Sonora: A Platform for Continuous Mobile-Cloud Computing

*Fan Yang  *Zhengping Qian  *Xiuwei Chen  fIvan Beschastnikh ~ *Li Zhuang
*Lidong Zhou  *Jacky Shen
*Microsoft Research Asia  TUniversity of Washington
Abstract server, as well as deliver context-sensitive information

This paper presents Sonora, a platform for mobile-
cloud computing. Sonora is designed to support the de-
velopment and execution of continuous mobile-cloud
services. To this end, Sonora provides developers with
stream-based programming interfaces that coherently
integrate a broad range of existing techniques from mo-
bile, database, and distributed systems. These range
from support for disconnected operation to relational
and event-driven models. Sonora’s execution engine is
a fault-tolerant distributed runtime that supports user-
facing continuous sensing and processing services in
the cloud. Key features of this engine are its dynamic
load balancing mechanisms, and a novel failure re-
covery protocol that performs checkpoint-based partial
rollback recovery with selective re-execution. To illus-
trate the relevance and power of the stream abstraction
in describing complex mobile-cloud services we eval-
uate Sonora’s design in the context of two services.
We also validate Sonora’s design, demonstrating that
Sonora is efficient, scalable, and provides responsive
fault tolerance.

1. Introduction

The rapid penetration of smart phones is enabling an
increasingly popular class of services that continu-
ously process context-sensitive information sensed or
collected from mobile phones [18, 41]. These ser-
vices may also correlate and aggregate such informa-
tion across devices and with other web content on the
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back to mobile devices. Such services tend to lever-
age cloud platforms to scalably and reliably store and
process large amounts of user generated content. As a
result, they promote a close integration between mobile
and cloud platforms. This integration creates new tech-
nical challenges for effectively supporting continuous
mobile-cloud data processing.

Cloud challenges. Continuous mobile-cloud data
processing poses unique cloud challenges that are not
sufficiently addressed by existing systems. For ex-
ample, because data arrives continuously and unpre-
dictably, run-time monitoring and adaptation to the dy-
namics of incoming data become crucial. Such adap-
tation is not a concern for existing cloud processing
engines, which are optimized for batch data process-
ing [16, 22]. Furthermore, because data from contin-
uously operating services accumulates over time, the
failure recovery strategy of re-computation no longer
applies — restarting an entire computation is unaccept-
able. The alternative offered by distributed real-time
stream processing systems [3, 8, 10] is also not al-
ways desirable. These systems are intended for services
with stringent real-time requirements. However, many
continuous mobile-cloud data processing services are
willing to trade-off latency in exceptional cases. For
example, better scalability may be achieved with less
replication, at the expense of higher latency during fail-
ure recovery.

Mobile challenges. Mobile devices impose chal-
lenges of their own. Continuous mobile data operations
must be energy efficient. Individual techniques, like
those that provide power-saving adaptation and opti-
mize mobile-cloud communication are well-known [26,
36]. However, applying these techniques to a mobile-
cloud service in a coherent way requires extensive
knowledge across disjoint areas like mobile systems



and cloud computing. This creates a significant chal-
lenge for mobile-cloud service developers.

To address the above mobile-cloud challenges we
present the design, implementation, and evaluation of
Sonora, a platform for Mobile-cloud computing in
STreams. Sonora provides developers with stream-
based interfaces and an efficient, scalable, and fault-
tolerant mobile-cloud data processing engine.

Sonora promotes the stream abstraction for the fol-
lowing reasons. First, streams successfully unify many
data operations in mobile and cloud environments.
As detailed in Section 2, continuous data operations
can be conveniently expressed using Sonora’s stream-
based interfaces, and recurring updates appended to
a stream can serve as a series of events triggering
further computation. Second, with stream abstraction
Sonora relieves programmers from writing network-
ing code, which greatly reduces development effort.
Finally, streams allow Sonora to easily incorporate a
wide range of well-known optimizations. For example,
streams integrate techniques to conserve mobile en-
ergy, such as data transmission batching, compression,
and smart scheduling. In the cloud, the abstraction sup-
ports scalable stream operators and provides load bal-
ancing with stream-based partitioning and scheduling.
Also, techniques in database like multi-query optimiza-
tion [38, 49] can help improve computing efficiency
both on-mobile and in-cloud.

Sonora’s cloud execution engine maps a logical
data-flow plan into a physical plan, which involves
physical resources. The engine is designed particu-
larly to cope with continuously appended data streams
and continuous processing. Sonora’s cloud processing
scales to large amounts of incoming data, and remains
responsive to produce results in a timely manner as
more data arrive. Sonora monitors execution and shifts
load in response to spatial and temporal load imbal-
ances that occur in continuous compute workloads.
Sonora provides the high availability necessary to sur-
vive machine failures with flexible latency overhead
using a novel checkpoint-based recovery mechanism
that combines partial rollback recovery and selective
re-computation.

We implemented Sonora and present evaluation re-
sults for two services built using Sonora. Our first ser-
vice is a participatory sensing service called PEIR (Per-
sonal Environmental Impact Report) [34], and our sec-
ond service provides access to popular keywords mined

from geo-tagged tweets [41] within a radius of a loca-
tion. These two services indicate that Sonora can ac-
commodate services with different responsiveness re-
quirements. The services also demonstrate the power of
the stream abstraction in describing complex mobile-
cloud services that may involve large number of mobile
devices that impose a correspondingly massive data
processing cloud workload. Overall, our evaluation il-
lustrates the efficacy of the design decisions that shaped
Sonora.

