
Towards scalable modular checking of user-defined
properties

Thomas Ball1, Brian Hackett2, Shuvendu K. Lahiri1

Shaz Qadeer1, and Julien Vanegue1

1 Microsoft
2 Stanford University

Abstract. Theorem-prover based modular checkers have the potential to per-
form scalable and precise checking of user-defined properties by combining path-
sensitive intraprocedural reasoning with user-defined procedure abstractions. How-
ever, such tools have seldom been deployed on large softwareapplications of in-
dustrial relevance due to the annotation burden required toprovide the procedure
abstractions.
In this work, we present two case studies of applying a modular checker HAVOC
to check properties on large modules in the Microsoft Windows operating system.
The first detailed case study describes checking the synchronization protocol of a
core Microsoft Windows component with more than 300 thousand lines of code
and 1500 procedures. The effort found 45 serious bugs in the component with
modest annotation effort and low false alarms; most of thesebugs have since been
fixed by the developers of the module. The second case study reports preliminary
user experience in using the tool for checking security related properties in several
Windows components. We describe our experience in using a modular checker to
create various property checkers for finding errors in a well-tested applications
of this scale, and our design decisions to find them with low false alarms, modest
annotation burden and high coverage.

1 Introduction

Developing and maintaining systems software such as operating systems kernels and
device drivers is a challenging task. They consist of modules often exceeding several
hundred thousand to millions of lines of code written in low-level languages such as C
and C++. In many cases, these modules evolve over several decades where the original
architects or developers have long ago departed. Such software may become fragile
through the accumulation of new features, performance tuning and bug fixes, often
done in an ad-hoc manner. Given the astronomical number of paths in any real program,
testing can only cover a relatively very small fraction of the paths in a module. Bugs
found in the field often occur in these rarely exercised paths.

Static analysis tools provide an attractive alternative totesting by helping find de-
fects without requiring concrete inputs. However, the applicability of completely auto-
matic static tools is limited due to several factors:

– First, most static analysis tools checkgenericproperties of code such as buffer
overrun, null dereference or absence of data-races. These checkers are notextensi-

ble, i.e., they cannot be easily augmented to create a checker for a new user-defined
property — testing still remains the only way to check such properties.

– Second, most scalable static analysis tools are based on specific abstract domains
or dataflow facts. These tools generate numerous false alarms when the property
being checked depends on system-specific invariants that fall outside the scope of
the analysis. This happens particularly when the property depends on the heap —
even when the property being checked is a generic property asabove.

– Finally, more extensible tools (such as those based on predicate abstraction) have
scalability problems to large modules because they try to automatically find a proof
of the property by searching an unbounded space of proofs. They rely on various
automated refinement strategies which are not robust enoughto generate all non-
trivial invariants for large modules.

Contract-based modular checkers such asESC/Java [17], Spec# [4], HAVOC[5]
andVCC[9] have the potential to perform scalable checking of user-defined properties.
These checkers share the following strengths:

1. They provide the operational semantics of the underlyingprograms irrespective
of the property being checked. This is in stark contrast to static analyzers based on
data-flow analysis or abstract interpretation, which require defining abstract seman-
tics for each new property.

2. They use a theorem prover to perform precise intraprocedural analysis for loop-free
and call-free programs, in the presence of contracts for loop and called procedures.

3. They provide an extensible contract language to specify the properties of interest,
and contracts. The use of theorem provers allow rich contracts to be specified, when
required, to remove false alarms.

4. Generic interprocedural contract inference techniques(e.g. Houdini [16]) exist to
infer contracts to relieve the user from manually annotating the entire module. By
allowing the user to provide a restricted space of procedureabstractions (contracts)
to search for proofs, the approach allows the user to aid the analysis to find proofs
in a scalable fashion.

5. Finally, the presence of contracts provideincrementalchecking across changes to
procedures without reanalyzing the entire module, and the contracts can serve as
valuable documentation for maintaining these large codebases.

In spite of the potential benefits offered by modular checkers, such tools have been
seldom deployed successfully on large software applications of industrial relevance. We
believe this is due to the following limitations:

1. The annotation burden for checking a property on such a large code-base can be
substantial, and can often be several times the size of the source code. Although
contract inference has been proposed to relieve the user burden, previous work in
ESC/Java [16, 15] does not allow for inferring user-defined contracts. We provide
one particular way for inferring a class of contracts from module invariants [21],
but it has not been shown to scale to modules considered in this work.

2. The problem of capturing the side-effect of each procedure and aliasing between
pointers can be difficult. Various ownership and encapsulation methodologies have

been proposed [4], but they impose restrictions on the heap manipulation that are
often not satisfied by low-level systems code.

3. Finally, there is a lack of good case studies illustratingthe feasibility of using such a
tool on real-world software to provide value in discoveringhard-to-find bugs, with
modest investment of user effort.

In this paper, we present a feasibility study of using contract-based modular check-
ers for cost-effective checking of user-defined propertieson large modules of indus-
trial relevance. We first describe our experience with applying the modular checker
HAVOC[5, 20] on a core component COMP of the Windows kernel — the name of the
module and the code fragments have been modified for proprietary reasons. The code
base has more than 300 thousand lines of C code and has evolvedover two decades. The
module has over 1500 procedures, with some of the proceduresbeing a few thousand
lines long — a result of the various feature additions over successive versions. For this
component, we specified and checked properties related to the synchronization protocol
governing the management of its main heap allocated data structures. The correctness
checking of the protocol was decomposed into checking for correct reference counting,
proper lock usage, absence of data races and ensuring that objects are not accessed after
being reclaimed (teardown race). Verification of these properties required expressing
many system-specific intermediate invariants (see Section2) that are beyond the capa-
bilities of existing static analysis tools. The highlightsof the effort that was conducted
over a period of two months were:

1. We found 45 bugs in the COMP module that were confirmed by the developers and
many of them have been fixed at the time of writing. Most of these bugs appear
along error recovery paths indicating the mature and well-tested nature of the code
and signifying the ability of modular checkers to detect subtle corner cases.

2. The checking required modest annotation effort of about 250 contracts for speci-
fying the properties and operating system model, 600 contracts for procedure con-
tracts. The contract inference generated around 3000 simple contracts, a bulk of the
required annotation effort, to relieve the need for annotating such a large code base.
This corresponds to roughly one manual contract per 500 lines of code, or one per
2.5 procedures.

3. The tool currently reports 125 warnings, including the 45confirmed bugs, when
the checker runs on the annotated code base. The extra warnings are violations of
intermediate contracts that can be reduced with additionalcontracts.

Next, we report on preliminary user experience in using the tool for checking secu-
rity related properties in several other Windows components. Various property checkers
have been constructed usingHAVOCto check for correct validation of user pointers, and
restricted class of exploitable buffer overrun problems. The tool has been deployed on
more than 1.3 million lines of code across three or four largecomponents each measur-
ing several hundred thousand lines of code. The effort has yielded around 15 security
vulnerabilities that have been already patched.

