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Abstract—This paper introduces YARRA, a conservative
extension to C to protect applications from non-control data
attacks. YARRA programmers specify their data integrity re-
quirements by declaring critical data types and ascribing these
critical types to important data structures. YARRA guarantees
that such critical data is only written through pointers with
the given static type. Any attempt to write to critical data
through a pointer with an invalid type (perhaps because of a
buffer overrun) is detected dynamically. We formalize YARRA’s
semantics and prove the soundness of a program logic designed
for use with the language. A key contribution is to show
that YARRA’s semantics are strong enough to support sound
local reasoning and the use of a frame rule, even across
calls to unknown, unverified code. We evaluate a prototype
implementation of a compiler and runtime system for YARRA
by using it to harden four common server applications against
known non-control data vulnerabilities. We show that YARRA
defends against these attacks with only a negligible impact on
their end-to-end performance.
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I. INTRODUCTION

Most important applications contain components written
in unsafe languages such as C and C++. These components
are vulnerable to a variety of memory corruption attacks.
To develop comprehensive protections for these unsafe com-
ponents, it is essential to identify wide, prominent classes
of attacks, to analyze such classes mathematically, and to
implement and evaluate effective solutions against them.

One broad class of attack on unsafe programs is the
control-based attack, in which an attacker uses a memory
corruption error, such as a buffer overflow or use-after-
free, to overwrite control-data such as a return address or
function pointer and thereby modifies the control-flow of the
program. Through the early to mid 2000s, both industry and
academia developed mitigation techniques against control-
data attacks. One particularly noteworthy piece of work in
this line of inquiry, due to Abadi et al. [1], developed a
formal model of control-flow integrity and used this model
to prove the correctness of defenses against a formal attacker.

In this paper, we analyze a separate class of attacks:
non-control data attacks. These attacks do not modify the
control-flow of programs, but instead corrupt user identity
data, configuration data, user input data or decision-making
data to achieve the attacker’s ends. In 2005, Chen et al. [9]
demonstrated that such non-control data attacks are a serious
threat against many real applications, including widely-used
server programs. Since then, due to the mitigations that have

been developed against control-based attacks, the prevalence
of non-control data attacks has increased [29].

Non-control data attacks are orthogonal to control-based
attacks in the sense that provably secure control-flow attack
defenses (such as Abadi’s) may be completely vulnerable
to non-control data attacks. Conversely, provably secure de-
fenses against non-control data attacks may be vulnerable to
control-flow attacks. Defense against both attack classes may
be implemented through a union of orthogonal solutions.
Hence, in this paper, we set aside the problem of control-
based attacks to focus squarely on non-control data attacks.
The following paragraphs summarize our key contributions.
A modular solution to non-control data attacks. Our
solution takes the form of a language extension to C, which
we call YARRA. YARRA programmers introduce special type
declarations and ascribe the special types to their critical
data structures—those data structures upon which system
reliability or security most depends. We call the special types
critical data types, and YARRA ensures that data with such
types are impervious to non-control data attacks.

Critical data types help programmers specify an intended
data integrity policy. Programmers further specify their
data integrity intentions by choosing, in any given program
expression, to use a pointer with a static critical type or not to
use a pointer with a static critical type. When accessing data
through a pointer with a static critical type, a programmer
declares that she expects the underlying memory to have
that same critical type dynamically. When reading or writing
through a pointer that, statically, does not have a critical
type, the programmer declares that she does not expect to
be accessing memory with dynamic critical type.

This design has a number of advantages. First, it is simple
to understand and easy to use. Every programmer is familiar
with the concept that the underlying dynamic type of a data
structure should match the static type of the pointer. YARRA
merely puts an enforcement mechanism for this concept
in place. Violation of this property, and the subsequent
unintended modification of a critical data type, is at the heart
of all non-control data attacks.

Second, our design supports adaptation of legacy code
with minimal effort: type declarations may be added to an
existing code base, literally one at a time, incrementally
hardening a program against non-control data attacks.

Third, the design is highly modular in the sense that once
a module is proved secure, it may be linked with arbitrary,
unverified library code, and that library will be unable to
wage a non-control data attack against it. In contrast, systems



such as Cyclone [12], CCured [23], Softbound [21] and
others that rely upon conventional array-bounds checking
generally do not provide any guarantees whatsoever when
there are buffer overruns in unchecked libraries (Despite
this limitation, array-bounds checking, like control-flow in-
tegrity, remains a very useful technique).
Formal safety and modularity properties for YARRA. We
provide an operational semantics and a sound program logic
for a core model of YARRA. The program logic defines the
formal or informal reasoning principles that programmers
may use when analyzing their YARRA programs. A key
element of our logic is a new kind of type-based frame rule.
This frame rule allows components responsible for imple-
menting security infrastructure to be verified independently
of the unverified, possibly buggy and vulnerable libraries
that they are linked with. Despite such bugs and vulnera-
bilities, these libraries cannot wage non-control data attacks
against the verified security components. Consequently, the
frame rule codifies the modularity properties that YARRA
programmers may rely upon. The proof of soundness of our
program logic, including this novel frame rule, is the deep
theoretical result of our work.
A formal definition of non-control data attacks. Inherent
in our safety proof, and our analysis of the frame rule,
is a formal, language-based definition of non-control data
attacks. To be specific, a non-control data attack is any attack
driven by a sequential, imperative program with fixed, static
control-flow and the license to attempt unlimited reads and
writes (including writes outside the normal bounds of data
structures such programs allocate). The attacks are waged
against YARRA programs, which are also defined to have
fixed, static control flow. We limit the control constructs in
our formal model because that is the simplest, clearest way
to define the essence of a non-control data attack (as opposed
to a control-based attack) and thereby to characterize the
problem and our solution. We leave an analysis of multi-
threaded programs to future work.
Implementation of YARRA. The semantics of YARRA may
be implemented in more than one way. Different imple-
mentations have different performance trade-offs in terms
of time and space and different requirements in terms of
access to source code for transformation. We have imple-
mented a compiler and run-time system for YARRA that
supports two different runtime enforcement modes. The first
mode, inspired by previous work on Write Integrity Testing
(WIT) [2], instruments source code with dynamic checks
that cannot be proven unnecessary at compile time. The
second mode, inspired by previous work on Samurai [24],
makes copies of critical objects on separate pages. Prior to
invoking untrusted library code, the implementation turns off
hardware write permissions on the designated pages, thereby
preventing unsafe libraries from corrupting critical data.
Experimental evaluation. We demonstrate the effectiveness

of YARRA on a collection of important server applications
including SSH, telnet, HTTP and FTP with security-sensitive
data that may be vulnerable to non-control data attacks.
These applications typically contain, amongst thousands of
lines of code, a relatively small, clearly defined module, or
set of modules that implement important security consider-
ations and require careful auditing—applications with this
structure are best suited to the protections that YARRA can
provide. For these applications, we observe that our imple-
mentation has negligible overhead relative to the end-to-end
performance of the application as a whole. In addition, the
programmer integration effort was on the order of a few
hundred modified lines of code or less in applications tens
of thousands of lines long.

For a more thorough, but artificial, measurement of the
performance impact of YARRA, we adapt BGET [32], a
widely used memory manager, to use YARRA to protect the
allocator’s internal data structures from corruptions by the
application. When used in such a scenario, where a large
number of data accesses involve critical data types, we find
that the performance overhead can be very substantial.

One conclusion we draw from these experiments is that
our current prototype, though completely unoptimized, is an
eminently practical defense against non-control data attacks
in typical server applications where the amount of critical
data that needs to be protected is relatively small.

II. YARRA BY EXAMPLE

Background. A non-control data attack occurs when
security-critical data allocated on the heap is unexpectedly
modified. The display below shows code vulnerable to such
an attack. This example is drawn from Akritidis et al. [2]
and was inspired by a true nullhttpd attack.

Code vulnerable to a non-control data attack
1 static char cgiCmd[1024];
2 static char cgiDir[1024];
3 void ProcessCGIRequest(char∗ msg, int sz) {
4 int flag, i=0;
5 while (i < sz) {
6 cgiCmd[i] = msg[i]; //buffer overrun here could overwrite cgiDir
7 i++;
8 }
9 flag = CheckRequest(cgiCmd); //input sanitization

10 if (flag) {
11 Log("..."); //buggy library could invalidate sanitization
12 ExecuteRequest(cgiDir, cgiCmd);
13 }}

In this example, a request (msg) is copied into a new
buffer called cgiCmd. Next, a routine called CheckRequest checks
that the command does not contain ”..”, which would allow
an attacker to navigate out of the designated directory and
execute any program, anywhere in the system. Finally, Log

logs the request for future audits and ExecuteRequest concate-
nates the command to the designated directory path and
executes it. Unfortunately, the routine is vulnerable when
sz is larger than 1024. In this case, the copying operation



overflows from cgiCmd into cgiDir, allowing an attacker to
effectively execute any command in any directory on the user
system. An additional concern is a potential time-of-check to
time-of-use discrepancy in the code, that can be exploited,
if, for example, the call to Log has a buffer overflow that
allows cgiCmd to be overwritten after CheckRequest has been
executed. Both of these vulnerabilities lead to non-control
data attacks because they do not change the control flow
of the C program. Hence, they will not be detected by
mechanisms that check for control flow integrity.
There are two perspectives on this kind of attack:

• The conventional array-bounds perspective: The fault
lies with the write operations at line 7 and within
the implementation of Log, since they misimplement
indexing operations.