Contributions. To summarize, our work makes the
following contributions. First, we make a case for the
utility of the stream abstraction in developing continu-
ous mobile-cloud services. We do so by implementing
and evaluating two practical service. Sonora extends
the traditional usage of stream in database systems to
further support various optimizations in mobile-cloud
communications. To the best of our knowledge Sonora
is the first to consider mobile-cloud computing as con-
tinuous data processing and apply stream abstraction
in this setting. Second, we present the design and eval-
uation of a scalable and fault-tolerant distributed sys-
tem to support user-facing continuous sensing and pro-
cessing services in the cloud. Third, we describe and
evaluate a new failure recovery protocol that uses a
checkpoint-based partial rollback recovery mechanism
with selective re-execution. A key difference in the pro-
posed scheme is, to support better scalability in the
normal case Sonora requires less replication than tradi-
tional fault tolerance mechanisms in distributed stream
processing engines such as Borealis and FLuX [5, 39],
at the expense of higher latency in exceptional cases,
i.e., during failure recovery.

The rest of the paper is organized as follows. Sec-
tion 2 overviews Sonora’s stream interfaces. The Sonora
system architecture is described in Section 3, followed
by an in-depth description of the Sonora cloud run-
time in Section 4. We present an evaluation of Sonora
in Section 5, survey related work in Section 6, and con-
clude with Section 7.

2. Programming with Streams

Sonora embraces streams as the unifying programming
abstraction for continuous mobile-cloud services. This
abstraction captures two perspectives. The first view is
relational — Sonora organizes the continuously gener-
ated data in the form of a stream and provides SQL-like
interfaces to operate over the stream. The second view



is event-driven [42] — computing is driven with recur-
ring stream updates and data operations that subscribe
to stream updates. Sonora incorporates traditional in-
terfaces from stream databases, including stream scop-
ing (windowing) and stream composition [3, 8]. Stream
partitioning is also supported for parallel in-cloud com-
putation.

To relieve programmers from writing network codes
Sonora introduces the notion of sync stream. In addi-
tion to the support of traditional operations in stream
database systems, sync streams gracefully support dis-
connected operation [23] and provide common opti-
mizations for mobile-cloud communications, such as
batching, compression, and filtering. Moreover, using
sync streams programmers can easily move computa-
tion modules between the mobile and cloud platforms.

In summary, one contribution of Sonora is that it
adopts the stream abstraction to coherently infegrate a
broad range of techniques from mobile, database, and
distributed systems areas. Details of Sonora’s stream
interface are described in the following subsections.

2.1 Basic Stream Operations

Stream construction, subscription, and triggers. A
stream is a continuously expanding data sequence with
elements ordered according to their timestamps. Line
1 in Figure 1 defines a stream of data type Location.
A callback function TripSegmentation is subscribed
to this stream (line 2) and is triggered when a new
stream element is appended. A stream can be explicitly
appended to (line 3), in this case by reading from the
GPS sensor.

A callback can subscribe to more than one stream.
With Zip(X, Y, c), the callback c is triggered when both
X and Y have a new element (matched as a pair); while
with Combine the callback executes when either stream
has a new element.

Active streams. A mobile sensing application is usu-
ally driven by sensor inputs, expressed in Sonora as ac-
tive streams. An active stream is associated with a data
source and has an update interval, as shown in lines 5-7
in Figure 1.

Relational stream operators. Sonora has built-in re-
lational support, including filtering, projection, union,
grouping, join, and aggregations. A relational operator
treats a stream as a relational table containing all ele-
ments appended to the stream. Lines 11-13 of Figure 1
define stream Y by filtering elements in X and then ap-

var trace = new Stream<Location>;
trace.Subscribe(TripSegmentation);
trace.Append(GPS.Query());

var gps = new ActiveStream<Location>

(GPS.Query, TimeSpan.FromSeconds(30));
/l...define processing logic based on the GPS stream
gps.Activate();
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Stream<Location> X;

var Y = X.Where(1 =>
1.Precision < MAX_ERROR_ALLOWED)
.Select(MatchLocationOnMap);
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Stream<double> X;
var Y = X.HoppingWindow(TimeSpan.FromSeconds(5))
Average();

—
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18 Stream<double> X;// temperatures

19 var peakTemperature = State<double>

20  .Aggregate(X, (oldPeak, x) => (x > oldPeak ? x :
oldPeak));

21

22 Stream<Waypoint> X;

23 X.Partitionable<int>(pt =>

pt.USER_ID).Subscribe(Func);

24

25 SyncStream<double> X;

26 SyncSinkStream<double> Y = X.GetSink();

27 Y.Subscribe(...);

28 X.Append(...);

29

30 SyncStream<double> X;

31 X.Batch(MAX_ELEMENT_COUNT, TIMEOUT).Zip();

Figure 1. Basic stream operations examples.

plying the function

MatchLocationOnMap to each remaining element.
Windowing. Sonora allows explicit control of when
subscribers are triggered and which subset of elements
an operator may observe. Time or count based window-
ing is a common way to express this. Lines 15-16 in
Figure 1 define stream Y as a stream of averages for
every 5 second window of values in stream X.

Stateful streams. Sometimes only the latest value in a
time series matters. Stateful streams are used to define
a changing state. Lines 18-20 in Figure 1 define a
stateful stream to track the maximum (temperature)
value observed in stream X.