We describe the challenges faced in using a modular checker for finding errors in
well-tested applications of this scale, and our design decisions to find them with low
false alarms, modest contract burden and high coverage. Ourdecisions allowed us to

typedef struct _LIST_ENTRY{
struct _LIST_ENTRY * Flink, * Blink;

} LIST_ENTRY, * PLIST_ENTRY;

typedef struct _NODEA{
PERESOURCE Resource;
LIST_ENTRY NodeBQueue;
...

} NODEA, * PNODEA;

typedef struct _NODEB{
PNODEA ParentA;
ULONG State;
LIST_ENTRY NodeALinks;
...

} NODEB, * PNODEB;

#define CONTAINING_RECORD(addr, type, field)\
((type *)((PCHAR)(addr) - \

(PCHAR)(&((type *)0)->field))) \

//helper macros
#define ENCL_NODEA(x) \

CONTAINING_RECORD(x, NODEA, NodeBQueue) \
#define ENCL_NODEB(x) \

CONTAINING_RECORD(x, NODEB, NodeALinks) \

Fig. 1. Data structures and macros used in the example.

achieve an order of magnitude less false alarms compared to previous case studies us-
ing modular checkers [16], while working on C modules almostan order more complex
than these previous case studies. We believe that the studies also contribute by identify-
ing areas of further research to improve the applicability of these modular checkers in
the hands of a user.

2 Overview

In this section, we use the example of checking data-race freedom on the main data
structures of COMP to illustrate some of complexities of checking properties of systems
software with low-false alarms. In particular, we show thatprecise checking of even a
generic property such as data-race freedom often requires:

– contracts involving pointer arithmetic and aliasing,
– conditional contracts, and
– type invariants to capture aliasing relationships.

Such requirements are clearly beyond the capabilities of existing automated soft-
ware analysis tools that scale to such large components. This justifies the use of mod-
ular checkers that involve the users to decompose the problem using domain-specific
knowledge.

We first describe high-level details of the data structure and the synchronization
protocol, some procedures manipulating these structures,and finally the contracts to
check the absence of data-races.

2.1 Data structures

Figure 1 describes a few types for the heap-allocated data structures in COMP. The
typeLIST ENTRYis the generic type for (circular) doubly-linked lists in most of Win-
dows source code. It contains two fieldsFlink and Blink to obtain theforward
andbackwardsuccessors of aLIST ENTRYnode respectively in a linked list. An ob-
ject of typeNODEAcontains a list of children objects of typeNODEBusing the field

Blink

Flink

NodeBQueue

Resource

NODEA

Blink

Flink

NodeALinks

ParentA

State

Blink

Flink

NodeALinks

ParentA

State

Blink

Flink

NodeALinks

ParentA

State

NODEB NODEB NODEB

Fig. 2.The list ofNODEBchildren of aNODEA.

NodeBQueue. Figure 2 describes the shape of the children list for anyNODEAobject.
Each childNODEBnode also maintains pointers to itsparentNODEAobject with the
ParentA field.

The macroCONTAININGRECORD(defined in Figure 1) takes a pointeraddr to
an internal fieldfield of a structure of typetype and returns the pointer to the
enclosing structure by performing pointer arithmetic. Thehelper macrosENCLNODEA
andENCLNODEBuses theCONTAININGRECORDmacro to obtain pointers to enclos-
ing NODEAandNODEBstructures respectively, given a pointer to theirLIST ENTRY
fields. TheCONTAININGRECORDmacro is frequently used and is a major source of
pointer arithmetic.

Since these objects can be accessed from multiple threads, one needs a synchroniza-
tion mechanism to ensure the absence of data-races on the fields of these objects. Each
NODEAstructure maintains a fieldResource , which is a pointer to anERESOURCE
structure that implements a reader-writer lock. The lock not only protects accesses to
the fields in theNODEAstructure but additionally also protects the fieldsNodeALinks ,
ParentA andState in all of its NODEBchildren.

2.2 Procedures

Figure 3 describes three procedures that manipulate theNODEAandNODEBobjects.
Contracts are denoted byrequires , ensures and loop inv . ClearChild
takes aNODEAobjectNodeA and clears a maskStateMask from theState field of
anyNODEBchild that has this mask set. It uses the procedureFindChild in a loop
to find all the children that have theStateMask set and then clears the mask on the
child by callingClearState . Finally, the procedureFindChild iterates over the
children for aNODEAobject and returns either the first child that has the mask set, or
NULL if no such child exists.

To encode the data-race freedom property on the fields ofNODEAandNODEBob-
jects, we introduce assertions that each access (read or write) to a field is guarded by

#define __resA(x) __resource(‘‘NODEA_RES’’,x)
#define __resrA_held(x) __resA(x) > 0

VOID ClearChild(PNODEA NodeA, ULONG StateMask) {
AcquireNodeAExcl(NodeA);
PNODEB NodeB;
FindChild(NodeA, StateMask, &NodeB);

__loop_inv(NodeB != NULL ==> NodeB->ParentA == NodeA)
while (NodeB != NULL) {

ClearState(NodeB, StateMask);
FindChild(NodeA, StateMask, &NodeB);

}
ReleaseNodeA(NodeA);

}

__requires(__resrA_held(NodeA))
__ensures (* PNodeB != NULL ==> (* PNodeB)->ParentA == NodeA)
VOID FindChild(PNODEA NodeA, ULONG StateMask, PNODEB * PNodeB) {

PLIST_ENTRY Entry = NodeA->NodeBQueue.Flink;

__loop_inv(Entry != &NodeA->NodeBQueue ==> ENCL_NODEB(E ntry)->ParentA == NodeA)
while (Entry != &NodeA->NodeBQueue) {

PNODEB NodeB = ENCL_NODEB(Entry);
if (NodeB->State & StateMask != 0) {

* PNodeB = NodeB; return;
}
Entry = Entry->FLink;

}
* PNodeB = NULL; return;

}

__requires(__resrA_held(NodeB->ParentA))
VOID ClearState(PNODEB NodeB, ULONG StateMask) {

NodeB->State &= ˜StateMask;
}

Fig. 3.Procedures and contracts for data-race freedom.

the Resource lock in the appropriateNODEAobject. The three procedures clearly
satisfy data-race freedom since the lock on theNODEAobject is acquired by a call to
AcquireNodeAExcl before any of the operations.

2.3 Contracts

Now, let us look at the contracts required byHAVOCto verify the absence of the data-
race in the program. The procedureClearState has aprecondition(an assertion
inside requires) that theResource field of the NodeB->ParentA is held
at entry; this ensures that the access toNodeB->State is properly protected. The

resrA held(x) macro expands to resource (“NODEARES”, x > 0), which
checks the value of aghost field“NODEARES” inside x . The integer valued ghost
field “NODEARES” tracks the state of the re-entrantResource lock in aNODEAob-
ject — a positive value denotes that theResource is acquired. For brevity, we skip
the contracts forAcquireNodeAExcl andReleaseNodeA , which increments and
decrements the value of the ghost field, respectively.

