
Conditional Equivalence

Ming Kawaguchi
University of California, San Diego

mwookawa@cs.ucsd.edu

Shuvendu K. Lahiri
Microsoft Research, Redmond
shuvendu@microsoft.com

Henrique Rebêlo
Federal University of Pernambuco, Brazil

hemr@cin.ufpe.br

A typical software module evolves through many versions over
the course of its development. To maintain compatibility with mod-
ule clients, it is crucial that a module’s behavior at its interface does
not change in an undesirable manner across versions. The problem
of introducing changes which break interface behavior remains one
of the most daunting challenges in the maintenance of large soft-
ware modules.

Static equivalence checking of sequential programs is a use-
ful mechanism to validate semantic equivalence across refactor-
ing changes. However, most changes corresponding to bug fixes
and feature additions change the behavior of programs; equiva-
lence checking tools are of limited help in such cases. In this work,
we propose the notion of conditional (partial) equivalence, a more
practical notion of equivalence in which two versions of a pro-
gram need only be semantically equivalent under a subset of all in-
puts. We provide a compositional method for checking conditional
equivalence and a fix-point procedure parameterized by an abstract
domain for synthesizing non-trivial conditions under which two
programs are equivalent. Additionally, we propose a method called
differential inlining to lazily construct summaries of behavioral dif-
ferences along differential paths interprocedurally, for recursion-
free programs. We discuss preliminary experience of a prototype
implementation on a set of medium sized C benchmarks.

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
A typical software module evolves through many versions over the
course of its development. Each version can be the result of vari-
ous factors, including feature addition, performance optimizations,
refactoring, or specific bug fixes. It is desirable that a module’s in-
terface behavior does not change in an undesirable manner across
these versions.

Currently, software developers attempt to ensure this by a com-
bination of (a) syntactic program differencing and manual code in-
spection, and (b) observed behavior on a set of regression tests.
However, for large pieces of software, syntactic differencing pro-
vides little insight into the effect of a syntactic change on program
behavior, and provides little help in code reviews. Hence, regres-
sion testing remains the primary safeguard against the introduction
of undesirable changes in a software module. These regression tests

[Copyright notice will appear here once ’preprint’ option is removed.]

are carefully crafted by the developers and testers of the module,
and can often number in the hundreds of thousands to millions of
tests. Usually such tests are system-level tests; running them can
be a significant investment in time and computing resources and
therefore it may not be cost-effective to execute them on the de-
veloper’s desktop to validate small code changes. Further, the set
of tests is usually designed in reaction to undesirable behaviors ob-
served in the past, and not to maximize absolute coverage; given
the astronomical number of paths in a large software module, there
is very little confidence in the absolute coverage of test suites. Con-
sequently, the problem of introducing changes that break interface
behavior (usually detected months or years later) remains one of
the most daunting challenges in the maintenance of large software
modules.

Over the last decade, several approaches have been proposed for
providing static feedback about behavioral differences with high
coverage at compile time. Godlin and Strichman [16] describe a
compositonal method for proving the equivalence of two programs.
Symbolic execution [23] has been used to prove equivalence [7, 8,
11, 25] for both hardware and software; they can generate symbolic
differences [25] that represent behavioral changes for loop and
recursion free programs. Both these approaches make heavy use
of uninterpreted functions to abstract procedure calls (and complex
operations in hardware) that are semantically equivalent across two
versions. This abstraction facilitates scalable reasoning and avoids
the path explosion problem.

However, software changes corresponding to bug fixes and fea-
ture addition introduce changes in behavior. Such changes not only
change the behavior of the procedure that undergoes the change,
but all the callers upto the public API of a module. In such cases,
equivalence checking tools provide little useful information as they
would indicate that these procedures are not equivalent. Further,
it is unsound to use uninterpreted functions to abstract procedure
calls when the behaviors of a procedure differ. Existing work [16]
would inline the body of the changed procedure, which might lead
to an explosion in the code size.

In this work, we formalize conditional equivalence checking, a
compositional method for checking that two procedures are equiv-
alent under a condition c. Checking or inferring conditional equiv-
alence can offer assurance about the behaviors that change across
versions. It can also help a tester to prune the space of behaviors to
cover by new regression tests — preference can be given to inputs
under which the two versions may differ.

We provide a method for modularly checking if two versions of
a program P are conditionally equivalent under a set of conditions
C, one per procedure f ∈ P . We provide a generic framework, pa-
rameterized by an abstract domain, for inferring conditions under
which two procedures are equivalent. In other words, we provide a
constructive method to infer conditional equivalence when equiv-
alence does not hold. An interesting aspect of this framework is
the use of theorem provers in an incremental fashion to enumerate
intraprocedural paths that differ in two versions. Finally, for pro-

1 2010/10/15

grams where changes do not happen inside loops or recursive pro-
cedures, we describe a method called differential inlining (partly
inspired by the “demand-driven” construction of procedure sum-
maries [1, 3]) for computing differential summaries lazily; differ-
ential summaries [20, 25] are summaries of procedures that only
show the input and output symbolic states for inputs that result in
differential behavior. We describe some challenges presented by
programs that manipulate mutable heaps, as well as insights needed
to prove (conditional) equivalence with SMT solvers for such pro-
grams. We have a prototype implementation of some of the ideas
described in this paper and describe our preliminary experience
from using the tool on medium sized C examples.

In summary, the paper makes the following contributions:

1. We formalize the problem of conditional equivalence check-
ing, a compositonal method for checking equivalence under
some condition, in the presence of loops, recursion and muta-
ble heaps. The significance of the result lies in providing a proof
rule for checking that two versions of a loop or a recursive pro-
cedure are equivalent under some condition; this is something
that was not possible previously.

2. We present a generic framework, parameterized by any abstract
domain, for inferring non-trivial conditions under which two
versions of a program are equivalent. This opens up the possi-
bility of leveraging advances in program analysis for program
evolution.

3. We describe a method called differential inlining to construct
differential summaries lazily describing behavioral changes
when loops and recursive procedures are not involved. This
has the potential of being more scalable (by inlining only the
behaviors that have changed) compared to inlining procedures
that cannot be proven equivalent.

The rest of the paper is organized as follows: Section 2 describes
an overview of the techniques in an informal manner. Section 3 sets
up the programming language and background of modular check-
ing; Section 4 formalizes the techniques in this paper, including
challenges required to deal with the heap. Section 5 describes a pro-
totype tool and preliminary experience. Section 6 describes some
related work and Section 7 concludes.

2. Overview
In this section, we introduce the main concepts in the paper at
an informal level. The examples are expressed in a variant of the
BoogiePL language [5]; we formalize the subset used in Section 3.
Variables and expressions in the language can be either of a scalar
type τ or a map type [τ ′]τ (meaning a map of τ values indexed
by values of type τ ′). Scalar types τ can be either ref (denoting
objects), int (denoting integers) or bool (denoting Booleans). In
most examples, the maps model arrays or a field in an object; i.e.,
Data[x] denotes x.Data in a language like Java.

2.1 Conditional equivalence checking
Figure 1 shows two versions of a procedure locate. The exam-
ple is a BPL encoding of one of the C benchmarks (replace)
from the SOFTWARE-ARTIFACTS INFRASTRUCTURE REPOSI-
TORY(SIR) [29] benchmarks. The versions correspond to source
and v6 in the distribution. Each version corresponds to a seeded
change that causes an undesirable behavior difference. Each tail-
recursive procedure locate in Figure 1 actually models a while
loop in the actual C program — we treat all loops as tail-recursive
procedures in this paper.

The first version of the procedure searches for an integer c in the
array pat between [offset + 1, i]. Success is denoted by the re-
turn value. The expressions following the post statements are pro-

cedure postconditions. The comment //CHANGE denotes a source
line in the second version which differs from the first version. The
changes affect the return value only when pat[offset] = c and
none of the locations in [offset + 1, i] contain c.

Consider a partial equivalence checker that can soundly prove
that the two procedures have the same input-output behavior for
every input on which both procedures terminate (these notions are
formalized in Section 4). Since the behaviors of the two versions
differ, such a checker would return a “don’t know” to indicate that
the procedures may possibly exhibit different behaviors under some
inputs. This is not terribly interesting information for a user who
would like to understand more about the differences.