• The data integrity perspective: The fault lies in the
definition and implementation of the cgiDir and cgiCmd

data structures, since they fail to protect themselves
from external agents.

These two different perspectives lead to different solutions
with different engineering considerations. The conventional
perspective, taken by systems such as SoftBound [21], leads
one to maintain bounds on all data structures and to rewrite
the code for every data access. Consequently, it cannot be
applied when library source code is unavailable, e.g., if
a function like Log were to make library calls. In such a
situation, all bets are off—a single missed bounds check
may corrupt any data structure, anywhere in the program.
In contrast, the data integrity perspective leads one to
maintain bounds only for the high integrity (critical) data
structures and indexing operations must be proven not within
the bounds of these structures. This alternative perspective
leads to a different set of implementation possibilities. For
example, one may use conventional hardware protections
to prevent writes to critical data, while still allowing safe
linking with unmodified, possibly buggy libraries. We adopt
the latter perspective in YARRA and show how it can be
used to harden code against non-control data attacks.

A. Hardening nullhttpd with YARRA

The main new abstraction that YARRA provides is the
critical data type. Critical data types have the rather unre-
markable property that access to such data may only occur
through a pointer with a corresponding (static) type. Work-
ing with critical data types demands a certain discipline.
First, programmers must declare a critical type X . Having
done so, programmers can designate (or bless) portions of
memory as containing X objects and, as a result, they obtain
X-typed references. X-typed memory should only be ac-
cessed using X-typed references. In return, YARRA ensures
that the portions of memory that hold X-typed objects will
never be corrupted by writes via untyped pointers, or by the
effects of library code. When finished with an X object, a

programmer can unbless a reference, undoing the protections
on the referenced memory.
Programming with critical data types. The listing below
shows how our example from nullhttpd may be rewritten
using YARRA’s critical data types to foil both non-control
data attacks. On line 1, we introduce a new critical data type,
cchar, using a declaration much like C’s typical declaration
for structures. The type cchar is a new YARRA structure
containing a single character field named cc. The type dchar

(line 2) is another critical type, also with a single character
field dc. At line 3, we declare that every element of cgiCmd

is a cchar, meaning it can only be written by cchar pointers.
Likewise, with cgiDir and dchar, at line 4. Finally, we modify
line 8, to access the cc field of the YARRA structure, thereby
indicating our clear intention to write to protected data.

YARRA’s promise to programmers is that writes via non-
critical pointers to memory locations holding critical objects
will always be detected. Because the types cchar and dchar are
unknown to Log and any library it may call, the functions
use only non-critical pointers, and hence YARRA guarantees
that both cgiDir and cgiCmd are uncorrupted at the call to
ExecuteRequest. Further, at line 8, if there is a buffer overrun
from cgiCmd into cgiDir, YARRA detects the error because a
pointer with static type cchar∗ attempts to write to memory
with (dynamic) YARRA type dchar. This illustrates the impor-
tance of using different YARRA types for logically distinct
data structures. If one were to use the same type (say, cdchar)
for both cgiCmd and cgiDir then YARRA would not prevent a
buffer overrun at line 8. In other words, structures that share
the same type are not protected from each other; they are
only protected from structures with other types.

Using critical data types in nullhttpd

1 yarra struct {char cc;} cchar;
2 yarra struct {char dc;} dchar;
3 static cchar cgiCmd[1024];
4 static dchar cgiDir[1024];
5 void ProcessCGIRequest(char∗ msg, int sz) {
6 int flag, i=0;
7 while (i < sz) {
8 cgiCmd[i].cc = msg[i]; //Yarra: cgiDir cannot be modified
9 i++;

10 }
11 flag = CheckRequest(cgiCmd);
12 if (flag) {
13 Log("..."); //Yarra: corruption of cgiDir, cgiCmd detected
14 ExecuteRequest(cgiDir, cgiCmd);
15 }}

Implementing YARRA protections. There are many ways
to implement the protections YARRA offers—our current
implementation offers two modes. In its source protection
mode (inspired by WIT), our compiler uses the statically
declared type of pointers to instrument memory accesses
with suitable checks. For example, writes using non-critical
pointers to locations are checked at run time to ensure they
actually contain non-critical data. If they contain critical
data, the program will abort. In its targeted library protection



mode (inspired by Samurai), more suitable for situations
in which code cannot be instrumented with checks (e.g.,
when linking with third-party binaries), we maintain backing
stores for critical objects on separate pages. Prior to invoking
potentially buggy library code, we turn off hardware write
permissions on these pages to preserve their integrity. Writes
from untyped pointers to critical objects proceed without
failure, but, these writes only modify one copy of the object,
leaving the version in the backing store unchanged. In con-
trast, writes to critical objects using well-typed references
update both copies of the object. When a critical object
is read using a well-typed pointer, checks inserted by our
compiler ensure that the versions of the object in the main
heap and the backing store are identical, thus detecting
potential corruptions.
Reasoning about YARRA programs. Regardless of the
implementation chosen, with both cgiCmd and cgiDir protected
by YARRA, our semantics provides the programmer with
powerful, sound, local reasoning principles. Any invariant
over the objects cgiCmd and cgiDir is preserved across the call
to the Log function, since Log is unable to modify critical
memory locations. Additionally, an invariant on cgiDir (e.g.,
that cgiDir does not start with “..”) is preserved across line 8,
since YARRA ensures that the write to cgiCmd never modifies
a dchar object. We formalize this principle in Section III in
terms of a type-based frame rule and prove it sound.

B. Critical data and dynamic allocation

Our first example illustrated a simple use case for YARRA
in which a set of memory locations have a single YARRA
type for their entire lifetime. However, in order to handle
dynamically allocated data structures, or memory that is
reused for different purposes, we need a way to cast memory
from one critical type to another.

In YARRA, memory pointed to by p is dynamically cast
to a critical type T using the operation bless〈T〉(p) and cast
back using unbless〈T〉(p). It is an error to attempt to bless
memory protected at type T’ to another type T, unless T’ is a
declared substructure of T1. Likewise, it is an error to attempt
to unbless memory from type T when that memory location
had not previously been blessed at T. These sorts of errors
are detected at runtime by the instrumentation inserted by
our compiler. YARRA also provides the operation isIn〈T〉(p),
which returns true if p dynamically has type T and false if
it does not. If p points to memory which has been blessed
at type T but which has been corrupted by a write via an
untyped pointer, YARRA causes the program to abort—this
situation can be detected, if, for example, the two copies
of the T-object in question are not synchronized. Finally,
YARRA provides the command vacant〈T〉(p), which returns
true if p points to completely unprotected memory of size
sizeof(T) and false otherwise.

1An illegal cast of this sort might invalidate protections supplied by T’.

1 yarra struct {int tag;} metaT;
2 yarra struct {int junk;} unusedT;
3 union item {
4 unusedT unused;
5 int used;
6 };
7 static metaT meta[SIZE];
8 static item data[SIZE];
9 int ∗alloc() {

10 int i;
11 for (i=0; i<SIZE; i++) {
12 if (meta[i].tag == 0) {
13 meta[i].tag = 1;
14 unbless〈unusedT〉(&data[i].unused);
15 return data+i;
16 } }
17 abort("out of memory");
18 }
19 void free(int ∗datum) {
20 if (datum >= data && datum < data+SIZE) {
21 int i = datum – data;
22 if (meta[i].tag == 1) {
23 if (vacant〈unusedT〉(&data[i])) {
24 meta[i].tag = 0;
25 bless〈unusedT〉(&data[i].unused);
26 return;
27 } } }
28 abort("client error");
29 }

Figure 1. A simplified memory manager

Figure 1 shows a simple memory allocator that uses bless
and unbless to protect its metadata, hence increasing its
reliability, even when linked against buggy clients. While
the allocator shown is extremely simple, we have used the
same principles to protect BGET [32], a standard, publicly
available allocator for C.

The allocator relies on a few simple invariants (where
i ranges from 0 to SIZE-1): (1) the elements i of the meta

array have critical type metaT, preventing a buggy client
program from modifying allocator meta data; (2) the meta

array contains integers that are either 0 or 1; (3) if meta[i] is 0
then data[i] is not allocated and dynamically has critical type
unusedT, preventing a client from using it; and (4) if meta[i]
is 1 then data[i] is allocated and dynamically does not have
critical type unusedT, allowing a client to use it as needed.

