Towards scalable modular checking of user-defined
properties

Thomas Ball, Brian Hackett, Shuvendu K. Lahiti
Shaz Qadeér and Julien Vanegude

1 Microsoft
2 Stanford University

Abstract. Theorem-prover based modular checkers have the poteatiaért
form scalable and precise checking of user-defined prasdsii combining path-
sensitive intraprocedural reasoning with user-definedgutore abstractions. How-
ever, such tools have seldom been deployed on large sofapateations of in-
dustrial relevance due to the annotation burden requirpdaide the procedure
abstractions.

In this work, we present two case studies of applying a madilacker HAVOC
to check properties on large modules in the Microsoft Winsloperating system.
The first detailed case study describes checking the syniaat@n protocol of a
core Microsoft Windows component with more than 300 thoddares of code
and 1500 procedures. The effort found 45 serious bugs indhgonent with
modest annotation effort and low false alarms; most of thegs have since been
fixed by the developers of the module. The second case stpdytseoreliminary
user experience in using the tool for checking securityteelaroperties in several
Windows components. We describe our experience in usingdalaochecker to
create various property checkers for finding errors in a-ested applications
of this scale, and our design decisions to find them with |deefalarms, modest
annotation burden and high coverage.

1 Introduction

Developing and maintaining systems software such as apgraystems kernels and
device drivers is a challenging task. They consist of magloféen exceeding several
hundred thousand to millions of lines of code written in lvel languages such as C
and C++. In many cases, these modules evolve over seveadeewhere the original
architects or developers have long ago departed. Suchaeftmay become fragile
through the accumulation of new features, performancentuand bug fixes, often
done in an ad-hoc manner. Given the astronomical numbettio$ jraany real program,
testing can only cover a relatively very small fraction of fmaths in a module. Bugs
found in the field often occur in these rarely exercised paths

Static analysis tools provide an attractive alternativeesting by helping find de-
fects without requiring concrete inputs. However, the egalility of completely auto-
matic static tools is limited due to several factors:

— First, most static analysis tools chegknericproperties of code such as buffer
overrun, null dereference or absence of data-races. Thes&ers are naxtensi-

ble, i.e., they cannot be easily augmented to create a cheakanfew user-defined
property — testing still remains the only way to check suabperties.

— Second, most scalable static analysis tools are based officpdstract domains

or dataflow facts. These tools generate numerous false slaiman the property
being checked depends on system-specific invariants thatfaide the scope of
the analysis. This happens particularly when the propexpedds on the heap —
even when the property being checked is a generic propetip@ase.

— Finally, more extensible tools (such as those based ongatdabstraction) have

scalability problems to large modules because they try toraatically find a proof
of the property by searching an unbounded space of prooty fidly on various
automated refinement strategies which are not robust enouggnerate all non-
trivial invariants for large modules.

Contract-based modular checkers suck&€/Java [17], Spec# [4], HAVO(Q5]

andVCCI9] have the potential to perform scalable checking of wefined properties.
These checkers share the following strengths:

1.

They provide the operational semantics of the underlyragrams irrespective
of the property being checked. This is in stark contrastdticsanalyzers based on
data-flow analysis or abstract interpretation, which regidéfining abstract seman-
tics for each new property.

. They use atheorem prover to perform precise intrapraeddoalysis for loop-free

and call-free programs, in the presence of contracts fqr & called procedures.

. They provide an extensible contract language to speleéyptoperties of interest,

and contracts. The use of theorem provers allow rich corsttabe specified, when
required, to remove false alarms.

. Generic interprocedural contract inference technidaas Houdini [16]) exist to

infer contracts to relieve the user from manually annotgtive entire module. By

allowing the user to provide a restricted space of procedoséactions (contracts)
to search for proofs, the approach allows the user to aidriblysis to find proofs

in a scalable fashion.

. Finally, the presence of contracts providerementalchecking across changes to

procedures without reanalyzing the entire module, and timéracts can serve as
valuable documentation for maintaining these large coskeha

In spite of the potential benefits offered by modular chesksuch tools have been

seldom deployed successfully on large software applinatid industrial relevance. We
believe this is due to the following limitations:

1. The annotation burden for checking a property on suchgelaode-base can be

substantial, and can often be several times the size of irescode. Although
contract inference has been proposed to relieve the usdemuprevious work in
ESC/Java [16, 15] does not allow for inferring user-defined contradie provide
one particular way for inferring a class of contracts fromdule invariants [21],
but it has not been shown to scale to modules consideredsinvibrik.

. The problem of capturing the side-effect of each prooedind aliasing between

pointers can be difficult. Various ownership and encapmrahethodologies have

been proposed [4], but they impose restrictions on the hesmppulation that are
often not satisfied by low-level systems code.

3. Finally, there is a lack of good case studies illustratiregfeasibility of using such a
tool on real-world software to provide value in discoveriragd-to-find bugs, with
modest investment of user effort.

In this paper, we present a feasibility study of using cantteased modular check-
ers for cost-effective checking of user-defined propemiedarge modules of indus-
trial relevance. We first describe our experience with aipglfhe modular checker
HAVOQ5, 20] on a core componentdp of the Windows kernel — the name of the
module and the code fragments have been modified for prapyietasons. The code
base has more than 300 thousand lines of C code and has evgbkmto decades. The
module has over 1500 procedures, with some of the procetleirg a few thousand
lines long — a result of the various feature additions ovecsasive versions. For this
component, we specified and checked properties related gytichronization protocol
governing the management of its main heap allocated datetstes. The correctness
checking of the protocol was decomposed into checking fmecoreference counting,
proper lock usage, absence of data races and ensuring jhetsdire not accessed after
being reclaimed (teardown race). Verification of these priips required expressing
many system-specific intermediate invariants (see Sejitat are beyond the capa-
bilities of existing static analysis tools. The highliglfsthe effort that was conducted
over a period of two months were:

1. We found 45 bugs in the@vpr module that were confirmed by the developers and
many of them have been fixed at the time of writing. Most of ¢hbkags appear
along error recovery paths indicating the mature and veslietd nature of the code
and signifying the ability of modular checkers to detecttlBuborner cases.

2. The checking required modest annotation effort of ab&0t @ntracts for speci-
fying the properties and operating system model, 600 cotstfar procedure con-
tracts. The contract inference generated around 3000sicopitracts, a bulk of the
required annotation effort, to relieve the need for anmogeguch a large code base.
This corresponds to roughly one manual contract per 508 liieode, or one per
2.5 procedures.

3. The tool currently reports 125 warnings, including thecéBfirmed bugs, when
the checker runs on the annotated code base. The extra gsani@ violations of
intermediate contracts that can be reduced with additicortracts.

Next, we report on preliminary user experience in using tleéfor checking secu-
rity related properties in several other Windows composiérarious property checkers
have been constructed usiHg\VOQo check for correct validation of user pointers, and
restricted class of exploitable buffer overrun problentse Tool has been deployed on
more than 1.3 million lines of code across three or four lagaponents each measur-
ing several hundred thousand lines of code. The effort haldgdl around 15 security
vulnerabilities that have been already patched.

