
REPRIV: Re-Envisioning In-Browser Privacy

Abstract—In this paper, we present REPRIV, a system that
combines the goals of privacy and content personalization in the
browser. REPRIV discovers user interests and shares them with
third-parties, but only with an explicit permission of the user. We
demonstrate how always-on user interest mining can effectively
infer user interests in a real browser. We go on to discuss an
extension framework that allows third-party code to extract and
disseminate more detailed information, as well as language-based
techniques for verifying the absence of privacy leaks in this
untrusted code. To demonstrate the effectiveness of our model,
we present REPRIV extensions that perform personalization for
Netflix, Twitter, Bing, and GetGlue.

This paper evaluates important aspects of REPRIV in realistic
scenarios. We show that REPRIV’s default in-browser mining can
be done with no noticeable overhead to normal browsing, and
that the results it produces converge quickly. We demonstrate
that REPRIV personalization yields higher quality results than
those that may be obtained about the user from public sources.
We then go on to show similar results for each of our case
studies: that REPRIV enables high-quality personalization, as
shown by cases studies in news and search result personalization
we evaluated on thousands of instances, and that the performance
impact each case has on the browser is minimal. We conclude
that personalized content and individual privacy on the web are
not mutually exclusive.

I. INTRODUCTION

The motivation of this work comes from the observation that
in today’s web there are two distinct groups, users and service
providers such as Amazon, Google, Microsoft, Facebook and
the like. Service providers are interested in learning as much
about their users as they can so that they can better target their
ads or provide content personalization. Users might welcome
content, ad, and site personalization as long as it does not
compromise their privacy.

In today’s web, for service providers, personalization oppor-
tunities are limited. Even if sites like Amazon and Facebook
allow or sometimes require authentication, service providers
only know as much about the user as can be gathered through
interaction with the site. A user might only spend a few
minutes a day on Amazon.com, for example. This is minuscule
compared to the amount of time the same user spends in the
browser. This suggests a simple lesson: the browser knows
much more about you than any particular site you visit. Based
on this observation, we suggest the following strategy, which
forms the basis for REPRIV:

1) Let the browser infer information about the user’s inter-
ests based on her browsing behavior, the sites he visits,
her prior history, and detailed interactions on web sites
of interest to form a user interest profile.

2) Let the browser control the release of this information.
For instance, upon the request of a site such as Ama-
zon.com or BarnesAndNoble.com, the user will be asked

for a permission to send her high-level interests to the
site. This is similar to prompting for the permission to
obtain the geo-location in today’s mobile browsers. By
default, more explicit information than this, such as the
history of visited URLs would not be exposed to the
requesting site. It is an important design principle of
REPRIV that the user stay in control of what information
is released by the browser.

3) In addition to default user interest mining, REPRIV
allows service providers to register extensions that would
perform information extraction within the browser. For
instance, a Netflix extension (or miner) may extract
information pertinent to what movies the user is in-
terested in. The miner may use the history of visiting
Fandango.com to see what movies you saw in theaters
in the past. REPRIV miners are statically verified at the
time of submission to disallow undesirable privacy leaks.

This approach is attractive for web service providers because
they get access to user’s preferences without the need for
complex data mining machinery and is in any case based on
limited information. It is also attractive for the user because of
better ad targeting and content personalization opportunities.
Moreover, this approach opens up an interesting new business
model: service providers can incentivize users to release their
preferences in exchange for store credit, ad-free browsing, or
access to premium content. Compared to prior research [9,
28], the appeal of REPRIV is considerably more extensive as
it enables the following broad applications:

1) Personalized search. Search results from a variety of
search engines can be re-ranked to match user’s prefer-
ences as well as their browsing history (Section VI-A).

2) Site personalization. Sites such as Google News,
CNN.com, or Overstock.com can be easily adopted
within the browser to match user’s news or shopping
preferences (Section VI-B).

3) Ad targeting. Although we do not explicitly focus on ad
personalization in this apper, REPRIV enables browser-
based ad targeting as suggested by Adnostic [28] and
Privad [9].

Note that REPRIV is largely orthogonal to in-private browsing
modes supported by modern browsers. While it is still possible
for a determined service provider to perform user tracking
unless the user combines REPRIV with a browser privacy
mode such as InPrivate Browsing in Internet Explorer, it is
our hope that, going forward, the service provider will opt
for explicitly requesting user preferences through the REPRIV
protocol rather than using a back door.



A. Contributions

Our paper makes the following contributions:
• REPRIV. We present REPRIV, a system for controlling

the release of private information within the browser. We
demonstrate how built-in data mining of user interests
can work within an experimental HTML5 platform called
C3 [14].

• Extension Framework. We developed a browser exten-
sion framework for allowing untrusted third-party code to
make use of REPRIV’s data. We discuss the API and type
system based on the Fine programming language [25]
that ensures these extensions do not introduce privacy
leaks. We developed six realistic miner examples that
demonstrate the utility of this framework.

• Evaluation. We demonstrate that REPRIV mining can be
done with minimal overhead to the end-user latency. We
also show the efficacy of REPRIV mining on real-life
browsing sessions and conclude that REPRIV is able to
learn user preferences quickly and effectively. We demon-
strate the utility of REPRIV by performing two large-scale
case studies, one targeting news personalization, and the
other focusing on search result reordering, both evaluated
on real user data.

B. Paper Organization

The rest of the paper is organized as follows. Section II
provides some background on web privacy and personaliza-
tion and motivates the problem REPRIV attempts to solve.
Section III talks about REPRIV implementation and resulting
technical issues. Section IV discusses custom REPRIV miners
and their verification. Section V describes our experimental
evaluation. Section VI describes two detailed case studies, one
focusing on news and the other on search personalization.
Section VII discusses the topics of incentives for REPRIV
use, usability, deployment, etc. Finally, Sections VIII and
Section IX describe related work and conclude.

II. OVERVIEW

We begin with a high-level discussion in Section II-A of
existing efforts to preserve privacy on the web, and how
REPRIV fits into this context. Section II-B talks about site
personalization and Section II-C motivates third-party person-
alization extensions that we call “miners”.

A. Background

One definition of privacy common in popular thought and
law is summarized as follows: individual privacy is a person’s
right to control information about one’s self, both in terms of
how much information others have access to, and the manner
in which others may use it. The web as it currently stands
is different from how it was initially conceived; it has trans-
formed from a passive medium to an active one where users
take part in shaping the content they receive. One popular form
of active content on the web is personalized content, wherein a
provider uses certain characteristics of a particular user, such
as their demographic or previous behaviors, to filter, select,

or otherwise modify the content that it ultimately presents.
This transition in content raises serious concerns about privacy,
as arbitrary personal information may be required to enable
personalized content, and a confluence of factors has made it
difficult for users to control where this information ends up,
and how it is used.

Because personalized content presents profit opportunity,
businesses have incentive to adopt it quickly, oftentimes
without user consent. This creates situations that many users
perceive as a violation of privacy. A prevalent example of
this is already seen with online targeted advertising, such as
that offered by Google AdSense [7]. By default, this system
tracks users who enable browser cookies across all web sites
that choose to partner with it. This tracking can be arbitrarily
invasive as it pertains to the user’s behavior at partner sites,
and in most cases the user is not explicitly notified that the
content they choose to view also actively tracks their actions,
and transmits it to a third party (Google). While most services
of this type have an opt-out mechanism that any user can
invoke, many users are not even aware that a privacy risk
exists, much less that they have the option of mitigating it.

