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ABSTRACT

The use of multiple distant microphones has been widelyiestLidr
meeting recognition. The two most widely used approached ar
combination at the signal level, via blind beamformingldaled by
recognition of a single enhanced audio signal, and 2) inceéget,
logically parallel recognition of the multiple audio soascfollowed
by hypothesis-level combination. In this paper we inveggghow
these two approaches compare for state-of-the-art retbogsys-
tems applied to meeting data from the two most recent NIST Ric
Transcription evaluations. Our results show that beanifogris the
superior approach, giving more accurate results whilegiiher-
ently less computationally demanding. We then propose aidhyb
approach that leverages both beamforming and signal-diéxeisity
for system combination, and show that this approach givies gaer
either of the old methods.

Index Terms— Meeting recognition, blind beamforming, sys-
tem combination.

1. INTRODUCTION

Automatic speech recognition (ASR) from natural multigmer
meetings remains one the most difficult recognition taska&ly
evaluated by NIST, the American National Institute of Stald
and Technology. This is especially true for recognitiomfrdistant
(e.g., tabletop) microphones. One set of techniques makragni-
tion possible with accuracies approaching those of eassést(like
telephone speech and broadcast audio) is the use of muitiple
crophones. Two main approaches have been used for re@ogniti
from multiple distant microphones (MDM). The first approéti2]
combines information at the signal-level: the time-delédyawival
between the audio channels is locally estimated and thealsigme
summed after appropriate alignment. As a result the spegicalss
enhanced while noise and reverberation are attenuatedv/Aanéio
signal is generated that can be recognized by a single rémogn
run.

An alternative approach is to separately recognize theihdi
ual signals, and then combine their results at the hypathegel
(i.e., through confusion network combination (CNC) [3,, 4}hich
amounts to a weighted voting over individual recognizeddsoBe-
cause recognition decoding is typically slower than beamiog,
this approach is inherently more computationally costhd acales
poorly with the number of input channels. The scaling issrelme
mitigated at some cost to accuracy by selecting a limitedberrof
“good” channels from among those available [5].
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Wolfel, in work presented in a series of papers, has comdlct
thorough comparisons of these two approaches, while dewejo
variants and refinements of the second, multi-channel agpro
[6, 5, 7]. The Wolfel results were all based tacture meetings, a
specialized form of meeting data dominated by a single sgresaid
with microphone configurations that are not typical for mooen-
mon conference-table meetings. Second, owing to the inhdie
ficulty of the data, the recognition systems exhibited veghhword
error rates (typically between 40 and 60%), whereas rec&T N
meeting evaluations have resulted in substantially lowser eates,
of between 25 and 35% [8]. It is well-known that the effeatigss
of ASR algorithms (e.g., unsupervised adaptation) may efedhge
as a function of error rate. Also, the reported gains fromdbbeam-
forming have been significantly smaller in the earlier stgdihan
what we typically find in MDM conference recognition (podgib
due to the special difficulties of the lecture task, wheresppeaker
location might vary substantially). For all these reasaves found
it worthwhile revisiting the question of the relative effeeness of
beamforming versus multiple recognition. In the processlesxel-
oped additional processing schemes that combine aspeobistiof
approaches, and that resulted in additional accuracy gains

2. METHOD

2.1. Data

Our data is drawn from the two most recent NIST Rich Transcrip
tion (RT) conference meeting evaluation sets, RT-07 an@®Tas
well as from the RT-07 lecture meeting evaluation set (RTHaMot
include any lecture data). Note that each set consists @frptcof
longer meetings, but only the regions defined for evaluatioposes
are processed by our systems; while using data outside tegeas

is legal, little or no benefit was found when doing so. Statsof
these test sets are summarized in Table 1. Note that the mwhbe
speakers for lecture meetings is misleading; most of thecperig-
inates from a single speaker, the lecturer.

2.2. Microphone selection

While the RT evaluations define several microphone contitibere
we are only concerned with the MDM condition. For compariaen
also give results on the single distant microphone (SDMydam,
which uses a single NIST-defined, “centrally located” mgatrone
as the only input to the recognizer.



