the number of
disk I/Os for Zhu08-BDB and ChunkStash systems us-
ing Windows Performance Analysis Tools (xperf) [8].
In Figure 9, we observe that the number of read I/Os in
BerkeleyDB is 3x-7x that of ChunkStash and the num-
ber of write I/Os is about 600-1000x that of ChunkStash.
Moreover, these writes I/Os in BerkeleyDB are all ran-
dom I/Os, while ChunkStash is designed to use only
sequential writes (appends) to the chunk metadata log.
Because there is no locality in the key space in an ap-
plication like storage deduplication, container metadata
writes to a BerkeleyDB based index lead to in-place up-
dates (random writes) to many different pages (on disk
or flash) and appears to be one of the main reasons for its
worse performance.
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Figure 10: Dataset 2: Number of chunks detected as new
as a fraction of the total number of chunks (indicating
deduplication quality) vs. fraction of chunks indexed
in ChunkStash RAM HT index in second full backup.
(When 100% of the chunks are indexed, all duplicate
chunks are detected accurately.) The x-axis fractions cor-
respond to sampling rates of 1/64, 1/16, and 1/8. For a
sampling rate of 1/2n, uniform sampling indexes every
2n-th chunk in a container, whereas random sampling in-
dexes chunks with first n bits of SHA-1 hash are all 0s.

4.6 Impact of Indexing Chunk Subsets

In Section 3.5, we saw that RAM usage in ChunkStash
can be reduced by indexing a small fraction of the chunks
in each container. In this section, we study the impact
of this on deduplication quality and backup throughput.
Because only a subset of the chunks are indexed in the
RAM HT index, detection of duplicate chunks will not
be completely accurate, i.e., some incoming chunks that
are not found in the RAM HT index may have appeared
earlier and are already stored in the system. Hence, some
amount of duplicate data chunks will be stored in the
system. We compare two chunk sampling strategies –
uniform chunk sampling strategy (i.e., index every i-th
chunk) and random sampling (based on the most signif-
icant bits of the chunk SHA-1 hash matching a pattern,
e.g., all 0s), the latter being used as part of a sparse in-
dexing scheme in [30].

In Figure 10, we plot the fraction of chunks that are
declared as new by the system during the second full
backup of Dataset 2 as a percentage of the total number
of chunks in the second full backup. The lower the value
of this fraction, the better is the deduplication quality (the
baseline for comparison being the case when all chunks
are indexed). The fraction of chunks indexed in each
container is varied as 1.563% = 1/64, 6.25% = 1/16,
12.5% = 1/8, and 100% (when all chunks are indexed).
We choose sampling rates that are reciprocals of pow-
ers of 2 because those are the types of sampling rates
possible in the random sampling scheme – when n most
significant bits of the SHA-1 hash are matched to be all
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Figure 11: Dataset 2: Backup throughput (MB/sec) vs.
fraction of chunks indexed in ChunkStash RAM HT in-
dex in first and second full backups.

0s, the sampling rate is 1/2n.
We observe that when 1.563% of the chunks are in-

dexed, the uniform chunk sampling strategy results in
only a 0.5% increase in the number of chunks detected
as new (as a fraction of the whole dataset). This loss
in deduplication quality could be viewed as an accept-
able tradeoff in exchange for a 98.437% reduction in
RAM usage of ChunkStash HT index. When 12.5% of
the chunks are indexed, the loss in deduplication quality
is almost negligible at 0.1% (as a fraction of the whole
dataset), but the reduction in RAM usage of ChunkStash
HT index is still substantial at 87.5%. Hence, index-
ing chunk subsets provides a powerful knob for reduc-
ing RAM usage in ChunkStash with only marginal loss
in deduplication quality.

We also note that the loss in deduplication quality with
random sampling is worse than that with uniform sam-
pling, especially at lower sampling rates. An intuitive
explanation for this is that uniform sampling gives bet-
ter coverage of the input stream at regular intervals of
number of chunks (hence, data size intervals), whereas
random sampling (based on some bits in the chunk SHA-
1 hash matching a pattern) could lead to large gaps be-
tween two successive chunk samples in the input stream.

An interesting side-effect of indexing chunk subsets is
the increase in backup throughput – this is shown in Fig-
ure 11 for the first and second full backups for Dataset
2. The effects on first and second full backups can be
explained separately. When a fraction of the chunks are
indexed, chunk hash keys are inserted into the RAM HT
index at a lower rate during the first full backup, hence
the throughput increases. (Note, however, that writes to
the metadata log on flash are still about the same, but
possibly slightly higher due to less accurate detection
of duplicate chunks within the dataset.) During the sec-
ond full backup, fewer chunks from the incoming stream
are found in the ChunkStash RAM HT index, hence the
number of flash reads during the backup process are re-
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duced, leading to higher throughput. Both of these ben-
efits drop gradually as more chunks are indexed but still
remain substantial at a sampling rate of 12.5% – with
the loss in deduplication quality being negligible at this
point, the tradeoff is more of a win-win situation than a
compromise involving the three parameters of RAM us-
age (low), deduplication throughput (high), and loss is
deduplication quality (negligible).