We describe the challenges faced in using a modular checkénfling errors in
well-tested applications of this scale, and our designgil@es to find them with low
false alarms, modest contract burden and high coveragedéunisions allowed us to

typedef struct _LIST_ENTRY{
struct _LIST_ENTRY *Flink, * Blink;
} LIST_ENTRY, =PLIST_ENTRY;

typedef struct _NODEA({
PERESOURCE Resource; #define CONTAINING_RECORD(addr, type, field)\
LIST_ENTRY NodeBQueue; ((type *)((PCHAR)(addr) - \
(PCHAR)(&((type ~ *)0)->field))) \
} NODEA, *PNODEA;
/Ihelper macros

typedef struct _NODEB{ #define ENCL_NODEA(x) \
PNODEA ParentA; CONTAINING_RECORD(x, NODEA, NodeBQueue) \
ULONG State; #define ENCL_NODEB(x) \
LIST_ENTRY NodeALinks; CONTAINING_RECORD(x, NODEB, NodeALinks) \

} NODEB, *PNODEB;

Fig. 1. Data structures and macros used in the example.

achieve an order of magnitude less false alarms compare@viops case studies us-
ing modular checkers [16], while working on C modules alnasbrder more complex

than these previous case studies. We believe that the staldi@contribute by identify-

ing areas of further research to improve the applicabilitthese modular checkers in
the hands of a user.

2 Overview

In this section, we use the example of checking data-raczlma on the main data
structures of ©MP to illustrate some of complexities of checking propertiesystems
software with low-false alarms. In particular, we show thicise checking of even a
generic property such as data-race freedom often requires:

— contracts involving pointer arithmetic and aliasing,
— conditional contracts, and
— type invariants to capture aliasing relationships.

Such requirements are clearly beyond the capabilities istieg automated soft-
ware analysis tools that scale to such large components.j$tifies the use of mod-
ular checkers that involve the users to decompose the prob#ng domain-specific
knowledge.

We first describe high-level details of the data structure e synchronization
protocol, some procedures manipulating these structaresfinally the contracts to
check the absence of data-races.

2.1 Data structures

Figure 1 describes a few types for the heap-allocated daiatstes in @mP. The
typeLIST _ENTRYis the generic type for (circular) doubly-linked lists in st@f Win-
dows source code. It contains two fielBEnk andBlink to obtain theforward
andbackwardsuccessors of BIST _ENTRYnode respectively in a linked list. An ob-
ject of typeNODEAcontains a list of children objects of tyd¢ODERusing the field

Resource
EEEE— S
VoL
NodeBQueue Vol
Vo

Flink -]
Blink

NODEA

ParentA ParentA ParentA
State State State

NodeALinks NodeALinks ceoe NodeALinks
Flink Flink _|— Flink
Blink Blink Blink
NODEB NODEB NODEB

Fig. 2. The list of NODER:hildren of aNODEA

NodeBQueue. Figure 2 describes the shape of the children list for MODEAobject.
Each childNODEBode also maintains pointers to fiarentNODEAobject with the
ParentA field.

The macrocCONTAININGRECORIMDdefined in Figure 1) takes a pointaddr to
an internal fieldfield of a structure of typdype and returns the pointer to the
enclosing structure by performing pointer arithmetic. Tieéper macroENCLNODEA
andENCLNODERises theONTAININGRECORIMacro to obtain pointers to enclos-
ing NODEAandNODEBstructures respectively, given a pointer to tHdi8BT _ENTRY
fields. TheCONTAININGRECORDnacro is frequently used and is a major source of
pointer arithmetic.

Since these objects can be accessed from multiple thremelageds a synchroniza-
tion mechanism to ensure the absence of data-races on tiedighese objects. Each
NODE/structure maintains a fielResource , which is a pointer to aERESOURCE
structure that implements a reader-writer lock. The lockordy protects accesses to
the fields in theNODEAtructure but additionally also protects the fidittsdeALinks
ParentA andState in all of its NODERhildren.

2.2 Procedures

Figure 3 describes three procedures that manipulatdN@BEAand NODEBobjects.
Contracts are denoted byequires , _ensures and__loop _inv . ClearChild
takes aNODEAbjectNodeA and clears a masktateMask from theState field of
any NODER:hild that has this mask set. It uses the procedumeChild in a loop
to find all the children that have tigtateMask set and then clears the mask on the
child by callingClearState . Finally, the procedur&indChild iterates over the
children for aNODEAobject and returns either the first child that has the maskoset
NULLif no such child exists.

To encode the data-race freedom property on the fieldéQIDEAANdNODEBRb-
jects, we introduce assertions that each access (readte) teria field is guarded by

#define __resA(x) __resource(*"NODEA_RES" x)
#define __resrA_held(x) _ resA(x) > 0

VOID ClearChild(PNODEA NodeA, ULONG StateMask) {
AcquireNodeAEXxcl(NodeA);
PNODEB NodeB;
FindChild(NodeA, StateMask, &NodeB);

__loop_inv(NodeB != NULL ==> NodeB->ParentA == NodeA)
while (NodeB != NULL) {

ClearState(NodeB, StateMask);

FindChild(NodeA, StateMask, &NodeB);

}
ReleaseNodeA(NodeA);
}

__requires(__resrA_held(NodeA))

__ensures (*PNodeB != NULL ==> (*PNodeB)->ParentA == NodeA)

VOID FindChild(PNODEA NodeA, ULONG StateMask, PNODEB * PNodeB) {
PLIST_ENTRY Entry = NodeA->NodeBQueue.Flink;

__loop_inv(Entry != &NodeA->NodeBQueue ==> ENCL_NODEB(E ntry)->ParentA == NodeA)
while (Entry !'= &NodeA->NodeBQueue) {
PNODEB NodeB = ENCL_NODEB(Entry);
if (NodeB->State & StateMask != 0) {
* PNodeB = NodeB; return;

}
Entry = Entry->FLink;

}
* PNodeB = NULL; return;
}

__requires(__resrA_held(NodeB->ParentA))

VOID ClearState(PNODEB NodeB, ULONG StateMask) {
NodeB->State &= "StateMask;

}

Fig. 3. Procedures and contracts for data-race freedom.

the Resource lock in the appropriatdNODEAobject. The three procedures clearly
satisfy data-race freedom since the lock on W@DEAobject is acquired by a call to
AcquireNodeAExcl before any of the operations.

2.3 Contracts

Now, let us look at the contracts required HAVOQo verify the absence of the data-
race in the program. The procedutéearState has aprecondition(an assertion
inside __requires) that theResource field of the NodeB->ParentA is held
at entry; this ensures that the accesNtmeB->State is properly protected. The
_resrA _held(x) macro expands taresource (“NODEARES, x > 0), which
checks the value of ghost field'NODEARES inside x. The integer valued ghost
field “NODEARES tracks the state of the re-entraRéesource lock in aNODEAb-
ject — a positive value denotes that tResource is acquired. For brevity, we skip
the contracts foAcquireNodeAExcl andReleaseNodeA , which increments and
decrements the value of the ghost field, respectively.

#define FIRST_CHILD(x) x->NodeBQueue.Flink
#define NEXT_NODE(x) x->NodeALinks.Flink

__type_invariant(PNODEA x){
ENCL_NODEA(FIRST_CHILD(x)) = x ==>
ENCL_NODEB(FIRST_CHILD(x))->ParentA == x

)

__type_invariant(PNODEB y){
NEXT_NODE(y) != &(y->ParentA->NodeBQueue) ==>
y->ParentA == ENCL_NODEB(NEXT_NODE(y))->ParentA

Fig. 4. Type invariants foNODEANdNODERypes.