As a response to concerns about individual privacy on the
web, developers and researchers continue to release solutions
that return various degrees of privacy to the user. One well-
known example is the private browsing modes available in
most modern browsers, which attempt to conceal the user’s
identity across sessions by blocking access to various types of
persistent state in the browser [1]. However, a recent study [1]
demonstrated that none of the major browsers implement this
mode correctly, leading to alarming inconsistencies between
user expectations and the features offered by the browser.
Even if private browsing mode were implemented correctly, it
inherently poses significant problems for personalized content
on the web, as sites are not given access to the information
needed to perform personalization.

Others have attempted to build schemes that preserve the
privacy of the user while maintaining the ability to person-
alize content. Most examples [6, 9, 13, 28] concern targeted
advertising, given its prevalence and well-known privacy im-
plications. For example, both PrivAd [9] and Adnostic [28]
are end-to-end systems that preserve privacy by performing
all behavior tracking on the client, downloading all potential
advertisements from the advertisor’s servers, and selecting the
appropriate ad to display locally on the client. Although these
systems differ in details regarding accounting and architecture,
they share a basic strategy for maintaining user privacy: keep
sensitive information local to the user, to simplify the matter
of control.

The goal of REPRIV is to enable general personalized
content on the web in a privacy-conscious manner. Like
PrivAd and Adnostic, REPRIV does this by keeping all of
the sensitive information necessary to perform personalization
close to the user, within the browser. However, REPRIV
differs from these systems both technically and in the notion
of privacy it considers. Because REPRIV does not target a
specific application, it does not attempt to completely hide all



personal information from the party responsible for providing
personalized content. Aside from the improbable technical
advances needed to make such a system practical, it is not
clear that content providers would take part in such a scheme,
as they would loose access to the valuable user data that they
currently use to improve their products and increase efficiency.
Rather, REPRIV leaves it to the user to decide which parties
may access the various types of data stored inside the browser,
and manages dissemination accordingly in a secure manner.

We posit that expecting the user to make this decision is not
only reasonable, but necessary given the constraints discussed
above. The basis of this decision must be two-fold, depending
both on the trust the user has in the content provider, as
well as the incentive the content provider gives the user for
access to his data. However, this type of decision is ultimately
similar to the type of decision a user makes when signing up
for an account at Amazon.com or Netflix.com: if she agrees
to the terms in the privacy policy, then he has deemed the
benefit offered by that site worth the reduction in personal
privacy needed to obtain it. This is the same negotiation
that REPRIV relies on to protect user privacy while still
enabling a diverse set of personalized applications. Thus, the
challenge of REPRIV is to facilitate the collection of personal
information from the browser in a manner flexible enough
to enable existing and future personalized applications, while
maintaining explicit user control over how that information is
used and disseminated to third parties on the web.

B. Motivating Personalization Scenarios

Several applications drove the development of REPRIV. We
briefly discuss a sampling of them in this section.

Content Targeting: Commonplace on many online merchant
web sites is content targeting: the inference and strategic place-
ment of content likely to compel the user, based on previous
behavior. Although popular sites such as Amazon.com and
Netflix.com already support this functionality without issue,
the amount of personal information collected and maintained
by these sites have real implications for personal privacy that
may surprise many users [20]. Additionally, the fact that the
personal data needed to implement this functionality is vaulted
on a particular site is an inconvenience for the user, who
would ideally like to use their personal information to receive
a better experience on a competitor’s site. By keeping all of
the information needed for this application in the browser,
REPRIV can solve both problems. The content provider can
ask the user’s browser for data as it needs it, and the user
can accept or decline requests either programatically or via a
high-level policy.

Targeted Advertising: Advertising serves as one of the
primary enablers of free content on the web, and targeted
advertising allows merchants to maximize the efficiency of
their efforts. REPRIV should facilitate this task in the most
direct way possible by allowing advertisers to consult the
user’s personal information in a consentual manner. Advertis-
ers have incentive to use the accurate data stored by REPRIV,
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Fig. 1: REPRIV architecture.

rather than collecting their own data, as the browser-computed
interests are more representative of the user’s complete brows-
ing behavior. Additionally, consumers are likely to select
businesses who engage in practices that do not seem invasive
or threatening.

C. Personalization Extensions

While the core mining mechanism in REPRIV is meant to
be as general-purpose as possible, the pace at which new per-
sonalized web applications is appearing suggests that REPRIV
will need an extra degree of flexibility to support up-and-
coming apps. A large part of our work focuses on an extension
platform that enables near-arbitrary programmatic interaction
with the user’s personal data, in a verifiably privacy-preserving
manner.

Topic-Specific Functionality: Users may spend a large
amount of time at particular types of sites, e.g. movie-
related, science, or finance sites. Users will expect specific
personalization on these sites that cannot be provided by
a general-purpose behavior mining algorithm. To facilitate
this, third-party developers should be able to write extensions
that have site-specific understanding of user input, and are
able to mediate REPRIV’s stored personalization information
accordingly. For example, a plugin should be able to track
the user’s interaction with Netflix.com, observe which movies
he likes and dislikes, and update his interest profile to reflect
these preferences.

Web Service Relay: Many web API’s now provide services
relevant to personalization. For example, Netflix now has an
API that allows a third-party developer to programmatically
access information about the user’s account, including their
movie preferences and purchase history. Other examples allow
a third-party developer to submit portions of a user’s overall
preference profile or history to receive content recommenda-
tions or ratings; Getglue.com, Hunch.com, and Tastekid.com
are all examples of this. REPRIV extensions should be able
to act as intermediaries between the user’s personal data and
the services offered by these API’s. For example, when a user
navigates to Fandango.com, the site can query an extension
that in turn consults the user’s Netflix interactions and Ama-
zon.com purchases, and returns useful derived information to



Fandango.com for personalized show times or film reviews.
Direct Personalization: In many cases, it is not reasonable to
expect a web site to keep up with the user’s personalization
expectations. It is often simpler to write an extension that can
access REPRIV’s repository of user information, and modify
the presentation of selected sites to reflect preferences. To
facilitate this need, REPRIV extensions should be able to
interact with and modify the DOM structure of selected web
sites to reflect the contents of the user’s personal information.

III. TECHNICAL ISSUES

This section is organized as follows. Section III-A discussed
browser modifications we implemented to support REPRIV.
Section III-B discusses support for REPRIV miners.

A. Browser Modifications

Our current research prototype is built on top of C3,
an HTML5 experimental platform developed in .NET [14].
However, we believe that other browsers can be modified in a
very similar manner. We modified C3 in the following ways
to add support for REPRIV:

• Added a behavior mining algorithm that observes users’
browsing behavior and automatically updates a profile of
user interests (Section III-A).

• Implemented a communication protocol that sits on top
of HTTP and allows web sites to utilize the information
maintained by REPRIV in the browser (Section III-A).

• Implemented an extension framework that allows third-
party extensions to utilize the information maintained
by REPRIV, and interact programatically with web sites
(Section III-B).

User Behavior Mining: The goal of our general-purpose
behavior mining algorithm is to provide relevant parties with
two types of information about the user:

• Top-n topics of interest, where n can vary to suit the
needs of each particular application,

• The level of interest in a given set of topics, normalized
to a reasonable scale.

Our approach works by classifying individual documents
viewed in the browser, and keeping related aggregate infor-
mation of total browsing history in the personal store.
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Fig. 2: Portion of taxonomy.

Interest Categories: To
characterize user interests,
we use a hierarchical
taxonomy of document
topics maintained by
the Open Directory
Project (ODP) [22]. The
ODP classifies a portion of
the web according to a hierarchical taxonomy with several
thousand topics, with specificity increasing towards the leaf
nodes of the tree. We use only the most general two levels of
the taxonomy, which account for 450 topics. To convey the
level of specificity contained in our interest hierarchy, a small
portion is presented in Figure 2.