#define FIRST_CHILD(x) x->NodeBQueue.Flink
#define NEXT_NODE(x) x->NodeALinks.Flink

__type_invariant(PNODEA x){
ENCL_NODEA(FIRST_CHILD(x)) != x ==>
ENCL_NODEB(FIRST_CHILD(x))->ParentA == x

)

__type_invariant(PNODEB y){
NEXT_NODE(y) != &(y->ParentA->NodeBQueue) ==>
y->ParentA == ENCL_NODEB(NEXT_NODE(y))->ParentA

)

Fig. 4. Type invariants forNODEAandNODEBtypes.

The procedureFindChild has a similar precondition on theNodeA parameter.
The procedure also has apostcondition(an assertion insideensures) that captures
the child-parent relationship between the out parametersPNodeBandNodeA.

Let us inspect the contracts onClearChild . We need aloop invariant(an asser-
tion inside loop inv) to ensure the precondition ofClearState inside the loop.
The loop invariant states thatNodeB is a child ofNodeA when it is notNULL. The
postcondition ofFindChild ensures that the loop invariant holds at the entry of the
loop and also is preserved by an arbitrary iteration of the loop.

Finally, consider the loop invariant in procedureFindChild : the loop invariant
is required for both proving the postcondition of the procedure, as well as to prove the
absence of a data-race onNodeB->State inside the loop. This loop invariant does
not follow directly from the contracts on the procedure and the loop body.

To prove this loop invariant, we specify twotype invariantsfor NODEAandNODEB
objects using the type invariant annotation in Figure 4. The type invariant on
any NODEAobjectx states that if the children list ofx is non-empty then the parent
field ParentA of the first child points back tox . The type invariant for anyNODEB
objecty states that if the next object in the list is not the head of thecircular list, then
the nextNODEBobject in the list has the same parent asy . The two type invariants
capture important shape information of the data structuresand together imply that all
theNODEBobjects in the children list ofNodeA point toNodeA.

3 Background onHAVOC

In this section, we provide some background onHAVOC, including the contract lan-
guage, the modular checker and an interprocedural contractinference. In addition to
the details ofHAVOCdescribed in earlier works [5, 6], we describe the main additions
to the tool for this paper. This includes adding support forresourcesandtype invariants
in contracts, and the instrumentation techniques.

3.1 Contracts

Our contracts are similar in spirit to those found inESC/Java [17] for Java programs,
but are designed for verifying systems programs written in C. We provide an overview

of the subset of contracts that are used in this work. Throughout this paper, we use the
terms “contracts” and “annotations” interchangeably, although the former is primarily
used to express an assertion. More details of the contract language are described in the
HAVOC user manual1.

Procedure contracts and loop invariants.Procedure contracts consist of precon-
ditions, postconditions and modifies clauses. Therequires contract specifies a pre-
condition that holds at the entry to a procedure. This assertion is assumed when ana-
lyzing the body of the procedure and checked at all call-sites of the procedure. The

ensures contract specifies a postcondition that holds at exit from the procedure.
The modifies contract specifies a set of locations that are possibly modified by
the procedure; it generates a postcondition thatall other locations in the heap remain
unchanged. The postconditions are checked when analyzing the body of the procedure,
and assumed at all call-sites for the procedure.

The loop inv contract specifies a loop invariant — an assertion that holdsevery
time control reaches the head of the loop. The assertion should hold at entry to the loop,
and should be preserved across an arbitrary iteration of theloop.

Contract expressions.A novel feature of our contract language is that it allows
most call-free and side-effect free C expressions in the assertions. The assertions can re-
fer to user defined macros, thereby allowing complex assertions to be constructed from
simpler ones. We allow reference to the return value of a procedure with the return
keyword. The postconditions may also refer to the state at the entry to the procedure
using the old keyword as follows:

__ensures (__return == __old(* x) + 1)
__modifies (x)
int Foo (int * x) { * x = * x + 1; return * x;}

Resources.In addition to the C program expressions, we allow the contracts to
refer to ”ghost fields” (calledresources) of objects. Resources are auxiliary fields in
data structures meant only for the purpose of specification and manipulated exclusively
through contracts. We allow the user to useresource(name, expr) to refer to
the value of the ghost fieldname in expr . The contract

modifies resource(name, expr)

specifies that the resourcename is possibly modified atexpr . Consider the following
contract on the procedureReleaseNodeA that releases theResource field of a
NODEAobject:

#define __resrA(x) __resource(‘‘NODEA_RES’’, x)
#define __modA(x) __modifies_resource(‘‘NODEA_RES’’, x)

#define __releasesA(x) \
__requires (__resrA(x) > 0) \
__ensures (__resrA(x) == __old(__resrA(x)) - 1)\
__modA(x) \

__releasesA(NodeA)
void ReleaseNodeA (NODEA NodeA);

Type invariants. Figure 4 illustrates type invariants for theNODEAand NODEB
types, using the type invariant contract. Type invariants specify assertions that

1 Available at http://research.microsoft.com/projects/havoc/

hold for all objects of a given type. Such invariants typically hold at all control locations
except for a handful of procedures where an object is being initialized or being torn
down, or may be broken locally inside a basic block (e.g. whenan NODEBobject is
added as a child forNODEA). The user has the flexibility to specify the control locations
where he or she expects the invariants to be temporarily violated.

3.2 Modular checker

In this section, we provide a brief overview of the checker for verifying an annotated
procedure. Interested readers can find more details in otherworks [5]. The main en-
abling techniques in the checker are:

Accurate memory model for C.HAVOCprovides a faithful operational semantics
for C programs accounting for the low-level operations in systems code. It treats every
C pointer expression (including addresses of stack allocated variables, heap locations,
and values stored in variables and the heap) uniformly as integers. The heap is modeled
as a mutable map or an arrayMemmapping integers to integers. A structure corresponds
to a sequence of pointers and each field corresponds to a compile-time offset within the
structure. A pointer dereference* e corresponds to a lookup ofMemat the addresse
and an update* x = y is translated as an update toMemat addressx with valuey .
Contract expressions are translated in a similar fashion.

Given an annotated C program, the tool translates the annotated source into an an-
notatedBoogiePL [12] program, a simple intermediate language with precise opera-
tional semantics and support for contracts. The resulting program consists of scalars and
maps, and all the complexities of C (pointer arithmetic, & operations, casts etc.) have
been compiled away at this stage. Example of the translationcan be found in earlier
work [6].

Precise verification conditions.HAVOCuses theBoogie [4] verifier on the gen-
eratedBoogiePL file to construct a logical formula called theverification condition
(VC). The VC is a formula whose validity implies that the program does not go wrong
by failing one of the assertions or the contracts. Moreover,it ensures that the VC gen-
erated for a loop-free and call-free program is unsatisfiable if and only if the program
does not go wrong by failing any assertion or contract present in the code. This is in
sharp contrast to most other static analysis tools that loseprecision at merge points.

Scalable checking using SMT solvers.The validity of the VC is checked using a
state-of-the-artSatisfiability Modulo Theories(SMT) solverZ3 [11]. SMT solvers are
extensions of the Boolean Satisfiability (SAT) solvers thathandle differentlogical theo-
ries such as equality with uninterpreted functions, arithmeticand arrays. These solvers
leverage the advances in SAT solving with powerful implementation of theory specific
algorithms. These tools can scale to large verification conditions by leveraging conflict-
driven learning, smart backtracking and efficient theory reasoning. The modular anal-
ysis with efficient SMT solvers provides a scalable and relatively precise checker for
realistic procedures up to a few thousand lines large.