Given these invariants, consider the effects of the alloc and
free routines. In alloc, the code searches for a free cell (one
with meta[i].tag == 0), assigns the meta[i] tag to 1 (allocated
state), and unblesses the cell, returning a pointer that the
client may freely use. In, free the code first checks that
its argument is in range. If it is, it checks that the cell
has previously been allocated by the allocator and not yet
freed (meta[i].tag == 1). Next, it checks that the data is not still
(erroneously) in use by another module at a protected type
by testing if data[i] is vacant (line 23). Finally, if all these
checks succeed, the metadata is set to unallocated and the
data is blessed, protecting it from use by any other module.

When thinking about the correctness of alloc and free,
the first thing to notice is that if the informal invariants
mentioned above are true at entry to either routine then



they are also true upon completion of the routine. More
interesting still, the invariants (though loosely stated) are
phrased entirely in terms of protected state — i.e., in terms
of static global arrays, whose addresses may not be changed,
in terms of protected memory, such as the contents of
meta, and in terms of a locally quantified variable i — as
opposed to in terms of normal, vulnerable, heap-allocated
data structures. Because these invariants depend exclusively
on protected state, no client module may corrupt them and
hence, according to the traditional hypothetical frame rule,
if initialization (not shown) makes them valid at the outset,
it is sound for each routine to depend upon their continued
validity throughout the program.

III. SEMANTICS OF YARRA

This section defines YCORE, a sequential, imperative
language intended to serve as a core model for YARRA. This
formal development serves two purposes. First, YCORE’s
semantics makes precise our attacker model: the attacker is
represented by calls to unverified library code that may have
arbitrary effects on the heap, but cannot alter the control
flow of the program. Second, we define robustness in the
presence of non-control data attacks to be the ability to
reason locally about critical data structures, even in the
presence of arbitrary heap effects caused by library code.

We formulate robustness, or modular local reasoning,
in the context of a program logic for YCORE programs
and we show that this logic admits a frame rule. Unlike
recent presentations of the frame rule that require the use
of separation logic [26], ours is in the context of a classical
Hoare logic and relies on the type structure of the program
for modular reasoning. In addition to its technical novelty,
we argue that our type-based approach provides a more
familiar model for programmers already used to working
with types. Furthermore, unlike in other logics, YARRA’s
dynamic protections make our frame rule sound even in
the presence of heap effects caused by unverified libraries.
As such, this frame rule captures the essence of YARRA’s
modular protections against non-control data attacks.

A. Syntax

Broadly speaking, YCORE is a simple while-language,
augmented with critical type declarations, and memory op-
erations to manipulate critical memory. Figure 2 shows the
syntax of YCORE, starting with our meta variable conven-
tions. Integer constants are i, j, `, where, we generally use `
for memory locations. Local variables are x, y, z, and critical
data types (and their representations as maps) are X,Y, Z
with H and Un being two distinguished map names.
Expressions e are purely arithmetic terms, built from integer
constants, integer variables and primitive operators op. Val-
ues v are either integer constants i, or are structured tuples
(v1, v2) corresponding to the values of protected object

integer const. i, j, `
local variables x, y, z
map names X,Y, Z,H,Un
values v ::= i | (v1, v2)
expr. e ::= i | x | e op e′
stmt./hole s ::= skip | if e then s1 else s2 |while e s
sequence | s1; s2

assertion | assert Φ
local var. decl. | local x in s
local type decl. | newtype X = τ in s
bless e objs. starting at ebase | y := blessX [e] ebase

unbless e objs. starting at ebase | y := unblessX [e] ebase

dynamic typecase | if e is in X then s1 else s2

checked read | y := X(e).p
un-checked read | lib y := e
checked write | X(e1).p := e2

un-checked write | lib e1 := e2

dynamic failure | abort
hole | •i
field path p ::= · | 0p | 1p
types τ ::= int | (τ1, τ2) | X
map type τ̂ ::= int → τ
map value v̂ ::= λ`.ê
map body ê ::= ⊥ | v | v̂ v | if a ∈ a′ then ê else ê′

logic term a ::= e | v | ê | v̂ | X | a.p | dom a | {x | Φ}
formula Φ,Ψ ::= Φ ∧Ψ | Φ ∨Ψ | ¬Φ | ∀x.Φ | ∀X:τ̂ .Φ

| a = a′ | a ∈ a′ | a < a′ | True | False
substitution σ ::= · | σ, [a/X] | σ, [a/x]
mod. set ∆ ::= · | ∆, X | ∆, x
static env. Γ ::= · | Γ, X:τ̂ | Γ, x
runtime env. E ::= E, x 7→ i | E,X 7→ (v̂:τ̂)

| H 7→ (v̂:τ̂),Un 7→ (v̂:τ̂)
either env. E ::= Γ | E

Figure 2. Syntax of YCORE

types. Note, expressions do not include tuples, ensuring that
well-scoped expressions always evaluate to integers.
Basic statements include the usual forms for branching,
looping, sequencing, assertions, and scoped, local variable
declarations, (local x in s). Local variables always hold
integer values, so no type is needed on the declaration of
x. The statement form s also serves as a multi-hole context,
where the holes •1, . . . , •n represent points at which control
transfers to an attacker program. We write s[si]i to replace
hole i in s with si. We write s[s1, . . . , sn] for the hole-free
statement obtained by replacing each hole •i in s with si.
We place specific conditions on the attacker code that can
be used to fill a hole in Section III-D.
Critical type commands. The statement form (newtype X =
τ in s) allows us to define a name X for a new critical
type, where the representation of X is τ , and X can be
used in s. The statements for blessing and unblessing are
slightly more general than what was used in Section II. Here,
the command (y := blessX [e] ebase) operates on an array of
locations starting at the location ebase and including e objects
each to be protected at the type X (where e is expected to
evaluate to a non-negative integer). The returned value y is
a reference to the start of the array of newly blessed objects.
Analogously, the command (y := unblessX [e] ebase) removes



1 yarra struct {int f0; int f1} X;
2 yarra struct {X g0; int g1} Y;
3 main() {
4 void∗ z=malloc(sizeof(Y));
5 X∗ x = bless<X>(1, z);
6 Y∗ y = bless<Y>(z);
7 y.g0.f0 = 17;
8 void ∗ = unbless<Y>(1, y);
9 void ∗ = unbless<X>(x); }

newtype X = (int, int) in
newtype Y = (X, int) in
local x, y, z in
z := `;
x := blessX [1] z;
y := blessY [1] z;
Y (y).00 := 17;

:= unblessY [1] y;
:= unblessX [1] x

Figure 3. Relating the syntax of YARRA to YCORE

protections on an array of critical objects. The dynamic
typecase (if e is in X then s1 else s2) statement is useful
for modeling the vacant command of Section II-B, as well as
other constructs—it can be used to check whether a location
e holds a critical object of type X .
Reading and writing memory. YCORE includes two forms
each of read and write instructions. A checked read (y :=
X(e).p) attempts to read a structured value v of type
X at the location e and projects a field from v using
the path p, storing the result in the local variable y. In
contrast, an un-checked read instruction (lib y := e) reads
the contents of an arbitrary memory location e from the
heap H into a local variable y. Similarly, a checked write
(X(e1).p := e2) attempts to write to a structured type using
a field assignment; un-checked writes (lib e1 := e2) modify
a single location e1 in the heap, overwriting its contents
with e2. We use the un-checked forms to model the actions
of arbitrary, untrusted code, e.g., third party libraries.
Failure modes. We model two failure modes in YCORE.
Certain dynamic failures are permitted by the logic, e.g.,
failures caused by the effects of untrusted libraries which
are detected by the runtime system. These failures cause a
program to loop indefinitely issuing the abort command—we
expressly choose to allow such “safe” failures to occur at run
time since they are unavoidably triggered by the behavior of
unverified library code. Other failures, e.g., trying to bless
a piece of memory that has already been blessed at another
type, or an assertion failure, cause the program to get stuck.
YCORE’s logic is designed to prevent stuck programs.
Types and the assertion language. The type language of
YCORE includes int , pairs, and type names X . We model
both C’s integers as well as pointers using the int type.
Structures in C, which contain an arbitrary number of named
fields, are modeled using nested pairs. We omit unions. The
assertion logic of YCORE makes use of first-order formulas
Φ over a term language including arithmetic expressions,
tuples, maps and sets, together with (extensional) equality,
set membership, and integer inequality. Maps are lambda-
terms (λ`.ê), with types described using the map types τ̂ .
The body (ê) of a map value is built from values v, an
application form, a conditional form, and a distinguished
value ⊥ used to model partial maps.

Figure 3 illustrates how the concrete syntax of YARRA
maps to YCORE. Struct declarations correspond to decla-

rations of tuple types. We do not include procedures in
YCORE—the statement s can be thought of as the body
of main. We also do not provide primitive operations for
dynamic memory allocation in YCORE—so the malloc call
at line 4 has no direct analog in YCORE. However, we model
the heap as a total map over integer locations and we can
program malloc in YCORE.(This is not an unusual choice
in systems governed by classical logics. See, for example,
work on Havoc [15].) In this example, which will be reused
later to illustrate the static semantics, we replace the call
to malloc with an abstract address `. Calls to bless and
unbless in YARRA map directly to YCORE. In cases (e.g.,
lines 6 and 9) where we omit the first argument to bless or
unbless, the argument defaults to 1.