Stream in-cloud partitioning. Developers may anno-
tate streams to direct execution and optimization. For
example, stream X on lines 22-23 of Figure 1 is anno-
tated as Partitionable with a key selector USER_ID.
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// Built—in timer stream: ActiveStream<bool>

2 var signals =new
TimerStream(TimeSpan.FromSeconds(30));

3 // Lower sampling rate when in low battery mode

4 intn=0;

5 signals=signals

6 Select(_=>{

7 n++;

8 return (LOW_BATTERY ? (n % N) == 0 : true);

9 b

10 Where(b => b);

11  // Filter out samples taken indoors

12 signals =signals.Where(!Context.IsIndoor);
13 var gps = signals.Select(_ => GPS.Query());

Figure 2. Adaptive sampling rate control.

This allows parallel in-cloud execution of the callback
Func.

Stream composition. Streams can be composed, either
with a series of subscribers or relational operators. The
original code in Figure 2 consisted of lines 2 and 13,
which create a gps stream of GPS readings, and a
signals stream to control the sampling frequency of
the gps stream. To lower the sampling rate by a factor
of N when the battery is low, we added lines 4-10. Line
12 further removes GPS readings when the mobile is
detected to be indoors.

2.2 Sync Streams

In addition to the relational and windowing opera-
tors that are available in traditional stream databases,
Sonora uses sync streams for communication between
the mobile and the cloud to relieve programmers from
writing networking code. A sync stream is maintained
in the cloud and on mobile, and is a reliable uni-
directional channel between a source stream and the
sink stream. A synchronization policy directs how and
when items are propagated from the source to the sink.
For two-way communication programmers can use two
sync streams.

Lines 25-28 in Figure 1 illustrate basic usage of a
source stream X and a corresponding sink stream Y.
Updates to X are propagated to Y and trigger subscribed
callbacks on the sink stream. Synchronization policies
offer great flexibility, which we now illustrate with
several built-in mobile communication optimizations.
Disconnected operation. Mobile devices often suffer
from disconnections [23]. Sonora source streams buffer
data during disconnections and resume normal opera-
tion upon reconnection. Connectivity interruptions are
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Figure 3. A data-flow view of Sonora.

handled transparently if this is desirable; an application
may also decide to be notified when disconnections oc-
cur.
Batching. For energy efficiency, mobile applications
often buffer data (and set the radio into a sleep mode)
until enough data has accumulated or until connectivity
improves. Sonora supports batching natively and uses it
to allow users to trade off power for data freshness.
Compression. Sync streams provide transparent data
compression with algorithms like gzip and delta encod-
ing. Programmers may also implement custom com-
pression algorithms. Lines 30-31 in Figure 1 define a
sync stream that uses batching and compression.
Filtering. To conserve energy, Sonora evaluates each
new element against a programmer-defined filter op-
erator and appends only those elements that pass the
check. For example, PEIR uses filters to discard in-
significant changes in location by comparing consec-
utive GPS readings.

With sync stream, programmers can also easily place
the same module on the cloud or on the mobile. For
more details see Section 5.4.

3. Sonora System Architecture
3.1 A Data-Flow View of Sonora

Figure 3 overviews Sonora from a data-flow point
of view. On the mobile, subscribers of active sensor
streams process new sensor readings to extract high-
level context and semantics (step 1). For example, mo-
bile user’s activity (e.g., walking or driving) can be
inferred from sensor streams and be used to control



sampling rates of sensor streams for power efficiency:
a mobile can reduce GPS sampling rate when station-
ary or turn off GPS when indoors. Sync streams are
then used to stream data from mobiles to the cloud
for aggregation and further processing (step 2). In the
cloud, streaming data from a large number of mobiles
are stored reliably (step 3) and processed in a scalable,
fault-tolerant, and efficient manner (step 4). The results
are then delivered back to individual mobile devices
via sync streams (step 5). These result streams can be
considered as special “sensor” streams on the mobile
devices and can trigger further processing or their val-
ues can be displayed to the users.

3.2 Sonora System Architecture

Figure 4 presents the Sonora system architecture. Sonora
includes a programming development kit and execution
environments for the mobile and cloud platforms. The
programming development kit contains (1) a library
with the stream interface and stream support utilities;
and (2) a compiler which compiles the original user
code into two parts, one for execution on the mobile
device and one for execution in the cloud.

The compiler tool takes a user program that uses
the Sonora stream interface and performs the following
steps.

Data flow graph. First, the program is compiled into a
data flow graph. Each vertex in this graph is a stream
operator. A stream operator receives data from input
streams and outputs the results of its computation into
output streams.

Logical plan. The data flow graph is compiled into a
logical plan, which combines some consecutive opera-
tors together into executable vertices. Executable ver-
tices are connected with streams, which represent data
flow in the system during execution. Each execution
vertex is a stand-alone executable unit that can be as-
signed for execution on a machine. The logical plan
also defines the execution boundary between the mo-
bile and cloud platforms. Developers define this bound-
ary explicitly.

Window optimizations. When generating a logical
plan, the compiler applies two window-based opera-
tion optimizations. First, instead of performing an op-
eration on individual windows that contain a subset of
data elements in the stream, Sonora can sometimes cal-
culate the result of the next window based on the prior
one. This is possible when the windows overlap and
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Figure 4. Sonora system architecture.

incremental computation of an operation is possible.
We have implemented incremental window operations
for common aggregations such as mean, variance, and
Discrete Fast Fourier Transformation (DFFT). Second,
when multiple operators exist, redundant computation
may occur. As a further optimization we eliminate such
redundant common sub-computation [49].

Physical plan in the cloud. The logical plan subgraph
assigned to the cloud is shipped to the cloud runtime.
This runtime schedules and assigns computation re-
sources, resulting in a physical plan. This plan con-
tains information like the number of executable ver-
tex instances and machine assignments for each ver-
tex. Each logical vertex is therefore mapped to a set of
physical vertices. As the incoming stream rate and ma-
chine availability change the physical plan is dynami-
cally adapted.