3.3 Interprocedural contract inference

HAVOC, like any other procedure-modular checker, requires contracts for called pro-
cedures. We have implemented a contract inference algorithm in HAVOCbased on the
Houdini [16] algorithm inESC/Java . The algorithm takes as input a partially anno-
tated module along with a finite set ofcandidate contractsfor each procedure in the
module, and outputs a subset of the candidates that are validcontracts for the module.
The candidate contracts are specified by providing an expression inside c requires,
c ensures and c loop inv contracts. For example, the candidate contracts on a

procedureFoo are shown below:

__c_requires (x != NULL)
__c_ensures (__return > __old(* x))
int Foo (int * x) { * x = * x + 1; return * x;}

The Houdini algorithm performs a fixed point algorithm as follows: Initially, the
contract for each procedure is the union of the user-provided contracts and the set of
candidate contracts. At any iteration, it removes a candidate contract that can be violated
during a modular checking of a procedure. The algorithm terminates when the set of
candidate contracts does not change.

3.4 Instrumentation

HAVOCalso provides different ways for instrumenting the source code with additional
contracts (either candidate or normal ones), to relieve theuser of manually annotating
large modules with similar assertions. The two principle mechanisms of instrumentation
are:

– Access-instrumentation: The user can direct the tool to add any assertion at every
(read, write or both) access to either (i) a global variable,(ii) all objects of a given
type, or (iii) fields of objects of a given type.

– Function-instrumentation: The user can also direct the tool to add a contract (pos-
sibly a candidate contract) to every procedure with a parameter of a given type.

These instrumentations are extremely useful to define properties and thereafter pop-
ulate candidate contracts of a given kind. For example, to specify that any access to a
field x->f of an objectx of given typeT is always protected by a lockx->lock , we
use theaccess-instrumentationfeature to add an assertionx->lock being held before
any access tox->f . On the other hand, one can use thefunction-instrumentationfea-
ture to populate a class of candidate contracts on all the procedures in a module. For in-
stance, we can add a candidate precondition that the lockx->ParentA->Resource
is acquired, for any procedure that has a parameterx (to be substituted with the formal
parameter) of typeNODEB. Note that in the original implementation inESC/Java , the
Houdini algorithm was used with a fixed set of candidate contracts — namely for check-
ing non-null assertions, index-out-of-bound errors etc. on parameters and return values.
The ability to add user-defined candidate contracts is extremely crucial for allowing the
user to leverage the contract inference while checking user-defined properties.

4 Challenges and design decisions

In this section, we describe the challenges we faced in applying HAVOCto well-tested
codebases of this complexity. We also outline the design decisions that have enabled us
to find serious bugs with relatively low false alarms, modestannotation effort and high
coverage (particularly on COMP).

4.1 Aliasing

Checking properties that depend on the heap can be difficult because of indirect ac-
cesses by pointers; this is because different pointer expressions can evaluate to the same
heap location. The problem affects modular checkers as it isnot natural to express alias-
ing constraints as procedure contracts, and may require substantial annotation burden.
Finally, the problem is worse for C programs where the addresses of any two fields
&x->f and &y->g can be aliased, due to the lack of type safety. This results innu-
merous false alarms while checking properties that depend on the heap. We introduce
two sources ofjustifiable assumptionsthat allow us to check the desired properties by
separating concerns about type-safety of the program as explicit assumptions.

– Field safety.We assume that the addresses of two differentword-typefields (fields
that are not nested structures or unions) can never alias, i.e., &x->f and &y->g
cannot be equal, wheneverf andg are distinct fields. This assumption is mostly
maintained with the exception of cases where the program exploits structural sub-
typingwhereby two structures with identical layout of types are considered equiva-
lent, even though the field names might differ. The user only needs to specify these
exceptions to the tool using additional contracts.

– Type assumptions.Many aliasing and non-aliasing constraints can be capturedby
type invariants similar to the ones shown in Figure 4. These invariants are estab-
lished after object initialization and are violated at veryfew places temporarily.
The type invariants are currently assumed but not asserted,and help to reduce false
positives significantly when dealing with unbounded sets ofobjects in lists.

Although, both field-safety and the type invariants can be verified in HAVOC[6, 20,
21], they require reasoning with quantifiers and the annotation overhead can be fairly
high. Discharging these obligations would improve the confidence in the results of the
property checking.

4.2 Modifies clauses

Modifies clauses are used to specify the side-effect of a procedure on the globals and
the heap. Specifying a precise set of modified locations for the heap and the resources
may require significant annotation burden. On one hand, using coarse-grained modifies
information may result in invalidating relevant facts at call sites needed for checking a
property; on the other hand, the checker would complain if the specified locations do not
contain the locations that are actually modified. Various ownership and encapsulation

methodologies have been proposed [4], but they impose restrictions on the heap ma-
nipulation that are often not satisfied by low-level systemscode. For soundness, these
methodologies impose additional assertions in the programthat might require substan-
tial annotation overhead to discharge.

We have found the two following strategies to achieve a low annotation overhead
without sacrificing significant coverage.

Property state modifies: To keep the annotation burden low for checking, we decided
to make the modifies clauses for the heap unchecked, i.e., they are assumed at the call
sites, but not checked as postconditions. However, for the resources in the property, we
require the user to specify sound modifies clauses. Althoughthis introduces unsound-
ness in our checking and may suppress real bugs, we found it tobe pragmatic tradeoff
based on the following observation: most of the pointer fields in the program that point
to other objects in the heap and define theshapeof data structures are immutable with
very few exceptions. For instance, theParentA in a NODEBobject is set after initial-
ization and remains immutable afterwards. A quick grep revealed that theParentA
field in aNODEBobject is read at least in 1100 places in the source, however it is writ-
ten to at only 8 places, mostly in the creation path. For fieldslike ReferenceCount
in NODEAobjects that form part of a property, we maintain a resource to track the value
of this field, and thereby support sound modifies clauses.

OUT parameter modifies: Making the modifies clausefree for fields in the heap al-
most allowed us to avoid specifying modifies clauses for the fields in the heap. However,
we found the need for specifying modifies clauses foroutparameters of a procedure to
avoid the following situation that is quite common in systems code:

void Bar(.., PSCB * LocalScb);

void Foo(...){
PSCB LocalScb = NULL;
....
Bar(..., &LocalScb);
...
if (LocalScb){...}
...

}

If we do not provide a modifies clause forBar to indicate that the heap has changed
at the location&LocalScb , the checker would assume the code inside thethen-branch
of “ if(LocalScb) ” is unreachable, and therefore be unsound. To avoid this, weused
the contract inference to infer modifies clauses for the parameters that are used as out
parameters.