Writes and field projections via object references in
YARRA also map directly, as shown on line 7. YCORE
uses binary paths to the fields of tuples, instead of field
names. More importantly, while writes to objects via typed
references in YARRA are evident from the declared types
(for example, the type Y* of y), in YCORE, the write
instruction itself is tagged with the type of the object that
is the destination of the write. Typed read instructions
are similar. For convenience, our example hoists the local
variable declarations.

B. Dynamic semantics

Figure 4 shows selected rules from the dynamic seman-
tics of YCORE—our technical report [28] includes the full
definition. The semantics is a small-step reduction relation
of the form (E; s)  (E′; s′), where (E, s) is called a
run-time configuration. Such configurations contain run-time
environments E and hole-free statements s.

Runtime environments E contain integer assignments for
local variables (x 7→ i); a typed map value (v̂:τ̂) for each
critical type X defined in the program (X 7→ v̂:τ̂); a map
value for the conventional heap (H 7→ v̂:τ̂); and, finally,
a map value for Un, the collection of unblessed locations
(Un 7→ v̂:τ̂). We call each map value v̂ in E a heaplet.
The heaplet for a critical type X corresponds roughly to the
backing store for X-typed objects. We model the critical
heaplets formally as partial maps from memory addresses
to X-typed objects, i.e., in a well-formed environment
containing X 7→ (v̂:τ̂), v̂ is a partial map of type τ̂ , where
τ̂ = int → X . The heap H is a total map from memory
addresses to integers (i.e., it has type int → int), while Un
is a partial map of type int → int . The totality of the H-
map is simply a technical convenience—we could, with a
little additional book-keeping, allow H to be a partial map.
Auxiliary functions. Figure 5 defines several auxiliary func-
tions used throughout the semantics. These functions are
straightforward, although a few comments are worthwhile.
First, note that most of our auxiliary functions carry indexes
(subscripted) that represents environment arguments. For
example, [[e]]E is a standard denotational semantics for



τ̂ = int → τ
(E; newtype X = τ in s) (E,X 7→ (λ`.⊥:τ̂); s)

E-NewX
[[e1]]E = ` E′ = E[y 7→ HE(`)]

(E; lib y := e1) (E′; skip)
E-LibRd

[[e1]]E = ` [[e2]]E = v E(H) = v̂:τ̂ E′ = E[H 7→ (v̂[`← v]:τ̂)]

(E; lib e1 := e2) (E′; skip)
E-LibWr

[[e]]E = ` ` ∈ domEX
XE(`) 6= readFromE H (`:X)

(E; y := X(e).p) (E; abort)
E-RdAbort

p 6= · [[e1]]E = ` ` ∈ domEX XE(`) = readFromE H (`:X) `′ = `+ offsetE X p E′ = E[y 7→ HE(`′)]

(E; y := X(e1).p) (E′; skip)
E-Rd

p 6= · [[e1]]E = ` [[e2]]E = v ` ∈ domEX XE(`) = readFromE H (`:X)
E(H) = v̂:τ̂ `′ = `+ offsetE X p E1 = E[H 7→ (v̂[`′ ← v]:τ̂)] E′ = copyE1

{`} from H to X

(E;X(e1).p := e2) (E′; skip)
E-Wr

Figure 4. (E; s) (E′; s′): Dynamic semantics of YCORE (Selected rules)

[[e]]E standard denotation of expressions (see TR)
domEX = {` | XE(`) 6= ⊥}
domΓX = dom X
rangeE X = τ when E(X) = (v̂:int → τ)
rangeΓ X = τ when Γ(X) = int → τ
XE(`) = [[v̂ `]]E when E(X) = (v̂:τ̂)
XΓ(`) = X `
am[a← a′] = λ`.if ` ∈ {a} then a′ else (am `)
|int |E = 1
|Y |E = |rangeE Y |E
|(τ1, τ2)|E = |τ1|E + |τ2|E
offsetE int · = 0
offsetE (τ1, τ2) 0p = offsetE τ1 p
offsetE (τ1, τ2) 1p = |τ1|E + offsetE τ2 p
offsetE Y p = offsetE (rangeE Y ) p

readFromE Y (`:int) = YE(`)
readFromE Y (`:Z) = readFromE Y (`:(rangeE Z))
readFromE Y (`:(τ1, τ2)) = (v1, v2)

where v1 = readFromE Y (`:τ1)
and v2 = readFromE Y ((`+ |τ1|E):τ2)

Figure 5. Auxiliary functions

expressions, defined relative to the assignments of local
variables in E. Some function symbols are indexed either
by runtime environments E or static environments Γ. This
allows us to overload function symbols for use in both the
static and dynamic semantics. For example, domEX , used
in the dynamic semantics, concretely represents the domain
of a map X as the set of locations on which X does not
evaluate to ⊥. Statically, domΓ(X) is simply a term dom X
in the logic. Many of the functions in Figure 5 are parametric
in their environment index—these functions carry the index
E , where E may be either E or Γ.

A brief description of each of the auxiliary functions
follows: XE(`) is the value of the map X at the location
`; am[a← a′] updates the map am at location a to contain
a′; rangeE X is the range type of a map; |τ |E represents the
size (in machine words) of a value v of type τ ; offsetE τ p
is the offset of a field accessed via the path p in the type
τ ; readFromE X (`:τ) reads a structured value at location
` of type τ from the map X . Note that offsetΓ τ p is a
partial function, e.g., offsetE ((int , int), int) 0 is undefined.

This ensures that only word-length int-valued fields in
a nested tuple type can be directly addressed. Second,
readFromE Y (`:τ) is used to read a structured value of type
τ from the location ` in the map Y . While this function is
well-defined for arbitrary maps Y , we use it primarily to
read structured values out of the flat heap map H .

We turn now to a discussion of the rules in Figure 4.
Heaplets for new critical types. The rule (E-NewX) shows
the initialization of an empty heaplet (everywhere ⊥) for a
new critical type X . Structured values corresponding to the
objects of the critical type X are added to the X heaplet
whenever the program issues a bless command; values are
removed from the heaplet when unblessed. As such, the
heaplet X serves as a backing store for X values. For space
reasons, we do not show the dynamic rules for blessing and
unblessing—there are several subtleties related to blessing
and unblessing nested objects. However, we present the
axiomatic semantics of these commands in Section III-C.
Un-checked reads and writes. The rule (E-LibRd) shows the
reduction of a read operation performed by untrusted code.
We evaluate the pure expression e to a location `, and update
the local variable y in the environment to hold the value in
the heap H at location `. (E-LibWr) is also unsurprising—
we simply update the heap H at the location ` to the value
v. The important aspect of these rules is that library reads
and writes only have effect on the heap H and on local
variables in scope, but never update the heaplets for any
critical type X . It is possible to implement this semantics
for un-checked writes in multiple ways. For example, in its
library protection mode, our compiler uses hardware page
protections to maintain the integrity of critical heaplets.
Checked reads. Although library instructions cannot modify
the critical heaplets, errant writes by a library can corrupt a
critical object stored in the heap. We use the backing store
provided by the critical heaplets to detect such corruptions
and abort the program, if necessary. The rules (E-RdAbort)
and (E-Rd) show this behavior. When reducing y := X(e).p
we evaluate e to a location ` and check that ` is a reference
to a blessed object. A failure of this first check causes the



configuration to get stuck, a situation prevented by the static
semantics. Next, we check that the value in the backing
store X at location ` matches the value stored in the heap
at the same location. If this check fails, the program aborts.
Otherwise, we compute the offset of the field being read,
and update the local y with the contents of the field.

Note that as shown here, since the critical heaplet for
X always holds an uncorrupted value, we might recover
from a corruption instead of aborting. However, we aim to
provide an abstract semantics for YCORE that is independent
of the specific choice of implementing critical heaplets. In
particular, rather than storing copies of objects in the critical
heaplets, we may wish to use our compiler’s source protec-
tion mode, or to resort to other forms of protections that,
say, only maintain checksums or cryptographic digests rather
than full shadow copies. Such implementation strategies
allow memory corruption to be detected, but may not support
recovery. By allowing (E-RdAbort) to fail when a corruption
is detected, we provide YARRA with the flexibility to choose
among various implementation strategies.
Checked writes. (E-Wr) shows the reduction of an instruc-
tion that writes via an X-typed reference. As for checked
reads, we ensure that the location being written to is in
the domain of the X heaplet (otherwise the configuration
is stuck) and check, using the backing store, that the critical
object being modified is uncorrupted (and abort otherwise,
using (E-WrtAbort) a rule analogous to (E-RdAbort)). We
then update H at the appropriate location and offset, and,
importantly, in the last premise, we copy the updated object
from the heap into the critical heaplet X . Thus, abstractly,
writes through typed references correspond to a pair of
writes, both to the heap and to the critical object’s shadow
copy. However, the YARRA implementation may or may not
actually manifest the update to the shadow copy, e.g., when
using our source protection mode.

