
MAKING THE MOST FROM MULTIPLE MICROPHONES IN MEETING RECOGN ITION

Andreas Stolcke

Speech Technology and Research Laboratory
SRI International, Menlo Park, CA, USA

and
International Computer Science Institute

Berkeley, CA, USA
stolcke@icsi.berkeley.edu

ABSTRACT

The use of multiple distant microphones has been widely studied for
meeting recognition. The two most widely used approaches are 1)
combination at the signal level, via blind beamforming, followed by
recognition of a single enhanced audio signal, and 2) independent,
logically parallel recognition of the multiple audio sources followed
by hypothesis-level combination. In this paper we investigate how
these two approaches compare for state-of-the-art recognition sys-
tems applied to meeting data from the two most recent NIST Rich
Transcription evaluations. Our results show that beamforming is the
superior approach, giving more accurate results while being inher-
ently less computationally demanding. We then propose a hybrid
approach that leverages both beamforming and signal-leveldiversity
for systemcombination, and show that this approach gives gains over
either of the old methods.

Index Terms— Meeting recognition, blind beamforming, sys-
tem combination.

1. INTRODUCTION

Automatic speech recognition (ASR) from natural multi-person
meetings remains one the most difficult recognition tasks formally
evaluated by NIST, the American National Institute of Standards
and Technology. This is especially true for recognition from distant
(e.g., tabletop) microphones. One set of techniques makingrecogni-
tion possible with accuracies approaching those of easier tasks (like
telephone speech and broadcast audio) is the use of multiplemi-
crophones. Two main approaches have been used for recognition
from multiple distant microphones (MDM). The first approach[1, 2]
combines information at the signal-level: the time-delay of arrival
between the audio channels is locally estimated and the signals are
summed after appropriate alignment. As a result the speech signal is
enhanced while noise and reverberation are attenuated. A new audio
signal is generated that can be recognized by a single recognition
run.

An alternative approach is to separately recognize the individ-
ual signals, and then combine their results at the hypothesis level
(i.e., through confusion network combination (CNC) [3, 4]), which
amounts to a weighted voting over individual recognized words. Be-
cause recognition decoding is typically slower than beamforming,
this approach is inherently more computationally costly, and scales
poorly with the number of input channels. The scaling issue can be
mitigated at some cost to accuracy by selecting a limited number of
“good” channels from among those available [5].

Wölfel, in work presented in a series of papers, has conducted
thorough comparisons of these two approaches, while developing
variants and refinements of the second, multi-channel approach
[6, 5, 7]. The Wölfel results were all based onlecture meetings, a
specialized form of meeting data dominated by a single speaker and
with microphone configurations that are not typical for morecom-
mon conference-table meetings. Second, owing to the inherent dif-
ficulty of the data, the recognition systems exhibited very high word
error rates (typically between 40 and 60%), whereas recent NIST
meeting evaluations have resulted in substantially lower error rates,
of between 25 and 35% [8]. It is well-known that the effectiveness
of ASR algorithms (e.g., unsupervised adaptation) may wellchange
as a function of error rate. Also, the reported gains from blind beam-
forming have been significantly smaller in the earlier studies than
what we typically find in MDM conference recognition (possibly
due to the special difficulties of the lecture task, where thespeaker
location might vary substantially). For all these reasons,we found
it worthwhile revisiting the question of the relative effectiveness of
beamforming versus multiple recognition. In the process wedevel-
oped additional processing schemes that combine aspects ofboth
approaches, and that resulted in additional accuracy gains.

2. METHOD

2.1. Data

Our data is drawn from the two most recent NIST Rich Transcrip-
tion (RT) conference meeting evaluation sets, RT-07 and RT-09, as
well as from the RT-07 lecture meeting evaluation set (RT-09did not
include any lecture data). Note that each set consists of excerpts of
longer meetings, but only the regions defined for evaluationpurposes
are processed by our systems; while using data outside thoseregions
is legal, little or no benefit was found when doing so. Statistics of
these test sets are summarized in Table 1. Note that the number of
speakers for lecture meetings is misleading; most of the speech orig-
inates from a single speaker, the lecturer.