In this work, we propose conditional partial equivalence check-
ing under a condition c. This can be seen as a refinement (or gen-
eralization) of partial equivalence checking as it allows a user to
prove equivalence under a subset of all inputs. — of course, it re-
quires the user to propose a condition c under which the equiva-
lence holds. Given two versions of a program P consisting of a set
of procedures, and a set of conditions C = λh ∈ P.c(h) (one for
each procedure in P), we define CONDEQ(P 1, P 2, C) to denote
that for each f ∈ P , the two versions f1 and f2 are equivalent
under the inputs C(f). In this work, we provide a sound modular
checker for CONDEQ(P 1, P 2, C) (Section 4.3).

Initially, let us imagine that the contracts in post are not pro-
vided. Our checker can prove that the two versions of locate are
equivalent under the input condition:

i < offset

This is not very hard to see because under this input, none of the
versions make a recursive call and return the same value.

Let us now assume that we have been provided with the con-
tracts in post for each version. The contracts have been proven on
the individual versions using standard contract checking machinery
based on Floyd-Hoare logic [18]. In our case, these postconditions
were separately verified using the contract checker Boogie [5].
With these additional contracts, we can weaken the condition under
which the two versions can be shown equivalent to the following:

i < offset ∨ pat[offset] 6= c

This illustrates an important point — although the checker is
incomplete for CONDEQ(P 1, P 2, C), it can leverage additional
contracts present in the code. The checking (and later the infer-
ence) algorithms operate in a generic assume-guarantee framework
for program verification. Because of this, they can be strengthened
by code contracts that specify program invariants for procedures.
These contracts can be generated for a single version of the pro-
gram by hand, or automatically using an off-the-shelf invariant in-
ference tool.

2.2 Inferring conditional equivalence
Consider the simple example in Figure 2 that shows the effect of
a feature addition. The example illustrates a recursive procedure
Process to evaluate an expression tree rooted at the parameter
x. We have omitted the bodies for the leaf procedures (e.g. Add,
AddU). The parameter isUnsigned is used in the second version
to support a new feature (unsigned addition). The second version
also contains a simple refactoring (e.g. use of a local variable t3).

For such simple changes, it may be desirable to have tech-
niques that can automatically infer non-trivial conditions under
which the two versions are equivalent. This example has been
deliberately chosen to illustrate that there are an infinite num-
ber of paths through the recursive procedures that indicate a be-
havioral difference. In this paper, we provide a generic frame-
work that can use an abstract domain and an incremental theo-
rem prover to automatically synthesize such conditions even in

2 2010/10/15

//Version 1
bool locate(c:int, pat:[int]int,

offset:int, i:int, flag:bool)

post (i ≤ offset) =⇒ return = flag;

{
bool ret := flag;
if (i > offset) {

if (c = pat[i]) {
ret := true;
return locate(c,pat,offset,offset,ret);

} else {
return locate(c,pat,offset,i-1,ret);

}
}
return ret;

}

//Version 2
bool locate(c:int, pat:[int]int,

offset:int, i:int, flag:bool)

post (i ≤ offset ∧ pat[offset] 6= c) =⇒ return = flag;

{
bool ret := flag;
if (i >= offset) { //CHANGE

if (c = pat[i]) {
ret := true;
return ret; //CHANGE

} else {
return locate(c,pat,offset,i-1,ret);

}
}
return ret;

}

Figure 1. Conditional equivalence checking

the presence of loops and recursion. For this example, we can
instantiate the framework (described in Section 4.4) with the ab-
stract domain of predicate abstraction [17] and the set of predicates
P = {isUnsigned, Op[x] = 0, Op[x] = 1} chosen from the con-
ditionals in the program. For this abstraction, our technique auto-
matically synthesizes that the two versions are equivalent under the
input condition ¬isUnsigned∨Op[x] = 0. We describe the details
of the inference in Section 4.4.

2.3 Differential inlining

void F(int x, int y){
B(m[y]);
D[x] := g;

}
void B(int z){

if (z > 0) g := 1;
else g := 0;
m[0] := 1;

}

void F(int x, int y){
B(m[y]);
D[x] := g;

}
void B(int z){

if (z > 0) g := z;
else g := 0;
m[0] := 1;

}

Figure 3. Example to illustrate differential inlining.

void F(int x, int y){

if (m[y] > 0)
g, m := 1,

U.B_m(m[y], m);
else

g, m := U.B_g(m[y], m),
U.B_m(m[y], m);

D[x] := g;
}

void F(int x, int y){

if (m[y] > 0)
g, m := m[y],

U.B_m(m[y], m);
else

g, m := U.B_g(m[y], m),
U.B_m(m[y], m);

D[x] := g;
}

Figure 4. Example after differential inlining.

Finally, let us demonstrate the concepts of differential sum-
maries and differential inlining by the example described in Fig-
ure 3. The two versions of the program differ in how the global
variable g is updated in procedure B — the two versions have a
differring effect on g only for the case z > 0.

Unlike the previous examples, the example in this Section is re-
cursion free. For programs without recursion and loops, we provide
a bottom up algorithm (Section 4.5) that constructs the differential
summary for each procedure and uses the differential summary at
a call site. With this algorithm, we obtain the following differential

summary4B for procedure B:

COND st1 st2

z > 0 g 7→ 1 g 7→ z

A differential summary contains the conditions under which the
two versions have different side-effects (COND) and the side ef-
fects. The notation x 7→ e denotes the expression e of the variable
x at exit from the procedure. Since both m and D always have the
same side effect in either version, it is not present in the differential
summary.

Using this differential summary, the calls to B are inlined (as
shown in Figure 4). We have introduced uninterpreted functions
U.B g and U.B m to represent the effect of B on variables g and
m respectively. The functions have arity two since the variables
read inside B are {z, m}. We call this process differential inlining
to indicate that only the differential effects are inlined at the call
sites; in all other cases, a common uninterpreted function is used to
capture an arbitrary but identical side effect on both versions.

We obtain the following differential summaries for F:

COND st1 st2

m[y] > 0 g 7→ 1 g 7→ m[y]
D 7→ D[x := 1] g 7→ D[x := m[y]]

3. Programs
In this section, we present a simple programming language to
describe deterministic programs containing scalars, and describe
how to generate modular verification conditions for an annotated
program. We extend the language with maps to model programs
with the heap later in Section 4.6.

3.1 Syntax and semantics
Figure 5 shows a simple programming language without loops
— loops are modeled as tail-recursive procedures. The language
supports scalar variables (Vars) and various operations on them.
The type of any variable x ∈ Vars is integer (int). Variables can
either be procedure local or global. We denote G ⊆ Vars to be the
set of global variables for a program.

Expressions (Expr) can be either scalar variables, constants, re-
sult of a binary operation in the language (e.g. +,−, etc.). Expres-
sions can also be generated by the application of a function sym-
bol U to a list of expressions (U(e, . . . , e)). A U ∈ Functions
represents a function symbol, some of which may have specific in-
terpretations. The expression old(e) refers to the value of e at the
entry to a procedure. Formula represents Boolean valued expres-
sions and can be the result of relational operations (e.g. {≤,=,≥})

3 2010/10/15

[ref]int Op, Val;
[ref]ref A1, A2;

// Version 1
int Process(ref x, bool isUnsigned){

if(Op[x] = 0) //constant
return Val[x];

else {
int t1 := Process(A1[x], isUnsigned);
int t2 := Process(A2[x], isUnsigned);
if (op[x] = 1)

return Add(t1,t2);
else

return Sub(t1,t2);
}

}

// Version 2
int Process(ref x, bool isUnsigned){

if(Op[x] = 0) //constant
return Val[x];

else {
int t1 := Process(A1[x], isUnsigned);
int t2 := Process(A2[x], isUnsigned);
int t3 := Op[x];
if (t3 == 1)

return isUnsigned? AddU(t1,t2) : Add(t1,t2);
else

return Sub(t1,t2);
}

}

Figure 2. Inferring conditional equivalence.

x ∈ Vars
U ∈ Functions
e ∈ Expr ::= x | c | e binop e | U(e, . . . , e) | old(e)
φ ∈ Formula ::= true | false | e relop e | φ ∧ φ | ¬φ

∀u : int. φ
s ∈ Stmt ::= skip | assert φ | assume φ | x := e

s; s | s � s | x := call f(e, . . . , e)
p ∈ Proc ::= pre φf post φf

int f(xf : int, . . .) : retf { s }

Figure 5. A simple programming language without loops. Loops
are modeled as tail-recursive procedures.

on Expr , Boolean operations ({∧,¬}), or quantified expressions
(∀u : int.φ). For any expression (or formula) e, FV(e) refers to the
variables that appear free in e.