The proceduré&indChild has a similar precondition on tidodeA parameter.
The procedure also hagastconditionan assertion insideensures) that captures
the child-parent relationship between the out paramé&iiedeB andNodeA.

Let us inspect the contracts @iearChild . We need doop invariant(an asser-
tion inside__loop _inv) to ensure the precondition @flearState inside the loop.
The loop invariant states thatodeB is a child ofNodeA when it is notNULL The
postcondition ofFindChild ensures that the loop invariant holds at the entry of the
loop and also is preserved by an arbitrary iteration of tloplo

Finally, consider the loop invariant in proceddamdChild : the loop invariant
is required for both proving the postcondition of the pragexq as well as to prove the
absence of a data-race blodeB->State inside the loop. This loop invariant does
not follow directly from the contracts on the procedure a@mallbop body.

To prove this loop invariant, we specify tvigpe invariantfor NODEANdNODEB
objects using the_type _invariant annotation in Figure 4. The type invariant on
any NODEAobjectx states that if the children list of is non-empty then the parent
field ParentA of the first child points back t&. The type invariant for anWODEB
objecty states that if the next object in the list is not the head ofciheular list, then
the nextNODEBobject in the list has the same parentyasThe two type invariants
capture important shape information of the data structanestogether imply that all
the NODEBDbjects in the children list dlodeA point toNodeA.

3 Background onHAVOC

In this section, we provide some backgroundkdaVOCincluding the contract lan-
guage, the modular checker and an interprocedural conbfecence. In addition to
the details oHAVOGQ]escribed in earlier works [5, 6], we describe the main dofutt

to the tool for this paper. This includes adding supportésourcesandtype invariants

in contracts, and the instrumentation techniques.

3.1 Contracts

Our contracts are similar in spirit to those founda8C/Java [17] for Java programs,
but are designed for verifying systems programs written.ik\ provide an overview

of the subset of contracts that are used in this work. Througthis paper, we use the
terms “contracts” and “annotations” interchangeably@ligh the former is primarily
used to express an assertion. More details of the contragtitage are described in the
HAVOC user manual

Procedure contracts and loop invariants.Procedure contracts consist of precon-
ditions, postconditions and modifies clauses. Thequires contract specifies a pre-
condition that holds at the entry to a procedure. This asseis assumed when ana-
lyzing the body of the procedure and checked at all calksitethe procedure. The
__ensures contract specifies a postcondition that holds at exit froenpihocedure.
The __modifies contract specifies a set of locations that are possibly neatlisiy
the procedure; it generates a postcondition tlabther locations in the heap remain
unchanged. The postconditions are checked when analywrgody of the procedure,
and assumed at all call-sites for the procedure.

The__loop _inv contract specifies a loop invariant— an assertion that reMdsy
time control reaches the head of the loop. The assertiorighold at entry to the loop,
and should be preserved across an arbitrary iteration dbtpe

Contract expressions.A novel feature of our contract language is that it allows
most call-free and side-effect free C expressions in thertisas. The assertions can re-
fer to user defined macros, thereby allowing complex assertio be constructed from
simpler ones. We allow reference to the return value of agaore with the _return
keyword. The postconditions may also refer to the stateeaettiry to the procedure
using the__old keyword as follows:

__ensures (__return == __old(*X) + 1)
__modifies (x)
int Foo (int *X) { *x = *x + 1; return *X:}

Resources.In addition to the C program expressions, we allow the caigré
refer to "ghost fields” (calledesource} of objects. Resources are auxiliary fields in
data structures meant only for the purpose of specificatidmaanipulated exclusively
through contracts. We allow the user to usesource(name, expr) to refer to
the value of the ghost fieldame in expr . The contract

__modifies _resource(name, expr)
specifies that the resourname is possibly modified ag¢xpr . Consider the following

contract on the proceduriReleaseNodeA that releases thResource field of a
NODEAbject:

#define __resrA(x) __resource(“NODEA_RES”, x)
#define __modA(x) __modifies_resource(“NODEA_RES”, x)

#define __releasesA(x) \
__requires (__resrA(x) > 0) \
__ensures (__resrA(x) == __old(__resrA(x)) - 1)\
__modA(x) \

__releasesA(NodeA)
void ReleaseNodeA (NODEA NodeA);

Type invariants. Figure 4 illustrates type invariants for tid¢ODEAand NODEB
types, using the_type _invariant contract. Type invariants specify assertions that

! Available at http://research.microsoft.com/projecistc/

hold for all objects of a given type. Such invariants typlighbld at all control locations
except for a handful of procedures where an object is beiitiglined or being torn
down, or may be broken locally inside a basic block (e.g. waeNODEBobject is

added as a child fddODEMA The user has the flexibility to specify the control locato
where he or she expects the invariants to be temporarilatad|

3.2 Modular checker

In this section, we provide a brief overview of the checkerverifying an annotated
procedure. Interested readers can find more details in athies [5]. The main en-
abling techniques in the checker are:

Accurate memory model for C. HAVOGrovides a faithful operational semantics
for C programs accounting for the low-level operations isteyns code. It treats every
C pointer expression (including addresses of stack akoceariables, heap locations,
and values stored in variables and the heap) uniformly agéms. The heap is modeled
as a mutable map or an arrllemmapping integers to integers. A structure corresponds
to a sequence of pointers and each field corresponds to alestinpé offset within the
structure. A pointer derefereng@ corresponds to a lookup dflemat the addrese
and an updatex = y is translated as an update Memat addresx with valuey.
Contract expressions are translated in a similar fashion.

Given an annotated C program, the tool translates the aelgaurce into an an-
notatedBoogiePL [12] program, a simple intermediate language with precssra
tional semantics and support for contracts. The resultingnam consists of scalars and
maps, and all the complexities of C (pointer arithmetic, &rgiions, casts etc.) have
been compiled away at this stage. Example of the translationbe found in earlier
work [6].

Precise verification conditions. HAVOQuses theBoogie [4] verifier on the gen-
eratedBoogiePL file to construct a logical formula called thverification condition
(VC). The VC is a formula whose validity implies that the pragn does not go wrong
by failing one of the assertions or the contracts. Moredvensures that the VC gen-
erated for a loop-free and call-free program is unsatigidtand only ifthe program
does not go wrong by failing any assertion or contract preisethe code. This is in
sharp contrast to most other static analysis tools thatdosgision at merge points.

Scalable checking using SMT solversThe validity of the VC is checked using a
state-of-the-arBatisfiability Modulo Theorie€SMT) solverZ3 [11]. SMT solvers are
extensions of the Boolean Satisfiability (SAT) solvers tratdle differentogical theo-
ries such as equality with uninterpreted functions, arithmetid arrays. These solvers
leverage the advances in SAT solving with powerful impletatan of theory specific
algorithms. These tools can scale to large verification ttimm by leveraging conflict-
driven learning, smart backtracking and efficient theogsoming. The modular anal-
ysis with efficient SMT solvers provides a scalable and redst precise checker for
realistic procedures up to a few thousand lines large.