Sonora runtime. Program execution on the mobile de-
vice is straightforward. The device runs the executable
as a client program. Execution in the cloud is more in-
volved. The executable shipped to the cloud includes a
serialized subgraph of the logical plan and a set of bi-
nary libraries (e.g. DLLs) of user code. The cloud run-
time starts a job manager (Figure 3) with the subgraph
and binary libraries as input. The job manager is re-
sponsible for translating the logical plan into a physical
plan, and for assigning physical vertices to machines.
The job manager also starts a dispatcher service where
all stream data from mobile devices is first received and
then distributed to a set of corresponding workers.

A job manager further monitors the execution to
adjust the physical vertex assignment in response to
changes in the system, including load changes and fail-
ure. The core of the cloud runtime is a distributed
stream query execution engine that is scalable, adap-
tive, and fault tolerant. We elaborate on its design in
the next section.



4. Sonora in the Cloud

Popular services that continuously gather mobile sen-
sor readings amass billions of data points from mil-
lions of devices. The cloud is well suited to operating
at such scales. Similar to existing batch-oriented data
storage and processing systems [16, 19], Sonora stores
data reliably and scales to include more machines as
the number of users and the rate of incoming data in-
crease. Unlike batch processing systems, Sonora is de-
signed to cope with the continuous nature of data ar-
rival and processing. Sonora streams are constantly ap-
pended to, and Sonora computation is continuous, not
run-once. Because computation is long-lived and in-
coming data arrives at variable rates, runtime monitor-
ing, dynamic adaptation, and load re-balancing are cru-
cial in normal execution. In contrast, a MapReduce-like
batch processing engine mostly cares about outliers
during its execution [2, 16]. Moreover, the MapReduce
style of handling failures via re-execution is problem-
atic for continuous computation — re-running computa-
tion from the beginning is not viable.

The stream abstraction enables Sonora to leverage
work on stream processing engines [3, 8, 10]. How-
ever, unlike real-time stream processing, Sonora cov-
ers services that do not necessarily have stringent la-
tency requirements. This allows Sonora to trade off la-
tency to gain fault tolerance with less overhead, and
better throughput and scalability. Sonora also supports
continuous incremental computation over long time-
windows (e.g., every day). The absence of real-time
constraints allows Sonora to materialize large streams
in distributed storage to optimize incremental compu-
tation.

In the rest of this section we discuss how Sonora pro-
vides different tradeoffs between responsiveness, relia-
bility, and scalability, and how this differentiates it from
existing systems.

4.1 Storing and Maintaining Streams

A stream’s implementation depends on its use. Sonora
can maintain a single stream entry, the last /V entries,
or all entries in the last M seconds according to the
specific interface used to construct the stream. For ex-
ample, entries in a sliding window might be laid out as
aring buffer. When an entry is accessed by a subscriber
based on a key other than the timestamp, it is more ben-
eficial to store the entries in a data structure such as a
hash table. This in-memory processing design is opti-

mized for low latency and is shared across mobile and
cloud platforms.

The Sonora cloud runtime provides reliable and scal-
able storage service to store large amounts of stream
data for both incoming data streams or output streams
as results of a computation, as well as checkpoints.
Sonora’s storage service is based on PacificA, a scal-
able storage system [27]. PacificA can partition stream
entries across a set of machines and dynamically scale
up to involve more machines by re-partitioning the
stream as it grows. Each machine storing a partition
maintains (1) a “base” portion of the partition on local
persistent storage, (2) a series of delta portions on lo-
cal persistent storage representing updates to the base
portion, and (3) an in-memory portion containing the
most recent updates to the partition. A centralized par-
tition manager maintains the partition map. For data re-
liability, each partition is replicated using a replication
protocol described in [27], with the partition manager
maintaining the replica set for each partition. The par-
tition manager itself is replicated using Paxos [25].

4.2 Fault Tolerance and Failure Recovery

For any physical vertex V in the physical plan DAG,
we term all vertices that generate data as input to V' as
input vertices of V', and we term all vertices that receive
output from V' as output vertices of V. V’s downstream
vertices are all vertices whose input is derived from Vs
output, which includes Vs output vertices, their output
vertices, and so on, as a transitive closure.

Computation in Sonora is long-running and must
survive faults. Failure recovery via re-computation
from prior stages is not appropriate for two reasons: (1)
restarting a long-running execution from the beginning
imposes an unacceptable latency, and (2) streaming
data introduces computation non-determinism, com-
plicating replay. Consider a simple reduce-like phase,
where a computation vertex accepts incoming data
from multiple vertices in the previous stage. The in-
terleaving of data from source vertices introduces non-
determinism. A typical map/reduce computation avoids
this problem because a reduce is performed on all data
across all source vertices. It is possible that certain
computation is insensitive to the order of incoming
data. However, even in this case, the state of a ver-
tex may depend on how much source vertex data was
received and processed.



Sonora checkpoints computation periodically. It
adopts a combination of partial rollback recovery and
selective re-computation from previous stages to strike
a balance between run-time overhead and recovery
cost. This is different from existing map-reduce style
re-execution as well as fault tolerance mechanisms in
distributed stream database systems.

The incoming data from mobile devices are first
logged in PacificA, Sonora’s reliable data store. These
data logs are eventually garbage collected when their
corresponding end results have been reliably recorded.