Our taxonomy-based interest classification scheme is sim-
ilar to those used by targeted advertising networks [7]. As
elucidated by Narayanan and Shmatikov [20], care must be
taken when selecting the taxonomy to ensure that the target
population is not distributed too sparsely among topics in
the taxonomy, as anonymity attacks may result. As shown in
Figure 2, the depth and specificity of our taxonomy is quite
limited.

Classifying Documents: Of primary importance for our doc-
ument classification scheme is performance: REPRIV’s default
behavior must not impact normal browsing activities in a
noticeable way. This immediately rules out certain solutions,
such as querying existing web API’s that provide classification
services. We use the Naı̈ve Bayes classifier for its well-known
performance in document classification tasks, as well as its
low computation cost on most problem instances. However,
REPRIV’s high-level functionality is independent of the spe-
cific type of classifier used, so this part of the implementation
can be varied to suit changing technologies and needs.

To create our Naı̈ve Bayes classifier, we obtained 3,000
documents from each category of the first two levels of the
ODP taxonomy. We selected attribute words as those that occur
in at least 15% of documents for at least one category, not
including stop words such as “a”, “and”, and “the”. We then
ran standard Naı̈ve Bayes training on the corpus, calculating
the needed probabilities P (wi Cj), for each attribute word wi

and each class Cj . Calculating document topic probabilities
at runtime is then reduced to a simple log-likelihood ratio
calculation over these probabilities.

To ensure that the cost of running topic classifiers on a
document does not affect browsing activities, this computation
is done in a background worker thread. When a document
has finished parsing, its TextContent attribute is queried and
added to a task queue. When the background thread activates,
it consults this queue for unfinished classification work, runs
each topic classifier, and updates the personal store. Due to the
interactive characteristics of internet browsing, i.e. periods of
bursty activity followed by downtime for content consumption,
there are likely to be many opportunities for the background
thread to complete the needed tasks.

Aggregate Statistics: REPRIV uses the classification informa-
tion from individual documents to relate aggregate information
about user interests to relevant parties. The first type of infor-
mation that REPRIV provides is the “top-n” statistic, which
reflects n taxonomy categories that comprise more of the
user’s browsing history than the other categories. Computing
this statistic is done incrementally, as browsing entries are
classified and added to the personal store.

The second type of information provided by REPRIV is the
degree of user interest in a given set of interest categories.
For each interest category, this is interpreted as the portion
of the user’s browsing history comprised of sites classified
with that category. This statistic is efficiently computed by
indexing the database underlying the personal store on the
column containing the topic category.



The domain “example.com” would like to learn 
your top-n interests. We will tell them your 

interests are: c1, c2, … 
 

Is this acceptable? 

(a) top-n interests

The domain “example.com” would like to learn 
how interested you are in the topic “catN”. We 

will tell them interest-level. 
 

Is this acceptable? 

(b) Interest level by category

Fig. 3: Communication protocols for personal information.

Interest Protocol:
REPRIV allows third-party web sites to query the browser
for two types of information that are computed by default
when REPRIV runs. The protocols are depicted graphically in
Figure 3. The design of these protocols is constrained by the
following concerns:

1) Secure dissemination of personal information. The
user should have explicit control over the information
that is passed from the browser to the third-party web
site. Additionally, it should be possible to communicate
this information over a channel secure from eavesdrop-
ping.

2) Backwards compatibility with existing protocols. Site
operators should not need to run a separate daemon
on behalf of REPRIV users, or change network in-
frastructure. Rather, it should be possible to incorporate
the information made available by REPRIV with minor
changes to existing software.

To address these concerns, we have developed a protocol
that utilizes facilities already present in the HTTP specifi-
cation. This allows implementations to use existing secrecy-
preserving HTTP extensions such as HTTPS, without requir-
ing new protocols. We will now walk through each step of the
protocol. There are two shown in Figure 3; one for each type
of information that can be queried (top-n interests and specific
interest level by category). However, they differ only in minor
ways regarding the types of information communicated.

The client signals its ability to provide personal information
by including a repriv element in the Accept field of the
standard HTTP header. If the server daemon is programmed
to understand this flag, then it may respond with an HTTP
300 message, providing the client with the option of subse-
quently requesting the default content, or providing personal
information to receive personalized content. The information
requested by the server is encoded as URL parameters in
one of the content alternatives listed in this message. For
example, the server in Figure 3(b) requests the user’s interest in
the topic “category-n”, which is encoded by specifying catN
as the value for the interest variable. At this point, the
browser prompts the user regarding the server’s information

request, in order to declassify the otherwise prohibited flow
from the personal store to an untrusted party. If the user
agrees to the information release, then the client responds
with a POST message to the originally-requested document,
which additionally contains the answer to the server’s request.
Otherwise, the connection is dropped.

B. Miner Support

To support a degree of flexibility and allow future person-
alization applications to integrate into its framework, REPRIV
provides a mechanism for loading third-party software that
utilizes the personal store. We call REPRIV extensions Miners,
to reflect the fact that they are intended to assist with novel
behavior mining tasks. Of primary importance to supporting
miners correctly is ensuring that (1) they do not leak private
user data to third parties without explicit consent from the
user, and (2) they do not compromise the integrity of the
browser, including other miners. The majority of our technical
discussion regarding miners addresses these concerns.

Security Policies: To support a diverse set of extensions while
maintaining control over the sensitive information contained in
the personal store, REPRIV allows extension authors to express
the capabilities of their code in a simple policy language. At
the time of installation, users are presented with the extension’s
list of needed capabilities, and have the option of allowing or
disallowing the installation. Several of the policy predicates
deal with information flow and to provenance labels, which
are 〈host , extensionid〉 pairs. All sensitive information used
by miners is tagged with a set of these labels, which allow
policies to reason about information flows involving arbitrary
〈host , extensionid〉 pairs. A sampling of the predicates avail-
able in REPRIV’s policy language is presented in Figure 4.

Given a list of policy predicates regarding a particular miner,
the policy for that extension is interpreted as the conjunction
of each predicate in the list. This is equivalent to behavioral
whitelisting: unless a behavior is implied by the predicate
conjunction, the miner does not have permission to exhibit
it. Each miner is associated with one static security policy
that is active throughout the lifespan of the miner; revocation



CanCaptureEvents(t, 〈h, e〉) Extension can capture events of type t on elements tagged 〈h, e〉.

CanReadDOMElType(t, h) Extension can read DOM elements of type t from pages hosted by h.

CanReadDOMId(i, h) Extension e can read DOM elements with ID i from pages hosted by h.

CanUpdateStore(d, 〈h, e〉) Extension can update the personal store with information tagged 〈h, e〉.

CanReadStore(〈h, e〉) Extension can read items in the personal store tagged 〈h, e〉.

CanCommunicateXHR(h1, 〈h2, e〉) Extension can communicate information tagged 〈h2, e〉 to host h1 via XHR-style
requests.

CanServeInformation(h1, 〈h2, e〉) Extension can serve programmatic requests to sites hosted by h1, containing
information tagged 〈h2, e〉. An example of a programmatic request is an invocation
of an extension function from the JavaScript on a site in d.

CanHandleSites(h) Extension can set load handlers on sites hosted by h.

Fig. 4: Selected security policy predicates. A full listing is available in our technical report [15].

is not needed by any of our current applications, and is not
supported by the extension framework.

Tracking Sensitive Information: When a miner makes a call
to REPRIV requesting information from the personal store,
special precautions must be taken to ensure that the returned
information is not misused. Likewise, when a miner writes
information to the store that is derived from content on pages
viewed by the user, REPRIV must ensure that the user’s wishes
about the privacy of web content are not violated. All REPRIV
functionality that returns sensitive information to miners first
encapsulates it in a private data type tracked, which contains
metadata indicating the provenance of that information.