3.3 Interprocedural contract inference

HAVOCIlike any other procedure-modular checker, requires estdrfor called pro-
cedures. We have implemented a contract inference algoiitiHAVOased on the
Houdini [16] algorithm inESC/Java . The algorithm takes as input a partially anno-
tated module along with a finite set oandidate contract$or each procedure in the
module, and outputs a subset of the candidates that arecaalidacts for the module.
The candidate contracts are specified by providing an esioemside _c_requires,
__c_ensures and__c_loop_inv contracts. For example, the candidate contracts on a
procedurd-oo are shown below:

__c_requires (x != NULL)
__c_ensures (__return > __ old(* X))
int Foo (int *X) { *x = *x + 1; return * X}

The Houdini algorithm performs a fixed point algorithm adduais: Initially, the
contract for each procedure is the union of the user-pravimtracts and the set of
candidate contracts. At any iteration, it removes a candidantract that can be violated
during a modular checking of a procedure. The algorithm itesibes when the set of
candidate contracts does not change.

3.4 Instrumentation

HAVOGlso provides different ways for instrumenting the soummeecwith additional
contracts (either candidate or normal ones), to relieveiiez of manually annotating
large modules with similar assertions. The two principlehaisms of instrumentation
are:

— Access-instrumentatioifhe user can direct the tool to add any assertion at every
(read, write or both) access to either (i) a global variagileall objects of a given
type, or (iii) fields of objects of a given type.

— Function-instrumentationThe user can also direct the tool to add a contract (pos-
sibly a candidate contract) to every procedure with a patanod a given type.

These instrumentations are extremely useful to define ptiepand thereafter pop-
ulate candidate contracts of a given kind. For example, ézi§pthat any access to a
field x->f of an objecix of given typeT’ is always protected by a lock>lock , we
use theaccess-instrumentatideature to add an assertigrlock being held before
any access t@->f . On the other hand, one can use thection-instrumentatiofea-
ture to populate a class of candidate contracts on all theepltres in a module. For in-
stance, we can add a candidate precondition that thedodkarentA->Resource
is acquired, for any procedure that has a parametay be substituted with the formal
parameter) of typ®BlODEBNOote that in the original implementation&SC/Java , the
Houdini algorithm was used with a fixed set of candidate @otsr— namely for check-
ing non-null assertions, index-out-of-bound errors etcparameters and return values.
The ability to add user-defined candidate contracts is mhgcrucial for allowing the
user to leverage the contract inference while checkingdesfned properties.

4 Challenges and design decisions

In this section, we describe the challenges we faced in agpifAVOQo well-tested
codebases of this complexity. We also outline the desigisies that have enabled us
to find serious bugs with relatively low false alarms, modestotation effort and high
coverage (particularly on @vp).

4.1 Aliasing

Checking properties that depend on the heap can be diffieghiuse of indirect ac-
cesses by pointers; this is because different pointer egjmes can evaluate to the same
heap location. The problem affects modular checkers asdtinatural to express alias-
ing constraints as procedure contracts, and may requistasuial annotation burden.
Finally, the problem is worse for C programs where the adtie®f any two fields
&x->f and &->g can be aliased, due to the lack of type safety. This resulsiin
merous false alarms while checking properties that departi@heap. We introduce
two sources ojustifiable assumptionthat allow us to check the desired properties by
separating concerns about type-safety of the program disiergsumptions.

— Field safety.We assume that the addresses of two diffevenrt-typefields (fields
that are not nested structures or unions) can never akas&k->f and &y->g
cannot be equal, whenevkerandg are distinct fields. This assumption is mostly
maintained with the exception of cases where the progradoigsptructural sub-
typingwhereby two structures with identical layout of types aresidered equiva-
lent, even though the field names might differ. The user oabds to specify these
exceptions to the tool using additional contracts.

— Type assumptionsMany aliasing and non-aliasing constraints can be captuyed
type invariants similar to the ones shown in Figure 4. Thesariants are estab-
lished after object initialization and are violated at véeyw places temporarily.
The type invariants are currently assumed but not assemeihelp to reduce false
positives significantly when dealing with unbounded setshjécts in lists.

Although, both field-safety and the type invariants can bréfied in HAVO(6, 20,
21], they require reasoning with quantifiers and the aniostaiverhead can be fairly
high. Discharging these obligations would improve the awmiice in the results of the
property checking.

4.2 Modifies clauses

Modifies clauses are used to specify the side-effect of aguha® on the globals and
the heap. Specifying a precise set of modified locationshfetieap and the resources
may require significant annotation burden. On one handgusiarse-grained modifies
information may result in invalidating relevant facts all sites needed for checking a
property; on the other hand, the checker would complaireisiecified locations do not
contain the locations that are actually modified. Variousiemship and encapsulation

methodologies have been proposed [4], but they imposdatastis on the heap ma-
nipulation that are often not satisfied by low-level systerode. For soundness, these
methodologies impose additional assertions in the prodghatmmight require substan-
tial annotation overhead to discharge.

We have found the two following strategies to achieve a lowagation overhead
without sacrificing significant coverage.

Property state modifie3o keep the annotation burden low for checking, we decided
to make the modifies clauses for the heap unchecked, i.g.atkeassumed at the call
sites, but not checked as postconditions. However, fordbeurces in the property, we
require the user to specify sound modifies clauses. Althahighntroduces unsound-
ness in our checking and may suppress real bugs, we founthé ppagmatic tradeoff
based on the following observation: most of the pointer §iéfdthe program that point
to other objects in the heap and define shapeof data structures are immutable with
very few exceptions. For instance, tRarentA in aNODEBRbject is set after initial-
ization and remains immutable afterwards. A quick grep ate that theParentA
field in aNODEBbject is read at least in 1100 places in the source, howeigewrit-
ten to at only 8 places, mostly in the creation path. For fikk#sReferenceCount
in NODEAbjects that form part of a property, we maintain a resowd¢satk the value
of this field, and thereby support sound modifies clauses.

OUT parameter modifiedlaking the modifies clauseefor fields in the heap al-
most allowed us to avoid specifying modifies clauses for #idgiin the heap. However,
we found the need for specifying modifies clausesofiarparameters of a procedure to
avoid the following situation that is quite common in syssetnde:

void Bar(.., PSCB * LocalSch);

void Foo(...){
PSCB LocalScbh = NULL;

Bar(..., &LocalSch);

if (LocalSch){...}

If we do not provide a modifies clause Bar to indicate that the heap has changed
at the locatior&LocalScb , the checker would assume the code insidetike-branch
of “if(LocalScb) "is unreachable, and therefore be unsound. To avoid thisi.sed
the contract inference to infer modifies clauses for thematars that are used as out
parameters.