4.3 Interactive contract inference

The typical use of the contract inference engine was to infera set of simple contracts
that would hold for a large number of procedures, possibly with a few exceptions. The
inference relieves the user by finding the exception set without having to manually in-
spect the complex call graph. For example, for checking data-race freedom, we inferred
the set of procedures where the lockResource in a NODEAobject is held. This can
be achieved by creating candidate contracts about this lockbeing held on all procedures
that have either aNODEAor aNODEBas a parameter or return value.

void CreateChild(PNODEA NodeA, ATTRIBUTE attr,...){
PNODEB NodeB;
AcquireNodeAExcl(NodeA);
CreateNodeB(NodeA, &NodeB,..);
Initialize1(NodeB, attr,...);
...

}

__ensures((* PNodeB)->ParentA == NodeA)
void CreateNodeB(PNODEA NodeA, PNODEB * PNodeB,..);

void Initialize1(PNODEB NodeB, ..){

<modify ParentA, State fields in NodeB >
Initialize2(NodeB, ...);

}

void Initialize2(PNODEB NodeB,..){
<modify ParentA, State fields in NodeB>
Initialize3(NodeB, ...);

}

Fig. 5. Procedure calls chains

However, the precision of the inference crucially depends on the existing con-
tracts. These contracts could have been manually specified or inferred previously. An
attempt to infer contracts without being cognizant of otherconstraints on the mod-
ule can lead to significant loss of precision. Consider the Figure 5, where the proce-
dureCreateChild creates a child ofNodeA in CreateNodeB and then initializes
different parts of the child object and other data structures through several layers of
deeply nested calls. Suppose we are interested in inferringthe procedures where the
Resource in an NODEAobject is held, to check for data-race freedom. Unless the
contract onCreateNodeB is already specified, the inference engine fails to discover
thatNodeB->ParentA->Resource is held at entry to all theInitializeX pro-
cedures. The contract onCreateNodeB is more difficult to infer since it involves two
objectsPNodeBandNodeA.

Therefore, the process of adding manual contracts and applying inference was cou-
pled with the feedback from each step driving the other.

4.4 Exceptions

COMP (and several other modules in Windows) usesStructured Exception Handling
(SEH) to deal with flow of control due to software and hardwareexceptions. In SEH,
the program can use eithertry / except blocks to implement an exception handler,
or try / finally blocks to deal with cleanup along both normal and exceptional
paths.

__try{
//guarded code

} __except (expr) {
//exception handler
//code

}

__try{
//guarded code

} __finally{
//termination code

}

To model exceptions, we introduced a resource variablethrown to denote whether
a procedure call raises an exception. The variable is reset to FALSEat entry to any pro-
cedure, is set toTRUEwhenever a kernel procedure that could raise an exception (e.g.

KeRaiseStatus or ExAllocatePoolWithTag) returns with an exception, and
is reset toFALSEonce the exception is caught by an exception handler inexcept .
We introduced a new contract macro:

#define __may_throw(WHEN) __ensures(!WHEN ==> !__thrown)

A procedure with a may throw (WHEN) contract denotes that the proceduredoes
not raise an exception if the conditionWHENdoes not hold at exit from the procedure.
This allows specifying may throw (TRUE) on one extreme to indicate that any call
to the procedure may throw an exception, andmay throw (FALSE) on the other
extreme to indicate that the procedureneverraises an exception. Every procedure in the
module also has a default modifies clause saying thatthrown can be modified by the
procedure.

The presence of exceptions increases the number of paths through a procedure,
since any called procedure can potentially throw an exception and jump to the exit. Our
initial attempt at ignoring the exceptional paths revealedvery few bugs, signifying the
well-tested nature and the maturity of the codebase.

To circumvent the problem, we used the inference engine to infer the set of proce-
dures in this module that do not raise an exception. We first annotated the kernel proce-
dures likeKeRaiseStatus with may throw (WHEN) to denote the constrains on
its inputsWHENunder which the procedure may throw an exception. Next, we added a
candidate contractmay throw (FALSE) to each procedur. The interprocedural infer-
ence algorithm removesmay throw (FALSE) from procedures that may potentially
raise an exception. The set of procedures on whichmay throw (FALSE) is inferred
denotes the procedures that never throw an exception. To improve the precision of in-
ference, we had to manually add contracts for internal procedures that could raise an
exception only under certain conditions.

5 Property checking onCOMP

5.1 COMP

In this section, we briefly describe the core driver COMP from the WindowsR©operating
system, and the synchronization protocol that was checked.For the sake of security,
we keep the component and the names of the procedures anonymous. The component
has around 300 thousand lines of code, excluding the sourcesfor the kernel procedures.
There are more than 1500 procedures present in the module. The code for the com-
ponent has evolved over almost two decades, and each new generation inherits a lot
of the code from the previous versions. Some of the procedures in the module have
up to 4,000 lines of code, signifying the complexity and the legacy nature of the code
base. COMP also heavily employs the MicrosoftStructured Exception Handling(SEH)
mechanism for C/C++ to deal with flow of control due to exceptions (discussed more
in Section 4.4).

We first provide a brief description of the synchronization protocol governing the
management of the main heap-allocated structures in COMP. We will focus on four
main type of objects:NODEthat is the root type which can contain multiple instances
of NODEA, NODEBandNODECtypes.

EachNODEhas anERESOURCEfield NodeResource and a mutexNodeMutex
for synchronization. TheERESOURCEstructure implements a reader-writer lock in
Windows that can be recursively acquired. TheNodeResource acts as a global lock
for access to anyNODEA, NODEBandNODECobjects within a givenNODE(i.e. it is
sufficient to acquire this lock to access any field in theNODEA, NODEBandNODEC
objects).

EachNODEAobject has a list ofNODEBchildren (as described in Section 2) and a
list of NODECchildren. EachNODEAhas aERESOURCEfield Resource that protects
most of its fields and the fields of its childrenNODEBandNODECobjects; eachNODEA
also has a mutexNodeAMutex that protects a set of other fields in eachNODEAand
its NODEBandNODECchildren.

EachNODEAalso has an integer fieldReferenceCount that signifies the num-
ber of threads that have a handle on a particularNODEAobject — a positive value of
ReferenceCount on anNODEAobject indicates that some thread has a handle on
the object and therefore can’t be freed.

There is a global listExclusiveNodeAList of all theNODEAobjects for which
theResource has been acquired. A call to the procedureReleaseNodeAResources
releases theResource field of anyNODEAon theExclusiveNodeAList .

5.2 Properties

COMP has a synchronization protocol governing the creation, usage and reclamation
of the objects in a multi-threaded setting. The synchronization is implemented by a
combination of reference counting, locks and other counters in these objects, and is
specific to this module. The integrity of the protocol depends on several properties
whose violations can lead to serious bugs:

1. Ref-count usage.We checked that for every execution path, the increments and
decrements of theReferenceCount field of a NODEAobject are balanced. Decre-
menting the count without first incrementing could lead to freeing objects in use and a
net increment in this field would correspond to a resource leak, as theNODEAobject
will not be reclaimed.

2. Lock usage.We check for the violation of the locking protocol for the various
locks inNODEandNODEAobjects. For a mutex field, we check that the lock is acquired
and released in alternation; for a reader-writer lock whichcan be acquired recursively,
we check that each release is preceded by an acquire.