The statement skip denotes a no-op. The statement assert φ
behaves as a skip when the formula φ evaluates to true in the
current state; else the execution of the program fails. The statement
assume φ behaves as a skip when the formula φ evaluates to true
in the current state; else the execution of the program is blocked.
The assignment statement is standard; s; t denotes the sequential
composition of two statements s and t. s � t denotes a non-
deterministic choice to either execute statements in s or t. We
require that the s � t statement along with the assume is only used
to desugar conditional statements; the statement if (e) {s} else {t}
is modeled as {assume e; s} � {assume ¬e; t}. The restricted use
of s � t ensures that the programs constructed in this language
are deterministic, i.e. there is a unique execution from a state for a
statement s ∈ Stmt .

A procedure p ∈ Proc has a name f , a set of parameters
Params(f) of type int, a return variable retf of type int, a body
s, a precondition pre φf and a postcondition post ψf . φf is a
formula, such that FV(φf) ⊆ Params(f) ∪ G; ψ is a formula,
such that FV(φf) ⊆ Params(f) ∪ G ∪ {retf}; Procedure calls are
modeled using the call statement. The procedure call can have a
side effect by modifying one of the global variables.

For any procedure f , we denote RV f ⊆ Params(f) ∪ G to be
the variables that can be read during the execution of f . We denote
WV f ⊆ G ∪ {retf} to be the subset of global variables and the
return variable of f that may be written during an execution of f .
Both RV f and WV f account for globals that are read from or
written to in the procedures that can be called from f , in addition
to the definition of f .

A state σ of a program at a given program location is a valuation
of the variables in scope, including procedure parameters, locals
and the globals. We omit the definition of an execution as it is quite
standard.

3.2 Verification condition generation
The weakest (liberal) precondition of an assertion φ ∈ Formula
with respect to a statement s ∈ Stmt is denoted as wlp(s, φ). Intu-
itively, wlp(s, φ) represents the set of states from which executing
s does not fail any assertions in s and moreover if the execution
terminates, it does so in a state satisfying φ. Figure 6 shows the
weakest precondition for the statements in our language, and are
fairly standard [4]. We use φ[e/x] to denote syntactic substitution
of all occurrences of a variable x with e in the formula φ.

wlp(skip, φ) = φ
wlp(assert ψ, φ) = ψ ∧ φ
wlp(assume ψ, φ) = ψ =⇒ φ
wlp(x := e, φ) = φ[e/x]
wlp(s; t, φ) = wlp(s,wlp(t, φ))
wlp(s � t, φ) = wlp(s, φ) ∧ wlp(t, φ)

Figure 6. Weakest precondition for simple statements without pro-
cedure calls.

To perform modular verification of a procedure f , a procedure
call call h(e) is desugared by first asserting the preconditions of h,
scrambling all the variables that could be modified by h and then
assuming the postconditions of h. To scramble a variable, we need
a new statement havoc x that introduces non-determinism in the
programming language. Instead, for a deterministic program, one
can use an uninterpreted function to assign an arbitrary value the
variables in the modified set. For simplicity, let RV h = {xh, y}
and WV h = {z, reth}; the call r := call h(e) is desugared as:

assert φh[e/xh];
r, z := U .h reth(xh, y),U .hz(xh, y);
assume ψh[e/xh][r/reth];

We use x, y := e1, e2; to denote a parallel assignment. Finally, to
verify a procedure f with specifications:

pre φf post ψf

int f (xf : int, . . .) : retf { s }

the partial correctness is expressed as the formula (called the verifi-
cation condition) VC (f)

.
= wlp(assume φf ; s ; assert ψf , true).

4 2010/10/15

The negation of this formula is checked for unsatisfiability by
a theorem prover; if the theorem prover declares the formula un-
satisfiable, the procedure satisfies the partial specification. In our
case, we use an SMT solver as a theorem prover to automatically
check the unsatisfiability. Modern SMT solvers support efficient
reasoning over equality, uninterpreted functions, select-update ar-
rays, arithmetic and restricted quantifiers. The substitution for as-
signment statements in the wlp transformer may lead to an expo-
nential blowup; this is avoided by introducing auxiliary variables
(static single assignment) and checking an equisatisfiable formula
whose size is linear in the size of the program [4].

4. Conditional equivalence
4.1 Notation
We first provide notation and assumptions that will be used in the
rest of the paper to simplify the presentation.

A base program P = {f1, . . . , fk} consists of a set of pro-
cedures. We assume that a base program is accompanied by two
versions P 1, P 2 such that, for each procedure f ∈ P , there exist
versions f1 ∈ P 1 and f2 ∈ P 2; this can be achieved by introduc-
ing a procedure with an empty body with a non-deterministic return
value if some version does not exist in the program source. For the
sake of this section, we assume that programs are i.e., closed. That
is, if a procedure f ∈ P calls a procedure g, then g ∈ P . We as-
sume that f1 and f2 have the same signature, i.e., the same names
and types for the parameters and the return value—one can think
of f as being an interface for f1, f2. We denote RV f , WV f to be
the union of the variables read from and written to in either of the
procedure versions. Similarly, we take the global variables to be the
union of the globals in either program version.

Hereafter, for simplicity of exposition, we assume that each pro-
cedure f takes a single parameter xf . Unless otherwise mentioned,
g refers to the only global variable in the program.

We use the notation C = λh. φ(h) to be an indexed (by
procedures) set of formulas such that C(f) denotes the formula
for the procedure f . We extend this notation to refer to an indexed
set of expressions, constants, sets of states, etc.

4.2 Conditional equivalence
For a procedure f , an input (state) is a valuation to variables in
G ∪ Params(f). An output (state) of a procedure is a valuation
to the variables in G ∪ {retf}. For a state σ and a procedure f ,
let Exec(f, σ) denote the (output) state obtained by executing the
body of f starting from an input state σ to f . We use ω to denote a
non-terminating execution that diverges.

We now define the notions of conditional partial equivalence
and partial equivalence between two versions of a procedure or
program.

DEFINITION 1 (Partial Equivalence under σ). Two procedures
f1 and f2 with identical signatures are said to be partially equiv-
alent under an input σ if either (i) Exec(f1, σ) = ω, or (ii)
Exec(f2, σ) = ω, or (iii) Exec(f1, σ) = Exec(f2, σ).

For a procedure f , a formula c ∈ Formula such that FV(c) ⊆
Params(f)∪G is called an input condition for f . An input condition
denotes a set of input states for a procedure f . For a formula c and
a state σ that assigns a valuation to the free variables in c, we use
〈c〉σ to denote the evaluation of c.

DEFINITION 2 (Conditional partial equivalence). Two proce-
dures f1 and f2 with identical signatures are said to be condi-
tionally partially equivalent under an input condition c, denoted as
CONDEQ(f1, f2, c), if f1 and f2 are partially equivalent under
each input in {σ | 〈c〉σ = true}.

An indexed set of input conditions C = λh. c(h) is one where
C(f) is an input condition for f ∈ P . We will often refer to C
simply as input conditions.

DEFINITION 3. Given two versions P 1 and P 2 of a program P
and an indexed set of input conditions C = λh. c(h) for proce-
dures in P , P 1 and P 2 are conditionally partially equivalent under
C, denoted as CONDEQ(P 1, P 2, C), if, for each f ∈ P , f1 and
f2 are conditionally partially equivalent under C(f).

When CONDEQ(f1, f2, true), we say that f1 and f2 are par-
tially equivalent [16]. Similarly, when CONDEQ(P 1, P 2, λh. true),
we say that P 1 and P 2 are partially equivalent. Hereafter, we re-
fer to λh.true as TRUE and use the term equivalence to refer to
partial equivalence.

4.3 Checking conditional equivalence
We present a method for proving partial equivalence of two ver-
sions P 1 and P 2 of a program under input condition C. Our proce-
dure is an extension of the method for proving equivalence of two
versions of a program [16]. It retains the modularity of equivalence
checking [16], meaning that procedure calls are reasoned about us-
ing abstractions of callees, instead of inlining.