Intuitively, one can imagine that YCORE programs enjoy a
measure of data integrity, since copies of critical objects are
maintained in uncorruptible backing stores. The next section
makes this notion of data integrity precise. Specifically, we
show that despite the presence of arbitrary heap modifica-
tion by untrusted code, programmers can reason about the
invariants of critical objects using modular, local reasoning
principles. The crux of this idea is embodied by the frame
rule in a program logic for YCORE, presented next.

C. Static semantics

The static semantics of YCORE is given by the relation
Γ; ∆ ` {Φ} s {Ψ}, a classical Floyd-Hoare logic judgment.
The judgment states, informally, that when executed in an
environment E modeled by the context Γ, and when E
satisfies the pre-condition Φ, the program s, if it termi-
nates, produces some environment E′ that satisfies the post-
condition Ψ, while modifying at most the variables in the
set ∆. The context Γ contains a mapping of type names X

to their map types τ̂ and the set of local variables x that are
in scope. Well-formedness conditions on Γ ensure that (like
runtime environments E) it always contains bindings for two
distinguished map variables: H , a total map from integer
locations to integer values, which represents the conventional
heap; and Un, a partial map whose domain is the set of
unprotected locations.

Figure 6 presents the main semantic rules for YCORE. For
space reasons, this figure omits several rules including rules
for branching, loops, sequencing, skip, local variables, and
the rule of consequence—our technical report includes these
omissions. The following paragraphs explain the key rules.
The frame rule. The key feature of our logic is that
it admits the frame rule, (T-Frame), which states that a
formula Φ′, whose free variables do not overlap with the
set of free variables modified by a statement s, is preserved
across execution of s. Crucially, because the state of critical
data with type X is represented with a variable X that is
distinct from variable H , the frame rule can soundly be
used to preserve invariants of that critical data, when X
is unmodified, despite arbitrary modifications to H in s.
Checking attacker code. (T-Hole) shows the rule for check-
ing holes in statements. These holes are to be filled by
attacker code that can have arbitrary effects on the heap.
(T-Hole) states that any property Φ that does not involve the
heap is preserved across calls to the attacker code. As such,
(T-Hole) is an instance of (T-Frame), which we prove sound
under certain syntactic restrictions on the attacker code that
fills a hole—roughly, that it be a closed term without any
instructions that involve critical types.
Declaring new types. (T-NewX) shows how new types are
introduced. The premises of the rule check that the type τ
is well-formed (e.g., does not mention names that are not in
scope) and that X is a fresh name. The body s is checked
in a context where X is bound to the type of a map, and X
is recorded as one of the variables that may be modified by
s. Since all heaplets are initially empty, the pre-condition of
s may be proven under the assumption that X = λ`.⊥.
Blessing and unblessing. The rules (T-Bless) and (T-
UnBless) are closely related—in fact, they are symmetric.
The command y := blessX [e1] e2 blesses a sequence of e1

objects beginning at e2 to the type X , i.e., it casts e2 to
the base of an e1-numbered array of X objects and stores
a reference to the base location in the local variable y. The
unbless command does the opposite, removing the protection
on an array of objects. We illustrate the behavior of these
operations using the YCORE program in Figure 3.

This program declares two object types X and Y , where
the type Y has the type X nested within its first component.
When blessing an object Y , YARRA requires all sub-objects
of Y to already be blessed—this is important since we want
our frame rule to say that writes that modify non-Y locations
have no effect on the contents of Y -typed objects. If the



Γ; ∆ \ FV(Φ′) ` {Φ} s {Ψ}
Γ; ∆ ` {Φ′ ∧ Φ} s {Φ′ ∧Ψ}

T-Frame
Γ ` τ ok X 6∈ dom Γ τ̂ = int → τ Γ, X:τ̂ ; ∆, X ` {Φ} s {Ψ}

Γ; ∆ ` {∀X:τ̂ .X = λ`.⊥ ⇒ Φ} newtype X = τ in s {Ψ}
T-NewX

H 6∈ FV (Φ) H ∈ ∆

Γ; ∆ ` {Φ} •i {Φ}
T-Hole

Γ ` e1, e2, y ok L =
⋃

0≤i<e1
{e2 + |X|Γ ∗ i} rangeΓ X = τ y,X,Un, τ ∈ ∆

σ1 = copyΓ L from H to X Φ, σ2 = chkAndRemΓ τ L σ3 = updUnΓ L τ ⊥
Γ; ∆ ` {Φ ∧ (σ1 ◦ σ2 ◦ σ3 ◦ [e2/y])(Ψ)} y := blessX [e1] e2 {Ψ}

T-Bless

Γ; ∆ ` {True} abort {Ψ}
T-Ab

Γ ` e1, e2, y ok L =
⋃

0≤i<e1
{e2 + |X|Γ ∗ i} rangeΓ (X) = τ y,X,Un, τ ∈ ∆

σ1 = copyΓ L from H to τ Φ, σ2 = chkAndRemΓ X L σ3 = updUnΓ L τ 1

Γ; ∆ ` {Φ ∧ (σ1 ◦ σ2 ◦ σ3 ◦ [e2/y])(Ψ)} y := unblessX [e1] e2 {Ψ}
T-UnBless

Γ ` e ok vh = readFromΓ H (e:X) vx = XΓ(e) Γ; ∆ ` {Φ1} s1 {Ψ} Γ; ∆ ` {Φ2} s2 {Ψ}
Γ; ∆ ` {((e ∈ domΓX ∧ (X = Un ∨ vh = vx))⇒ Φ1) ∧ (e 6∈ domΓX ⇒ Φ2)} if e is in X then s1 else s2 {Ψ}

T-IsX

Γ ` e, y ok y ∈ ∆ X 6= Un
vh = readFromΓ H (e:X) vx = XΓ(e) σ = [(H1(e+ offsetΓ X p))/y]

Γ; ∆ ` {e ∈ domΓX ∧ (vh = vx ⇒ σ(Ψ))} y := X(e).p {Ψ}
T-Rd

Γ ` e1, e2 ok
H1 = H[e1 ← e2] σ = [H1/H]

Γ;H ` {σ(Ψ)} lib e1 := e2 {Ψ}
T-LWr

Γ ` e1, e2 ok X,H ∈ ∆ X 6= Un vh = readFromΓ H (e1:X) vx = XΓ(e1)
H1 = H[(e1 + offsetΓ X p)← e2] σ1 = copyΓ e1 from H1 to X σ = σ1 ◦ [H1/H]

Γ; ∆ ` {e1 ∈ domΓX ∧ (vh = vx ⇒ σ(Ψ))} X(e1).p := e2 {Ψ}
T-Wr

Γ ` e, y ok σ = [(H e)/y]

Γ; y ` {σ(Ψ)} lib y := e {Ψ}
T-LRd

copy-from-to : (Env ∗ Locs ∗Map ∗ Type)→ Subst
copyΓ L from Y to int = ·
copyΓ L from Y to X = let v̂ = λ`.readFromΓ Y (`:X) in

[(λ`.if ` ∈ L then v̂ ` else X `)/X]
copyΓ L from Y to (τ1, τ2) = let L2 = {`+ |τ1|Γ | ` ∈ L} in

let σ1 = copyΓ L from Y to τ1 in
let σ2 = copyΓ L2 from Y to τ2 in
σ1 ◦ σ2

Membership of types in the modifies set, ∆
int ∈ ∆ = True
X ∈ ∆ = ∃∆1,∆2.∆ = ∆1, X,∆2

(τ1, τ2) ∈ ∆ = τ1 ∈ ∆ ∧ τ2 ∈ ∆

chkAndRem : (Env ∗ Type ∗ Locs)→ (Prop ∗ Subst)
chkAndRemΓ int L = (L ⊆ dom Un, ·)
chkAndRemΓ X L = let Φ = ∀x.x ∈ L⇒ x ∈ domΓ(X) in

(Φ, [(λ`.if ` ∈ L then ⊥ else X `)/X])
chkAndRemΓ (τ1, τ2) L = let L2 = {`+ |τ1|Γ | ` ∈ L} in

let Φ1, σ1 = chkAndRemΓ τ1 L in
let Φ2, σ2 = chkAndRemΓ τ2 L2 in
(Φ1 ∧ Φ2, σ1 ◦ σ2)

updUn : (Env ∗ Locs ∗ Type ∗MapBody)→ Subst
updUnΓ L int ê = [λ`.if ` ∈ L then ê else Un `/Un]
updUnΓ L X ê = ·
updUnΓ L (τ1, τ2) ê = let σ1 = updUnΓ L τ1 ê in

let L1 = {`+ |τ1|Γ | ` ∈ L} in
updUnΓ L1 τ2 ê

Figure 6. Γ; ∆ ` {Φ} s {Ψ}: A Floyd-Hoare logic for YCORE (Selected rules)

contents of an Y object are not first blessed, then a write to
a sub-object X can modify the contents of some Y -object,
which is inconsistent with the frame rule. To comply with
this restriction, the program above first blesses the memory
location ` as containing a single X object, and then blesses
the location ` again as a Y object.