4.7 Flash Memory Cost Considerations

Because flash memory is more expensive per GB than
hard disk, we undertake a performance/dollar analysis in
an effort to mitigate cost concerns about a flash-assisted
inline deduplication system like ChunkStash. In our sys-
tem, we use 8KB (average) chunk sizes and store them
compressed on hard disk – with an average compres-
sion ratio of 2:1 (which we verified for our datasets), the
space occupied by a data chunk on hard disk is about
4KB. With chunk metadata size of 64 bytes, the meta-
data portion is about 64/(4 ∗ 1024) = 1/64 fraction of
the space occupied by chunk data on hard disk. With
flash being currently 10 times more expensive per GB
than hard disk, the cost of metadata storage on flash is
about 10/64 = 16% that of data storage on HDD. Hence,
the overall increase in storage cost is about 1.16x.

Using a ballpark improvement of 25x in backup
throughput for ChunkStash over disk based indexes
for inline deduplication (taken from our evaluations re-
ported in Section 4.5), the gain in performance/dollar for
ChunkStash over disk based indexes is about 25/1.16 =
22x. We believe that this justifies the additional capital
investment in flash for inline deduplication systems that
are hard-pressed to meet short backup window deadlines.

Moreover, the metadata storage cost on flash can be
amortized across many backup datasets by storing a
dataset’s chunk metadata on hard disk and loading to
flash just before the start of the backup process for the
respective dataset – this reduces the flash memory in-
vestment in the system and makes the performance-cost
economics even more compelling.

5 Related Work

We review related work that falls into two categories,
namely, storage deduplication and key-value store on
flash. The use of flash memory to speed up inline dedu-
plication is a unique contribution of our work – their is no
prior research that overlaps both of these areas. We also
make new contributions in the design of ChunkStash, the
chunk metadata store on flash which can be used as a
key-value store for other applications as well.

5.1 Storage Deduplication

Zhu et al.’s work [41] is among the earliest research in
the inline storage deduplication area and provides a nice
description of the innovations in Data Domain’s produc-
tion storage deduplication system. They present two
techniques that aim to reduce lookups on the disk-based
chunk index. First, a bloom filter [13] is used to track the
chunks seem by the system so that disk lookups are not
made for non-existing chunks. Second, upon a chunk
lookup miss in RAM, portions of the disk-based chunk
index (corresponding to all chunks in the associated con-
tainer) are prefetched to RAM. The first technique is ef-
fective for new data (e.g., first full backup) while the
second technique is effective for little or moderately
changed data (e.g., subsequent full backups). Their sys-
tem provides perfect deduplication quality. Our work
aims to reduce the penalty of index lookup misses in
RAM that go to hard disk by orders of magnitude by de-
signing a flash-based index for storing chunk metadata.

Lillibridge et al. [30] use the technique of sparse in-
dexing to reduce the in-memory index size for chunks in
the system at the cost of sacrificing deduplication quality.
The system chunks the data into multiple megabyte seg-
ments, which are then lightly sampled (at random based
on the chunk SHA-1 hash matching a pattern), and the
samples are used to find a few segments seen in the recent
past that share many chunks. Obtaining good deduplica-
tion quality depends on the chunk locality property of the
dataset – whether duplicate chunks tend to appear again
together with the same chunks. When little or no chunk
locality is present, the authors recommend an approach
based on file similarity [12] that achieves significantly
better deduplication quality. In our work, the memory
usage of ChunkStash can be reduced by indexing only a
subset of the chunk metadata on flash (using an uniform
sampling strategy, which we found gives better dedupli-
cation quality than random sampling).

DEDE [16] is a decentralized deduplication system
designed for SAN clustered file systems that supports
a virtualization environment via a shared storage sub-
strate. Each host maintains a write-log that contains the
hashes of the blocks it has written. Periodically, each
host queries and updates a shared index for the hashes in
its own write-log to identify and reclaim storage for du-
plicate blocks. Unlike inline deduplication systems, the
deduplication process is done out-of-band so as to mini-
mize its impact on file system performance. In this paper,
we focus on inline storage deduplication systems.