3. Data race freedom.This is roughly the property that we described in Section 2,
except that we monitor reads and writes for the other fields inthese objects too. Since
theNodeResource in aNODEobject acts a global lock, we need theResource field
in a NODEAobject be held only when the globalNodeResource lock is not held.

4. Teardown race freedom.We check for races between one thread freeing a
NODEAobject, and another thread accessing the same object. Any thread freeing a
NODEAobject must hold thatNODEA’s Resource exclusive, hold the parentNODE’s
NodeMutex , and ensure thatNODEA’s ReferenceCount is zero. Conversely, any
thread accessing aNODEAmusteitherhold theNODEA’s Resource shared or exclu-
sive, hold the parentNODE’s NodeMutex , or have incremented theReferenceCount
field. These rules ensure mutual exclusion between threads freeing and accessingNODEA

Annotations LOC
Property 250
Manual 600
Inferred 3000

Total 3850

Property # of bugs
Ref-count 14
Lock usage 12
Data races 13
Teardown 6

Total 45

Fig. 6. Annotation overhead and bugs.

objects, and any rule violation could lead to a teardown race. This is a domain-specific
property which requires the user to define the property.

5.3 Results

In this section, we describe our experience with applyingHAVOCon COMP. Figure 6
summarizes the annotation effort and the distribution of the 45 bugs found for the four
properties listed above. The “Property” annotations are specifications written to de-
scribe the property and also to specify the behavior of kernel procedures. The “Manual”
annotations correspond to procedure contracts, loop invariants and type invariants for
this module. Finally, the “Inferred” annotations are a set of contracts that are automati-
cally generated by the contract inference described in Section 3.3.

Currently, our checker runs on the annotated code for COMP, and generates 125
warnings over the approximately 1500 procedures in 93 minutes — this corresponds to
roughly 3.7 seconds spent analyzing each procedure on average. Most of the runtime
(roughly 70%) is spent in a non-optimized implementation for converting C programs
into BoogiePL programs, which can be significantly improved. Further, each source
file (roughly 60 of them in COMP) in the module can be analyzed separately, and hence
the process can be easily parallelized to reduce the runtime.

Out of the 125 warnings, roughly one third of the warnings correspond to con-
firmed violations of the four properties listed above. This is a fairly low false positive
rate, given that we have not invested in various domain-specific filters to suppress the
unlikely bugs.

In the following sections, we discuss details of a few bugs, the breakup of the man-
ual annotations and the inferred annotations, and the assumptions that might lead to
missed bugs.

5.4 Bugs found

In this section, we describe two representative bugs from the set of 45 violations to the
different properties. An interesting nature of most of the bugs is that they appear along
exceptional paths — paths where some procedure raises an exception. This suggests
the maturity and well-tested nature of the code as well as thefact thatHAVOCcan
find these subtle corner cases. Besides, some of these synchronization bugs are hard to
reproduce in a dynamic setting; the developers of the codebase suspected a leak in the
ReferenceCount field but had been unable to reproduce it.

...
__try{

...
NodeA = CreateNodeA(Context, ..);

if (!AcquireExclNodeA(Context, NodeA, NULL, ACQUIRE_DON T_WAIT)) {

NodeA->ReferenceCount += 1;
...
AcquireExclNodeA(Context, NodeA, NULL, 0);
...
NodeA->ReferenceCount -= 1;

}
...

} __finally {
...

}
...

Fig. 7. Reference count leak.
...
if (!AcquireExclNodeA(Context, NodeA, NULL, ACQUIRE_DON T_WAIT)) {

...
AcquireExclNodeA(Context, NodeA, NULL, 0);
...

}

SetFlag(NodeA->NodeAState, NODEA_STATE_REPAIRED);
...
PerformSomeTask(Context, ...);
...
if (FlagOn(ChangeContext.Flags, ...)) {

UpdateNodeAAndNodeB(Context, NodeA, ChangeContext.Fla gs);
}
...

Fig. 8. Data race onNODEAobject.

Reference count leak.Figure 7 illustrates an example of a bug that leads to a viola-
tion of the Ref-count usage property. In the example, an object NodeA of typeNODEA
is created inCreateNodeA and then an attempt is made to acquire theResource in
NodeA using the procedureAcquireExclNodeA . This procedure has the behavior
that it can return immediately or perform a blocking wait on theResource depend-
ing on whether the flagACQUIREDONTWAIT is specified or not. Hence, if the first
non-blocking acquire fails in theif statement, then it tries a blocking acquire. Be-
fore doing that, it increments theReferenceCount field to indicate a handle on
this NODEAobject; the field is decremented once theResource is acquired. How-
ever, if AcquireExclNodeA throws an exception, then thefinally block does
not decrement theReferenceCount field, and hence thisNODEAobject will always
have a spurious handle and will never be reclaimed.

Data-race. Figure 8 illustrates an example of data-race on the fields ofNODEA
object. The procedure first acquires theResource lock of an objectNodeA in the
first if block. The fields ofNodeA are modified in theSetFlag macro and in the
UpdateNodeAAndNodeB procedure. The access inSetFlag is protected by the
Resource lock. However, the procedurePerformSomeTask calls the procedure
ReleaseNodeAResources transitively with a deeply nested call chain, which might
release theResource lock in anyNODEAobject. This means that theResource lock

is not held at entry toUpdateNodeAAndNodeB , although the procedure expects this
lock to be held at entry to modify the fields ofNodeA.

5.5 Manual contracts

We classify the main source of manual contracts in this section. In addition to the alias-
ing constraints and type invariants described in Section 2,we also annotated a variety
of interesting conditional specifications and loop invariants.

Conditional specifications.Consider procedureAcquireExclNodeA that was
present in the two bugs described in Section 5.4 and its contract:

__acquire_nodeA_excl(NodeA, !__thrown && __return != FAL SE)
__ensures(!FlagOn(Flags, ACQUIRE_DONT_WAIT) && !__thro wn

==> __return != FALSE)
BOOLEAN AcquireExclNodeA (PCONTEXT Context,

PNODEA NodeA, PNODEB NodeB, ULONG Flags);

Recall (from Section 4.4) thatthrown indicates whether a procedure has a normal
return or an exceptional return. The first annotation (an annotation macro composed of

requires , ensures and modifies) describes the condition under which the
Resource field of NodeA parameter is acquired. The second annotation specifies
that if ACQUIREDONTWAIT flag is not set, and the procedure does not throw an
exception, then the return value is neverFALSE.