Abstractly, we model this behavior by allocating two maps
corresponding to the types X and Y . At the first bless
command, (T-Bless) computes the set L of locations in the
array to be blessed. In our example, this is just the singleton
set {`}. Using the function copyΓ L from H to X , we read
X-typed tuple values from the heap H at each location in
L into the heaplet for X . At the first bless command in our
example, this corresponds to reading vx = (H `,H (`+ 1))
and adding it to the X map at location `. At the second
bless command, we copy the value vy = (vx, H (`+ 2)) (a
Y -typed value) into the map Y at location `.

Additionally, when blessing locations we enforce two
other invariants key to the soundness of our frame rule.
First, when blessing a location ` to be a type τ , we must

check that the fields of the type τ are appropriately blessed
or unblessed—we call this the field consistency condition.
For this purpose, in addition to the maps for each type, our
semantics also keeps track of a map Un : int → int for
locations that are not blessed at any protected type. Second,
we ensure that in addition to the heap H , every memory
location is in at most one map—we call this the disjoint
domains condition.

We use two auxiliary functions to enforce these in-
variants. At the first bless command of our example,
chkAndRemΓ (int , int) {`} checks that the locations
{`, (` + 1)} are currently unblessed, i.e., they are in
the Un map. At the second bless command, we use
chkAndRemΓ (X, int) {`} to check that location ` is in the
domain of X and location (`+2) is unblessed. In both cases,
the check manifests itself as a pre-condition Φ for verifying
the bless command. For the second bless, to ensure the maps
for X and Y do not overlap, we additionally compute a
substitution σ2 which updates the map X by removing the
location ` from its domain. The function updUnΓ L τ ⊥



computes a substitutions that removes locations that are
newly blessed from the Un map—at the first bless these
locations are {`, `+ 1} and, at the second, {`+ 2}.

Finally, we require y,X and Un to be in the set of
modified locations ∆. Additionally, since the maps of nested
types are also modified (e.g., the map X when blessing a
location as Y ), we overload notation and require τ to also be
in ∆. The pre-condition in the conclusion is a propagation of
the post-condition under the composition of all the computed
substitutions. We also include the formula Φ in the pre-
condition to enforce field consistency.

The rules for unbless are entirely symmetric to those
for bless, swapping the role of a type name X for its
representation τ , and adding elements to the Un map instead
of removing them. In our example, the first unbless removes
a value vy = (v′x, i) from the Y -map at location `; adds vx
to X at location `, and adds the location `+ 2 back to the
Un map. The second unbless removes v′x from X at location
` and adds {`, `+ 1} back to the Un map.

Typecase. The typecase construct allows a programmer to
test whether a location is either the head of an X-typed
object, or not blessed at all. To test the latter condition,
a programmer can write (if e is in Un then s1 else s2),
which causes s1 to be executed only if e is an unblessed
location—this is a primitive form of the vacant function
used in the memory manager of Section II-B, which can
be expanded to a sequence of typecase commands. (T-IsX)
formalizes the semantics of typecase. The then-branch s1

can assume that the scrutinee e is in the backing store of
X and, when X is not Un, can additionally assume that
the value of X in the backing store matches the contents
of the heap H . A mismatch between the backing store and
heap signals a potential corruption of memory by library
code—this situation is detected dynamically by the YARRA
runtime and causes the program to abort. The else-branch,
in contrast, can assume that e is not in X .

Reads and writes. The static semantics of checked reads (T-
Rd) and writes (T-Wr) closely mirrors the reduction rules
for these constructs in the dynamic semantics. Dynamically,
both instructions require the reference being used to be
blessed—this manifests itself as a pre-condition in the static
semantics that e ∈ domΓX . Since the dynamic semantics
includes a check to make sure that the value being read or
written to is uncorrupted (aborting otherwise), (T-Rd) and
(T-Wr) allows us to assume that vh = vx, i.e., protections
in YARRA operate at a level of granularity corresponding
to the object, allowing programmers to reason about and
preserve internal invariants among the fields of an object,
rather than each field in isolation. The rules (T-LRd) and
(T-LWr) provide no special semantics for un-checked reads
and writes in the static semantics—libraries are free to read
from or write to arbitrary portions of the heap, but leave all
critical heaplets unchanged.

D. Soundness and robust safety

The main formal result of this paper is a soundness
property for YCORE that is robust even when a program
s is composed with attacker programs. We begin by making
precise our definition of an attacker that can mount only
non-control data attacks.

Definition 1 (Valid attacker program). A hole-free statement
s is a valid attacker program if both of the following
conditions are true:

1) FV(s) = ∅, where FV(s) are the free local variables
and critical type names in s.

2) s does not contain statements of the form
(newtype X = τ in s) or (assert Φ).

The next lemma establishes that valid attackers are always
verifiable in our logic. A corollary of this property is that
programs that are verified in our logic remain verifiable even
when composed with valid attackers.

Lemma 1 (Valid attackers are trivially verifiable). For any
valid attacker program s, the triple Γ;H ` {True} s {True}
is derivable, where Γ = H:int → int ,Un:int → int .
Proof: (Sketch) Since s has no free type names and creates
no new types, s is free of instructions like X(e1).p := e2

that involve manipulation of critical data types. So, for any
X 6= H , X is not in the modifies set. Likewise, s has no
free local variables, and hence modifies no local variables.
Finally, s is also free of assertions. The remaining statements
involve arbitrary reads and write to the heap H , the usual
control constructs, and operations on new local variables.
Arbitrary combinations of these remaining constructs satisfy
the trivial Hoare triple {True} s {True}.

Corollary 2 (Robustness under composition with valid
attackers). For any Γ, ∆, Φ, Ψ, program s with hole •i
and valid attacker program si; If Γ; ∆ ` {Ψ} s {Φ} then
Γ; ∆ ` {Ψ} s[si]i {Φ}.

Note that YCORE provides no first-class control constructs
(e.g., computed jumps) thereby preventing attackers from
subverting the control flow of the program. Furthermore,
although technically feasible in YCORE, we also forbid
valid attackers from modifying local variables used by the
program since this corresponds conceptually to allowing
attackers to modify locations on the stack (which in practice
amounts to allowing attackers to modify return addresses
stored in stack frames). As such, valid attackers in YCORE
are capable of mounting only pure, non-control data attacks.

Finally, we state our soundness result, a theorem that
guarantees that verified YCORE programs never get stuck
(although they may abort). In the statement below ` Γ; ∆ ok
and Γ ` Ψ ok are simple well-formedness conditions on
the free names of environments and formulas. The relation
` E : Γ states that the runtime environment E is well-
typed according to the bindings in Γ, while the judgment



1. Γ; flag, H ` {[cgiCmd, cgiCmd + |cchar|Γ ∗ 1024) ∈ cchar}
flag = CheckRequest (cgiCmd)

{flag 6= 0⇒ validCmd(cchar, cgiCmd)}
2. Γ;H ` {True} Log("...") {True}
3. Γ;H ` {validCmd(cchar, cgiCmd) ∧ validDir(dchar, cgiDir)}

ExecuteRequest(cgiDir, cgiCmd)
{True}

Figure 7. Three triples to illustrate the power of the frame rule

E |= Φ is a first-order entailment relation for a formula Φ
with free variables bound in E. Clause (1) of part (A) states
that the configuration (E; s) is not stuck. Clause (2) states
that the new state E′ is well-typed in an extension of the
environment Γ. Clauses (3) and (4) state that the program
s′ is verifiable but with the same post-condition, Ψ and a
new pre-condition Φ′, and with a modifies set that includes
at most the variables modifiable by s and possibly any new
locals or heaplets allocated in the single step of reduction.
Clause (5) ensures that the new pre-conditions Φ′ is valid
in the new state E′. Finally, part (B) states that when the
computation has terminated, the post-condition is valid.

Theorem 3 (Soundness). For all environments Γ, ∆ (such
that ` Γ; ∆ ok); formulas Φ,Ψ (such that Γ ` Ψ ok); well-
formed stores E (such that ` E : Γ) that satisfy the pre-
condition (E |= Φ); and hole-free programs s such that
Γ; ∆ ` {Φ} s {Ψ}:
(A) If s 6= skip, then there exists E′, s′,Γ′,Φ′,∆′ such that

all of the following are true:
(1) (E; s) (E′; s′);
(2) ` E′ : Γ,Γ′;
(3) ∆′ ⊆ ∆ ∪ dom Γ′;
(4) Γ,Γ′; ∆′ ` {Φ′} s′ {Ψ}; and
(5) E′ |= Φ′,

(B) If s = skip, then E |= Ψ.