Consistent global checkpointing. Sonora uses developer-

assisted checkpointing to extract and store application
state. The checkpointing process is similar to Chandy-
Lamport’s snapshot protocol [11], but is customized
for DAG-like data flow computation in Sonora.

All checkpoint data are written to PacificA, which
performs replication for data reliability. Note that check-
pointing is not on the critical path of computation: nor-
mal computation does not have to wait for checkpoint-
ing to complete before proceeding.

We do not claim any contribution to the checkpoint-
ing algorithm. The following description sketches the
protocol in a level that is sufficient for readers to un-
derstand the mechanism in the context of Sonora.

Checkpointing starts when a central controller dis-
patches checkpoint markers to the incoming source ver-
tices. Each vertex V' uses an array received for track-
ing input vertices from which the markers have not ar-
rived. V must record all messages as part of the check-
point from those input vertices until the markers ar-
rive. The state of a checkpoint on each vertex transi-
tions from INPROGRESS, to COMPLETED, and then to
STABLE. When the state is STABLE on V/, that same
checkpoint must be STABLE on all its input vertices.
When a checkpoint is STABLE on all vertices in the last
stage, itis STABLE on all vertices. We use this condition
for garbage collection purposes.

More exactly, checkpointing on vertices is per-
formed as follows:

(i) A central controller inserts checkpoint markers with
the next highest checkpoint version number c into all
input data sources to initiate a new checkpoint c.

(i) Upon receiving a marker ¢ from input vertex I,
a processing vertex V' checks whether this is the first
marker c it has received. If so, it executes step (ii.a);
otherwise, it proceeds to step (ii.b).

(ii.a) V records its local state as part of the check-
point, and inserts the marker c on its outgoing channels
to all output vertices. It initializes array received|c|[ V]
to false for every input vertex N. It further sets array
State[c] to INPROGRESS.

(ii.b) V sets received|c|[I] to true. If received]|c|[ V]

is true for every input vertex IV of V, it sets State|[v]
to COMPLETED and notifies all its output vertices of the
completion of checkpoint c on vertex V.

(iii) Upon receiving a data message m from input ver-
tex I, if State[c] = INPROGRESS and received|[c][] =
false holds, the vertex records (I,m) in the check-
point.

(iv) Upon receiving notifications from all its input ver-
tices of the completion of checkpoint ¢ on those ver-
tices, the vertex sets State|c| to STABLE.

Output recording for selective re-execution. Like
map/reduce, a vertex records its output locally. This
allows for re-execution that selectively starts from the
latest checkpoint when any of its output vertices fail.
We do not record such outputs in PacificA (as with
checkpoints) because of the latency penalty. If such
output is lost, the system can fall back to an earlier
stage for re-execution and in the worst case re-read the
reliably stored mobile input to the computation.

This is another different design decision compared
to those fault tolerance mechanisms of parallel stream
databases like FLuX, SGuard, and Borealis [5, 24, 39],
which use a higher degree of replication to reduce la-
tency during failure. In these systems, checkpoints, in-
put/output of each operator, and even the run-time op-
erators themselves are replicated across multiple ma-
chines. Due to the relaxed latency constraints, Sonora
only replicates the checkpoints and the initial mobile
input data. As a result, for the same number of ma-
chines Sonora has a higher system throughput and sim-
ilar latency during executions with no failures. How-
ever, Sonora’s failure recovery latency is longer than
that of parallel stream database systems.

Partial rollback recovery. Given that checkpoints are
globally consistent, a simple way to recover from fail-
ures is to roll back to the latest checkpoint and continue
from there. To avoid unnecessary rollbacks, Sonora’s
recovery mechanism instead uses a partial rollback
mechanism. The key observation is that in a DAG com-
putation, a fault at vertex V' affects only V’s down-
stream vertices. Therefore, only V" and V’s downstream
vertices need to roll back. After rolling back to the lat-
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Figure 5. An example of failure recovery.

est stable checkpoint, the recovery of V' can be done
with re-execution, as in map/reduce, since inputs to
V’s computation are available in the local storage of
V’s input vertices.

More precisely, let F' be the set of vertices that have
failed and Dp be the set of downstream vertices from
any vertex in F'. Then the rollback set R is the union
of ' and Dp: these vertices will be rolled back to the
latest consistent checkpoint. The re-execution set F'r
contains all input vertices of Ry that are not in Rg. To
restart vertices in R from the checkpoint, vertices in
E'r must replay inputs. If the recorded output for re-
execution is lost on a vertex v in Fp, vertex v has to
be added to the rollback set and the re-execution has
to start from an earlier stage. In the worst case, all ver-
tices are in the rollback set and the entire computation
restarts from that latest consistent checkpoint. Correct-
ness of recovery follows directly from global consis-
tency provided by the global checkpointing protocol, as
a special case of the Chandy-Lamport’s snapshot pro-
tocol.

Figure 5 shows an example of failure recovery. Each
circle represents a vertex, with directed edges indicat-
ing the direction of data flow. Vertex f is the only
failed vertex: ' = {f}. Vertices d, e, g, and h are
the downstream vertices of f: Dp = {d,e, g,h}. All
vertices in Rrp = {d, e, f, g, h} will be rolled back to
the latest consistent checkpoint. The shaded vertices in
Er = {a,b, c} will replay the outputs to those who are
rolling back.

It is worth noting that all downstream vertices in a
DAG must be rolled back, along with vertices that ac-
tually fail. This is due to non-determinism: when rolled
back, re-execution on a vertex could deviate from the
previous run due to non-determinism in the computa-
tion (e.g., the order in which it processes data from dif-
ferent input channels.) We therefore rollback all down-

stream vertices that depend on outputs from the re-
executions. If the computation is known to be determin-
istic in certain stages, we can avoid rolling back certain
vertices.