This allows REPRIV to take the provenance of data into
account when it is used by miners. The tracked type is
opaque – it does not allow miner code to directly reference
the data that it encapsulates without invoking a REPRIV
mechanism that prevents misuse. This means that REPRIV can
ensure complete noninterference, to the degree mandated by
the miner’s policy. Whenever the miner would like to perform
a computation over the encapsulated information, it must call
a special bind function that takes a function-valued argument
and returns a newly-encapsulated result of applying it to the
tracked value. This scheme prevents leakage of sensitive
information, as long as the function passed to bind does not
cause any side effects. We discuss verification of this property
below.

Verifying Miners: REPRIV verifies miners against their stated
properties statically using security types. This eliminates the
need for costly run-time checks, and ensures that a security
exception will never interrupt a browsing session. To meet
this goal, we require that all untrusted miners be written
in Fine [25], a security-typed programming language. Fine
allows programmers to express dependent types on func-
tion parameters and return values, which forms the basis of
REPRIV’s verification mechanism. Fine provides a language-
level sandbox, so all useful functionality is available to miners
only through a set of API functions. The interface for these

val MakeRequest:
p:provs ->
{host:string | AllCanCommunicateXHR h p} ->
t:tracked<string,p> ->
{eprin:string | ExtensionId eprin} ->
fp:{p:provs | forall (pr:prov).(InProvs pr p)

<=> (InProvs pr p || pr = (P h eprin))} ->
mut_capability ->
tracked<xdoc,fp>

val AddEntry:
({p:provs | AllCanUpdateStore p}) ->
tracked<string,p> ->
string ->
tracked<list<string>,p> ->
mut_capability ->
unit

Fig. 5: Example API definitions.

API’s specifies type refinements on key parameters that reflect
the consequence of each API function on the relevant policy
predicates. Verification occurs at each code point where an
API function is invoked: the miner’s policy is checked against
the dependent type signature of the API function.

Two example interface definitions are given in Figure 5. The
first example, MakeRequest, is the API used by miners to
make HTTP requests; several policy interests are operative in
its definition. The second argument of MakeRequest is a string
that denotes the remote host with which to communicate, and
is refined with the formula

AllCanCommunicateXHR host p

where p is the provenance label of the buffer to be transmitted.
This refinement ensures that a miner cannot call MakeRequest
unless its policy includes a CanCommunicateXHR predicate for
each element in the provenance label p. Because the REPRIV
API is very limited, we are assured that this is the only
function that impacts the CanCommunicateXHR predicate.

Notice as well that the third argument, as well as the return
value of MakeRequest, are of the dependent type tracked.
tracked types are indexed both by the type of the data that
they encapsulate, as well as the provenance of that data. The



third argument is the request string that will be sent to the
host specified in the second argument; its provenance plays
a part in the refinement on the host string discussed above.
The return value has a provenance label that is refined in the
fifth argument. The refinement specifies that the provenance
of the return value of MakeRequest has all elements of the
provenance associated with the request string, as well as a
new provenance tag corresponding to 〈host, eprin〉, where
eprin is the extension principal that invokes the API. This
reflects all of the principals that could affect the value returned
by MakeRequest. The refinement on the fourth argument
ensures that the extension passes its actual ExtensionId to
MakeRequest. These considerations ensure that the prove-
nance of information passed to and from MakeRequest is
available for all necessary policy considertations.

As discussed above, verifying correct enforcement of infor-
mation flow properties in REPRIV requires checking that func-
tional arguments passed to bind are side effect-free. Fine’s
language-level sandbox guarantees that side effects are only
created via API calls; our verification task reduces to ensuring
that API’s which create side effects are not called from code
that is invoked by bind, as bind provides direct access to data
encapsulated by tracked types. We use capability tokens that
are given affine types [25] to gain this assurance. Roughly,
an affine typed-variable can only be used once, so an affine
token that is copied in the program text results in a type error.
Each API function that may create a side effect takes an affine
token mut capability as an argument (short for “mutation
capability”), which indicates that the caller of the function
has the right to create side effects. REPRIV passes the main
function of each miner a value of type mut capability,
which the miner must in turn pass to each location that calls a
side-effecting function. Because mut capability is an affine
type, and the functional argument of bind does not specify
an affine type, the Fine type system will not allow any code
passed to bind to reference a mut capability value Be-
cause the constructor for mut capability is private and the
original token cannot be copied, the functional passed to bind
has no way of generating a value of type mut capability
required to invoke a side-effecting function. As an example
of this construct in the REPRIV API, observe that both API
examples in Figure 5 create side effects, so their interface
definitions specify arguments of type mut capability.

Verification Philosophy: The policy associated with a miner
is expressed at the top of its source file, using a series of
Fine assume statements: one assume for each conjunct in
the overall policy. An example of this is shown in Figure 8,
where the policy assumptions of the miner are 3–5 lines of
the source code. Given the type refinements on all REPRIV
API’s, verifying that the miner correctly implements its stated
policy is reduced to an instance of Fine type checking. The
soundness of this technique rests on three assumptions:

• The soundness of the Fine type system, and the correct-
ness of its implementation. The soundness of the type
system was established via a mechanical proof [25].

• The correctness of the dependent type refinements placed
on the API functions. This amounts to less than 100 lines
of code, which reasons about a relatively simple logic
of policy predicates. Furthermore, because the REPRIV
API is very limited, it is easy to argue that refinements
are placed on all necessary arguments to ensure sound
enforcement. In other words, the API usually only pro-
vides one function for producing a particular type of side
effect, so it is not difficult to check that the appropriate
refinements are placed at all necessary points.

• The correctness of the underlying browser’s implemen-
tation of functions provided by the REPRIV API. For
REPRIV, we used C3, an experimental managed-code
HTML5 platform. C3 is written in a memory-managed
language (C#), providing assurance that it does not
contain memory corruption vulnerabilities. The logical
correctness of C3 code needed by REPRIV has not been
formally verified, but doing so is a goal of future work.

We stress that these are modest requirements for the trusted
computing base, and point towards the overall soundness of
REPRIV’s security properties.

IV. REPRIV MINERS

In this section, we discuss several miner templates and their
corresponding policies, as well as two concrete examples:
TwitterMiner and GlueMiner. Two additional miners, Bing-
Miner and NetflixMiner, are discussed in various capacities,
but their complete description is available only in the technical
report.

A. Miner Patterns

In general, miners can provide a wide range of functionality
when it comes to updating the personal store with infor-
mation that reflects the user’s browser-related behaviors. In
this section, we present three patterns of functionality that
we envision many potential miners following. The policies
for each category can be templatized, easing the burden on
miner developers who wish to create variations on these basic
patterns. The three patterns are summarized in Figure 6.

The first miner pattern, “site-specific parsing”, includes
extensions that are aware of the layout and semantics of
specific web sites, and are able to update the user’s inter-
est profile accordingly. For example, TwitterMiner invokes
REPRIV’s document classifier over the text contained in the
user’s latest tweets, and BingMiner classifies the user’s search
terms. Miners that follow this pattern either need to send HTTP
requests to relevant web API’s, as in the case of TwitterMiner,
or read the relevant DOM elements from particular sites, as
with BingMiner. They invariably require permission to update
the personal store with information derived from these sources.

The second pattern, “category-specific information”, returns
detailed information about the user’s interactions with specific
types of sites to services that request it via a JavaScript
interface. NetflixMiner is an example of this pattern; the user’s
interactions with pages hosted by netflix.com are monitored,
and information is added to the personal store to reflect this.