E. The power of the frame rule

This section revisits the nullhttpd example of Sec-
tion II-A and shows how, using our logic, we can rea-
son about the safety of the program. Recall that the ex-
ample defines two types cchar and dchar, where the static
variables cgiCmd and cgiDir hold arrays of these types re-
spectively. The program contains a call to the function
ExecuteRequest(cgiDir, cgiCmd), and our goal is to ensure that both
arguments to this function are not corrupted, either by buffer
overruns within nullhttpd, or by the effects of libraries
it uses. We can capture this specification by assuming that
the three triples in Figure 7 hold for some binary predicates
validCmd and validDir.

These triples are given in a context Γ that includes
bindings for the local variable flag and the type names cchar

and dchar. The static variables cgiCmd and cgiDir are arbitrary
address constants. Additionally, in order to fit in YCORE, we
model CheckRequest and ExecuteRequest as inlined sequences of
instructions that are free to use arbitrary YCORE instructions.

In contrast, Log("...") represents a sequence of instructions
from a library function, whose only effects are via un-
checked reads and writes.

The first triple states that the call to CheckRequest modifies
the heap and flag, and decides if cgiCmd is a validCmd when it
can be shown to be an array of protected cchars. The second
triple states that Log can have arbitrary effects on the heap H ,
since it contains library calls. However, it has no effects on
the heaplets corresponding to cchar and dchar. The third triple
says that ExecuteRequest demands a pre-condition to ensure
that both its arguments are valid.

Our semantics (via Lemma 1) ensures that any sequence
s of well-scoped library commands (e.g., the call to Log)
satisfies the trivial Hoare triple {True}s{True} and modifies
no type maps X aside from H . In such a case, according to
the frame rule, a formula Φ that only references types X and
local variables x inaccessible to the library s is preserved
across calls to s. Most importantly, we can come to the
conclusion that Φ is preserved without having to analyze or
modify the memory access patterns of s. Therein lies the
power of YARRA.

To illustrate this power, consider executing our example
in a context where validDir(dchar, cgiDir) initially holds true.
We can guard the call to ExecuteRequest with a test to make
sure that flag is non-zero, and verify that the sequence of
commands are valid. In particular, using the frame rule,
we preserve the predicate validDir(dchar, cgiDir) across the
first triple, since it only modifies flag and the heap, whereas
the free variables of the predicate include only the map
for dchar (cgiDir is a constant). Likewise, we preserve both
validDir(dchar, cgiDir) and the post-condition of the first
triple above across the call to Log, without examining the
code of Log, even though it has arbitrary effects on the heap.

IV. IMPLEMENTATION

The YARRA compiler is implemented as a plug-in to the
CIL compiler infrastructure [22]. It implements YARRA’s
protection mechanisms using two sets of techniques. YARRA
source protections rewrite C source code under compiler
control to ensure that the program does not incorrectly
access critical data types. YARRA library protections use
a backing store to ensure that libraries, whose source we
cannot rewrite, will be unable to corrupt critical data. These
two techniques allow us to run YARRA in two modes. In
whole program protection mode, we use source protections
on the entire application. In targeted protection mode, we
use source protections on the core routines and treat the
rest of the application as a library, incurring a boundary
crossing cost to protect the backing store, but leaving the
library untouched. The remainder of this section describes
source and library protections in detail.



A. YARRA source protections

YARRA source protections are applied to modules com-
piled with the YARRA compiler. At runtime, each memory
location is assigned a YARRA type identifier (a ytype) corre-
sponding to the type of data it holds. The bless and unbless in-
structions change the ytype associated with a set of locations.
Read and write instructions are instrumented with checks to
ensure that the static types of the pointers involved match
the ytype associated with the memory locations accessed.

The runtime system maintains the type information and
implements the checks. The key data structure is a map that
associates each memory address with a critical object, if it
belongs to one. The runtime system exposes the following
functions that manipulate the map.
Bless: void bless<ytype t>(void ∗p). The bless function updates
the map to reflect that addresses [p, p + sizeof(t)) are part of
a critical object of type t.
Typecase: int isIn<ytype t>(void ∗p). Typecase is implemented
as a boolean function, which returns a non-zero integer if p

has been blessed with type t.
Unbless: void unbless<ytype t>(void ∗p). The unbless function
undoes the effects of bless. First, it calls isIn(t, p) to ensure that
p has been previously blessed. Second, it clears the addresses
[p, p + sizeof(t)) in the map of association with t.
Vacant: int vacant<ytype t>(void ∗p). The vacant function re-
turns a non-zero integer if [p, p + sizeof(t)) has ytype Un.
The YARRA compiler does the following:

• Builds run-time type representations for each critical
type. Each representation includes the ytype, its size, and
offsets of fields.

• Prefaces each critical read and write of pointer p with a
call to isIn(typeOf(p), p). Execution aborts if the call fails.

• Prefaces each untyped write with a call to vacant and
aborts if it returns 0.

B. YARRA library protections

YARRA library protections rely on (1) maintaining a
backing store that stores copies of critical data, and (2)
protecting that backing store from library access.
Maintaining the Backing Store. The backing store is real-
ized by adding a field to the map described in Section IV-A.
Critical writes update this field as well as the value at their
target address. The runtime functions are similar to those in
Section IV-A, with the following changes.

• Typecase. The implementation of isIn is augmented to
compare the value of shadow with the value at address

in the heap. If the address has been blessed and the
comparison detects a difference, indicating a potential
corruption, isIn aborts the program. Notice that since
the implementation of critical reads and writes use isIn,
they only succeed when the shadow copy is in synch
with the ordinary copy.

Program YARRA Protections Orig. LOC / Bless /
Mod. LOC Unbless

sshd Password structure and
validation bit. 60148 / 497 23

ftpd Path/command buffers. 17993 / 262 3
ghttpd Pointer to command

buffer. 514 / 69 3
telnetd Login command string. 3962 / 63 3

Figure 8. YARRA-protected Applications

• Bless. bless is augmented to copy values of newly
blessed addresses to the backing store.

As mentioned earlier, critically-typed writes are also instru-
mented at runtime with a call to a new runtime function,
yShadowWrite(void ∗p, size t size), which copies the values in the
heap starting at p into the backing store.
Protecting the Backing Store. We use hardware page protec-
tions to protect the integrity of the backing store. The back-
ing store uses a special critical memory manager (CMM),
implemented using the BGET memory manager [32], for
memory allocations. The memory pool given to the CMM is
tracked, and the YARRA runtime system exposes yUnlock(void)
and yLock(void) functions for setting and unsetting write
permissions on those pages respectively. Boundary crossings
from protected to unprotected functions are instrumented
with calls to yLock(), and each function in the runtime API
calls yUnlock if the backing store has been locked, effectively
unlocking on demand.

V. EVALUATION

In this section, we evaluate our prototype implementation
of YARRA. The important take-away is that despite our naive
implementation, YARRA’s performance is already entirely
adequate to protect small sets of high-value data structures,
and that in doing so, YARRA can defend against important
vulnerabilities with negligible impact on end-to-end appli-
cation performance. Alternative approaches based on array-
bounds checking cannot (soundly) implement such targeted,
negligible-overhead performance protections.

A. Hardening server applications with YARRA

Chen et. al identify non-control data attacks on real-world
applications, including FTP, SSH, Telnet and HTTP servers.
These applications share a common characteristic: they each
have a well-defined module that handles a small amount
of security-sensitive data i.e., critical data structures. The
applications are well-suited to YARRA protections precisely
because they share this characteristic.

We show how these applications can be hardened with
minimal effort, often with only a new critical type, a few
calls to bless and unbless, and minor changes to statements
using critical variables. We chose the data-structures to
protect in each application based on the attacks described
in Chen et al.’s paper. Figure 8 shows the server appli-
cations we harden, the nature of critical data protected,
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Figure 9. Runtime overhead for hardening data vulnerabilities using
YARRA’s targeted protection mode, measured from the client (“End to
End”) and server perspectives. There was no measurable overhead from
the client’s perspective. A value of 1x indicates no measurable overhead.

and the amount of code changed. As the table indicates,
it was not difficult to introduce YARRA protections in these
applications. Few locations required blessing and unbless-
ing, and the vast majority of modified lines were changed
by automated search and replace of variable names. Each
application required less than a day’s effort to protect.

We measure end-to-end performance to gauge the impact
of applying YARRA protections. For each server, we de-
fine a client/server interaction wherein the client connects,
performs a small task, and disconnects. By design, each
interaction exercises vulnerable code in the server. We
compare the run times of a client connecting to vulnerable
(unmodified) and hardened servers, normalizing the results
against the run time connecting to the vulnerable server.
Figure 9 shows our results (“End to End”).2

We found no measurable overhead between connecting
to hardened and vulnerable servers, irrespective of the total
lines of code in the program or number of memory accesses
throughout the code. YARRA was extremely efficient in
protecting the security-critical modules identified by Chen
et al. as vulnerable to non-control data attacks.

In order to investigate further, we instrumented each
server to isolate and collect run-time data from within the
protected module, allowing us to measure function slow-
down for hardened server functions. Our findings are shown
in Figure 9 (“Server”), reflecting a modest performance
impact (below 1.6x) on the hardened module.

