
A Preliminary Survey of Functional Programming
Microsoft Technical Report MSR-TR-2010-147

Caitlin Sadowski
Microsoft Research
supertri@cs.ucsc.edu

Daan Leijen
Microsoft Research
daan@microsoft.com

Abstract
Functional programming has had a profound impact on the devel-
opment of mainstream languages such as C# or Java. We wanted to
get a better sense of developer’s perceptions of functional program-
ming, and also better understand which functional programming
concepts are useful to developers. This paper reports the results of
a preliminary survey on this topic.

1. Introduction
We sent out a small probe survey to a selection of 100 randomly
selected developers working at Microsoft in September of 2010.
We asked five general questions about functional programming:

1. Tell me about your experience with functional programming.

2. If you were to describe functional programming to a program-
mer who is unfamiliar with the term, how would you explain
what the term means?

3. What is functional programming good for?

4. What are the problems with functional programming?

5. Which concepts or techniques do you associate with functional
programming that exist in the languages which you are most
familiar with?

In total, 19 developers responded to the probe. In this paper, we
present the responses from our five question survey:

• In Section 2 we present the responses from developers com-
pletely unfamiliar with functional programming.

• In Section 3 we present the full responses from developers who
were familiar with the term.

2. Non Responses
Of the 19 developers who responded to our survey, 5 of them were
not familiar with the term “functional programming”.

1. I actually had to look up what functional programming was so
I guess I really don’t have much experience. To answer the rest
of your questions I would have to use the definitions I found
on the web so I don’t think that would be much help to your
project.

2. What is functional programming?

3. I’ve never really used functional programming, not sure what a
concise definition is and not sure why I would use it. It’s not
really on my radar.

4. I’m sorry I’m not familiar with functional programming.

5. I have never used functional programming other than a part of a
single class in college. So I’m not really knowledgeable enough
to answer the questions.

3. Survey Responses
Of the 19 developers who responded to our survey, 14 of them went
on to answer the specific questions. In the following five subsec-
tions, we present responses for each of the five survey questions.

3.1 Tell me about your experience with functional
programming.

1. I’ve written programs in ML and Haskell. These were all either
for academic or recreational purpose. I’ve never written any
functional programs professionally.

2. SQL: Works great. Excel: Great for analyzing financial stuff (or
really anything with a lot of numbers) Scheme: Used in college
10 years ago, can’t remember what for.

3. I have experience building a functional language.

4. • learned Lisp, ML, Haskell etc. in undergraduate program-
ming language classes immediately fell in love with the
strongly type functional languages (ML, Haskell, etc.)

• used F# and OCaml extensively for graduate programming
language class

• used F# occasionally for a few other things / classes
• read a lot of PLDI/POPL/ICFP papers that talk in terms of

functional languages
• use functional style in C# quite regularly (eg. building

OCaml-style LINQ operators)

5. I have done some work at school in using lambda calculus. used
schema for some projects.

6. I learned SML-NJ at college, which was the first I had ever seen
or heard of functional languages. I haven’t done anything with
functional languages since until the last few weeks, where I’ve
investigated F# because of its fsyacc and fslex tools for parsing.

7. No practical experience with functional languages except play-
ing a bit with LISP a while ago. Sometimes used functional
programming ideas (building from a set of no-side-effect mod-
ules).

8. Work through samples in comp sci magazines.

9. Studied in college.

10. Had a couple classes on it in school, a while ago. We used
Scheme. Haven’t done much with it sense.



11. My only experience with functional programming was in col-
lege, in my compilers class, where we used SML to write a
compiler.

12. Took a class on LISP in college.

13. I mostly use C# and I don’t use any pure functional languages,
so my day-to-day experience with functional programming is
limited to the features introduced in C# 3.0. I also have limited
experience with Python, and a parallel programming language
called ZPL, both of which use some functional concepts.

14. I’ve not used it at work.

3.2 If you were to describe functional programming to a
programmer who is unfamiliar with the term, how would
you explain what the term means?

1. Functional programing is where you program by definition and
let the language worry about the machinery. Primarily this is
done via recursion. You declare the base case and what the
results of the base case are, and then you declare the relationship
between the general case and a smaller version of the general
case. For example:

factorial(1) = 1

factorial(n) = multiply(n, factorial(n− 1))

2. Functions don’t have side effects. Playing with immutable ob-
jects.

3. Do you remember high school algebra? Well, it is like that. No
statements, no ordering, only functions. Something like bunch
of Excel formals.

4. • Focus on declarative programming (what you want, not how
to get it)

• Algorithms often more closely match their mathematical
description

• Often more concise and easier to reason formally about the
behavior of

• Can be challenging to reason about, especially for someone
unused to the functional style

5. Functional programming is a programming methodology where
functions do not affect global state and all state that a function
operates on is passed as parameters and return values

6. Functional languages allow you to use functions as values. The
ability to pass functions to other functions gives the ability to
program in a more generic way with more code reuse, in a way
that can be very elegant.