2.2. Microphone selection

While the RT evaluations define several microphone conditions, here
we are only concerned with the MDM condition. For comparisonwe
also give results on the single distant microphone (SDM) condition,
which uses a single NIST-defined, “centrally located” microphone
as the only input to the recognizer.



Table 1. Comparison of key NIST RT evaluation set properties

RT-07 RT-07 RT-09
Meeting genre lecture conference conference
No. meetings 32 8 7
Avg./max. no. spkrs/mtg 4.41 / 7 4.38 / 6 5.43 / 11
No. of mics per meeting 3-4 3-16 7-16
Total duration 164 mins 180 mins 181 mins
Total speech duration 138 mins 156 mins 162 mins
Total no. of words 25239 36800 36734

As shown in Table 1, the meetings differ in the number (as well
as the type) of microphones available. All algorithms discussed here
are capable of dealing with a variable number of microphones, but
the processing time for approaches based on multiple recognition
scales linearly with the number of input channels (since thetotal pro-
cessing time is dominated by the ASR). As an expedient, we limit
the number of microphones to a maximum of four, sampling from
the available ones at constant steps in their nominal order.For ex-
ample, for meetings with seven microphones, we would only use
microphones numbered 1, 3, 5, and 7. This sampling procedureis
oblivious to the physical location or type of the microphones. It was
known that all microphones were located on the conference tabletop,
and we guessed that channel numbers would roughly correspond to
physical proximity. For the meetings collected by the Augmented
Multi-party Interaction (AMI) consortium, the selection procedure
yields two diametrically opposed microphones each from thetwo 8-
channel circular arrays used for meeting recordings. (Following the
MDM task specification, the array microphones also available in the
lecture rooms were not used in the present study.)

2.3. Error metrics

We report word error rate (WER) as our metric, computed in the
standard way as the total number of incorrectly recognized or deleted
words, divided by the total number of reference words. However, be-
cause conference meetings include a significant amount of overlap-
ping speech (another property that distinguishes them fromlectures),
NIST introduced an additional free parameter in the WER compu-
tation: the maximum allowed number of overlapping speakers. An
“overlap-N ” WER includes all reference speech segments with up
toN speakers talking simultaneously. Since our recognition system
does not attempt to model overlapping speech, we will be interested
mostly in overlap-1 WER. but we also report overlap-4 WER for
completeness. (Computing overlap-N WER becomes prohibitively
expensive for larger values ofN , and more than four overlapping
speakers are very rare even in conference meetings).

3. RECOGNITION SYSTEM

3.1. Preprocessing

Prior to any other processing, the audio signals are individually
Wiener-filtered using the ICSI-OGI-Qualcomm Aurora implementa-
tion [9] to suppress stationary noise. The wiener filtering (which in-
cludes a fast speech/nonspeech detector) runs in less than 0.03 times
realtime (xRT) on a single 3.1GHz CPU core. Even though it has
to be run for each input channel it is not a significant contributor to
overall recognition time, especially on a multicore CPU.

Fig. 1. SRI meeting recognition system. Rectangles represent decoding
steps. Parallelograms represent decoding output (lattices or 1-best hypothe-
ses). Solid arrows denote the passing of hypotheses for adaptation or out-
put. Dashed lines denote the generation or use of word lattices for decoding.
Crossed ovals denote confusion network system combinationsteps.

3.2. Beamforming

We use Anguera’s freely available blind beamforming implementa-
tion BeamformIt, version 2.0 [10] to combine multiple audio chan-
nels into a single signal. This step runs in less than 0.01xRTon a
single 3.1GHz CPU, relative to the combined duration of the input
waveforms. Therefore, this step will likewise only contribute a small
fraction of the total runtime of the recognition system.

Beamforming can substantially benefit speech segmentationas
well as recognition, therefore performing the blind beamforming
step prior to segmentation is advisable. On the other hand, beam-
forming occurs after Wiener filtering, since the noise filtering also
enhances beamforming [1].