B. Stress-testing the performance of YARRA

We employ a second, atypical use case to evaluate the
performance of the YARRA run time under heavy load,
wherein we use YARRA to protect module data structures so
that clients may not corrupt it. For this study, we experiment
with the BGET memory allocator [32], using YARRA to
protect BGET’s metadata from clients that use the allocator
in a way reminiscent of the idealized allocator example
presented in Section II-B. The BGET clients we measure

2Average of five timed executions on a virtual machine running Ubuntu
9.10 on a 2.13Ghz Intel Core 2 Duo; 722Mb RAM.
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Figure 10. CPU overhead for securing allocator metadata using YARRA’s
targeted and whole program protection modes. A value of 1x indicates no
measurable overhead.

are three SPECINT2000 programs also used in the WIT
paper [2]. Unlike the server applications of the previous case
study, these clients frequently call routines (allocation and
deallocation) which contain bless and unbless operations,
exercising our implementation vigorously.

Figure 10 illustrates our results,3 comparing both protec-
tion modes discussed in Section IV. We found that targeted
protection is much more efficient with these applications,
indicating that the cost of boundary crossings from protected
code to library code is less than instrumenting every read
and write in the application. Even with targeted protection,
however, we incur a 2x overhead on the SPEC benchmarks.

There are two bottlenecks in our current implementation,
namely read/write instrumentations and boundary crossings.
Because our implementation is not as highly optimized as
other, similar bounds-checking implementations (e.g. [21],
[27]), we anticipate that this overhead can be lowered
significantly. Further, we can use cheaper alternatives to page
protection for protecting the address map data-structure. For
example, heap randomization techniques can be used to hide
data structure copies as opposed to paying the cost of turning
on hard protections at boundary crossings [4]. Alternatively,
the address map structure may be hidden in a separate
process, using a technique similar to the one proposed by
Berger et al. [3]. These techniques would make boundary
crossings take constant time (instead of being linear with
the size of the map), albeit at the cost of look-up speed.

Finally, this experiment marks YARRA as a viable modular
protection. The changes to BGET were minimal, requiring
only 16 calls to bless/unbless and modifying 43 out of 241
lines in total. The SPEC applications did not change at all.

VI. RELATED WORK

Preventing non-control data attacks. Kong et al. [14]
propose ensuring data integrity as a special case of taint
checking. They separate data and instructions into tainted
and taintless, and ensure that each instruction operates on

3Average of five timed executions on a machine running CentOS 5.4 on
four dual-core 2.8 GHz AMD Opteron 8220s; 8Gb RAM.



the appropriately type of data. They implement their solution
with hardware support. Data-flow integrity (DFI) [7] com-
putes data dependencies between instructions using static
analysis and ensures that the flow of data at runtime obeys
these dependencies. Data Space Randomization (DSR) [5]
XORs the contents of memory with a random key, making
it difficult for an attacker to correctly subvert the contents.
Both DFI and DSR differ from Yarra in that they apply
protections to all data (and not just critical data), do not
provide language support for partial protection, and do not
formalize the semantics of their solutions. SIDAN [10]
detects non-control data attacks using techniques from the
intrusion detection literature. However, it does not provide
any formal guarantees about the protection.
Array bounds checking. Early array bounds-checking tech-
niques (e.g., Jones and Lin [13]) had substantial performance
overheads, and more recent work (e.g., [21] as a recent
example) attempts to reduce that overhead. Approaches
to memory safety through array bounds checking fail to
provide complete safety unless every memory reference is
checked, including references from modules that have not
been compiled with checking enabled. YARRA differs from
this prior work in its emphasis on protecting the contents of
arrays from all references made to other objects, including
references made in arbitrary external libraries.

As mentioned, YARRA’s explicit declaration of types has
similarities to ideas in WIT [2]. Unlike WIT, YARRA allows
the user to specify object equivalence classes explicitly
and precisely, and guarantees that all program references,
including those performed in external components, do not
violate the integrity of such objects.

Dhurjati et al. [11] show that using a pool-allocation
transformation, they are able to eliminate bounds checks al-
together and ensure semantic correctness of array references
even in the presence of incorrect frees. However, like other
array bounds checking research, they assume that all code
in an application has been transformed to ensure safety.
Separating and isolating memory. Software fault isola-
tion [31] attempts to isolate the potential negative effects of
external components by preventing memory operations and
other unwanted interactions, such as system calls, that might
be harmful. Castro et al. describe BGI (Byte-Granularity
Isolation) [8], which provides software enforced protection
domains between kernel extensions. Like YARRA, they pro-
vide an API that allows users to explicitly identify what
extensions can access what memory. Unlike YARRA, BGI
assumes that all untrusted extensions are compiled with BGI
and will fail in the presence of untrusted extensions. In
addition, unlike YARRA, BGI has no formal semantics.

Samurai [24] also takes the approach of explicitly protect-
ing part of the entire memory state. Like Samurai, YARRA
also focuses on protecting critical data from memory cor-
ruption errors. Unlike Samurai, YARRA provides a precise
definition of what critical memory means, incorporates those

semantics in language features, and demonstrates that such
features are useful to ensure correctness and security.
Formal reasoning. The most closely related theories em-
anate from a line of research started in the 70s with the
Euclid programming language [17]. Euclid was built in
order to facilitate verification and one of the techniques
for doing so involved logically, as opposed to physically,
splitting the heap into a set of different heaplets called
collections. These collections resemble the typed heaplets
in this paper except that there was no means for moving
an object from one heap to another as we do with bless
and unbless operations. In the mid-nineties, Utting [30] re-
examined Euclid’s model and added a transfer coercion that,
logically speaking, moved objects between heaplets, though
physically, no action was taken. Recently, similar ideas have
been rediscovered by Lahiri et al. [16]. They modernized and
extended Euclid’s Hoare Logic and illustrated the interaction
between collections, now called linear maps, and the frame
rule. The key difference between YARRA and this previous
work is that YARRA’s separate heaplets are designed to be
used in the context of an unsafe language with unverified
libraries. Consequently, the bless and unbless operations
(i.e., transfers) have operational significance: they put up
and tear down physical protections.

VII. DISCUSSION

This paper presents YARRA, a lightweight extension to C
that allows programmers to protect the integrity of critical
data structures in their programs, even in the presence of un-
trusted third-party libraries. We formalize the key semantic
properties of YARRA by developing a sound program logic
for it. The logic includes a novel type-based frame rule that
gives programmers access to powerful modular reasoning
techniques. We show YARRA is effective in practice by
protecting important server applications, tens of thousands
of lines long, from known vulnerabilities—in each case, we
modify at most a few hundred lines of code. Moreover,
the end-to-end performance overhead is negligible in the
security-centric examples we studied.

We conclude this paper by discussing how YARRA can
complement existing protection mechanisms for C programs.
One effective protection against control-based attacks is to
ensure control-flow integrity (CFI) [1]. Combining CFI with
YARRA would give stronger guarantees against both control-
based and non-control data attacks than CFI alone. Further,
it would require less overhead than combining CFI with
complete array bounds checking. While many approaches
to array bounds checking have been proposed, none are
in widespread use. We believe that this is because of the
performance overheads imposed and issues related to whole-
program compilation and third-party code — issues where
YARRA’s alternative design allows it to excel.

We also consider the value of using YARRA in cases
where other techniques such as CFI and array bounds



checking are impractical. Specifically, modern systems, such
as Microsoft Windows, rely on a collection of techniques to
defend against attacks, implemented in the compiler [19],
heap [20], and the hardware [18]. While these mechanisms
prevent a number of common attack vectors, they do not
prevent arbitrary buffer overruns from corrupting either
control data (such as vtable pointers) or non-control data
(such as passwords). As a result, many publicly available
documents demonstrate how to corrupt structures such as the
Windows heap metadata to mount a successful attack [25].

In this context, YARRA provides a novel and systematic
way to harden applications from attacks. Consider the fol-
lowing scenario: an attacker exploits a buffer overrun in a
heap object to overwrite a function pointer in another object
or in the heap metadata. Without YARRA, the standard miti-
gation of this exploit would be to patch the buffer overflow.
However, this leaves the program vulnerable to other attacks
that overwrite the data, through a different buffer overflow,
for example. With YARRA, the mitigation would be to make
the function pointer critical, thus protecting the system not
just from the one exploit, but from every exploit that would
attempt to overwrite that function pointer. Note that one does
not need to know what vulnerabilities are present or where
they are present, in order to deploy YARRA protection.

YARRA would also be effective when used in conjunction
with hardware protection such as Data Execution Prevention
(DEP), which prevents attackers from injecting code into the
heap and jumping to it. Attackers can bypass DEP using
return-to-libc attacks and return-oriented programming [6].
However, to do so they still need to overwrite a vulnerable
function pointer somewhere in the heap. In such cases,
YARRA can be deployed to selectively protect vulnerable
function pointers. In future work, we will explore the scal-
ability of employing YARRA in such scenarios.
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