Pattern Policy Template

Site-specific parsing For the domain d of interest, either CanCommunicateXHR(d) or CanReadDOM*(d, )
CanUpdateStore( , d)
CanHandleSites(d) (optional, depending on the semantics of the miner)
CanCaptureEvents( , d) (optional, depending on the semantics of the miner)

Category-specific information For the domain d of interest, either CanCommunicateXHR(d) or CanReadDOM*(d, )
CanUpdateStore(Tag( , d))
CanHandleSites(d) (optional, depending on the semantics of the miner)
CanCaptureEvents( , d) (optional, depending on the semantics of the miner)
CanReadStore(Tag( , d))
For each domain p that can request category-specific information, CanServeInformation(p, Tag( , d))

Web service relay For the API provider a and each provenance tag t sent to a CanCommunicateXHR(a, t) and
CanReadStore(t)

For each domain p that can make requests, CanServeInformation(p, t) and CanServeInformation(p, a)

Fig. 6: Miner patterns and their policy templates.

Lines of code Verification

Name C# Fine Time (s)

TwitterMiner 89 36 6.4
BingMiner 78 35 6.8
NetflixMiner 112 110 7.7
GlueMiner 213 101 9.5

Fig. 7: Miner characteristics.

When a third-party site, such as fandango.com, would like
to personalize based on the user’s recent movie interests,
NetflixMiner queries the store to retrieve the list of most
recently-viewed entries by genre, and returns the relevant titles
to the third-party site. In addition to the capabilities required
by site-specific parsing miners, miners that follow this pattern
also need the ability to read from the store, and return tagged
information to specific sites via a programmatic interface.

The final pattern, “web service relay”, acts as a privacy-
conscious intermediary between the user’s personal informa-
tion, and web sites that provide useful services using this
information. Miners in this category expose functionality via
a JavaScript interface, and query a third-party web service
with data from the personal store to implement this func-
tionality. For example, GlueMiner returns movies similar to
those recently viewed by the user by reading store entries
created by NetflixMiner, sending them to the API provided
by Getglue.com, and returning the results to the JavaScript
that requested this information.

B. Miner Examples

In this section we discuss examples of miners that we wrote
for REPRIV.
TwitterMiner: TwitterMiner utilizes the RESTful API exposed
by twitter.com to periodically check the user’s twitter profile
for updates. When the user posts a new tweet, TwitterMiner
analyzes its content using REPRIV’s classifier to determine
how to update the personal store accordingly.

TwitterMiner needs only two capabilities from REPRIV, as
the twitter.com API simplifies its task:

1) It must be able to make XHR-style requests to
twitter.com. The second argument of the CanCom-
municateXHR capability must indicate that TwitterMiner

module TwitterMiner

open Url
open RePrivPolicy
open RePrivAPI

// Policy assumptions
assume extid: ExtensionId "twitterminer"
assume PAx1: CanCommunicateXHR "twitter.com"
assume PAx2: forall (s:string) . (ExtensionId s) =>
CanUpdateStore (P "twitter.com" s)

// Miner code
val GetDescription: xdoc -> string
let GetDescription d =
let allMsgs =
ReadXDocEls d "item" (fun x -> true) "description" in
match allMsgs with
| Cons h t -> h
| Nil -> ""

val CollectLatestFeed: ({s:string | ExtensionId s}) ->
mut_capability ->
unit ->
unit

let CollectLatestFeed extid mcap u =
let twitterProv = simple_prov "twitter.com" extid in
let reqUrl =

mkUrl "http" "twitter.com" "statuses..." in
let twitFeed =

MakeXDocRequest reqUrl extid twitterProv mcap in
let currentMsg =

bind twitterProv twitFeed GetDescription in
let categories =

bind twitterProv currentMsg ClassifyText in
AddEntry twitterProv currentMsg "tweet" categories mcap

val main: mut_capability -> unit
let main mcap =
let collect =
(CollectLatestFeed "twitterminer" mcap) in
SetTimeout 600000 collect

Fig. 8: Twitter miner in Fine, abbreviated for presentation.

cannot send any sensitive information derived from the
store in such a request.

2) It must be able to update the store to reflect data derived
from twitter.com

The source code for TwitterMiner is shown in Figure 8
There are only two places in the Fine code in which the
programmer must justify to the compiler that the stated policy
is in fact being enforced. The first is in the type signature of
CollectLatestFeed, where a refined type is used to tell the
compiler that the identifier extid refers to the extension ID



stated in the policy manifest. The second location is the first
statement in CollectLatestFeed, where a provenance label
is constructed to reflect the source of information that will be
collected by TwitterMiner, e.g. twitter.com. This allows the
compiler to verify that the tracked information being sent to
the store at the end of CollectLatestFeed is in accordance
with the policy. Refinements on the type of API function
MakeXDocRequest make it impossible for the programmer
to forge this provenance label; if the constructed label does
not accurately reflect the URL passed to MakeXDocRequest,
a type error will indicate a policy violation.

GlueMiner: GlueMiner is different from TwitterMiner in
that it does not add anything to the store; rather, it provides
a privacy-preserving conduit between third-party web sites
that want to provide personalized content, the user’s personal
store information, and another third party (getglue.com) that
uses personal information to provide personalized content
recommendations. The function predictResultsByTopic is
the core of its functionality, effectively multiplexing the user’s
personal store to getglue.com: a third-party site can use this
function to query getglue.com using data in the personal
store. This communication is made explicit to the user in
the policy expressed by the extension. Given the broad range
of topics on which getglue.com is knowledgeable, it makes
sense to open this functionality to pages from many domains.
This creates novel policy issues: the user may not want
information in the personal store collected from netflix.com
to be queried on behalf of linkedin.com, but may still
agree to allowing linkedin.com to use information from
twitter.com or facebook.com. Likewise, the user may want
sites such as amazon.com and fandango.com to use the
extension to ask getglue.com for recommendations based on
the data collected from netflix.com.

This usage scenario suggests a fairly complex policy for the
proposed extension.

• The extension must only communicate personal store
information from Twitter.com and Facebook.com
to Linkedin.com through the return value of
predictResultsByTopic. Additionally, the information
that is ultimately returned will be tagged with labels
from getglue.com, as it was communicated to this host
to obtain recommendations. Thus, GLUEMINER must
be able to communicate these sources to Getglue.com,
and it must be able to send information tagged from
Getglue.com to Linkedin.com through the return value
of predictResultsByTopic.

• Similarly, the extension must only leak information from
Netflix.com to Getglue.com on behalf of Amazon.com
or Fandango.com. This creates policy requirements anal-
ogous to those of the previous case.

The policy requirements of GlueMiner are made possible by
REPRIV’s support for multi-label provenance tracking. Note
also the assumption that Getglue.com is not a malicious party,
and does not otherwise pose a threat to the privacy concerns
of the user. This judgement is ultimately left to the user, as
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Fig. 9: Document classification time.

REPRIV makes explicit the requirement to communicate with
this party, and guarantees that the leak cannot occur to any
other party.

V. EXPERIMENTAL EVALUATION

The experimental section is organized as follows. First,
we characterize the performance overhead of REPRIV on
browsing activities, with respect to both the default behavior
mining that occurs in the background and the topic-specific
extensions discussed in Section IV. Then, we talk about the
quality of our document classifier, that is used for all default
in-browser behavior mining. Finally, we discuss the usability
concerns that arise with REPRIV.

A. Performance Overhead

We evaluated the effect of REPRIV on the performance
of web browsing activities. Several aspects of REPRIV can
affect the performance of browsing. This section is organized
to provide a separate discussion of each such aspect: the
effect of default in-browser behavior mining, the effect that
each proposed personalization extension (Section IV) has on
document loading latency, and the performance of primary
extension functionality.

In-Browser Behavior Mining: One of the major components
of REPRIV is the behavior mining that happens by default
inside the browser, as the user navigates sites. In this section,
we characterize the cost of performing this type of mining and
the impact that it has on browser performance. Figure 9 depicts
the amount of time in seconds needed by REPRIV to classify
a document, plotted against the size of the document. Nearly
all documents are classified in around one-tenth of a second;
given this result, it is clear that REPRIV will not adversely
affect the performance of the browser.