We define a procedure CondEqProcCf that has the same signa-
ture as f and checks for CONDEQ(f1, f2, C(f)):

void CondEqProcCf (xf : int){
assume (C(f)(xf , g));
g0 := g;
inline r1 := call FLATTENNESTEDCALLS(f1, C, 1)(xf);
g1 := g;
g := g0;
inline r2 := call FLATTENNESTEDCALLS(f2, C, 2)(xf);
g2 := g;
assert (g1 = g2 ∧ r1 = r2);
}
Here, the inline annotation on a call statement denotes that

the body of the called function, with appropriate substitutions, is
placed into the program text at the point of the call. First, let us
define FLATTENNESTEDCALLS(f, C, v): let f ∈ P be a proce-
dure, C a set of conditions and v ∈ {1, 2} a version. The result
of FLATTENNESTEDCALLS(f, C, v) is a new procedure with the
same signature as f , except that calls inside f are eliminated; any
call t := call h(e) inside f in version v ∈ {1, 2} is replaced with
the following statement block:

if (C(h)[e/xh])
t, g := U .h reth(e, g),U .hg(e, g);

else
t, g := U .hvreth(e, g),U .hvg (e, g);

Here we assume that WV h = {reth, g} and RV h = {xh, g}. The
effect of this translation is to replace the procedure call, call h(e),
with invocations of uninterpreted functions such that, ifC(h) holds
at the call site, then call h(e) has the same effect on WV h in
both f1 and f2. Notice that when C(h) holds at the call site of h,
then we use the same uninterpreted function U .hx(e, g) to update
a variable x in both versions of f .

The procedure CondEqProcCf checks that if f1 and f2 are
executed starting from the same input where C(f) holds, then the
observable outputs are the same. The assume statement restricts the
input state to satisfy C(f). Variable g0 captures the initial value of
the globals (g in this case); it is used to restore the global state
after executing f i. Variables gi (respectively ri) for i ∈ {1, 2}

5 2010/10/15

capture the state of the globals (respectively, return values) after
executing f i. Finally, the assert checks that the observable outputs
over WV f are equivalent. In Figure 1 we illustrated the use of
contracts for increasing the precision of checking equivalence. Any
contract that has been proven on the individual versions can be
safely used as an assumption at the call site of a procedure.

We establish the soundness of our checking procedure with the
following theorem.

THEOREM 1. If the assertion in CondEqProcCf holds for each f ∈
P , then CONDEQ(P 1, P 2, C) holds.

Proof sketch: We present a sketch of the proof here:
For each procedure f ∈ P and a version f i for i ∈ {1, 2}, we

define f̂ i as the following procedure:

int f̂ i(xf : int){
assume (C(f)(xf , g));
inline retf := call STRUCTURENESTEDCALLS(f i, C, i)(xf);
return retf ;
}

The result of STRUCTURENESTEDCALLS(f i, C, i) is a new pro-
cedure with the same signature as f i, except that procedure calls
of the form t := call hi(e) in f i are replaced by the following
statement block:

if (C(h)[e/xh])

t := call ĥi(xh);
else

t := call hi(xh);

Notice that all recursive calls in f̂ i are made under C(f). Hence,
we can prove the following about its behavior under C:

LEMMA 1. For any input σ ∈ {α | 〈C(f)〉α = true}, Exec(f̂ i, σ) =
Exec(f i, σ)

Consider the procedure CondEqProcTRUE
f̂

. It is not hard to see
that this is nearly identical to CondEqProcCf . In particular, a call
to a function hi in f̂ made under C is effectively replaced by a
different uninterpreted function than a call to hi not made under C.
We can show the following lemma:

LEMMA 2. The assertion in CondEqProcTRUE
f̂

holds iff the asser-
tion in CondEqProcCf holds.

Now, consider the transformed programs

P̂ i = {f̂ i | f i ∈ P i} ∪ P 1 ∪ P 2

for the two versions i ∈ {1, 2}. That is, each of the two transformed
programs contain a complete copy of the procedures in both P 1

and P 2. We then construct a non-standard mapping between the
procedures in P̂ 1 and P̂ 2 such that each f i ∈ P̂ 1 corresponds to
f i ∈ P̂ 2 for both i = 1, 2 and f̂1 ∈ P̂ 1 corresponds to f̂2 ∈ P̂ 2.

We leverage the following inference rule for proving partial
equivalence [16]:

LEMMA 3. [16] If the assertion in CondEqProcTRUEf hold for
each f ∈ P , then EQ(P 1, P 2) holds.

By Lemma 3, to show that CondEqProcTRUE
P̂1∪P̂2

holds, it suffices

to show that, for every f ∈ P , the asserts in CondEqProcTRUE
f̂

hold.
Finally, let us assume that for each f ∈ P , we have proved

the assertion in CondEqProcCf . We know by Lemma 1 that for

each f ∈ P , it is also true that CondEqProcTRUE
f̂

. Then, by the

reasoning above, we have that EQ(P̂ 1, P̂ 2). Hence, it follows from
Lemma 2 that CONDEQ(P 1, P 2, C).

4.4 Inferring conditions
In this section, we describe a generic framework for synthesiz-
ing conditions under which two versions of a program are par-
tially equivalent. At a high level, the algorithm does the following:
it starts by assuming that for every f ∈ P , f1 are f2 are par-
tially equivalent under all inputs. If it is unable to prove it, then
it enumerates the counterexamples (that prevent the proof) to re-
fine (strengthen) the condition under which the two versions are
equivalent. This information is used by the callers of f to refine
their conditions in turn. This process is repeated until a fix-point is
reached and the conditions do not change. Since this process is not
guaranteed to terminate in the presence of loops and recursion, we
parameterize the framework with an abstract domain that allows us
to converge at the cost of precision.

An abstract domain [10]A : 〈ΣA, αA, γA,vA,tA〉 is charac-
terized by the following:

• ΣA represents the domain of the elements that forms a lattice
under vA,
• αA represents the abstraction function over Formula → ΣA,

where the formula represents a set of concrete states,
• γA represents the concretization function over ΣA → Formula

representing a set of concrete states,
• the pair (αA, γA) forms a galois connection, and
• tA represents the function that returns the join of two elements

of ΣA.

In addition we also assume that αA(false) forms the bottom ele-
ment ⊥ ∈ ΣA, and αA(true) form the top element > ∈ ΣA. For
simplicity, we do not provide a widening operator; it can be easily
incorporated into the framework.

Algorithm 1 CONSTRCONDEQUIV

Require: Two versions P 1 and P 2 of a program P
Require: An abstract domain A : 〈ΣA, αA, γA,vA,tA〉
Ensure: An indexed set of conditionsC s.t. CONDEQ(P 1, P 2, C)

Ensure: An indexed set of differential summaries4
1: WL ← P
2: D ← λh. αA(false)

3: 4 ← λh. {}
4: while ¬ IsEmpty(WL) do
5: f ← Dequeue(WL)

6: d, δ ← COMPUTENEWCONDEQUIV(f1, f2, D, 4)
7: if ¬(d vA D(f)) then
8: D(f) ← D(f) tA d
9: WL ← WL ∪ Callers(f)

10: 4f ← δ

11: end if
12: end while
13: return λh. ¬γA(D(h)), 4

Let us now describe the algorithm and give the proof sketch of
the above theorem. The parts of the algorithms highlighted with
text should be ignored until Section 4.5 on differential inlining.