3.3. Segmentation and clustering

The audio stream is segmented into speech and nonspeech seg-
ments by decoding with a two-class GMM acoustic model based on
standard Mel frequency cepstral coefficient (MFCC) features. The
HMM structure imposes some minimum duration constraints and
penalizes transitions between speech and nonspeech classes. The
resulting speech segments are combined and padded to satisfy some
duration constraints: no pauses longer than 0.4 s, no segments longer
than 60 s, and 0.06 s nonspeech at the beginning and end of seg-
ments.

Prior to recognition, the speech segments from a given meet-
ing undergo agglomerative clustering based on acoustic similarity,
following a method previously developed for broadcast newsrecog-
nition [11]. This step results in pseudo-speaker clusters that form the
units for cepstral normalization and unsupervised adaptation in the
recognition system.

To facilitate the experiments and their analyses, we introduce
an additional simplification. In the multiple recognition approach,
the segmentation would typically produce quite different results de-
pending on the microphone used (for example, a speaker far removed
from the microphone might not be detected well, possibly resulting
in all of his or her words being deleted). Further, system combina-
tion of ASR outputs using diverging segmentations is cumbersome
unless suboptimal algorithms (less than full confusion network com-
bination) are used [8]. Therefore, and because beamformingis fast
compared to recognition, we assume that segmentation is always run
on the beamformed signal, and a common segmentation used, even
if subsequent recognition employs the original, multiple,available



audio signals. This approach is not only practical, it also benefits
the multiple-recognition approach, because all recognizers then use
higher-quality segmentation. More importantly, the procedure sim-
plifies and focuses the analyses because result differencescan be
attributed to the recognizer proper, as opposed to different qualities
of speech activity detection.

3.4. Recognition system

The ASR system for all our experiments is the meeting recognition
system jointly developed by SRI and ICSI for the distant micro-
phone, conference meeting conditions in the NIST RT-07 and RT-09
meeting recognition evaluations [12]. As depicted in Figure 1, the
recognizer performs a total of eight decoding passes with alternat-
ing acoustic front-ends: one based on telephone-band MFCCsaug-
mented with multilayer-perceptron (MLP) features, and onebased
on full-band perceptual linear prediction (PLP) features.Acoustic
models are cross-adapted during recognition to output fromprevious
recognition stages, and the output of the three final decoding steps
is combined via confusion networks. The MFCC models are trained
on telephone conversations and then adapted to about 200 hours of
meeting data. The PLP models, by contrast, are originally trained
on broadcast data. Various discriminative techniques are used in
training and adaptation [13]. Language models (LMs) consist of a
mixture of genre-specific models for meeting transcripts, telephone
conversations, broadcast news, web data, and (for lecture recogni-
tion) conference proceedings and lecture transcripts. Therecogni-
tion system performs vocal tract length normalization, andcepstral
mean and variance normalization, and in later recognition passes,
unsupervised acoustic adaptation using CMLLR and MLLR on the
pseudo-speaker clusters generated by the waveform-clustering step
described earlier. Processing time for recognition on a single au-
dio stream is about 3.8 times real time on an 8-core, 3.1-GHz Intel-
CPU server, including the processing for waveform segmentation
and clustering.

3.5. Acoustic model training

The meeting training data (approximately 200 hours in duration)
is prepared for training in a manner that is consistent with single-
microphone processing. All recording channels from all training
meetings (including close-talking microphones, which arenot al-
lowed in SDM and MDM test condition) are pooled. This has the
effect that speech is modeled in a range of recording conditions
(from close-talking to most distant). Regions of overlapping speech
are excluded from training. The same recognition models areused
in all test configurations. Therefore, training audio data is noise-
filtered, but not beamformed. Thus, model training is actually better
matched to the multiple-recognition approach than the beamforming
approach.

4. EXPERIMENTS AND RESULTS

4.1. Comparison of standard approaches

All baseline results, as well as results with multiple-recognition and
beamforming are listed in Table 2. For reference, the table includes
the results with a single microphone (SDM), yielding the worse re-
sults, and the MDM processing performed by our evaluation sys-
tem, based on all microphone channels and beamforming. The rel-
ative difference (in overlap-1 WER) between these two systems is
between 12 and 20% depending on the test set.