To address non-determinism, parallel stream database

systems usually serialize and replicate incoming data
from multiple input vertices for future deterministic re-
play [5]. This improves the recovery speed but imposes
a serialization and replication burden on the system in
the critical execution path of the normal case.
Garbage collection. With globally consistent check-
points, garbage collection becomes straightforward.
When a checkpoint of version ¢ becomes stable at the
end of the computation, data necessary to reproduce ¢
can be removed. This includes all logged incoming data
up to the checkpoint marker for ¢, all lower-version
checkpoints, and the output recorded for execution at
intermediate stages up to the checkpoint. In practice, to
guard against catastrophic failures it might be prudent
to maintain multiple checkpoints in case the latest one
is lost or damaged. This is especially the case when
there is ample cloud storage.
Job manager fault tolerance. A job manager is re-
sponsible for monitoring the execution of a job and
maintains the mapping from a logical plan to a physical
deployment. Because a job in Sonora is long-running, a
job manager must be made fault tolerant. A simple so-
lution is to have a job manager write its state to reliable
storage. Because its state is updated infrequently, this
is not on the critical path of job execution and the per-
formance impact is minor. A central master (which it-
self could be replicated using state machine replication)
can monitor the liveness of job managers and assign a
new machine to take over when a job manager fails.
The new job manager would then load the state from
reliable storage and assume the new role. Leases [20]
from the central master can be used to ensure that there
is only one active job manager for each job, as done
in Boxwood [29] and BigTable [12]. Sonora has yet to
include this feature in the current implementation.

4.3 Dynamic Load Adaptation

In a continuous mobile-cloud service (e.g., PEIR), data
processing is generally carried out in multiple stages.
Potentially this could be represented as one or multiple
map/reduce jobs if all data were available at the start
of the computation. However, Sonora supports applica-
tions where data arrives continuously and computation



is triggered as new data become available. Such contin-
uous computation may create two types of imbalances.
The first type is spatial imbalance — a certain portion
of the system may become overloaded. Spatial balance
is non-trivial to maintain for continuous computation
as characteristics of incoming data could change over
time. The second type of imbalance is temporal im-
balance, which may manifest as load fluctuation be-
cause of sudden surges in load. Sonora employs load
re-balancing and flow control to mitigate spatial and
temporal imbalances.

Load re-balancing. In Sonora the job manager is in
charge of dynamically mapping the logical plan into a
physical plan. The job manager monitors the load on
spare machines and those involved in the computation.
When a machine in a certain stage is overloaded, the
job manager recruits a spare machine to take over half
of the load. Similarly, if the load on a certain machine
diminishes, load re-balancing merges load across some
machines. Sonora implements a simple dynamic load
re-balancing strategy that suffices for many continuous
mobile-cloud services like PEIR.

Continuous mobile-cloud services aggregate col-
lected sensor data across users (e.g., location), we use
hash partitioning on user IDs and a dynamic hash func-
tion for adaptation. The job manager monitors CPU
utilization on each machine and makes load balancing
decisions. A machine is considered overloaded when
its CPU utilization exceeds a threshold (90% in imple-
mentation). When this occurs, the job manager splits
the hash range assigned to the overloaded machine and
re-assigns half of the range to a spare machine. Hash
ranges can also be merged when machines are under-
utilized (e.g. under 30%). Because the amount of state
kept in each processing stage is small for services like
PEIR, the overhead of such hash merging and splitting
is small. Merging and splitting can also be done with
other partitioning mechanisms with varying bookkeep-
ing overhead. This simple scheme is similar to the load
balance design in stream database systems like Eddies
and FLuX [31, 39].

Flow control. When the incoming data rate suddenly
exceeds the processing capacity Sonora uses flow con-
trol to cope with the load. The idea is simple — tem-
porarily trade off latency for throughput and scalability.
Rather than sending data along a processing pipeline,
Sonora’s flow control detects overload and redirects
data into PacificA. This data is processed once the sys-
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Figure 6. PEIR overview.

tem catches up with the load. Redirection helps Sonora
take advantage of periods of low load for catching up,
and enables batching for higher throughput. In case
the incoming data rate exceeds the throughput of the
storage system, the cloud pushes back onto the mobile
devices to adaptively reduce the sensor sampling fre-
quency (see Figure 2 and Section 2.1 for details).
Although earlier stream processing engines like
Telegraph [10] and Aurora [8] support redirecting
streams to persistent storage, more recent real-time
stream systems do not adopt such a flow control mech-
anism due to real-time constraints — the extra time in-
curred by data redirection may render the results use-
less to latency sensitive services. Instead, such systems
usually rely on load shedding to deal with overload, i.e.,
selectively dropping some of the incoming data [31].

5. Evaluation

The focus of our evaluation is on the mechanisms pre-
sented in the prior sections as well as on their over-
heads. Unless stated otherwise, we present results for
a service implemented on top of Sonora that is mod-
eled after the Personal Environment Impact Report
(PEIR) [34]. Figure 6 illustrates the data-flow within
our PEIR service. PEIR is a participatory sensing [7]
service that continuously aggregates information from
mobile devices, computes on this data, and delivers the
resulting context-sensitive information back to mobile
devices. PEIR is a good example of the kinds services
Sonora is designed to support. Next we describe PEIR
in more detail.