4.3 Interactive contract inference

The typical use of the contract inference engine was to iafeet of simple contracts
that would hold for a large number of procedures, possibth wifew exceptions. The
inference relieves the user by finding the exception setowithaving to manually in-
spect the complex call graph. For example, for checking-data freedom, we inferred
the set of procedures where the IdRksource in aNODEAobject is held. This can
be achieved by creating candidate contracts about thiddeirig held on all procedures
that have either BODEAr aNODERas a parameter or return value.

void CreateChild(PNODEA NodeA, ATTRIBUTE attr,...){
PNODEB NodeB;
AcquireNodeAExcl(NodeA);
CreateNodeB(NodeA, &NodeB,..);
Initialize1(NodeB, attr,...);

)

__ensures((*PNodeB)->ParentA == NodeA)
void CreateNodeB(PNODEA NodeA, PNODEB *PNodeB,..);

void Initializel(PNODEB NodeB, ..){

<modify ParentA, State fields in NodeB >
Initialize2(NodeB, ...);
}

void Initialize2(PNODEB NodeB,..){
<modify ParentA, State fields in NodeB>
Initialize3(NodeB, ...);

}

Fig. 5. Procedure calls chains

However, the precision of the inference crucially dependsthe existing con-
tracts. These contracts could have been manually specifiedesred previously. An
attempt to infer contracts without being cognizant of otbenstraints on the mod-
ule can lead to significant loss of precision. Consider thgife 5, where the proce-
dureCreateChild creates a child oNodeA in CreateNodeB and then initializes
different parts of the child object and other data structuteough several layers of
deeply nested calls. Suppose we are interested in infetihimgrocedures where the
Resource in an NODEAobject is held, to check for data-race freedom. Unless the
contract onCreateNodeB is already specified, the inference engine fails to discover
thatNodeB->ParentA->Resource is held at entry to all thénitializeX pro-
cedures. The contract @reateNodeB is more difficult to infer since it involves two
objectsPNodeB andNodeA.

Therefore, the process of adding manual contracts andiagphference was cou-
pled with the feedback from each step driving the other.

4.4 Exceptions

Comp (and several other modules in Windows) uS&tsictured Exception Handling
(SEH) to deal with flow of control due to software and hardwexeeptions. In SEH,
the program can use eithetry /__except blockstoimplementan exception handler,
or __try /_finally blocks to deal with cleanup along both normal and exceptiona
paths.

_try{

try{
/lguarded code —
} __except (expr) { } /;%ﬁlﬁed code
/lexception handler —

Jicode /ltermination code

}

To model exceptions, we introduced a resource variatileown to denote whether
a procedure call raises an exception. The variable is res< SE at entry to any pro-
cedure, is set td RUEwhenever a kernel procedure that could raise an exceptign (e

KeRaiseStatus or ExAllocatePoolWithTag) returns with an exception, and
is reset taFALSE once the exception is caught by an exception handlerixcept .
We introduced a new contract macro:

#define __may_throw(WHEN) _ ensures(lWHEN ==> |__thrown)

A procedure with a_may_throw (WHENcontract denotes that the proceddoes
notraise an exception if the conditidfHENIoes not hold at exit from the procedure.
This allows specifying_may_throw (TRUB on one extreme to indicate that any call
to the procedure may throw an exception, anthay_throw (FALSE) on the other
extreme to indicate that the procedueverraises an exception. Every procedure in the
module also has a default modifies clause saying thiaown can be modified by the
procedure.

The presence of exceptions increases the number of pathsgthia procedure,
since any called procedure can potentially throw an exoggtnd jump to the exit. Our
initial attempt at ignoring the exceptional paths revealexy few bugs, signifying the
well-tested nature and the maturity of the codebase.

To circumvent the problem, we used the inference enginefés the set of proce-
dures in this module that do not raise an exception. We firsdted the kernel proce-
dures likeKeRaiseStatus with __may_throw (WHENto denote the constrains on
its inputsWHENinder which the procedure may throw an exception. Next, vieda
candidate contractmay_throw (FALSE) to each procedur. The interprocedural infer-
ence algorithm removesmay_throw (FALSE) from procedures that may potentially
raise an exception. The set of procedures on whiofay_throw (FALSE) is inferred
denotes the procedures that never throw an exception. Tiimphe precision of in-
ference, we had to manually add contracts for internal mhoes that could raise an
exception only under certain conditions.

5 Property checking onCompP

5.1 Cowmp

In this section, we briefly describe the core driveyn@ from the Window&)operating
system, and the synchronization protocol that was chedkadthe sake of security,
we keep the component and the names of the procedures anosyfit@® component
has around 300 thousand lines of code, excluding the sofactiee kernel procedures.
There are more than 1500 procedures present in the modutecdde for the com-
ponent has evolved over almost two decades, and each newatgiendnherits a lot
of the code from the previous versions. Some of the proceduréhe module have
up to 4,000 lines of code, signifying the complexity and thbgacy nature of the code
base. @mP also heavily employs the Microsditructured Exception HandlinggEH)
mechanism for C/C++ to deal with flow of control due to excepsi (discussed more
in Section 4.4).

We first provide a brief description of the synchronizatigotpcol governing the
management of the main heap-allocated structuresamrC We will focus on four
main type of objectsNODRhat is the root type which can contain multiple instances
of NODEANODERNdNODEGQGypes.

EachNODHas arERESOURCHeld NodeResource and a mutexNodeMutex
for synchronization. ThR&ERESOURCKEtructure implements a reader-writer lock in
Windows that can be recursively acquired. ThedeResource acts as a global lock
for access to anNODEANODEBand NODEMbjects within a giverNODHE.e. it is
sufficient to acquire this lock to access any field in NODEANODEBand NODEC
objects).

EachNODE/Aobject has a list 0NODER:hildren (as described in Section 2) and a
list of NODEhildren. EactNODEAas &ERESOURCHeld Resource that protects
most of its fields and the fields of its childr&lODEBandNODE @bjects; eaciNODEA
also has a muteXodeAMutex that protects a set of other fields in ead®DEAand
its NODEBandNODEChildren.

EachNODEAlso has an integer fieleferenceCount that signifies the num-
ber of threads that have a handle on a particl@DEAobject — a positive value of
ReferenceCount on anNODE/Aobject indicates that some thread has a handle on
the object and therefore can't be freed.

There is a global lisExclusiveNodeAList of all theNODEAbjects for which
theResource hasbeen acquired. A call to the procedesteaseNodeAResources
releases thResource field of anyNODEAN theExclusiveNodeAList

5.2 Properties

Comp has a synchronization protocol governing the creationgeisand reclamation
of the objects in a multi-threaded setting. The synchrditnas implemented by a
combination of reference counting, locks and other cogntethese objects, and is
specific to this module. The integrity of the protocol depeid several properties
whose violations can lead to serious bugs:

1. Ref-count usageWe checked that for every execution path, the increments and
decrements of th®eferenceCount field of aNODEAobject are balanced. Decre-
menting the count without first incrementing could lead #efng objects in use and a
net increment in this field would correspond to a resourck, laa theNODEAobject
will not be reclaimed.

2. Lock usage.We check for the violation of the locking protocol for the iars
locks inNODEandNODEAbjects. For a mutex field, we check that the lock is acquired
and released in alternation; for a reader-writer lock wiiah be acquired recursively,
we check that each release is preceded by an acquire.

3. Data race freedom.This is roughly the property that we described in Section 2,
except that we monitor reads and writes for the other fieldhése objects too. Since
theNodeResource inaNODBbject acts a global lock, we need tResource field
in aNODE/Abject be held only when the globdbdeResource lock is not held.