Let us first look at Algorithm 1 CONSTRCONDEQUIV that im-
plements the outer loop of the analysis. It maintains a work-list WL
of procedures from P , and the while loop in line 4 iterates until this

6 2010/10/15

Algorithm 2 COMPUTENEWCONDEQUIV

Require: Two versions f1 and f2 of a procedure f
Require: An abstract domain A : 〈ΣA, αA, γA,vA,tA〉
Require: An indexed set of abstract elements D
Require: An indexed set of differential summaries4
Ensure: An element of ΣA

Ensure: A differential summary δ for f
1: d ← αA(false)

2: δ ← {}
3: C ← λh. ¬γA(D(h))
4: φ ← ¬VC (CondEqProcCf)

5: φ ← ¬VC (CondEqProc4f)

6: while (cex← CheckSat(φ)) 6= nil do
7: if cex = UNKNOWN then
8: δ ← δ ∪ {(¬γA(d),>,>)}

9: return αA(true), δ
10: end if
11: (π1, π2) ← GetPath(cex)
12: (c1, c2) ← (PathCnstr(π1, f1), PathCnstr(π2, f2))
13: c ← c1 ∧ c2

14: (st1, st2) ← (SymbExec(π1), SymbExec(π2))

15: δ ← δ ∪ {(c, st1, st2)}
16: d ← d tA αA(c)
17: φ ← φ ∧ ¬γA(d)
18: end while
19: return d, δ

work-list is empty. D is an indexed set of abstract elements from
ΣA, one for each procedure in P —D(f) represents the conditions
expressed over A under which the two versions of f are possibly
not equivalent at any point during the analysis. D is initialized to
the bottom element αA(false) for each procedure, indicating that
we start off assuming the two versions for each procedure are par-
tially equivalent under true. At each stage, a procedure f is re-
moved from WL and COMPUTENEWCONDEQUIV(f1, f2, D) is
invoked to construct new conditions under which two versions of f
may not be equivalent. The line 7 checks if the new set of condi-
tions is already subsumed by D(f); d vA D(f) indicates that
no new distinct condition was found and nothing has to be up-
dated. Otherwise, D(f) is updated with the join of D(f) and d
(line 8), and consequently the callers of f have to be reanalyzed.
The procedure returns λh.¬γA(D(h)) as C, since γA(D(h)) rep-
resents the condition under which the two versions of h may differ.
Algorithm 2 COMPUTENEWCONDEQUIV is called with two ver-
sions of f , along with a snapshot of the current D. Lines 3 creates
C from the current D and uses it to construct CondEqProcCf in
line 4. φ is a formula whose satisfiable assignments indicate condi-
tions under which the versions of f may not be partially equivalent.
CheckSat(φ) is a call to the theorem prover, and returns nil when
φ can be shown unsatisfiable; otherwise it returns a counterexample
object. The loop terminates when nil is returned.

A counterexample can be UNKNOWN denoting a timeout, spa-
ceout, or the inability of a prover to produce satisfying assignments.
Such a counterexample is interpreted as “don’t know” and the al-
gorithm simply returns the abstract element αA(true) or> accord-
ingly. When the counterexample cex is not UNKNOWN, we require
that the counterexample object encodes the control path in a pro-
cedure along which an assertion fails. The details of encoding in-
traprocedural control flow paths in a verification condition can be

found in earlier work on ESC/Java [24]. The encoding uses aux-
iliary variables to denote the labels of the control flow nodes and
the theorem prover assigns a value to these labels to indicate the
intraprocedural control flow path in a counterexample object. This
feature is supported by many modern VC generation tools such as
the Boogie verifier in conjunction with theorem provers such as
Simplify [13] and Z3 [12].

The procedure GetPath(cex) in line 11 takes the counterexam-
ple object and returns the control flow paths π1 and π2 in the two
versions f1 and f2 respectively. Recall that since loops are com-
piled away as tail-recursive procedures, each procedure only has a
bounded number of intraprocedural control flow paths. In our spe-
cific case, any πi for i ∈ {1, 2} starts at entry to f i, and ends at the
return of f i — this is because the only assertion in CondEqProcCf
is the final assertion for checking the equality of the globals. Given
a control path from entry to exit of CondEqProcCf , it is easy to split
the path into the paths inside f1 and f2 respectively.

The procedure PathCnstr(π, f) in line 12 takes a procedure f
and a control flow path π in f and returns a conjunction of the tests
along the path in terms of the state at the beginning of π . Since π1

and π2 start at the entry of each procedure, PathCnstr(πi, f i) are
both expressions in terms of RV f . More formally, a path π in a pro-
cedure f induces a straight line program sπ ∈ Stmt with only skip
(skip), assume (assume), assignment (:=) and sequential composi-
tion (s; t) statements. PathCnstr(π, f) is defined as pre(sπ , true),
where pre is defined as follows:

pre(skip, φ) = φ
pre(assume ψ, φ) = ψ ∧ φ
pre(x := e, φ) = φ[e/x]
pre(s; t, φ) = pre(s, pre(t, φ))

Finally, line 16 updates the set of new conditions under which
the two versions may be different. Line 17 constrains φ to not
consider assignments satisfying γA(d) in future iterations. Note
that calls to CheckSat(φ) in line 6 are always made with more
constrained formulas, and therefore exploit the incremental nature
of modern SMT solvers. The incremental nature of queries allows
the SMT solvers to retain the pruning of the search space from
earlier queries for future queries, and can be extremely beneficial
in practice.

THEOREM 2. For two versions P 1 and P 2 of a procedure P ,
and an abstract domain A, if C is the set of conditions returned
by CONSTRCONDEQUIV(P 1, P 2,A), then CONDEQ(P 1, P 2, C)
holds.

A couple of points:

1. Instead of initializing the WL in Algorithm 1 with P , it is
sound to only consider procedures that are transitive callers of
procedures that have undergone a syntactic change; the rest of
the procedures are trivially semantically equivalent. This is a
useful optimization as most changes only affect a very small
fraction of procedures in a large module.

2. For any procedure f ∈ P , the formula C(f) computed by
CONSTRCONDEQUIV method are expressions over the param-
eters of f and the global variables. However, they may contain
the uninterpreted function symbols U .hg or U .hvg for any (tran-
sitive) callee h.

3. Let us consider the case of programs without loops and proce-
dure calls. In such a case, the fixpoint procedure will terminate
in at most |P | steps if the Dequeue(WL) respects the call or-
der; i.e., when the Dequeue procedure returns a procedure f ,
then there are no callees of f present in WL. It is easy to see
that the WL monotonically decreases in each step.

7 2010/10/15

4. Although the main use of an abstract domain is to allow CON-
STRCONDEQUIV to terminate in the presence of loops and re-
cursion, it can also be useful for programs without loops and
recursion. Notice that in line 17, φ is updated with φ∧¬γA(d)
instead of φ ∧ ¬γA(c). Since c vA d at this line, constraining
φ with ¬γA(d) instead of ¬γA(c) has the effect of converg-
ing faster for the loop in line 6. This can be particularly useful
when there are large number of paths in a procedure and the
change appears along both branches of a conditional statement
(i.e. under ψ and ¬ψ).

Let us revisit the example from Section 2.2 to show how the al-
gorithm above works. Recall that the abstract domain used is predi-
cate abstraction with the set of predicatesP = {isUnsigned, Op[x] =
0, Op[x] = 1}.

In our first iteration, we attempt to prove conditional equiv-
alence for the condition true and obtain a counterexample for
the single program path corresponding to the path condition
isUnsigned∧ Op[x] 6= 0∧ Op[x] = 1. Since this constraint can be
precisely captured by A, d is updated to isUnsigned ∧ Op[x] 6=
0 ∧ Op[x] = 1.

In the second iteration, we attempt to prove conditional equiva-
lence for the weaker condition¬γA(d)

.
= ¬isUnsigned∨Op[x] =

0 ∨ Op[x] 6= 1. This proof attempt fails again, and we obtain a
counterexample program paths that correspond to the path condi-
tion isUnsigned ∧ Op[x] 6= 0 ∧ Op[A1[x]] = 1. The constraint is
approximated in the abstract domain as isUnsigned ∧ Op[x] 6= 0.
Performing a join with d updates d to isUnsigned ∧ Op[x] 6= 0.

In the third iteration, we attempt to prove conditional equiva-
lence for the weaker condition ¬isUnsigned ∨ Op[x] = 0 which
succeeds. Without the use of abstraction, there are an infinite num-
ber of paths through the recursive procedure that indicate a behav-
ioral difference.

4.5 Differential inlining
With conditional equivalence, we have focused on the question
“when do the two versions differ?”. Another important question
is “how do the two versions differ?”. Person et al. [25] proposed
differential summaries as a way to symbolically represent the set
of input conditions under which two versions of a procedure dif-
fer, and the symbolic expression for the output variables. When
the procedures affected by a change (either syntactically changed
or their transitive callers) do not have any loops or recursion, we
extend the algorithm in the previous section to compute differen-
tial summaries. The idea is quite simple: first, we generate the dif-
ferential summaries by generating the symbolic expressions along
all pairs of paths that differ in the two versions. Next, we use
these summaries at the call sites of a procedure. We formalize this
idea and extend Algorithms CONSTRCONDEQUIV and COMPUTE-
NEWCONDEQUIV described earlier. The main subtlety of the sec-
tion is to conservatively deal with UNKNOWN outputs of a theorem
prover.