Loop invariants. We also specified loop invariants when the property being checked
depends on state modified inside a loop. The procedureClearChild in Figure 3 pro-
vides an example of such a loop invariant. But a more common form of loop invariant
arises due to the following code pattern:

BOOLEAN TryAcquireNodeA(PNODEA NodeA,..)
{

BOOLEAN AcquiredFlag = FALSE;
...
__try{

...
__loop_inv(AcquiredFlag == FALSE)
while (true) {

CallMightRaise1();
if (..){

AcquireNodeAExcl(NodeA);
AcquiredFlag = TRUE;
CallMightRaise2();
return TRUE;

}
}

} __finally {
...
if (AcquiredFlag)

ReleaseNodeA(NodeA);
...
return FALSE;

}
}

The callers ofTryAcquireNodeA expect that the procedure acquires the resource
of NodeA at normal exit. However, in the absence of the loop invariant, the checker
would report a false warning where theReleaseNodeA tries to release a resource

Contracts type # of inferred annot
May throw 914
NodeResource held 107
NodeMutex not held 674
NODEAResource held 360
NODEAResource release all210
OUT parameter modified 271
Parameter flag set 331

Total 2867

Fig. 9. Distribution of inferred contracts.

without first acquiring it. This happens because in the absence of the loop invariant, the
checker will report a path where the value ofAcquiredFlag is TRUEat the loop
head, the procedureCallMightRaise1 throws an exception and control reaches the

finally block.

5.6 Inferred contracts

HAVOC’s automatic inference capability generated a majority of the simple contracts
(around 3000 of them) and was crucial to the automation of thetool for such a complex
codebase (i.e. only 600 manually written contracts on around 1500 functions analyzed
by the tool).

Figure 9 summarizes the main classes of contracts that were generated using the
automated inference mechanism. In addition to the inference about may throw con-
tracts and modifies clauses for the out parameters of a procedure, we employed the
inference engine to infer a certain type-state property on some objects of typeNODEA
or NODEBon the procedures in the module.

1. May throw: as described in Section 4.4, this denotes the set of procedures that do
not raise an exception.

2. NodeResource held: infers a set of procedures where the lockNodeResource
on the globalNODEobject is held at entry to ensure data-race freedom.

3. NodeMutex not held: infers a set of procedures where theNodeMutex field of
the globalNODEis not held at entry. Since most procedures acquire and release this
lock locally inside a procedure, this contract is useful forproving that locks are not
acquired twice.

4. NODEAResource held: infers that theResource field for anNODEAparameter
or theResource field for the parent of anNODEBor NODECobject is held at
entry to a set of procedures. This along withNodeResource ensures absence of
data-races.

5. NODEAResource release all: infers the set of procedures that could release the
Resource of anyNODEAobject by a transitive call toReleaseNodeAResources .

6. OUT parameter modified: adds a modifies (x) contract for an out parameter
x that is modified inside a procedure, as described in Section 4.2.

7. Parameter flag set: infers a set of procedures where a certain field of a param-
eter is set toTRUEon entry to the procedures. The parameter captures the state
of computations that span multiple procedures and is threaded through the nested
procedure calls. The parameterContext in Figures 7 and Figure 8 is an example
of such a parameter.

5.7 Assumptions

HAVOCprovides a set of options that allows the user to introduce a class ofexplicit
assumptions into the verification, which can be enumerated and discharged later with
more contracts or a separate analysis. This allows the user of the tool to control the de-
gree of unsoundness in the verification, and to recover from them using more contracts.
This is in contrast to most other static analysis tools that bake these assumptions into the
analysis and there is no way to recover from them. There are three main sources of such
assumptions in our current analysis: (1) field safety, (2) type invariant assumptions and
(3) free modifies for the heap fields. The first two sources werediscussed in Section 4.1
and the third in Section 4.2.

Of the three options, we believe that both field safety and thetype invariants hold for
the module with very few exceptions and separate the proof ofthe high-level properties
from the proofs of type-safety and type/shape invariants. Eliminating the free modi-
fies clauses for the heap fields are the assumptions that we would like to eliminate to
increase the confidence in the checking.

5.8 False warnings

As mentioned earlier, the tool generates a total of 125 warnings, and roughly one third
of the warnings correspond to confirmed violations of the four properties listed above.
Unlike typical static analyzers, the remaining warnings are not violation of the prop-
erties being checked. Instead, most of these warnings are violations of intermediate
procedure contracts which were used to discharge the properties of interest.

Of course, the soundness of a modular proof can be compromised by the presence
of even a single warning. However, for large code bases, it isvery difficult to verify
everycontract. To obtain a balance, we require that the remainingwarnings are not
violations of automatically generated assertions (for theproperty), but rather violation
of user-specified contracts. The rationale being that user provided contracts are a result
of understanding the code, and have a good chance of being true (although they may
not be inductive). However, proving these contracts require adding contracts on other
fields of these structures, or devising a new template for contracts (e.g. checking which
fields of an object are non-null).

6 Security audit

In this section, we briefly describe preliminary experienceof applying HAVOCfor
checking security vulnerabilities in some of the modules inMicrosoft Windows. In spite

of extensive testing and the application of customized static analysis on these compo-
nents, these components still have bugs that make them vulnerable to malicious attacks.
Careful code audit is essential to safeguard the systems against such attacks, but manual
inspection is expensive and error-prone.

HAVOChas been deployed to check several properties whose violation can often
lead to exploitable attacks:

– ProbeBeforeUse: any pointer that can be passed by a user application (userpoint-
ers) to the kernel APIs must undergo a call to a procedureProbebefore it is deref-
erenced.

– UserDerefInTry: any dereference of a user pointer must happen inside atry
block,

– ProbeInTry: any call toProbeshould happen inside atry block to correctly deal
with cases when a user passes illegal pointers,

– Alloc0: ensure that the non-null buffer returned by callingmallocwith a size of zero
is handled safely. Although it is legal to call allocation procedures with a size of
zero, such allocations often lead to buffer overruns without proper safeguard [23].

Although the properties are simple, it is non-trivial to ensure the absence of these
bugs primarily due to deep call chains and the presence of deeply nested pointers. For
example, to check either theProbeBeforeUseor UserDerefInTry, one needs to know
whether any pointer that is dereferenced in the program can alias with one of the point-
ers that are reachable from the globals or parameters to the entry functions of the mod-
ule. There can be several thousand dereferences in a large module and validating each
of them (especially those in deeply nested procedures) can be challenging. On the other
hand, theAlloc0 property requires arithmetic reasoning as the allocation size could be
0 because of an overflow.

The properties were specified quite easily by adding suitable contracts toProbeand
mallocprocedures. We have analyzed several modules (with more than a million lines
across all of them) for various subset of these properties. We have created various infer-
ence for interprocedural reasoning including (a) propagation of information about the
pointers that have undergone a call toProbe, (b) the procedures that are always called
from within a try block, etc. Details of the inference and results are outsidethe scope
of this article, since this is a work in progress. In addition, the user had to provide some
annotations (in the order of a few hundred currently) manually. The effort has lead to
the discovery of four vulnerabilities related toProbeBeforeUseand around ten vulnera-
bilities related toAlloc0, all of which have been patched. The tool allows the auditor to
only inspect around 2-3% (for modules with around 3000 procedures) of all procedures
for warnings for theProbeBeforeUseproperties and around 10% of the allocation sites
for theAlloc0sites. We are working to further reduce these false alarms with better in-
ference, loop invariants etc. However, the ability for the user to construct these property
checkers and guide the inference to use the domain knowledgehas provided value in
focusing the time of an auditor on the more problematic procedures.

7 Related Work

There is a rich literature on static analysis tools for finding various defects in software
programs. We discuss some of these tools in this section, to perform a qualitative anal-
ysis of the strengths and weaknesses of using these tools forour case study.