Table 2. WER (%) results with various distant microphone process-
ing methods. All results on nonoverlapping (overlap-1) speech. BF
= beamforming, MR = multiple recognition.

RT-07 RT-07 RT-09
Genre lecture conference conference
Overlap 1 4 1 4 1 4

Sngle mic (SDM) 50.6 54.5 33.1 45.2 41.3 49.9
BF,� 4 mics 44.6 49.1 28.1 40.8 37.2 45.5
MR,� 4 mics 47.9 52.5 31.6 45.7 39.7 49.6
BF + MR,� 4 mics 44.0 48.8 28.2 41.5 36.8 45.9
BF, all mics 44.6 49.1 26.5 39.3 33.6 42.7

Table 3. WER (%) results with leave-one-out beamforming (LOO-
BF). BF = beamforming. Number of microphones� 4.

RT-07 RT-07 RT-09
Genre lecture conference conference
Overlap 1 4 1 4 1 4

BF 44.6 49.1 28.1 40.8 37.2 45.5
LOO-BF 42.8 47.9 28.1 41.5 36.4 45.4
BF + LOO-BF 42.7 47.7 27.5 40.8 36.2 45.2

The 4-microphone beamforming achieves only between 10 and
15% relative improvement in overlap-1 WER, showing that blind
beamforming can effectively combine a fairly large number of chan-
nels for incremental gains.

Independent recognition and CNC of the same four channels,
however, gives substantial less gain, generally less than half the rel-
ative gain of beamforming. We also tried to enhance the multiple-
recognition approach by cross-adapting the acoustic models using
preliminary hypotheses obtained from other channels. The results
were worse, presumably because such cross-adaptation causes the
different parallel systems to converge on similar hypotheses, which
then tends to leave less room for improvement in the final combina-
tion.

We also tried combining the final outputs from multiple recogni-
tion (MR) with the output from beamforming (BF), as was suggested
in [5]. This indeed gives small additional gains over beamforming
alone, but the differences are small and inconsistent across test sets.
(For RT-09, the overlap-4 WER is actually slightly worse as aresult
of the BF+MR combination.)

4.2. Leave-one-out beamforming

The initial experiments raise the question if beamforming and sys-
tem combination approach can somehow be combined for additional
gains. The question is how channels should be beamformed in multi-
ple, distinct ways to achieve both good recognition from each beam,
as well as to preserve diversity among the different recognition runs.
For example one might partition the available audio channels. Here
we choose a simple strategy that beamforms allN channels minus
one, where the left-out channel is changed in a round-robin man-
ner. This again yieldsN different signals, which are then recognized
separately for eventual CNC. We call this “leave-one-out beamform-
ing”. It is depicted in Figure 2, contrasting it with the traditional
multiple recognition and beamforming processing schemas.

The results appear in Table 3. The gains in overlap-1 WER over
simple beamforming are between 0 and 4% relative. The results can
be improved somewhat if theN -way beamformed system is added
to the final CNC.
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Fig. 2. MDM processing schemes. (1) multiple recognition, (2) beamforming, (3) leave-one-out beamforming with multiple recognition.

We again tried to improve the leave-one-out beamformed system
further by introducing cross-adaptation between the parallel systems,
but this, too, gave no additional win.

5. DISCUSSION AND CONCLUSIONS

We may summarize the results as follows. When comparing signal-
level combination via beamforming versus system combination at
the word-level, the beamforming approach is consistently and sub-
stantially superior. Because beamforming is also much faster than
parallel recognition beamforming is clearly the recommended ap-
proach for leveraging multiple microphones for recognition. It is
noteworthy that this conclusion is supported by results across differ-
ent meeting genres (lectures and conferences), and for verydifferent
operating points (word error rates in the 20s, 30s, and 40s).

If runtime is not an issue and multiple parallel recognitionruns
are affordable, we find that the best strategy is to create multiple
beamformed signals by leaving out one channel at a time. Adding
recognition from the fully formed beam into the combinationhelps
too.
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