For the rest of the section, we assume the following two precon-
ditions:

1. the set of procedures in P do not have any loops or recursion in
either version, and

2. the abstract domain A is the same as the concrete domain; in
other words, αA and γA are just the identity functions.

A differential summary 4f for a procedure f is a set of tuples
of the form (c, st1, st2) where:

• c in an input condition for f , such that FV(c) ⊆ RV f .

• Each sti is a symbolic store, a partial map that stores a symbolic
expression stix for each x ∈ WV f . For each x, FV(stix) ⊆

RV f ; in other words the symbolic expressions are purely in
terms of the input state of f . Intuitively, stix is the effect on x of
executing f from an input satisfying c.

The changes required to compute differential summaries are
marked by text lines in the two algorithms. The changes in al-
gorithm CONSTRCONDEQUIV are related to initializing, updating
and returning 4f . Since each procedure is only analyzed once in
the while loop in line 4, the value of 4f at exit is really the value
computed by COMPUTENEWCONDEQUIV in line 10. Notice that
we have extended COMPUTENEWCONDEQUIV to take an addi-
tional input and return an additional value.

Let us now look at COMPUTENEWCONDEQUIV extentions.
Line 5 uses4 instead ofC to construct the procedure CondEqProc;
also note that we discard the value of φ computed in line 4 to
account for this. Intuitively, CondEqProc4f uses the differential
summaries in 4h to replace any calls to h inside procedure f ; we
describe this formally shortly. The other changes lie in updating δ
with (i) a differential summary under ¬γA(d) with unknown side
effects > for both the versions (line 8) when the theorem prover
returns UNKNOWN, and (ii) with the result of symbolic execu-
tion along the two paths π1 and π2 respectively (line 15). Here
SymbExec(π) is a procedure for computing symbolic expressions

for variables in WV f along the control path π ; we omit details of
this procedure.

We now describe how 4 is used to construct CondEqProc4f .
The definition of CondEqProc4f is exactly the same as CondEqProcCf ,
except FLATTENNESTEDCALLS(C, f, v) is replaced with calls
to FLATTENNESTEDCALLS(4, f, v). It replaces any call r :=
call h(e) inside f in version v as follows:

• For each (c, st1, st2) ∈ 4h such that sti 6= >:

if (c[e/xh]) r, g := stvreth [e/xh], stvg [e/xh];

to use the actual summary for h under the input c.
• If (c,>,>) ∈ 4h:

if (c[e/xh]) r, g := U .hvreth(e, g),U .hvg (e, g);

to use completely arbitrary summaries for the two versions,
since4h has unknown summaries> for the two versions. This
is the result of encountering UNKNOWN during the computation
of4h in an earlier iteration.
• Finally, under all other conditions:

else r, g := U .h reth(e, g),U .hg(e, g);

to use the same side-effect for both the versions.

Observe that we only use the actual summaries for h (computed
by symbolic execution inside h in line 14) along the conditions
where the two versions of h differ. We refer to this process as
differential inlining, since it only exposes the details of h along
the differential paths.

For any h ∈ P , let

γh
.
=

∨
{c | (c, ,) ∈ 4h}

THEOREM 3. For any h ∈ P , CONDEQ(h1, h2,¬γh) holds.

4.6 Dealing with the heap
So far, we have only considered programs containing scalar vari-
ables. In this section, we show that the ideas can be carried for-
ward to programs manipulating the heap as well. We also describe
some additional challenges that are introduced when dealing with
the heap.

8 2010/10/15

First, we model the heap as a collection of maps, from inte-
gers to integers; this is a fairly standard way to model the heap
for Java (ESC/Java [14]), C# (Spec# [6]) or C (HAVOC [9]) pro-
grams. These maps model different fields in the program and map
addresses to values. A map can be modeled just like a scalar, ex-
cept that we introduce two special functions sel ∈ Functions and
upd ∈ Functions; sel(e1, e2) selects the value of a map value e1 at
index e2, and upd(e1, e2, e3) returns a new map value by updating a
map value e1 at location e2 with value e3. The theory of maps with
sel and upd is supported efficiently by modern SMT solvers. We
assume that the type checker for expressions in Figure 5 ensures
that map expressions do not participate in arithmetic operations.
We introduce the following syntactic sugar for a map variable x in
the programming language: x[e] for sel(x, e) and x[e1] := e2 for
x := upd(x, e1, e2).

We also have to slightly modify the check that compares the
global variables for equality in the procedure CondEqProcCf de-
scribed earlier in the section. Consider the two versions of a proce-
dure f below:
[int]int x;
int f(){

x[0] := 1;
x[1] := 2;

}

int f(){
x[1] := 2;
x[0] := 1;

}

The standard theory of sel and upd for arrays is imprecise to
prove that the two versions have the same effect on x. This
is because the symbolic expression for x in the two versions
are upd(upd(x, 0, 1), 1, 2) and upd(upd(x, 1, 2), 0, 1) respectively,
which are not equal according to the theory of equality and un-
interpreted functions. To circumvent this, we instead check for
∀u : int.x[u] = y[u], when trying to check the equality of two map
values x and y in the CondEqProcCf procedure. Although the the-
ory of arrays can be extended with the rule for extensionality [31] to
deal with the above shortcoming, it can compromise the efficiency
of SMT solvers and are not supported by default.

Programs manipulating pointers (in C) or references (in Java)
also support dynamic heap allocation. This can be a challenge for
verifying equivalence as allocators are sources of non-determinism.

ref x; [ref]int a;
int f(){

x := new();
a[x] := 1;

}

int f(){
x := new();
a[x] := 1;

}

The above example may be difficult to verify because each invoca-
tion of new returns an arbitrary reference.

Instead, we augment our language to allow (deterministic but
arbitrary) allocation and deallocation of objects using statements
x := new and free(x) respectively. This is modeled by introducing
a global map alloc : int→ {0, 1} to reflect the allocation status of
a pointer. x := new is desugared as:

x := New(alloc); assume alloc[x] = 0; alloc[x] := 1;

where New is an uninterpreted function. Similarly, free(x) is
desugared as:

assert alloc[x] = 1; alloc[x] := 0;

This allows us to show the partial equivalence of programs that can
allocate and delete objects. The use of New allows us to model
allocation as a deterministic statement.

Of course, our checks can be too strong when the allocation
patterns differ in the two versions. It would be useful to develop
a theory of array isomorphism in the theorem prover, that may
improve the precision of the approach. Although some ideas for
comparing heaps are presented at the level of C programs [16], we

are currently not aware of such theories in the SMT solvers for
efficiently reasoning about the heap.

5. Evaluation
5.1 Implementation
We have prototyped some of the techniques described in this paper
in a tool SYMDIFF, which works on BoogiePL programs. The
BoogiePL language is very close in spirit to the language described
in Section 3. The tool takes two versions of a program, along with
a mapping between the procedures, arguments and globals of the
two versions. This mapping is automatically generated for closely
related programs. We leverage the verification condition generation
in Boogie along with the Z3 [12] SMTsolver for checking verifica-
tion conditions and enumerating intraprocedural counterexamples
incrementally.

We have implemented the conditional equivalence checking
(Section 4.3) and the differential inlining (Section 4.5). We have
not implemented the abstract fix-point algorithm for inferring con-
ditions using an abstract domain — note that this is not a limita-
tion for changes outside loop and recursive procedures. The con-
ditional equivalence checker additionally requires the user to spec-
ify the conditions for equivalence; the input program can also con-
tain other contracts that can be checked on the individual versions
using Boogie. We currently manually transform loops into tail-
recursive procedures for the checking, but this will be automated
soon. For differential inlining (that requires loop and recursion-
free programs) loops and recursive calls are unrolled a bounded
number of times. By default, the tool only analyzes procedures that
have undergone a change and their transitive callers. The remain-
ing procedures calls are replaced with uninterpreted functions. For
the differential inlining, the tool generates a differential summary
for each procedure analyzed. In addition, it also highlights the in-
traprocedural control paths that exhibit different behaviors on the
same input.