Table 1. Comparison of key NIST RT evaluation set properties

RT-07 RT-07 RT-09
Meeting genre lecture | conference| conference
No. meetings 32 8 7
Avg./max. no. spkrs/mtq 4.41/7 4.38/6 5.43/11
No. of mics per meeting 3-4 3-16 7-16
Total duration 164 mins| 180 mins | 181 mins
Total speech duration | 138 mins| 156 mins | 162 mins
Total no. of words 25239 36800 36734

As shown in Table 1, the meetings differ in the number (as well

as the type) of microphones available. All algorithms désad here
are capable of dealing with a variable number of microphphes
the processing time for approaches based on multiple ré@mgn
scales linearly with the number of input channels (sincédtag pro-

cessing time is dominated by the ASR). As an expedient, wi¢ lim
the number of microphones to a maximum of four, sampling from

the available ones at constant steps in their nominal ofear.ex-

ample, for meetings with seven microphones, we would only us
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Fig. 1. SRI meeting recognition system. Rectangles representlitego
steps. Parallelograms represent decoding output (lattic&-best hypothe-
ses). Solid arrows denote the passing of hypotheses fottatiapor out-

put. Dashed lines denote the generation or use of worddatfr decoding.
Crossed ovals denote confusion network system combinstiés.

3.2. Beamforming

microphones numbered 1, 3, 5, and 7. This sampling proceslure \We use Anguera’s freely available blind beamforming impeeia-

oblivious to the physical location or type of the microphsnie was
known that all microphones were located on the confereridettzp,
and we guessed that channel numbers would roughly corrdgpon
physical proximity. For the meetings collected by the Augted
Multi-party Interaction (AMI) consortium, the selectiomgzedure
yields two diametrically opposed microphones each fromtwloes-
channel circular arrays used for meeting recordings. ¢Ratlg the
MDM task specification, the array microphones also avadlabthe
lecture rooms were not used in the present study.)

2.3. Error metrics

tion Beamformit, version 2.0 [10] to combine multiple audio chan-
nels into a single signal. This step runs in less than 0.01c0R&
single 3.1GHz CPU, relative to the combined duration of tiput
waveforms. Therefore, this step will likewise only contri a small
fraction of the total runtime of the recognition system.

Beamforming can substantially benefit speech segmentasion
well as recognition, therefore performing the blind beamiog
step prior to segmentation is advisable. On the other hasaimb
forming occurs after Wiener filtering, since the noise fitigralso
enhances beamforming [1].

3.3. Segmentation and clustering

We report word error rate (WER) as our metric, computed in theThe audio stream is segmented into speech and nonspeech seg-

standard way as the total number of incorrectly recognizeeteted
words, divided by the total number of reference words. Haudve-
cause conference meetings include a significant amountesfagp#
ping speech (another property that distinguishes them legtares),

ments by decoding with a two-class GMM acoustic model based o
standard Mel frequency cepstral coefficient (MFCC) featuréhe
HMM structure imposes some minimum duration constrain$ an
penalizes transitions between speech and nonspeech<laskse

NIST introduced an additional free parameter in the WER aomp resulting speech segments are combined and padded ty satisé

tation: the maximum allowed number of overlapping speakars

duration constraints: no pauses longerthan 0.4 s, no sdgioeger

“overlap-N” WER includes all reference speech segments with ugthan 60s, and 0.06s nonspeech at the beginning and end of seg-

to N speakers talking simultaneously. Since our recogniticatesy
does not attempt to model overlapping speech, we will begsted

ments.
Prior to recognition, the speech segments from a given meet-

mostly in overlap-1 WER. but we also report overlap-4 WER foring undergo agglomerative clustering based on acoustittasity,

completeness. (Computing overlapWER becomes prohibitively
expensive for larger values @, and more than four overlapping
speakers are very rare even in conference meetings).