4. Teardown race freedom.We check for races between one thread freeing a
NODE/Aobject, and another thread accessing the same object. AegdHreeing a
NODE/Abject must hold thallODEA Resource exclusive, hold the parelMODE
NodeMutex , and ensure thatODEA ReferenceCount is zero. Conversely, any
thread accessingMODEAnusteitherhold theNODEA Resource shared or exclu-
sive, hold the pareMODEs NodeMutex , or have incremented theferenceCount
field. These rules ensure mutual exclusion between threaeisn§ and accessiNODEA

Property |# of bugg
Ref-count 14
Lock usage 12
Datarace§ 13
Teardown 6

|Total | 45 |

Annotations|LOC
Property 250
Manual 600
Inferred 3000

Total 3850

Fig. 6. Annotation overhead and bugs.

objects, and any rule violation could lead to a teardown.r@bés is a domain-specific
property which requires the user to define the property.

5.3 Results

In this section, we describe our experience with applyit#/OGn Comp. Figure 6
summarizes the annotation effort and the distribution ef4h bugs found for the four
properties listed above. The “Property” annotations aexifigations written to de-
scribe the property and also to specify the behavior of Kgnmeedures. The “Manual”
annotations correspond to procedure contracts, loopianarand type invariants for
this module. Finally, the “Inferred” annotations are a datantracts that are automati-
cally generated by the contract inference described in@est3.

Currently, our checker runs on the annotated code foM€ and generates 125
warnings over the approximately 1500 procedures in 93 ragwt this corresponds to
roughly 3.7 seconds spent analyzing each procedure ongeaeviost of the runtime
(roughly 70%) is spent in a non-optimized implementationdenverting C programs
into BoogiePL programs, which can be significantly improved. Furtherhesaurce
file (roughly 60 of them in ©MP) in the module can be analyzed separately, and hence
the process can be easily parallelized to reduce the runtime

Out of the 125 warnings, roughly one third of the warningsrespond to con-
firmed violations of the four properties listed above. Tlsigifairly low false positive
rate, given that we have not invested in various domainiipditters to suppress the
unlikely bugs.

In the following sections, we discuss details of a few bulgs lireakup of the man-
ual annotations and the inferred annotations, and the gg&m that might lead to
missed bugs.

5.4 Bugs found

In this section, we describe two representative bugs framsét of 45 violations to the
different properties. An interesting nature of most of thg®bis that they appear along
exceptional paths — paths where some procedure raises aptext This suggests
the maturity and well-tested nature of the code as well afabethatHAVOCcan
find these subtle corner cases. Besides, some of these epimation bugs are hard to
reproduce in a dynamic setting; the developers of the catefaspected a leak in the
ReferenceCount field but had been unable to reproduce it.

_try
i\.llodeA = CreateNodeA(Context, ..);
if (lAcquireExcINodeA(Context, NodeA, NULL, ACQUIRE_DON T_WAIT)) {
NodeA->ReferenceCount += 1,
,If-.\.cquireEchNodeA(Context, NodeA, NULL, 0);

'l\.l.odeA—>ReferenceCount =1

v finally {
=

Fig. 7. Reference count leak.

if (1AcquireExciNodeA(Context, NodeA, NULL, ACQUIRE_DON T_WAIT) {

AcquireExcINodeA(Context, NodeA, NULL, 0);

}
SetFlag(NodeA->NodeAState, NODEA_STATE_REPAIRED);
igerformSomeTask(Context,)

|f (FlagOn(ChangeContext.Flags, ...)) {
UpdateNodeAAndNodeB(Context, NodeA, ChangeContext.Fla gs);
}

Fig. 8. Data race oiNODEAbject.

Reference count leakFigure 7 illustrates an example of a bug that leads to a viola-
tion of the Ref-count usage property. In the example, anabbjedeA of type NODEA
is created irCreateNodeA and then an attempt is made to acquireResource in
NodeA using the procedurAcquireExcINodeA . This procedure has the behavior
that it can return immediately or perform a blocking wait b Resource depend-
ing on whether the flagdCQUIREDONTWAIT is specified or not. Hence, if the first
non-blocking acquire fails in thé# statement, then it tries a blocking acquire. Be-
fore doing that, it increments thiReferenceCount field to indicate a handle on
this NODEAobject; the field is decremented once fResource is acquired. How-
ever, if AcquireExcINodeA throws an exception, then thefinally block does
not decrement thReferenceCount field, and hence thisSODEAbbject will always
have a spurious handle and will never be reclaimed.

Data-race. Figure 8 illustrates an example of data-race on the fieldSS@DEA
object. The procedure first acquires tResource lock of an objectNodeA in the
firstif block. The fields oNodeA are modified in theSetFlag macro and in the
UpdateNodeAAndNodeB procedure. The access 8etFlag is protected by the
Resource lock. However, the procedurteéerformSomeTask calls the procedure
ReleaseNodeAResources transitively with a deeply nested call chain, which might
release th&®esource lock in anyNODEAbject. This means that thesource lock

is not held at entry ttJpdateNodeAAndNodeB , although the procedure expects this
lock to be held at entry to modify the fields NbdeA.

5.5 Manual contracts

We classify the main source of manual contracts in this sectn addition to the alias-
ing constraints and type invariants described in Sectiome2also annotated a variety
of interesting conditional specifications and loop invatia

Conditional specifications.Consider procedur@cquireExcINodeA that was
present in the two bugs described in Section 5.4 and its acttr

__acquire_nodeA_excl(NodeA, !__thrown && _ return != FAL SE)
__ensures(!FlagOn(Flags, ACQUIRE_DONT_WAIT) && !__thro wn

==> _ return != FALSE)
BOOLEAN AcquireExcINodeA (PCONTEXT Context,

PNODEA NodeA, PNODEB NodeB, ULONG Flags);

Recall (from Section 4.4) thatthrown indicates whether a procedure has a normal
return or an exceptional return. The first annotation (arotation macro composed of
__requires ,__ensures and__modifies) describes the condition under which the
Resource field of NodeA parameter is acquired. The second annotation specifies
that if ACQUIREDONTWAIT flag is not set, and the procedure does not throw an
exception, then the return value is net/@y SE

Loop invariants. We also specified loop invariants when the property beinglda:
depends on state modified inside a loop. The proce@lgarChild in Figure 3 pro-
vides an example of such a loop invariant. But a more common & loop invariant
arises due to the following code pattern:

BOOLEAN TryAcquireNodeA(PNODEA NodeA,..)
BOOLEAN AcquiredFlag = FALSE;

;try{

__loop_inv(AcquiredFlag == FALSE)
while (true) {
CallMightRaisel();
it (.1
AcquireNodeAExcl(NodeA);
AcquiredFlag = TRUE;
CallMightRaise2();
return TRUE;
}

}
} _finally {

|f (AcquiredFlag)
ReleaseNodeA(NodeA);

return FALSE:
}

The callers offiryAcquireNodeA expectthat the procedure acquires the resource
of NodeA at normal exit. However, in the absence of the loop invayitm checker
would report a false warning where tfeleaseNodeA tries to release a resource

Contracts type # of inferred annot

May throw 914
NodeResource held 107
NodeMutex not held 674

NODEAResource held 360
NODEAResource release aJR10
OUT parameter modified |271
Parameter flag set 331

|Total |2867

Fig. 9. Distribution of inferred contracts.

without first acquiring it. This happens because in the atisefnthe loop invariant, the
checker will report a path where the valueAéquiredFlag is TRUEat the loop
head, the procedur@allMightRaisel throws an exception and control reaches the
_finally block.