A number of tools perform semantics-preserving compilation
of programs written in popular programming languages such as
C, Java, C# etc. into BoogiePL programs. For example, Spec# [6]
translates C# programs, and HAVOC [9] translates C programs
into BoogiePL. Therefore, SYMDIFF is effectively a language-
agnostic tool that can work with multiple languages. At present,
we have integrated HAVOC to translate C program to BoogiePL.
The translation provides accurate modeling of the heap, pointer
arithmetic and the types present in the program. Specifically, there
is a distinct map for each of the word-type fields and each pointer
type (e.g. int * or struct A *) in the program. Each pointer or
word-type value is modeled as an integer and various operations
on pointers are compiled as operations on integers. Details of the
translation can be found in the HAVOC paper [9]. The highlighting
of counterexample paths has been extended to highlight source C
programs, but the differential summaries are currently generated in
terms of the BoogiePL program.

5.2 Experience
We describe some preliminary experience with the tool, and chal-
lenges ahead to make it more generally applicable. We have applied
the tool to various benchmarks in the SIRbenchmark suites [29], in-
cluding the 7 benchmarks distributed as part of the siemens suite
and the space program. The siemens benchmarks vary in size
from 200-700 LOC, the space benchmark has around 10 KLOC.
In addition, the tool has been applied to bug fixes in two Windows
kernel modules ranging upto 20 KLOC. However, since most of the
changes we have seen only affect around 5-6 procedures in a mod-
ule, the absolute size of the module is not indicative. The encour-
aging part of the tool is that it can scale to procedures several hun-

9 2010/10/15

1 // Version 1
2 token get_token(tp)
3 token_stream tp;
4 {

5 int i=0,j; int id=0;

6 char ch,ch1[2];

7 ch1[0]=’0’; ch1[1]=’0’;

8 /* initial the buffer */

9 for (j=0;j<=2 /*80*/;j++)

10 { buffer[j]=’0’;}

11 ch1[0]=’0’; ch1[1]=’0’;

12 ch=get char(tp);

13 /* strip all blanks until meet characters */

14 while(ch==’ ’||ch==’n’)

15 {
16 ch=get_char(tp);
17 }

18 buffer[i]=ch;

19 if(is eof token(buffer)==TRUE)

20 return(buffer);

21 f(is spec symbol(buffer)==TRUE)

22 return(buffer);

23 if(ch ==’"’)

24 id=1; /* prepare for string */

25 if(ch ==59)

26 id=2; /* prepare for comment */

27 ch=get char(tp);

28
29 /* until meet the end character */

30 while (is token end(id,ch) == FALSE)

31 {
32 i++; buffer[i]=ch; ch=get_char(tp);
33 }
34 /* hold the end charcater */

35 ch1[0]=ch;

36 if(is eof token(ch1)==TRUE)

37 { ch=unget char(ch,tp);

38 if(ch==EOF)unget error(tp);

39 return(buffer);

40 }
41 if(is_spec_symbol(ch1)== TRUE)
42 { ch=unget_char(ch,tp);
43 if(ch==EOF)unget_error(tp);
44 return(buffer);
45 }
46 if(id==1)
47 { i++; buffer[i]=ch;
48 return(buffer);
49 }
50 if(id==0 && ch==59)
51
52 { ch=unget_char(ch,tp);
53 if(ch==EOF)unget_error(tp);
54 return(buffer);
55 }
56 return(buffer);
57 }

1 // Version 2
2 token get_token(tp)
3 token_stream tp;
4 {

5 int i=0,j; int id=0;

6 char ch,ch1[2];

7 ch1[0]=’0’; ch1[1]=’0’;

8 /* initial the buffer */

9 for (j=0;j<=2 /*80*/;j++)

10 { buffer[j]=’0’;}

11 ch1[0]=’0’; ch1[1]=’0’;

12 ch=get char(tp);

13 /* strip all blanks until meet characters */

14 while(ch==’ ’||ch==’n’)

15 {
16 ch=get_char(tp);
17 }

18 buffer[i]=ch;

19 if(is eof token(buffer)==TRUE)

20 return(buffer);

21 f(is spec symbol(buffer)==TRUE)

22 return(buffer);

23 if(ch ==’"’)

24 id=1; /* prepare for string */

25 if(ch ==59)

26 id=2; /* prepare for comment */

27 ch=get char(tp);

28
29 /* until meet the end character */

30 while (is token end(id,ch) == FALSE)

31 {
32 i++; buffer[i]=ch; ch=get_char(tp);
33 }
34 /* hold the end character */

35 ch1[0]=ch;

36 if(is eof token(ch1)==TRUE)

37 { ch=unget char(ch,tp);

38 if(ch==EOF)unget error(tp);

39 // CHANGE
40 }

41 if(is spec symbol(ch1)==TRUE)

42 { ch=unget_char(ch,tp);
43 if(ch==EOF)unget_error(tp);
44 return(buffer);
45 }

46 if(id==1)

47 { i++; buffer[i]=ch;

48 return(buffer);

49 }
50 if(id==0 && ch==59)
51
52 { ch=unget_char(ch,tp);
53 if(ch==EOF)unget_error(tp);
54 return(buffer);
55 }
56 return(buffer);
57 }

Figure 7. Example for print tokens2

10 2010/10/15

dred lines large (e.g. in Windows) containing several hundred (and
sometimes thousands) of intraprocedural paths in seconds and find
semantic differences introduced by the bug-fixes. In most cases, we
see between 2-10 intraprocedural paths in the procedure that has
undergone simple bug-fixes (between 1-4 lines) and all the paths in
the callers. Our initial hope was that the use of differential inlining
will reduce the number of paths in callers by removing infeasible
paths that do not exhibit the changes, but we have not found such
cases in these examples.

Figure 7 shows the output of our tool when comparing two ver-
sions (source and v3) in the print tokens2 benchmark in the
siemens suite. The highlighted regions demonstrate intraprocedu-
ral paths along with the procedure get token has two different
side effects. A couple of oddities regarding the trace before we ex-
plain the example: since loops are unrolled (in this case a bound of
4 was specified), the body of a loop is highlighted when the loop
is executed one or more times. Ihis happens with the constant for
loops in line 9. The for loop also highlights a well-known bane
for loop unrolling (the loop that executes 80 times) — we had to
manually decrease the bound to see interesting behaviors for this
procedure. Apart from the for loop, the two other while loops are
executed 0 times to illustrate the difference. The line marked with
//CHANGE is the line that has been removed from the second ver-
sion of the program. We do not expect the reader to understand the
code to appreciate the difference. For this procedure, the only side
effect is through the return variable buffer. The interesting part
of the difference is to understand that various conditions inside the
procedure are correlated — abstracting the common parts of the
code with an uninterpreted function may result in imprecision [25],
at least in legacy codebases. First, observe that there are quite a
few control paths that return even before reaching the changed lo-
cation. Secondly, for the two versions to have different side effect
on buffer, both the lines 39 and 47 have to be executed. However
the condition guarding this line (id==1) depends on an guarded as-
signment to id in line 24. Given the highly constrained nature of
the example, it is quite easy for regression tests to miss this behav-
ioral difference and for a developer to be sure of the change by code
inspection. In this case, the differential summary (deciphered from
the BoogiePL level) provides quick feedback regarding the effect,
indicating that the value of buffer in the two versions have values

[′0′,′ 0′, . . .]

and

[′0′,U .unget charret(U .get charret(tp), tp), . . .]

where U .fret is the uninterpreted function to model the effect on
the return value of a procedure f.

In general, we have found the intraprocedual path to be useful
for understanding the conditions that trigger behavior differences
and the differential summaries to understand the actual effect. Cur-
rently, the differential summaries are bloated due to the large arity
of the uninterpreted functions used to model the effect of a proce-
dure. The arity of these functions are determined by the RV f for
the procedure f ; our conservative analysis of this set make the ar-
ities very large (around 30). Although this has not been an issue
with SMT solvers, inspecting nested function applications with ar-
ity greater than 3 can be cumbersome. We often use “. . . ” to hide
the arguments of such functions for display.

6. Related work
The techniques in this paper build on two well-explored lines of
previous work.

First, our work utilizes compositional reasoning of modular
contract checking [18] and, more recently, its application for pro-
gram equivalence checking [16]. Contract based checkers enable

the proof of programs with recursive procedures and loops by al-
lowing the user to annotate them with contracts when required.
On the other hand, there has been a series of work on the use of
symbolic execution [23] and the use of uninterpreted functions for
checking equivalence of hardware [7] and more recently, software
designs [8, 11, 25]. The focus of these methods is to allow com-
pletely automatic checking, at the cost of decreased coverage when
changes are present inside loops and recursive procedure calls. The
use of symbolic execution also allows the construction of differen-
tial summaries that symbolically encode the differences [20, 25].
Naive symbolic execution of all the paths may lead to exponential
path-explosion problem, and various approximations [11] or sum-
marization [15] may have to be done to circumvent it. We discuss
our relationship to these methods in more details below.