7. Using only building blocks with no side effects.

8. Functional Programming is analogous to declarative program-
ming with strict type & bounds checking.

9. Assuming that the person only expected a 1-2 minute explana-
tion and assuming that I had to say what comes to mind without
previous investigation, I would say the following: I would say
it is another programming paradigm. I would explain that it is
based on 2 core ideas, lazy evaluation and lack of global state. I
would explain that lazy evaluation can be exemplified in a situa-
tion where we have a stream of data, the next item only needs to
be generated/computed when asked. The same way, when you
are consuming the result of a function then, if it returns a list, the
next item only needs to be computed when asked. And I would
explain that the lack of global state can be achieved by always
passing the necessary state via the parameters of the function
call (and parameters are passed by copy, not by reference).

10. I’d say you describe what you want the program to do, rather
than how to do it.

11. In functional programming, everything returns a value; there
are no void methods like in procedural programming. Honestly,
I’m not sure beyond that; I’d have to look it up online.

12. Model of programming, which encapsulates the data and the
function operating on it in one entity. Allows to express recur-
sive algorithms and reason theoretically about their correctness,
which is difficult to do (not sure if at all possible?) with itera-
tive languages like C++. (I know this is a lame explanation, but
I have never stopped and thought about a definition).

13. Functional programming is different from imperative program-
ming, which is the model that most programmers are familiar
with. When writing an imperative program, the programmer
specifies a list of steps that the computer must carry out in or-
der to produce a result. When writing a functional program, the
steps are often not explicit. For example, a mathematical equa-
tion could be used to specify a desired result, without speci-
fying how the computer should evaluate the equation. Another
difference between imperative and functional programming is
that functional programming avoids side effects (e.g., changing
a variable’s value after an initial assignment).

14. Functions cannot have side effects (i.e. global state). Functions
can use the caller’s stack.

3.3 What is functional programming good for?
1. Functional programming is good for succint and elegant writing

of algorithms, especially recursive ones. It is usually easier
to write a correct algorithm in a functional language than an
imperative one.

2. Research? Building provably (at least the software) reliable
systems.

3. On their own, nothing. When you combine it with other tech-
nologies then plenty. For instance the pure nature of a func-
tional language can be a great help and at the same time could
be called bad news.

4. • More careful control of side-effects, e.g. reasoning precisely
about concurrency; transactional memory is much easier to
introduce in Haskell than C#

• Implementing mathematical algorithms at a higher level of
abstraction

• Many functional languages have strong type systems, which
help make it easier to write correct programs (but really
these are somewhat orthogonal)

• Managing complexity of large applications through stronger
abtractions e.g. once you test “bool list”, you can be assured
that “int list” etc. also works (since ’a list can’t possibly
know the difference)

5. Wherever a functionality could be purely expressed as f(X),
where X = set of params. Most notably, mathematical systems.

6. It lends itself well to creating parsers. I’m not sure when else it
might be preferred.

7. Very beneficial for concurrent programming. May be good for
creating very compact programs.

8. Analysis tools running in constrained/controlled environments.

9. Parallel programming mostly because of the simplicity achieved
by not having to synchronize access to shared (global) re-
sources. It is also good when translating from a mathemat-
ical specification into a programming language because the



syntax and semantics of the functional programming construc-
tors resemble what we have in mathematical specifications and
therefore it is easier to port from one to another; in this sense,
I believe some very sensitive systems have favored the im-
plementation via functional languages because those systems
have had the requirement of first being proved correct via a
mathematical specification (I think that was the case for some
underground train systems in France, for example).

10. I remember it was really good on recursive problems. It was
also useful to pass code around as data and to bind values for
some parameters and effectively create a new function.

11. Mathematical/scientific problems? Compilers, apparently.

12. Expressing recursive algorithms in their code form, reason
about their correctness, automatically prove invariants, etc. Not
sure what kind of applications it is good for though.

13. Functional programming can be used for the same purposes as
imperative programming (i.e. anything). Because it avoids or
prohibits side effects, it can help programmers reduce complex-
ity by limiting where changes in state can occur.

14. Continuation-passing style programming? Not sure.

3.4 What are the problems associated with functional
programming?

1. Functional programming is programming without side effects,
but most useful programs do need some sort of side effects
such as reading user input or writing output. While facilities
to handle these exist, they tend to be cumbersome. Handling
activities that are inherently sequential, such as any sort of
interactive program is also difficult.