5.6 Inferred contracts

HAVOG automatic inference capability generated a majorityhaf $imple contracts
(around 3000 of them) and was crucial to the automation ofdbkfor such a complex
codebase (i.e. only 600 manually written contracts on addis00 functions analyzed
by the tool).

Figure 9 summarizes the main classes of contracts that vesrergted using the
automated inference mechanism. In addition to the inferabout _may_throw con-
tracts and modifies clauses for the out parameters of a puoeedie employed the
inference engine to infer a certain type-state propertyamesobjects of typ&lODEA
or NODEBN the procedures in the module.

1. May throw: as described in Section 4.4, this denotes the set of proestheit do
not raise an exception.

2. NodeResource held: infers a set of procedures where the IbiddeResource
on the globaNODEobject is held at entry to ensure data-race freedom.

3. NodeMutex not held: infers a set of procedures where tHedeMutex field of
the globalNODEs not held at entry. Since most procedures acquire andsetbis
lock locally inside a procedure, this contract is usefulfmving that locks are not
acquired twice.

4. NODEAResource held: infers that theResource field for anNODEAarameter
or theResource field for the parent of atNODEBor NODEMbiject is held at
entry to a set of procedures. This along withdeResource ensures absence of
data-races.

5. NODEAResource release all:infers the set of procedures that could release the
Resource of anyNODE/Abject by a transitive call tReleaseNodeAResources

6. OUT parameter modified: adds a_modifies (x) contract for an out parameter
x that is modified inside a procedure, as described in Sectin 4

7. Parameter flag set:infers a set of procedures where a certain field of a param-
eter is set toTRUEonN entry to the procedures. The parameter captures the state
of computations that span multiple procedures and is tle@#dough the nested
procedure calls. The paramet@ontext in Figures 7 and Figure 8 is an example
of such a parameter.

5.7 Assumptions

HAVOQorovides a set of options that allows the user to introduckssafexplicit
assumptions into the verification, which can be enumerateddéscharged later with
more contracts or a separate analysis. This allows the @isiee tool to control the de-
gree of unsoundness in the verification, and to recover frlmtusing more contracts.
This is in contrast to most other static analysis tools thittthese assumptions into the
analysis and there is no way to recover from them. There age thain sources of such
assumptions in our current analysis: (1) field safety, (Bgtinvariant assumptions and
(3) free modifies for the heap fields. The first two sources wiayeussed in Section 4.1
and the third in Section 4.2.

Of the three options, we believe that both field safety andyjpe invariants hold for
the module with very few exceptions and separate the protieoliigh-level properties
from the proofs of type-safety and type/shape invarianfisaiating the free modi-
fies clauses for the heap fields are the assumptions that wigl Vikeito eliminate to
increase the confidence in the checking.

5.8 False warnings

As mentioned earlier, the tool generates a total of 125 wasjiand roughly one third
of the warnings correspond to confirmed violations of the fmmoperties listed above.
Unlike typical static analyzers, the remaining warnings @ot violation of the prop-
erties being checked. Instead, most of these warnings atations of intermediate
procedure contracts which were used to discharge the prepef interest.

Of course, the soundness of a modular proof can be comprdrjsthe presence
of even a single warning. However, for large code bases,veiyg difficult to verify
everycontract. To obtain a balance, we require that the remainiaigiings are not
violations of automatically generated assertions (forgtaperty), but rather violation
of user-specified contracts. The rationale being that usetiged contracts are a result
of understanding the code, and have a good chance of beiadalthough they may
not be inductive). However, proving these contracts regaitding contracts on other
fields of these structures, or devising a new template fotraots (e.g. checking which
fields of an object are non-null).

6 Security audit

In this section, we briefly describe preliminary experiemteapplying HAVOCfor
checking security vulnerabilities in some of the moduldgliarosoft Windows. In spite

of extensive testing and the application of customizedcstatalysis on these compo-
nents, these components still have bugs that make themrabliedo malicious attacks.
Careful code audit is essential to safeguard the systenirsshgach attacks, but manual
inspection is expensive and error-prone.

HAVOGhas been deployed to check several properties whose violatin often
lead to exploitable attacks:

— ProbeBeforeUseany pointer that can be passed by a user applicatiserpoint-
ers) to the kernel APIs must undergo a call to a proceBupbebefore it is deref-
erenced.

— UserDerefInTry any dereference of a user pointer must happen insidérna
block,

— ProbelnTry any call toProbeshould happen inside_ atry block to correctly deal
with cases when a user passes illegal pointers,

— AllocO: ensure that the non-null buffer returned by callmgllocwith a size of zero
is handled safely. Although it is legal to call allocatioropedures with a size of
zero, such allocations often lead to buffer overruns witlpsaper safeguard [23].

Although the properties are simple, it is non-trivial to eresthe absence of these
bugs primarily due to deep call chains and the presence giiylaested pointers. For
example, to check either tHerobeBeforeUs®r UserDerefInTry one needs to know
whether any pointer that is dereferenced in the program lcaswsith one of the point-
ers that are reachable from the globals or parameters tothefanctions of the mod-
ule. There can be several thousand dereferences in a lardy@ersind validating each
of them (especially those in deeply nested procedures)eahdilenging. On the other
hand, theAllocO property requires arithmetic reasoning as the allocatios could be
0 because of an overflow.

The properties were specified quite easily by adding swtadhtracts té°robeand
mallocprocedures. We have analyzed several modules (with moneathaillion lines
across all of them) for various subset of these propertiesh&Ve created various infer-
ence for interprocedural reasoning including (a) propagatf information about the
pointers that have undergone a calRmwbe (b) the procedures that are always called
fromwithin a__try block, etc. Details of the inference and results are outsidscope
of this article, since this is a work in progress. In addiittre user had to provide some
annotations (in the order of a few hundred currently) madgu#he effort has lead to
the discovery of four vulnerabilities relatedRsobeBeforeUsand around ten vulnera-
bilities related toAllocO, all of which have been patched. The tool allows the auddtor t
only inspect around 2-3% (for modules with around 3000 pdaces) of all procedures
for warnings for theProbeBeforeUseroperties and around 10% of the allocation sites
for the AllocO sites. We are working to further reduce these false alarrishvetter in-
ference, loop invariants etc. However, the ability for tiserto construct these property
checkers and guide the inference to use the domain knowleagerovided value in
focusing the time of an auditor on the more problematic pilaces.

7 Related Work

There is a rich literature on static analysis tools for figduarious defects in software
programs. We discuss some of these tools in this sectiorgrfonm a qualitative anal-
ysis of the strengths and weaknesses of using these toasifaase study.

Contract-based checkersHAVOQGs closely based on the principles®$C/Java
[17] tool for Java programs arf8bec# [4] tool for C# programs. The main difference
lies in our intent to analyze systems program written in @t flequires support for
low-level operations in both the source and the contraguage. Secondly, although
ESC/Java was applied to real life Java programs to demonstrate ttfelngss of con-
tract inference [16, 17], the tool did not allow the user teate customizable inference
for particular contracts. These tools have not been apdiedal progams of the scale
considered in this paper to find bugs in a cost-effective reamrnith low annotation
overhead.