Personalization Extensions: One concern with REPRIV’s
support for miners is the possibly arbitrary amount of memory
overhead that it can introduce. We sought to characterize the
memory requirements of REPRIV miners, by loading many
compiled copies of the four miners presented in the previous
section into a running instance of C3. We found that even in an
extreme case, with one-hundred miners loaded into memory,
only 20.3 megabytes of memory are needed.
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Fig. 10: Convergence curves.

B. Classifier Effectiveness

We sought to characterize the quality of the default in-
browser classifier. However, doing so is not straightforward,
as the task of document classification is inherently subjective.
Our evaluation focuses on two metrics: the rate at which a
user’s interest profile converges, and human-perceived accu-
racy of the classifiers.

Profile convergence: The rate at which a user’s interest profile
converges is an important property of our implementation, as
it indicates the reliability of the personalization information
provided by REPRIV. To measure the convergence of a profile,
we require a notion of its final form. All of our measurements
are taken over history traces of IE8 users, so the final profile
that we use in these measurements is simply the profile
computed by our classifier after processing an entire trace. All
convergence measurements for a given trace are taken relative
to the final profile for that trace, computed in this manner.

We use two measures of convergence. The first is the
percentage of current entries in the top-ten list of interest
categories that are also present in the final top-ten list. This
measure is relevant because we foresee many web sites query-
ing REPRIV for top interests using the protocol outlined in
Section III. The second measure is the average distance of
each interest category in the current ordering from its position
in the final ordering; this gives a global view of interest profile
stability.

The results of these experiments are presented in Fig-
ures 10 (a) and (b), which depict top-ten and distance con-
vergence, respectively. They key point to notice about both
of these curves is the state of the computed interest profile
after 20% completion: 50% of the final top-ten categories are
already present, and the global convergence curve has reached
a point of gradual decline. This implies that the results returned
by the core mining algorithm will not change dramatically
from this point.

In-browser vs. public data mining: We claim that a major
incentive for web service providers to utilize the personal-
ization features enabled by REPRIV is the high quality of
personal information that is available within the browser,
relative to other types of information used for this purpose.
In this subsection, we compare REPRIV’s mining algorithm

when used over browsing history data to the results obtained
by gathering publicly-available information given a person’s
name. This approach is being used to facilitate personalization
by a number of web sites [26].

We see a fundamental problem with this approach, in that
most names have several homonyms, and the precision and
accuracy of a behavior profile will be adversely affected by this
condition. To demonstrate this fact, we began by measuring
the number of distinct homonyms for 48 names selected at
random from a phone book. To take this measurement, we used
a search engine called “WebMii” [29] which returns a listing of
much of the publicly-available information about a particular
name on the web, in addition to a list of homonyms for that
name. The results are displayed in Figure 11 (a): each bucket
on the x-axis contains all of the values between the listed
number, and that immediately left of it. Noteworthy is the fact
that fewer than ten of the names were found to be unique
on WebMii; the remaining names either had no visible web
presence, or from dozens to hundreds of homonyms. Clearly,
these names would be very difficult to build an accurate profile
for content personalization without additional input.

Figure 11(b) relates the confidence in result accuracy that
REPRIV’s core mining algorithm produces for documents col-
lected by searching the web for documents with a given name,
versus running the algorithm over a user’s search history. The
confidence is the sum of the probabilities computed for each
interest category in the user’s final top-10 interest profile,
normalized by the number of documents used to build the
profile to fit a scale of 0 to 1. The public profiles and user
histories do not correspond to the same person when grouped
at the same point on the x-axis; rather, they are sorted by
confidence. To build a public profile for a given name, we
searched for that name on Yahoo.com, Facebook.com, Twit-
ter.com, Hi5.com, and Myspace.com. The browsing histories
are a subset of those used to compute the data in Figure 10.
The results in figure 11(b) show that in all but a very few
cases, the behavior mining algorithm was able to come to a
much stronger conclusion given browsing histories.

VI. CASE STUDIES

While the previous section provided a basic experimental
evaluation of both the core mininig strategy and miners used
in REPRIV, this section goes more in depth using two case
studies, both evaluated on large quantities of real data. Sec-
tion VI-A talks about our search personalization experiment.
Section VI-B discusses news personalization.

A. Search Personalization

We wrote an extension that uses REPRIV’s APIs to person-
alize the results produced by the main Bing search engine. The
extension operates by observing the user’s previous behavior
on Bing, and memoizing certain aspects relevant to future
searches. Specifically, for a given search term, the extension
records which sites the user selected from the results pages,
as well as the frequency with which each host is selected in
search results (across all searches). When a new search query
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Fig. 12: Search personalization effectiveness.

is submitted, the extension checks its history of previously-
recorded searches for an identical match, and places the
previously-selected results at the top of the current ranking.
The remaining results are ranked by the frequency with which
the user visits the host of each result.

This type of search personalization is appealing for two
reasons. First, the quality of results it provides is quite good,
as discussed below. Second, it is not particularly invasive,
as it requires observing user interaction on a single domain
(Bing.com). Furthermore, this information is leaked back to
no site other than Bing.com through re-arranging the result
pages of queries submitted to the search engine; if the user
has cookies enabled, then Bing.com learns this information
by default. It is also important to note that information is only
leaked to Bing.com if the results pages contain JavaScript code
that reflects on the layout of the DOM, and takes note of
the relative position of search results. This activity would not
be possible to hide from the Internet community, effectively
minimizing its risk to end-user privacy and giving Bing.com
disincentive to do it.

To provide this functionality, the extension needs the fol-
lowing capabilities:

• To determine which search results the user selects from
Bing.com sessions, the extension must be able to receive
onclick events from pages hosted by Bing.com.

• To access a full list of search results over which it can
perform re-ranking, the extension uses a public web API.
For this, it must be able to make HTTP requests to
either Bing.com, Yahoo.com, or Google.com (search API
providers).

• To re-arrange the results pages from Bing.com, the exten-
sion must be able to change the TextContent of HTML
elements on Bing.com, as well as well as call change the
href attribute of a elements.

• To memoize search engine interactions, the extension
must be able to write data from Bing.com to the personal
store.

Implementation details: We implemented the extension for
C3 as 382 lines of Fine. The code is presented in our
corresponding technical report. The extension uses several
of the API’s exposed by REPRIV: XMLHttpRequest, SetAt-
tribute, SetTextContent, GetElementById, and GetChildren.
When loaded into the browser, the extension requires approx-
imately 200 KB of memory.
Experimental methodology: To evaluate the effectiveness of
search personalization, we utilized the histories of nineteen
users of the Bing search toolbar. Each history represents seven
months of Bing search activity. Our methodology for eval-
uating the effectiveness of search personalization algorithm
is based on the results selected by users for a given query.
For each search performed by a particular user, we split the
search history into two chronologically-contiguous halves. We
construct the relevant portions of a personal store needed to
perform search personalization using the first half, and use
the second half to evaluate the effectiveness of the algorithm.
For each query in the second half of each trace, we evaluated
the effectiveness of our search personalization algorithm as
follows:

1) Submit the query to the Yahoo BOSS API [31], and
collect the default search result ranking.

2) Re-rank the results according to the algorithm discussed
above.

3) Note the difference in position for the search result se-
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Fig. 13: News personalization effectiveness.

lected by the user between the default and personalized
rankings. A positive difference indicates that the se-
lected result is ranked higher in the personalized results,
whereas a negative difference indicates the opposite.

This process simulates the user’s interaction with a personal-
ized and non-personalized search engine, giving us a baseline
for comparison.
Evaluation: The results of our evaluation are summarized in
Figure 12. This histogram shows the number of positions the
user’s selected result moved towards the top of the ranking
when the search personalization extension was able to improve
results.