2. Seems harder to model the mutable world with immutable ob-
jects. Perhaps this is only a perception, but it is what it is.
CPUs and Kernels don’t seem to be optimized to play well with
functional programming, especially immutable types. This is
likely due to the costs of erecting protection domains. I could
be wrong, but it seems like a system would have to be built from
the ground up with functional programming in mind to solve the
problem.

3. State, mutability, recursion, caching, ordering of execution,
“Time? What time”, side effects, etc.

4. • Functional style tends not to be appropriate for perf critical
scenarios e.g. in my F# computational biology assignments,
I often had to rewrite the hot inner loops in imperative style
to avoid GC pressure and enable better optimizations, etc.

• Can be harder to reason about performance and control flow
e.g. takes some skill to get good at ensuring tailcalls, to
understand callstacks in a debugger, etc.

• Strict functional programming, while very powerful, is hard
to cope with in practice

• Perception or reality of being hard to learn

5. State passing between functions is very heavy and the avoid-
ance of global state really complicates writing functions. State
passed to functions can be very huge. In addition, even continu-
ations need to be passed as parameters and this makes reasoning
about exceptions kind of hard.

6. It’s hard to wrap your brain around at first. Also, it can be
difficult to understand what the compiler is doing.

7. Totally different paradigm from mainstream; very hard to grasp
if it was not your first language.

8. • Leaky abstractions. Since computers and real world don’t
actually work as functional programming, functional pro-
gramming must either show procedural constructs or go
through horrible hoops to hide them.

• No “popular science” evangelist. All docs start with “func-
tional programming has its roots in Lambda Calculus and
treats computation as mathematical functions which avoid
mutable data.” (Yeah, ok, that helps)

9. Not very flexible, mostly due to the lack of global state. Not
very cognitive, compared to object oriented languages, because
real life has agents (objects) execute tasks by carrying state and
communicating with each other, and functional programming
doesn’t incorporate these commonly accepted way of doing
things in life (therefore, not very cognitive).

10. I remember it required a different mindset from procedural
languages. And that once you grok it, it was quite cool and
productive.

11. Seems like it would be unintuitive for a lot of software scenar-
ios. Having never used it outside of college, I don’t know by
experience what the problems are.

12. Apart from it being non-intuitive to the general thinking about
programming and perhaps slow code, I am not sure what else.

13. At this point the main problem with functional programming is
that it is less popular and therefore less familiar to programmer
than imperative programming. Earlier problems such as poor
performance have been solved by modern functional language
compilers.

14. Not sure.

3.5 Which concepts or techniques do you associate with
functional programming that exist in the languages
which you are most familar with?

1. Are you looking for a grab bag of functional stuff? Recursion,
tail recursion, cons, functors and first-order functionals. Note: I
considered functional programming to be distinct from logical
programming (like in prolog) though they share many similari-
ties.

2. I don’t really. I’m a C++ developer.

3. • functions == values
• Currying
• Monads
• Side effects
• Immutable values
• etc.

4. • Anonymous functions / lambdas
• Immutable data / side-effect free procedures
• Recursion
• Pipeline composition: LINQ in .NET

5. lambda queries such as in LINQ. Exception handling that is
based on continuations

6. Passing functions to other functions, currying, functors.

7. Just avoiding side effects (e.g. avoid globals / statics).

8. Recursion (which is inappropriate in a broadly shipping prod-
uct). High-Order functions (which I associate with the richer
types of C# & Java).



9. Delegates in .NET, IEnumerable, lambda expresions in .NET,
composition of method calls, functional references in C++,
struct types in .NET to pass parameters, yield constucts in .NET
to simplify the implementation of IEnumerable classes, etc.

10. I’ve been using C# mostly the last few years. I know it has
gotten some functional programming features in it, but I haven’t
taken advantage of them and aren’t real familiar with them.

11. Perhaps the trend of having all methods return some object
so you can string together a bunch of properties/methods, e.g.
foo.Concat(bar).Reverse().Add(blah).Transform().etc().

12. Recursion, encapsulation, functors in .NET (similar to the
lambda functions).

13. The language I use every day is C#, which added functional
capabilities in v3.0. One frequent application of one of these
features, lambda expressions, is in using mock objects in unit
tests. For example, to instruct a mock object’s function to return
a particular value, the ⇒ lambda operator can be used as fol-
lows, where HasQueryString is the name of a Boolean func-
tion and cu is a variable that refers to a mock object containing
HasQueryString:
cu.Setup(x⇒ x.HasQueryString).Returns(true);
Lambdas are also often used in LINQ expressions.

14. Lambda expressions in C#.

4. Conclusions
This report is a preliminary look at developer perceptions of func-
tional programming. We were struck by the range of responses.
We also noticed that recent .NET additions (such as LINQ, lambda
expressions) have really increased the visibility of functional pro-
gramming concepts.