The PEIR [34] service estimates personalized envi-
ronmental impact and exposure using sensor data col-
lected from mobile devices. This report includes vari-
ous impact calculations, such as carbon footprint, par-
ticle matter emission, and the likelihoods of exposure
to particle matter and unhealthy fast food. Figure 6 il-
lustrates the parts of PEIR that we designed and im-
plemented with Sonora. Devices participating in PEIR
continuously collect sensor data, such as GPS and ac-



celerometer readings, and IDs of cellular towers as-
sociated with mobile devices. These data are used to
infer user context, such as whether or not the user is
outside, and their transportation mode (using a Hidden
Markov Model). This context may in turn be used to
control sampling. Inferred transportation mode, when
combined with weather, traffic, and geo-data, is used to
estimate various impacts, following the Emission Fac-
tors model (EMFAC) [1]. The location way-points from
mobiles are grouped into trips, the primary reporting
unit for the impact report. The results are further ag-
gregated based on users and locations (e.g., across sen-
sitive sites such as hospitals and schools).

5.1 Experimental Setup

Our experiments use GPS traces from the GeoLife
project [47, 48]. This dataset contains a total of more
than 20 million location points, which make up location
traces collected from 165 users over two years covering
a wide range of outdoor movement. We use randomly
generated data to simulate traffic, weather conditions,
and related geo-data.

We report results for experiments performed on an
HTC Touch Diamond 2 running Windows Mobile 6.5
with NET Compact Framework 3.5. During all experi-
ments the phone used its native WiFi interface for com-
munication. In the experiments our cloud platform is
a cluster of 40 machines, each with a dual Intel Xeon
CPU X5550 (2.67GHz), 12GB RAM, two 1.0TB SATA
disks, running the 64bit version of Windows Server
2008 and .NET framework 3.5. These machines use
a 1Gb Ethernet interconnect. For collecting measure-
ments we used the built-in Sonora logging tool. We
used the system call GetSystemPowerStatusEx2 to
query the power status of the mobile phone every sec-
ond for power measurements. The obtained power mea-
surements are typically higher than the actual value, but
they can be used for a meaningful comparison.

5.2 Sonora Cloud Runtime Performance

Scalability. Figure 7 plots the CPU usage and network
throughput for a server machine processing PEIR lo-
cation data from mobile devices. CPU usage increases
faster than throughput and the CPU is overloaded be-
fore the 1Gbps network is saturated. This indicates
that our implementation of PEIR is CPU-bounded.
We therefore measure and report Sonora scalability
in terms of location points Sonora cloud runtime can
process per second.
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Figure 8. Sonora scalability.

Figure 8 shows that the Sonora implementation of

PEIR scales linearly — peak throughput increases pro-
portionally to the number of machines. The speedup
efficiency is 0.70 when the number of machines is 40.
If each mobile user reported their location once every 5
seconds, Sonora would be able to support over 350,000
users concurrently with just 40 machines. In addition,
sync stream filters can reduce the amount of traffic from
mobile devices by filtering out insignificant changes
in location. This would allow Sonora to support even
more users.
Load balancing. We varied the incoming data rate to
evaluate the efficacy of Sonora’s online load balanc-
ing mechanism. Figure 9 shows that the Sonora cloud
runtime (1) is able to keep track of resource usage in
the cloud platform, and (2) assigns a proper number of
machines in response to a change in the data rate in a
timely manner.

Figure 10 shows the CPU load distribution across
19-node and 38-node configurations. As discussed in
Section 4, a Sonora policy constrained CPU load to
range between 30% and 90%. The Figure shows that
only 3 out of the 57 machines (5%) were outside of
this range. Log inspection revealed that the 3 machines



-
N
-
N

—— Throughput ——Machines

g2 10
<
5 10 8
g g
X 3 6 £
= L
2 6 3
5 =
2 4 14
3 |
F 2 2

0 0

0 10 20 30 40 50 60 70 80 90 100
Time (min)
Figure 9. Online load balancing.
100
o o
90
O

80 DD . Ijj:lﬂ:‘ e O
—_ O
S 70 0% 0000m ¢ 4 0950
kel
S 60 e
2 5 00 M o o g
o * uj:tl * t o #19-node

40 - [038-node

30 0

20

0 10 20 30 40
Machine ID

Figure 10. CPU load distribution.

were overloaded because there were no additional idle
machine (with CPU load below 30%) to share the load.
Fault tolerance. To evaluate how Sonora recovers
from machine failures we turned off dynamic adap-
tation and ran PEIR on 32 machines, with 9 machines
running a physical vertex in the first stage and 23 ma-
chines running a physical vertex in the second stage.
This assignment is balanced as the second stage is
more costly than the first. All machines in the first stage
generate data that is consumed by all machines in the
second stage. A dispatcher was used to feed input to
vertices in the first stage.

In the first experiment, illustrated in Figure 11, we
set the checkpointing interval to 40 seconds. We took
two checkpoints (at 20s and 60s) and failed a machine
at 80s that was responsible for a vertex in the first stage.
In experiments we introduce faults halfway through a
checkpointing interval — 20 seconds in this case. The
recovery protocol mandates that all 23 vertices in the
second stage, along with the failed vertex in the first
stage roll back. During this recovery the remaining 8
vertices and the dispatcher replay their output.
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Figure 11. Throughput and goodput over time as
Sonora checkpoints twice and then recovers from a
failure.

Because rollback recovery will re-produce outputs
that are lost due to failures, Figure 11 plots both the
system throughput aggregated across all stage-two ver-
tices along with the user-observed goodput, which does
not include the outputs reproduced during recovery.