Contract-based checkers.HAVOCis closely based on the principles ofESC/Java
[17] tool for Java programs andSpec# [4] tool for C# programs. The main difference
lies in our intent to analyze systems program written in C, that requires support for
low-level operations in both the source and the contract language. Secondly, although
ESC/Java was applied to real life Java programs to demonstrate the usefulness of con-
tract inference [16, 17], the tool did not allow the user to create customizable inference
for particular contracts. These tools have not been appliedto real progams of the scale
considered in this paper to find bugs in a cost-effective manner with low annotation
overhead.

SAL in an annotation language for documenting buffer related properties for C pro-
grams andespX is a checker for the language [18]. This is one of the few examples
of annotation based checker for a specific property. The language is not extensible, and
does not allow specifying new user-defined properties.

Dedicated property checkers.A majority of the numerous static analysis tools de-
veloped for systems software in the last decade fall in this category — we highlight
only a representative sample for the different properties that scale to several thousand
lines of code. Examples of data-race checkers includeRelay [24], LOCKSMITH[22],
RacerX [13]. CALYSTO[2] finds null dereference bugs in C programs by using SAT
solvers. TheASTRÉE analyzer [8] uses abstract interpretation [7] to prove the absence
of certain runtime errors such as buffer overruns, integer overflows in embedded safety-
critical software. Most of these tools do not require user annotations, use novel algo-
rithms based on data-flow analysis, often with the intent of finding bugs at the cost of
unsound assumptions.

Extensible property checkers.Tools such asSLAM[3], BLAST[19] andESP[10]
are examples of software model checkers that check a property by exhaustively ana-
lyzing models of C programs. Their property languages allowspecifying simple state-
machines over the typestate of objects, and can express simple lock usage properties.
These tools are most suited for checking properties on global variables, and lose preci-
sion and soundness when dealing with low-level operations and relationships between
objects in the heap. Our case study shows the need for both in checking the synchro-
nization protocol.

Meta-level compilation[14] provides compiler extensions to encode patterns of vi-
olations for system-specific properties in a state-machinelanguagemetal, which are
checked at compile time. The technique finds serious errors in systems code, but does
not attempt to maintain soundness or guarantees about the absence of such bugs. These
tools are suitable for describing bug patterns in a code, butonce again are poorly suited
for describing detailed properties of the heap (for examplethe absence of teardown
race).

Saturn [1] uses a logic programming framework to specify static analysis.Saturn
also uses a concrete operational semantics similar toHAVOC. While HAVOC’s meta-
theory is fixed and based on contracts, the meta-theory ofSaturn may be extended

by analyses expressed in a logic programming language. The ability to add inference
rules adds flexibility in analysis design but comes at two different costs. First, extend-
ing Saturn requires an expert analysis designer whereas extendingHAVOCcould be
done by a programmer simply by the use of contracts. Second, the meta-theory behind
the analyses is usually not proved correct and could therefore introduce unexpected
unsoundness into the system.

8 Conclusions

In this work, we have demonstrated the feasibility of applying contract-based checkers
for scalable user-defined property checking, and the challenges involved in scaling such
an approach to large code bases with modest annotation overhead, low false alarms,
without sacrificing a lot of coverage. Our work points out several immediate directions
of future work that would improve the usability of modular checkers such asHAVOCin
the hand of a user: better inference of conditional contracts can relieve a lot of annota-
tion burden, inference of modifies clauses will allow us to remove unsoundness issues
related to the unchecked modifies clauses, and finally, we need easy-to-use annotations
for specifying invariants at the level of types.

References

1. A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, andP. Hawkins. An overview of
the Saturn project. InWorkshop on Program Analysis for Software Tools and Engineering
(PASTE ’07), pages 43–48, 2007.

2. D. Babic and A. J. Hu. Structural abstraction of software verification conditions. InCom-
puter Aided Verification (CAV ’07), LNCS 4590, pages 366–378, 2007.

3. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction
of C programs. InProgramming Language Design and Implementation (PLDI ’01), pages
203–213, 2001.

4. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In Construction and Analysis of Safe, Secure and Interoperable Smart Devices (CASSIS ’05),
LNCS 3362, pages 49–69, 2005.

5. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić.A reachability predicate for an-
alyzing low-level software. InTools and Algorithms for the Construction and Analysis of
Systems (TACAS ’07), LNCS 4424, pages 19–33, 2007.

6. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and property
checking for low-level code. InPrinciples of Programming Languages (POPL ’09), pages
302–314, 2009.

7. P. Cousot and R. Cousot. Abstract interpretation : A Unified Lattice Model for the Static
Analysis of Programs by Construction or Approximation of Fixpoints. InPrinciples of Pro-
gramming Languages (POPL ’77), pages 238–252, 1977.

8. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTREÉ Analyzer. InEuropean Symposium on Programming (ESOP ’05), LNCS 3444,
pages 21–30, 2005.

9. M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. Vcc: Contract-based modular
verification of concurrent c. InInternational Conference on Software Engineering, (ICSE
’09), Companion Volume, pages 429–430, 2009.

10. M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive Program Verification in Polynomial
Time. In Programming Language Design and Implementation (PLDI ’02), pages 57–68,
2002.

11. L. de Moura and N. Bjorner. Efficient Incremental E-matching for SMT Solvers. InConfer-
ence on Automated Deduction (CADE ’07), LNCS 4603, pages 183–198, 2007.

12. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedurallanguage for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

13. D. R. Engler and K. Ashcraft. RacerX: effective, static detection of race conditions and
deadlocks. InSymposium on Operating Systems Principles (SOSP ’03), pages 237–252,
2003.

14. D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-
specific, programmer-written compiler extensions. InOperating Systems Design And Imple-
mentation (OSDI ’00), pages 1–16, 2000.

15. C. Flanagan and S. N. Freund. Type-based race detection for java. InPLDI, pages 219–232,
2000.

16. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java. InInterna-
tional Symposium of Formal Methods Europe (FME ’01), pages 500–517, 2001.

17. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended
static checking for Java. InProgramming Language Design and Implementation (PLDI’02),
pages 234–245, 2002.

18. B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checkingfor buffer overflows in the
large. In International Conference on Software Engineering (ICSE ’06), pages 232–241,
2006.

19. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazyabstraction. InPrinciples of
Programming Languages (POPL ’02), pages 58–70, 2002.

20. S. K. Lahiri and S. Qadeer. Back to the future: revisitingprecise program verification using
SMT solvers. InPrinciples of Programming Languages (POPL ’08), pages 171–182, 2008.

21. S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and T.Wies. Intra-module inference. In
Computer Aided Verification (CAV ’09), LNCS 5643, pages 493–508, 2009.

22. P. Pratikakis, J. S. Foster, and M. W. Hicks. LOCKSMITH: context-sensitive correlation
analysis for race detection. InProgramming Language Design and Implementation (PLDI
’06), pages 320–331, 2006.

23. J. Vanegue. Zero-sized heap allocations vulnerabilityanalysis.
24. J. W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on millions of lines of

code. InFoundations of Software Engineering (FSE ’07), pages 205–214, 2007.