HYDRAstor [17] discusses architecture and imple-
mentation of a commercial secondary storage system,
which is content addressable and implements a global
data deduplication policy. Recently, a new file system,
called HydraFS [38], has been designed for HYDRAs-
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tor. In order to reduce the disk accesses, HYDRAstor
uses bloom filter [13] in RAM. In contrast, we aim to
eliminate disk seek/access (and miss) overheads by us-
ing a flash-based chunk metadata store.

Deduplication systems differ in the granularity at
which they detect duplicate data. EMC’s Centera [18]
uses file level duplication, LBFS [31] uses variable-
sized data chunks obtained using Rabin fingerprint-
ing, and Venti [36] uses individual fixed size disk
blocks. Among content-dependent data chunking meth-
ods, Two-Threshold Two-Divisor (TTTD) [19] and bi-
modal chunking algorithm [27] produce variable-sized
chunks.

5.2 Key-Value Store on Flash

Flash memory has received lots of recent interest as a
stable storage media that can overcome the access bottle-
necks of hard disks. Researchers have considered mod-
ifying existing applications to improve performance on
flash as well as providing operating system support for
inserting flash as another layer in the storage hierarchy.
In this section, we briefly review work that is related to
key-value store aspect of ChunkStash and point out its
differentiating aspects.

MicroHash [40] designs a memory-constrained index
structure for flash-based sensor devices with the goal of
optimizing energy usage and minimizing memory foot-
print. This work does not target low latency operations
as a design goal – in fact, a lookup operation may need
to follow chains of index pages on flash to locate a key,
hence involving multiple flash reads.

FlashDB [33] is a self-tuning B+-tree based index that
dynamically adapts to the mix of reads and writes in
the workload. Like MicroHash, this design also targets
memory and energy constrained sensor network devices.
Because a B+-tree needs to maintain partially filled leaf-
level buckets on flash, appending of new keys to these
buckets involves random writes, which is not an efficient
flash operation. Hence, an adaptive mechanism is also
provided to switch between disk and log-based modes.
The system leverages the fact that key values in sensor
applications have a small range and that at any given
time, a small number of these leaf-level buckets are ac-
tive. Minimizing latency is not an explicit design goal.

The benefits of using flash in a log-like manner have
been exploited in FlashLogging [15] for synchronous
logging. This system uses multiple inexpensive USB
drives and achieves performance comparable to flash
SSDs but with much lower price. Flashlogging assumes
sequential workloads.

Gordon [14] uses low power processors and flash
memory to build fast power-efficient clusters for data-
intensive applications. It uses a flash translation layer

design tailored to data-intensive workloads. In contrast,
ChunkStash builds a persistent key-value store using ex-
isting flash devices (and their FTLs) with throughput
maximization as the main design goal.

FAWN [11] uses an array of embedded processors
equipped with small amounts of flash to build a power-
efficient cluster architecture for data-intensive comput-
ing. Like ChunkStash, FAWN also uses an in-memory
hash table to index key-value pairs on flash. The dif-
ferentiating aspects of ChunkStash include its adapta-
tion for the specific server-class application of inline
storage deduplication and in its use of a specialized
in-memory hash table structure with cuckoo hashing
to achieve high hash table load factors (while keeping
lookup times bounded) and reduce RAM usage. More-
over, ChunkStash can reduce RAM usage significantly
by indexing a small fraction of chunks per container with
negligible loss in deduplication quality – this exploits the
specific nature of storage deduplication application.

BufferHash [10] builds a content addressable mem-
ory (CAM) system using flash storage for networking
applications like WAN optimizers. It buffers key-value
pairs in RAM, organized as a hash table, and flushes the
hash table to flash when the buffer is full. Past copies of
hash tables on flash are searched using a time series of
Bloom filters maintained in RAM and searching keys on
a given copy involve multiple flash reads. Moreover, the
storage of key-value pairs in hash tables on flash wastes
space on flash, since hash table load factors need to be
well below 100% to keep lookup times bounded. In con-
trast, ChunkStash is designed to access any key using
one flash read, leveraging cuckoo hashing and compact
key signatures to minimize RAM usage of a customized
in-memory hash table index.

6 Conclusion

We designed ChunkStash to be used as a high through-
put persistent key-value storage layer for chunk metadata
for inline storage deduplication systems. To this end, we
incorporated flash aware data structures and algorithms
into ChunkStash to get the maximum performance bene-
fit from using SSDs. We used enterprise backup datasets
to drive and evaluate the design of ChunkStash . Our
evaluations on the metric of backup throughput (MB/sec)
show that ChunkStash outperforms (i) a hard disk in-
dex based inline deduplication system by 7x-60x, and
(ii) SSD index (hard disk replacement but flash unaware)
based inline deduplication system by 2x-4x. Building
on the base design, we also show that the RAM usage
of ChunkStash can be reduced by 90-99% with only a
marginal loss in deduplication quality.
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