3. RECOGNITION SYSTEM

3.1. Preprocessing

Prior to any other processing, the audio signals are indailg
Wiener-filtered using the ICSI-OGI-Qualcomm Aurora impksmta-
tion [9] to suppress stationary noise. The wiener filteriwgi¢h in-
cludes a fast speech/nonspeech detector) runs in less.fttirfes

following a method previously developed for broadcast nexesg-
nition [11]. This step results in pseudo-speaker clustesform the
units for cepstral normalization and unsupervised adiptét the
recognition system.

To facilitate the experiments and their analyses, we intced
an additional simplification. In the multiple recognitiopoach,
the segmentation would typically produce quite differeguits de-
pending on the microphone used (for example, a speakeraved
from the microphone might not be detected well, possiblyltesy
in all of his or her words being deleted). Further, system loioi-
tion of ASR outputs using diverging segmentations is cuisiree
unless suboptimal algorithms (less than full confusiomoek com-
bination) are used [8]. Therefore, and because beamforimifagpt

realtime (xRT) on a single 3.1GHz CPU core. Even though it hagompared to recognition, we assume that segmentation &yalwn

to be run for each input channel it is not a significant contobto
overall recognition time, especially on a multicore CPU.

on the beamformed signal, and a common segmentation ussd, ev
if subsequent recognition employs the original, multigeailable



audio signals. This approach is not only practical, it alsoddits
the multiple-recognition approach, because all recogsiteen use
higher-quality segmentation. More importantly, the pidoe sim-
plifies and focuses the analyses because result differerazebe
attributed to the recognizer proper, as opposed to diffeyealities
of speech activity detection.

3.4. Recognition system

The ASR system for all our experiments is the meeting redimgni
system jointly developed by SRI and ICSI for the distant wcr
phone, conference meeting conditions in the NIST RT-07 aR@®R
meeting recognition evaluations [12]. As depicted in Fgr the
recognizer performs a total of eight decoding passes widrredt-
ing acoustic front-ends: one based on telephone-band MBQGs
mented with multilayer-perceptron (MLP) features, and based
on full-band perceptual linear prediction (PLP) featurésoustic
models are cross-adapted during recognition to output frevious
recognition stages, and the output of the three final degostieps
is combined via confusion networks. The MFCC models aredai
on telephone conversations and then adapted to about 20§ diou
meeting data. The PLP models, by contrast, are originadliyped
on broadcast data. Various discriminative techniques aesl in
training and adaptation [13]. Language models (LMs) cadrtfist
mixture of genre-specific models for meeting transcrigepghone
conversations, broadcast news, web data, and (for leatargni-
tion) conference proceedings and lecture transcripts. rébegni-
tion system performs vocal tract length normalization, eepstral
mean and variance normalization, and in later recognitiassps,

Table 2. WER (%) results with various distant microphone process-
ing methods. All results on nonoverlapping (overlap-1)exte BF
= beamforming, MR = multiple recognition.

RT-07 RT-07 RT-09

Genre lecture conference| conference

Overlap 1 4 1 4 1 4
Sngle mic (SDM) 506 | 54.5| 33.1| 45.2 | 41.3| 49.9
BF, < 4 mics 446 | 49.1| 28.1 | 40.8| 37.2| 45.5
MR, < 4 mics 479 | 525| 31.6 | 45.7 | 39.7 | 49.6
BF+MR,<4mics | 44.0| 48.8| 28.2| 415 36.8| 45.9
BF, all mics 446 | 49.1| 26.5| 39.3| 33.6 | 42.7

Table 3. WER (%) results with leave-one-out beamforming (LOO-
BF). BF = beamforming. Number of microphon€st.

RT-07 RT-07 RT-09
Genre lecture conference| conference
Overlap 1 4 1 4 1 4
BF 4461 49.1| 28.1| 40.8| 37.2 | 455
LOO-BF 428 | 479 28.1| 415| 36.4 | 454
BF+LOO-BF | 42.7 | 47.7| 27.5| 40.8| 36.2 | 45.2

The 4-microphone beamforming achieves only between 10 and
15% relative improvement in overlap-1 WER, showing thandbli
beamforming can effectively combine a fairly large numifertean-
nels for incremental gains.