In this work we describe a compositional method for checking
conditional equivalence, which we believe to be a more practical
use of equivalence checking for many programs changes. Our work
generalizes the earlier work for checking partial equivalence [16]
compositionally. Although, the work on regression verification [16]
allows a user to assert the equality of variables under some condi-
tion, the conditions are not used to decompose the proof of equiv-
alence. In other words, it cannot prove that two versions of a loop
or a recursive procedure are equivalent under a condition stronger
than true. We have also provided a framework for inferring the
conditions (more general than false) under which the two versions
are equivalent. One of our contribution is to allow this framework
(for recursion free cases) to also generate differential summaries as
counterexamples to the equivalence checking problem. We believe
that the combination of methods presented in this paper improves
the applicability of modular contract checkers for providing feed-
back on program changes. We also believe that conditional equiv-
alence checking can benefit from other optimizations to break mu-
tually recursive procedures [16].

For loop-free and recursion-free programs, the methods based
on symbolic execution [8, 11, 25] can provide a complete method
to check for equivalence, if the path explosion can be avoided by
replacing callees with the same uninterpreted function. In the pres-
ence of changes, these techniques may become less scalable if the
use of an uninterpreted function is prevented with the slightest of
change. Conditional equivalence allows the usage of uninterpreted
functions even when procedures are not equivalent under all inputs.
We believe this can potentially aid methods based on symbolic ex-
ecution as well. On the other hand, demand-driven symbolic exe-
cution [1] may be used to refine the contracts of a procedure (e.g.
example in Figure 1). An empirical evaluation of these techniques
on a common set of benchmarks will constitute an interesting future
work to understand the strengths of each of these techniques.

Our method of differential inlining also has interesting resem-
blance with previous works (outside the domain of equivalence
checking) in demand-driven summary generation [1, 3]. These
techniques lazily refine the procedure summary starting from a
completely uninterpreted summary of a procedure, based on coun-
terexamples to runtime assertions [3] or need for generating test
cases in dynamic symbolic execution [1]. However, in our case
we do not refine an uninterpreted function; our goal is to identify a
subset of inputs under which the two procedures can be replaced by
an uninterpreted function. Similarly, the use of a generic abstract
domain and the theorem prover for inferring non-trivial conditions
for equivalence has resemblance with earlier work on generating
precise abstract transformers [28].

In addition to the use of theorem provers, Jackson and Ladd [20]
present a method based on tracking the dependencies between the
input and the output variables to check for semantic differences.
Although the method can be quite efficient, it is not complete —
there could be semantic differences even when the dependencies

11 2010/10/15

are identical. We believe this was the first paper that motivated
a static approach to providing semantic differences for software,
and have inspired our work on differential summaries. Kim and
Notkin [22] present a rule-based approach to summarizing large,
systematic code changes by correlating them and then relating
them according to language semantics. While this work excels at
concisely summarizing large, systematic textual changes, it is not
intended to capture behavioral differences across code changes. In
addition to these works, several syntactic approaches have been
proposed to deal with characterizing differences (see [2] for a
complete list).

In addition to the static techniques, a variety of dynamic tech-
niques exist to capture behavioral changes [19, 26, 27]. The dy-
namic approaches require a set of regression test cases in addition
to the two versions of the program. Some of these approaches [19,
26] use symbolic execution for better debugging of regression fail-
ures. Finally, there is a rich history of techniques related to regres-
sion test selection (see [30] for details), regression test generation
(see [32] for details) and identifying code clones ([21] for details)
that are orthogonal to this paper.

7. Conclusions
In this work, we provide a set of techniques for checking and infer-
ring conditional equivalences between closely related versions of a
program, in the presence of loops, recursion and the heap. There
are several open questions that need to be addressed to make such
tools useful to a developer. The choice of an abstract domain for
inferring conditional equivalence will likely depend on the nature
of the application. We will need demand-driven refinement of the
uninterpreted functions used to abstract procedures, when equiva-
lence cannot be established for the expected conditions. Most im-
portantly, more elaborate case studies in the hands of a developer
will provide insights into the utility of such a tool in the develop-
ment life cycle.

Acknowledgement
We are grateful to Ofer Strichman for his feedback on an earlier
draft of this work.

References
[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compo-

sitional symbolic execution. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS ’08), LNCS 4963, pages
367–381, 2008.

[2] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold.
Jdiff: A differencing technique and tool for object-oriented programs.
Autom. Softw. Eng., 14(1), 2007.

[3] D. Babic and A. J. Hu. Structural abstraction of software verification
conditions. In Computer Aided Verification (CAV ’07), LNCS 4590,
pages 366–378, 2007.

[4] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured
programs. In Program Analysis For Software Tools and Engineering
(PASTE ’05), pages 82–87, 2005.

[5] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs 0002, and K. R. M.
Leino. Boogie: A modular reusable verifier for object-oriented pro-
grams. In Formal Methods for Components and Objects (FMCO ’05),
LNCS 4111, pages 364–387, 2005.

[6] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure
and Interoperable Smart Devices, LNCS 3362, pages 49–69, 2005.

[7] R. E. Bryant, S. German, and M. N. Velev. Processor verification
using efficient reductions of the logic of uninterpreted functions to
propositional logic. ACM Transactions on Computational Logic, 2(1):
1–41, January 2001.

[8] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral
consistency of c and verilog programs using bounded model checking.
In DAC, pages 368–371, 2003.

[9] J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type
checking and property checking for low-level code. In POPL, pages
302–314, 2009.

[10] P. Cousot and R. Cousot. Abstract interpretation : A Unified Lattice
Model for the Static Analysis of Programs by Construction or Approx-
imation of Fixpoints. In Symposium on Principles of Programming
Languages (POPL ’77). ACM Press, 1977.

[11] D. W. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. P. Rajan.
Embedded software verification using symbolic execution and unin-
terpreted functions. International Journal of Parallel Programming,
34(1):61–91, 2006.

[12] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’08), pages 337–340, 2008.

[13] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Programming
Language Design and Implementation (PLDI’02), pages 234–245,
2002.

[15] Patrice Godefroid. Compositional dynamic test generation. In POPL,
pages 47–54, 2007.

[16] B. Godlin and O. Strichman. Regression verification. In DAC, pages
466–471, 2009.

[17] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In Computer-Aided Verification (CAV ’97), LNCS 1254, pages 72–83,
June 1997.

[18] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[19] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan.
Semantics-aware trace analysis. In PLDI, pages 453–464, 2009.

[20] Daniel Jackson and David A. Ladd. Semantic diff: A tool for summa-
rizing the effects of modifications. In ICSM, pages 243–252, 1994.

[21] L. Jiang and Z. Su. Automatic mining of functionally equivalent code
fragments via random testing. In ISSTA, pages 81–92. ACM, 2009.

[22] Miryung Kim and David Notkin. Discovering and representing sys-
tematic code changes. In ICSE, pages 309–319, 2009.

[23] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7), 1976.

[24] K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Generating
error traces from verification-condition counterexamples. Sci. Com-
put. Program., 55(1-3), 2005.

[25] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differ-
ential symbolic execution. In SIGSOFT FSE, pages 226–237, 2008.

[26] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani.
Darwin: an approach for debugging evolving programs. In ESEC/SIG-
SOFT FSE, pages 33–42, 2009.

[27] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia
Chesley. Chianti: a tool for change impact analysis of java programs.
In OOPSLA, pages 432–448, 2004.

[28] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of
the best transformer. In Verification, Model Checking, and Abstract
Interpretation, (VMCAI), LNCS 2937, pages 252–266, 2004.

[29] Software-artifact Infrastructure Repository. Available at
http://sir.unl.edu/portal/index.html.

[30] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in
development environment. In ISSTA, pages 97–106, 2002.

[31] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A Decision
Procedure for an Extensional Theory of Arrays. In LICS ’01, pages
29–37. IEEE Computer Society, June 2001.

12 2010/10/15

[32] K. Taneja, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Guided
path exploration for regression test generation. In ICSE Companion,
pages 311–314. IEEE, 2009.

13 2010/10/15