We found that for a given user, the extension was able
to improve results 49.1% of the time by raising the user’s
selected result 8.2 positions toward the top, on average. 7.7%
of the time, the extension lowered the ranking of the user’s
selected result, but when this occurred, the result was moved
downwards an average of only 2.4 positions. For the remaining
percentage of time, 43.2%, the extension had no effect on the
ranking of the user’s selected result. These results show that
our search personalization algorithm is able to provide useful
functionality for a large portion of the user’s web searching
activities, while giving the user explicit control over the way
in which personal information is used in the process.

B. News Personalization
We wrote an extension that uses REPRIV’s computed be-

havior profile to personalize the New York Times front page.
The extension utilizes the collaborative filtering provided by
the Digg.com community by matching the user’s top interest
categories with topic names understood by Digg.com, and
periodically querying its web API for “hot” stories in those
topics. When the user visits NYTimes.com, New York Times
articles cached from Digg.com API queries are presented at
the top of the page, in place of the default headlines.

To perform this personalization, the extension needs several
capabilities.

• To query the Digg.com API, it must be able to send HTTP
requests to Digg.com and access the formatted responses
containing news stories.

• To locate the appropriate HTML elements on the NY-
Times.com front page for personalized re-formatting,

the extension must be able to call GetElementById
and GetAttribute(”class”) on DOM nodes hosted by
NYTimes.com.

• To re-format the NYTimes.com front page, the ex-
tension must be able to change the TextContent
of nodes on NYTimes.com nodes, as well as call
SetAttribute(”href”) on them.

• To construct te appropriate query to Digg.com, it must be
able to query the personal store to learn the top interests
of the user.

Implementation details: We implemented the extension for
C3 as 124 lines of Fine. The code is presented in our
corresponding technical report.

The extension uses several of the API’s exposed by
REPRIV: XMLHttpRequest, GetAttribute, SetAttribute, Set-
TextContent, GetTopInterests, GetElementById, SetTimeout,
and GetChildren. When loaded into the browser, the extension
requires approximately 200KB of memory.

When navigating to NYTimes.com, we found that the exten-
sion introduced a latency of 6% over the default loading time
without any personalization, which is a consequence of the
fact that the extension modifies the DOM after initial loading
is complete. This overhead does not reflect the time needed
to query the Digg.com API, which occurs periodically in a
background thread that runs when the CPU is otherwise idle.

Experimental methodology: We performed a set of ex-
periments using Amazon’s Mechanical Turk service [19] to
demonstrate that our news personalization system does not
trivialize the problem of delivering personalized content in
fulfilling the goal of preserving user privacy. In other words,
we sought to show that the type of personalization offered by
our extension is relevant to internet users.

To do so, we generated 1920 artificial behavior profiles. 900
of the profiles contained three randomly-selected user interest
topics, and the rest contained three topics related by the
same top-level ODP category. This distribution models users
with both focused and diverse interests. We then seeded our
personalization algorithm with each profile, and captured an
image of the stories that would be presented by the extension.
The image contained the headline of each story, as well as a
short summary of each story, in a manner similar to the default
NYTimes.com layout.

Using the images and interest profiles, we generated a set
of Mechanical Turk surveys. Each survey consisted of twelve
questions, where each question paired a news content image
with a potential behavior profile, and asked the user how
relevant the stories presented in the image were to the given
set of interest topics, on a scale of 1 to 10. For each survey,
approximately half of the questions matched the image with
the interest profile our algorithm used to generate them, and
the other half were paired randomly. Each survey contained
an additional question that paired the default NYTimes.com
front page stories with a random interest profile. The latter two
pairings served as our control, to determine how relevant users
found hypothetical interest profiles to general news stories.



Evaluation: “Personalized” denotes real pairings of person-
alized news stories to behavior profiles, “Random” refers to
pairings of news stories to randomly-generated behavior pro-
files that do not bear a meaningful connection, and “Default”
denotes the stories presented on the default NYTimes.com
front page paired with a random behavior profile. For each
column, the statistical mean among survey responses, as
well as the surrounding vicinity of one standard-deviation, is
plotted.

As the figure indicates, respondents gave stories personal-
ized with our algorithm significantly higher relevance scores
than the control samples. For personalized content, ratings
between 6.5 and 8 recieved the most responses, with markedly
lower variance than the control. While some overlap in re-
sponse exists between personalized content and the control,
the majority of control responses mass around low relevance
scores, indicatating a clear improvement in percieved relevance
for content personalized using our algorithm.

In summary, the results of this news personalization ex-
periment show that REPRIV enables useful and effective
personalization of news content without sacrificing control
over private information.

VII. DISCUSSION

In this section, we discuss issues surrounding the adoption
and feasibility of REPRIV.

A. Incentives

The incentives for users to adopt REPRIV are immediate:
REPRIV was designed to facilitate the types of personalized
web experience that have become popular today, while allow-
ing users to maintain control of their personal information.
REPRIV also helps to solve the cold-start problem, where a
user visits a new web site and is not able to recieve person-
alized content for lack of data. Finally, we have demonstrated
that REPRIV’s performance overhead is minimal, so there is
very little disincentive for a user to adopt REPRIV.

While a truly anonymous browsing mode would leave
content providers without an alternative, incentives already
exist for service providers to adopt REPRIV without the need
for such measures. The first such incentive is the quality
of information that REPRIV can provide relative to other
techniques. REPRIV gives service providers the opportunity
to utilize data that is not impeded by tracker blockers on
the client, that is derived using information from the user’s
complete browsing experience. Secondly, because REPRIV
gives content providers a way to respect user privacy without
sacrificing functionality, they can differentiate themselves from
competitors by appealing to the users’ desire for privacy.

Finally, we forsee a number of likely scenarios to incentivize
miner authorship. First observe that incentive must already
exist, as developers already produce browser extensions that
track user behavior; this is typically done without the user’s
consent, and is sometimes referred to as spyware [16] (one
famous example is the Alexa toolbar, published by Ama-
zon.com). REPRIV gives these developers a way of writing

similar functionality, but in a manner that is verifiably benign.
Another likely scenario arises with content recommendation
services, such as Getglue.com and Hunch.com. These sites
allow users to create profiles of their interests for sharing with
other users and receiving content recommendations. Key to
the effectiveness of these services is the amount of personal
information that can be used for recommendation. REPRIV
miners are a safe way for these sites to gather this information.

B. Usability Concerns & Distribution Model

At some point, the user must manually consent to the
information being disseminated by REPRIV. The structure of
core mining data was designed to be highly informative to
content providers and intuitive for end-users: when prompted
with a list of topics that will be communicated to a remote
party, most users will understand the nature and degree of
information sharing that will take place if they consent.

However, the usability problems posed by miners is more
difficult. While the privacy policies imposed on miners are
expressive and precise, it is difficult to make their implications
explicit to an average user. To remedy this, we suggest
a distribution model that provides high-level policy review
of miners prior to their release, and allows for revocation.
This model is similar to that adopted by Firefox, Apple,
and Symbian for supporting third-party functionality. The
owner of such a repository is expected to posess considerably
more technical sophistication than most browser users. Unlike
existing distribution mechanisms, the automatic verification of
miners discussed in Section III-B allows the repository owner
to focus entirely on the high-level privacy implications of
miner policies, assured that the code cannot subvert it.