Independent recognition and CNC of the same four channels,

unsupervised acoustic adaptation using CMLLR and MLLR @ th however, gives substantial less gain, generally less tadrite rel-

pseudo-speaker clusters generated by the waveform-ghgsstep
described earlier. Processing time for recognition on glsiau-
dio stream is about 3.8 times real time on an 8-core, 3.1-@it&t-|
CPU server, including the processing for waveform segntienta
and clustering.

3.5. Acoustic model training

The meeting training data (approximately 200 hours in domat
is prepared for training in a manner that is consistent wiitigls-
microphone processing. All recording channels from alintrey
meetings (including close-talking microphones, which aot¢ al-

ative gain of beamforming. We also tried to enhance the piaki
recognition approach by cross-adapting the acoustic ragshg
preliminary hypotheses obtained from other channels. €salts
were worse, presumably because such cross-adaptatioesciues
different parallel systems to converge on similar hypotisesvhich
then tends to leave less room for improvement in the final ¢Goaab
tion.

We also tried combining the final outputs from multiple reaibg
tion (MR) with the output from beamforming (BF), as was susjgd
in [5]. This indeed gives small additional gains over beamiag
alone, but the differences are small and inconsistent atess sets.
(For RT-09, the overlap-4 WER is actually slightly worse assult

lowed in SDM and MDM test condition) are pooled. This has theof the BF+MR combination.)

effect that speech is modeled in a range of recording camditi
(from close-talking to most distant). Regions of overlaygpspeech
are excluded from training. The same recognition modelsiaes
in all test configurations. Therefore, training audio dataoise-
filtered, but not beamformed. Thus, model training is atyuzdtter
matched to the multiple-recognition approach than the e@ning
approach.

4. EXPERIMENTS AND RESULTS

4.1. Comparison of standard approaches

All baseline results, as well as results with multiple-rgeition and
beamforming are listed in Table 2. For reference, the tatdkides
the results with a single microphone (SDM), yielding the sere-

sults, and the MDM processing performed by our evaluatias: sy

4.2. Leave-one-out beamforming

The initial experiments raise the question if beamformingd ays-
tem combination approach can somehow be combined for addliti
gains. The questionis how channels should be beamformedlti m
ple, distinct ways to achieve both good recognition fromheagam,
as well as to preserve diversity among the different redamiuns.
For example one might partition the available audio chanridére
we choose a simple strategy that beamformgvatthannels minus
one, where the left-out channel is changed in a round-rol@n-m
ner. This again yieldd/ different signals, which are then recognized
separately for eventual CNC. We call this “leave-one-oatb®rm-
ing”. It is depicted in Figure 2, contrasting it with the titahal
multiple recognition and beamforming processing schemas.

The results appear in Table 3. The gains in overlap-1 WER over

tem, based on all microphone channels and beamforming. éthe r simple beamforming are between 0 and 4% relative. The secait

ative difference (in overlap-1 WER) between these two systes
between 12 and 20% depending on the test set.

be improved somewhat if th& -way beamformed system is added
to the final CNC.
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Fig. 2. MDM processing schemes. (1) multiple recognition, (2) bfsaming, (3) leave-one-out beamforming with multiple rgadion.

We again tried to improve the leave-one-out beamformecsgyst
further by introducing cross-adaptation between the fEmjistems,
but this, too, gave no additional win.

5. DISCUSSION AND CONCLUSIONS

We may summarize the results as follows. When comparingabign
level combination via beamforming versus system comtmnait
the word-level, the beamforming approach is consistemtty sub-
stantially superior. Because beamforming is also muclefaban
parallel recognition beamforming is clearly the recommeshdp-
proach for leveraging multiple microphones for recogmitiot is
noteworthy that this conclusion is supported by resultssdiffer-
ent meeting genres (lectures and conferences), and fodiféayent
operating points (word error rates in the 20s, 30s, and 40s).

If runtime is not an issue and multiple parallel recognitians
are affordable, we find that the best strategy is to createiptaul
beamformed signals by leaving out one channel at a time. rddi
recognition from the fully formed beam into the combinatfaips
too.
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