SAL in an annotation language for documenting buffer relateg@ities for C pro-
grams andespX is a checker for the language [18]. This is one of the few examp
of annotation based checker for a specific property. Thelagg is not extensible, and
does not allow specifying new user-defined properties.

Dedicated property checkers A majority of the numerous static analysis tools de-
veloped for systems software in the last decade fall in thiegory — we highlight
only a representative sample for the different properties $cale to several thousand
lines of code. Examples of data-race checkers incRelay [24], LOCKSMITH22],
RacerX [13]. CALYSTQZ] finds null dereference bugs in C programs by using SAT
solvers. TheASTREE analyzer [8] uses abstract interpretation [7] to prove tigeace
of certain runtime errors such as buffer overruns, integerftows in embedded safety-
critical software. Most of these tools do not require useradations, use novel algo-
rithms based on data-flow analysis, often with the intentrafifig bugs at the cost of
unsound assumptions.

Extensible property checkers.Tools such aSLAM[3], BLAST[19] andESP[10]
are examples of software model checkers that check a pyopgrexhaustively ana-
lyzing models of C programs. Their property languages aipecifying simple state-
machines over the typestate of objects, and can expressesiot usage properties.
These tools are most suited for checking properties on gl@beables, and lose preci-
sion and soundness when dealing with low-level operatiodsralationships between
objects in the heap. Our case study shows the need for botieirkimg the synchro-
nization protocol.

Meta-level compilatiofil4] provides compiler extensions to encode patterns of vi-
olations for system-specific properties in a state-mackinguagemetal which are
checked at compile time. The technique finds serious emosgstems code, but does
not attempt to maintain soundness or guarantees aboutskee@bof such bugs. These
tools are suitable for describing bug patterns in a codepheg again are poorly suited
for describing detailed properties of the heap (for exantideabsence of teardown
race).

Saturn [1] uses alogic programming framework to specify statidgsia. Saturn
also uses a concrete operational semantics similatAgOCWhile HAVOG meta-
theory is fixed and based on contracts, the meta-theo8atirn may be extended

by analyses expressed in a logic programming language. Gitity &0 add inference
rules adds flexibility in analysis design but comes at twéedént costs. First, extend-
ing Saturn requires an expert analysis designer whereas exteft¥\(OCould be
done by a programmer simply by the use of contracts. Secbadneta-theory behind
the analyses is usually not proved correct and could thexefdroduce unexpected
unsoundness into the system.

8 Conclusions

In this work, we have demonstrated the feasibility of appdytontract-based checkers
for scalable user-defined property checking, and the agdiginvolved in scaling such
an approach to large code bases with modest annotationeadrtow false alarms,
without sacrificing a lot of coverage. Our work points outesg immediate directions
of future work that would improve the usability of modularecikers such adAvVOGn
the hand of a user: better inference of conditional cordrean relieve a lot of annota-
tion burden, inference of modifies clauses will allow us tmoge unsoundness issues
related to the unchecked modifies clauses, and finally, we @agy-to-use annotations
for specifying invariants at the level of types.

References

1. A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, an®. Hawkins. An overview of
the Saturn project. IWorkshop on Program Analysis for Software Tools and Enginge
(PASTE '07) pages 43-48, 2007.

2. D. Babic and A. J. Hu. Structural abstraction of softwaggfication conditions. IrCom-
puter Aided Verification (CAV '07LNCS 4590, pages 366—378, 2007.

3. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Autatic predicate abstraction
of C programs. IrProgramming Language Design and Implementation (PLDI, @Bges
203-213, 2001.

4. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# prograng system: An overview.
In Construction and Analysis of Safe, Secure and Interoper@hiart Devices (CASSIS '05)
LNCS 3362, pages 49-69, 2005.

5. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamakiteachability predicate for an-
alyzing low-level software. IfmMools and Algorithms for the Construction and Analysis of
Systems (TACAS 'QMINCS 4424, pages 19-33, 2007.

6. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifytgpe checking and property
checking for low-level code. IRrinciples of Programming Languages (POPL '09rnges
302-314, 2009.

7. P. Cousot and R. Cousot. Abstract interpretation : A Udifiattice Model for the Static
Analysis of Programs by Construction or Approximation ofgéints. InPrinciples of Pro-
gramming Languages (POPL '7,pages 238-252, 1977.

8. P. Cousot, R. Cousaot, J. Feret, L. Mauborgne, A. Ming, BnMaux, and X. Rival. The
ASTREE Analyzer. InEuropean Symposium on Programming (ESOP,QHCS 3444,
pages 21-30, 2005.

9. M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Sehcc: Contract-based modular
verification of concurrent c. linternational Conference on Software Engineering, (ICSE
'09), Companion Volumepages 429-430, 2009.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24,

M. Das, S. Lerner, and M. Seigle. ESP: Path-SensitivgrBno Verification in Polynomial
Time. In Programming Language Design and Implementation (PLDI,@3ges 57-68,
2002.

L. de Moura and N. Bjorner. Efficient Incremental E-maigtfor SMT Solvers. IrConfer-
ence on Automated Deduction (CADE 'DEZNCS 4603, pages 183-198, 2007.

R. DeLine and K. R. M. Leino. BoogiePL: A typed proceduaaiguage for checking object-
oriented programs. Technical Report MSR-TR-2005-70, b&ioft Research, 2005.

D. R. Engler and K. Ashcraft. RacerX: effective, statdtettion of race conditions and
deadlocks. InSymposium on Operating Systems Principles (SOSR {@8)es 237-252,
2003.

D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checkingtem rules using system-
specific, programmer-written compiler extensionsOlperating Systems Design And Imple-
mentation (OSDI '0Q)pages 1-16, 2000.

C. Flanagan and S. N. Freund. Type-based race detectifavé. InPLDI, pages 219-232,
2000.

C. Flanagan and K. R. M. Leino. Houdini, an annotatiotstast for ESC/Java. Imterna-
tional Symposium of Formal Methods Europe (FME ‘0dgges 500-517, 2001.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,Bl. Saxe, and R. Stata. Extended
static checking for Java. IRrogramming Language Design and Implementation (PLDL'02)
pages 234-245, 2002.

B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checKaorgbuffer overflows in the
large. Ininternational Conference on Software Engineering (ICSE),'pages 232-241,
2006.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. lazstraction. IrPrinciples of
Programming Languages (POPL 'Q3)ages 58-70, 2002.

S. K. Lahiri and S. Qadeer. Back to the future: revisifingcise program verification using
SMT solvers. InPrinciples of Programming Languages (POPL '0Bages 171-182, 2008.
S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and/is. Intra-module inference. In
Computer Aided Verification (CAV '09)NCS 5643, pages 493-508, 2009.

P. Pratikakis, J. S. Foster, and M. W. Hicks. LOCKSMITHniext-sensitive correlation
analysis for race detection. Programming Language Design and Implementation (PLDI
'06), pages 320-331, 2006.

J. Vanegue. Zero-sized heap allocations vulneralatiglysis.

J. W. Voung, R. Jhala, and S. Lerner. RELAY: static radea®n on millions of lines of
code. InFoundations of Software Engineering (FSE '0@ages 205214, 2007.