C. Anonimization, Blocking Techniques and Privacy Modes

Recently, major browsers have come to support some form
of a “private browsing mode” [1]. Although the precise
meaning of this term varies between browsers, the common
idea behind this feature is to prevent web sites from reading
persistent data such as cookies for a particular session. There
have been a number of other browser add-ons and modifi-
cations that attempt to anonymize the user on the web; an
incomplete list includes TrackMeNot [10], Torbutton, Safe-
Cache [24], SafeHistory [24], and IE8’s InPrivate browsing.
While it is clear that a truly anonymous browsing mode would
force content providers to use REPRIV, no such mode has
been successfully implemented [1], and it is not clear that
doing so is technically feasible [5]. However, we assert that
REPRIV does in fact facilitate end-user privacy on the web,
by creating incentives for content providers to use privacy-
sensitive personalization techniques, rather than relying on
the invasive collection mechanisms currently available. In
this respect, REPRIV is complementary to private browsing
modes; it provides a mechanism for allowing personalized
content without the need for the tracking mechanisms currently
used by content providers, which are not compatible with
anonymous browsing.



D. Profile Management

The behavior profiles generated by REPRIV are currently
maintained entirely within the browser, and are distinct on a
per-user, per-browser basis. However, there is no reason to
preclude additional profile management schemes in REPRIV.
One possibility is to maintain the primary copy on a cloud
server, encrypted using a symmetric key. Because the cloud
does not need direct access to profile data, key distribution
for this scheme is straightforward: the user manually loads the
symmetric key into each browser that updates or consumes
the profile; this is realistic assuming the user is physically
present at each browser that accesses the profile. Updates to
the personal profile are performed locally at each browser
instance, and synced with the cloud server periodically. The
major upshot of this scheme is that the behavior profile is
no longer constrained on a per-browser basis, as the user can
transfer the same profile between multiple instances using the
cloud host.

VIII. RELATED WORK

A. Privacy and Web Applications

As a reaction to the decrease in privacy on the web, many
have started exploring techniques that can be applied to restore
some degree of privacy while still allowing for the rich web
applications that people have come to expect. Jakobsson et
al. [12] considered the problem of third-party sites mining
users’ navigation history. They developed a system that al-
lows third parties to learn aggregate information about users’
navigation histories, rather than the full listing. All privacy
assurances offered by this system derive from the fact that its
mechanism is easily auditable by end-users, so parties who
wish to mine history data have disincentive to cheat.

Becker and Chen [2] found that it is possible to deduce
specific personal characteristics given only a list of their
friends on a social network. Worse yet, they found that it is
very difficult to defend against this type of inference, assuming
an attacker has access to the user’s entire social graph: on
average, they found that users would have to remove hundreds
of friends from their connections in order to ensure the privacy
of their own characteristics.

Narayanan and Shmatikov [21] studied the privacy im-
plications of social network participation. Their observation
is that the operators of online social networking sites now
share user data with third parties, but only scrub personally-
identifying information in an ad-hoc fashion. They developed
a re-identification algorithm that relates users’ privacy in a
social network to node anonymity in the social network graph,
and attempts to identify particular users from scrubbed social
network data. They found that if a user subscribed to both
Twitter and Flickr, then the algorithm can correctly identify
them with 88% accuracy.

McSherry and Mironov [18] attempted to restore a certain
degree of privacy to collaborative recommendation algorithms,
such as those used by Netflix and amazon.com. Citing the
work of Narayanan and Shmatikov [20] in de-anonymizing

users who take part in such systems, they worked in the
framework of differential privacy [4] to build a an algorithm
that preserves the privacy of each individual rating entered by
a participating user. The performance is comparable to that of
the original Netflix recommendation algorithm.

B. Privacy in Advertising

One problem that has received much recent attention is that
of delivering targeted advertisements to web users without
violating their privacy. Freudiger et al. [6] observe that the
prevalent mechanism for targeting advertisements to individual
users is the third-party cookie. They propose a browser exten-
sion that allows users to directly manage third-party cookies in
order to decide the degree to which advertisers are able to track
them. However, unlike with REPRIV, this solution does not
give users arbitrary, fine-grained control over the type of infor-
mation that is given to third-parties. Furthermore, advertisers
have no incentive to obey the privacy safeguards instantiated
by this mechanism. In a slightly different vein, several recent
systems [9, 13, 28] attempt to remedy the problem by storing
the necessary sensitive personal data on the client, along with
all possible ads in the network. When an ad is displayed, it is
matched to personal information locally, thus sidestepping the
need to leak to the ad network. Accounting and click-fraud
prevention are addressed using either additional semi-trusted
parties, or homomorphic encryption. The primary difference
between these systems and REPRIV is generality: REPRIV
asks the user to provide content providers (in this case, an
advertising network) with small amounts of selected personal
data in return for full application generality, whereas these
tools effectively hide all personal data needed to drive the
single application of targeted advertising.

C. Managing Private Browser State

A number of researchers have studied ways to identify
users and preferences from browser interactions. Wondracek
et al. [30] found that a subtlety in the W3C specification that
allows browser history to be inferred can be leveraged to de-
anonymize users of popular social networking sites. Jackson
et al. [11] attributed the problem of history sniffing to the
fact that browsers do not extend the same-origin policy to
the history state leveraged in the attack. Recently, Mozilla
has taken steps to prevent history sniffing [27], at the cost
of breaking certain parts of the W3C specification. In a
broader development, Eckersley [5] introduced a technique
dubbed browser fingerprinting, wherein a large number of
publicly-visible browser attributes are combined to produce an
identifying string shared by only one in ∼286,777 browsers.

Several researchers have approached the technical problem
of maintaining user anonymity while browsing. Howe and
Nissenbaum [10] created TrackMeNot, a Firefox extension that
attempts to anonymize search behavior by periodically submit-
ting random search queries to major search engines. McKin-
ley [17] examined the privacy modes of popular browsers, as
well as their ability to clear private state when directed by
the user. She found that while some browsers do in fact clear



private state when instructed, none of the browsers’ privacy
modes performs as advertised; each browser left some form
of persistent state that could be later retrieved by web pages
in different browsing sessions.

D. Web Personalization and Mining
The basis on which personalization is performed varies from

application to application. Pierrakos et al. [23] surveyed the
topic of mining users’ behavior on a set of web services to
infer information that will aid personalization. They found
that almost all web personalization efforts fall into one of
four broad categories: memorizing information for later replay,
guiding the user towards likely relevant information, customiz-
ing content to match users’ interests, and supporting users’
efforts to complete tasks. REPRIV is designed primarily to
support the implementation of the second and third points, but
it can be used to support aspects of all types of personalization.

There are several browser add-ons (toolbars) that perform
data collection and user behavior mining. Perhaps the most
popular among them is the Alexa Toolbar, which for each
user collects a complete browsing history, search engine query
list, and summary of the advertisements presented to the user.
This information used by Alexa to compute a number of
analytic functions, some of which are returned to toolbar
users as a service. Among the analytics are traffic statistics
(including a comprehensive, internet-wide ranking of popular
sites), related links, audience demographics, and clickstream
statistics. Similarly, Bing [3], Google [8], and Yahoo [32] all
offer toolbars, although they vary in the amount of mining and
automatic personalization that they perform.

IX. CONCLUSIONS

This paper presents REPRIV, an in-browser approach that
aims to perform personalization without sacrificing user pri-
vacy. REPRIV accomplishes this goal by requiring explicit
user consent in any transfer of sensitive user information. We
showed how efficient and effective behavior mining can be
added to a web browser to automatically infer the information
needed to facilitate many personalized web applications, and
evaluated this mechanism on real-world data. We also showed
how third-party code can be incorporated into the system, and
given access to sensitive user information, without sacrific-
ing control and the possibility of user consent. Finally, we
presented two end-to-end case studies of useful personalized
applications, that showcase the abilities of REPRIV. We eval-
uated several aspects of these case studies over data collected
from real browsing sessions, as well as human participants.
Given our results, we are able to conclude that REPRIV allows
a wide range of personalized web applications to exist, without
requiring the user to sacrifice control over their personal
information: personalized content and privacy can coexist on
the web.
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