For simplicity, our current checkpointing process
first flushes all buffers to avoid recording them. This
stalls the pipeline, which translates into the noticeable
throughput drop during checkpointing. This is not in-
herent to our design, but is a consequence of the sim-
pler implementation. Optimized checkpointing imple-
mentation using copy-on-write technique could amor-
tize the throughput decrease. In the experiment it took
about 11 seconds for each checkpoint to become stable
across all vertices. The checkpoint size was approxi-
mately 8.8 MB (and three copies were stored).

During recovery, because there are other stage-two
vertices generating results, the goodput does not im-
mediately drop to zero: we flush these buffers before
rolling back. Goodput is zero for 8 seconds until re-
covery completes on the stage-two vertices and new
outputs are generated. Recovery completes across all
vertices 36 seconds after the failure. Because the in-
put rate does not saturate the system, goodput is above
average right after recovery due to buffered data pro-
cessing. The recovery generated a total of 266.12 MB
of network traffic, of which 53.27 MB were used to re-
play output logs and the remaining 212.85 MB were
used for checkpoint loading.

To evaluate Sonora’s checkpointing overhead we
used the same setting as above and varied the check-
pointing interval from 40 to 120 seconds. In each case
we introduced a fault in the middle of the checkpoint-
ing interval. Table 1 shows that while the checkpoint



Interval | Size | R-Cost | R-Time | RC-Time
(s) (MB) | (MB) (s) (s)
40 8.87 | 266.12 8 36
60 8.78 | 288.27 12 50
80 8.78 | 317.27 17 64
100 8.78 | 321.58 23 76
120 8.87 | 355.60 31 88

Table 1. Failure recovery cost for different check-
pointing intervals. Interval: checkpointing interval;
Size: checkpoint size; R-Cost: the network traffic
cost of failure recovery; R-Time: earliest recovery
time; RC-Time: recovery completion time.

size is stable, a longer checkpointing interval causes a
more expensive recovery. This manifested as a longer
recovery time and a higher network cost. Results in
Table 1 also support the conclusion that a fault tol-
erance strategy that restarts the computation from the
very beginning, as in Map/Reduce, is undesirable in
this setting.

Finally, we compared recovery with partial and full

rollback for a checkpointing interval set to 120 seconds.
Measurements for full rollback give us an upper bound
on recovery cost, which would be the observed cost if
Sonora used a standard rollback recovery mechanism.
Our results indicate that partial rollback incurred 63%
less network traffic and had similarly benefited recov-
ery time. Certainly, the exact benefit of partial rollback
depends on the failure scenario and the structure of
the computation. In this experiment, we were already
rolling back 24 of the 32 vertices. Even so, partial roll-
back incurred significantly less overhead than full roll-
back because the raw input to stage one vertices was
much larger than the processed input to the vertices in
stage two.
Incremental computation on streams with large
time-windows. PEIR aggregates location data over
small window sizes for individual users. In this exper-
iment we use another service to demonstrate Sonora’s
ability to handle incremental computation on streams
with large time-windows. The service extracts the
most popular keyword from all geo-tagged tweets [41]
within a geographic distance over the last 7 days. The
calculation is performed daily.

In the experiment, we assumed a 33x33 grid pre-
seeded randomly with a random distribution of 2GB

Day Process time(s)
8-node [ 4-node | 2-node
1 15.1 12.0 20.4
2 12.2 30.5 18.7
3 17.7 10.6 17.9
4 21.9 19.8 35.8
5 13.0 20.2 19.2
6 10.8 14.4 23.2
7 17.7 21.0 23.3
Overall time | 1112 [ 1280 [ 159.1

Unoptimized overall time [ 296.7 (8-node)

Table 2. Processing time for a 2GB daily tweet
stream.

of daily tweet data. Each tweet is 5-20 words long,
with word selection following the word frequency of
an English novel [43]. Although this setting does not
reflect real world usage, it is nevertheless useful for
evaluating large stream processing enabled by Sonora.

We use an updates stream to store nearby tweets
over the last 7 days. To avoid large aggregate computa-
tion, the keyword popularity calculation is divided into
each day and is updated daily. Note that this is differ-
ent from PEIR in which the computation is triggered
whenever new location data is available. In the im-
plementation we use a dailyUpdate stream to tally
the keywords for each day, similar to materialized
views in databases. All these output streams are par-
titioned and indexed by location. Each element in the
updates stream therefore matches up with 7 entries
in the dailyUpdate stream. The storage system par-
titions the updates stream across multiple machines
so that the keyword calculation can execute in parallel.
This is similar to a map/reduce job except that the op-
eration repeats everyday with the updated tweets from
the updates stream.

Table 2 shows the processing time of daily results
over 7 days with 8, 4, and 2 Sonora machines. Due to
materialized views of daily results, the aggregated pro-
cessing time with materialized views is much smaller
than that without them — for 8 machines the differ-
ence is more than factor of two (111s versus 297s). The
query latency for the mobile phone to receive the calcu-
lation result is just 2.8 second in the 8-machine case. As
expected, as the number of cluster machines is reduced
from 8 to 2, the overall processing time increases.



Table 3. Power consumption in Watts when read-
ing different on-phone sensors (first four columns),
and when reading all sensors with Fixed and with
Adaptive sensing strategies (last two columns).

In summary, with the help of scalable storage system
Sonora is able to process large streams that might not
fit in memory.

5.3 Stream-Based Optimizations

Energy efficient adaptive sampling. Adaptive sam-
pling is a useful optimization for saving power in spe-
cial circumstances. It is straightforward to employ the
Sonora stream API to express adaptive sampling. To
see this, consider a mobile scenario in which the phone
is either indoors or outdoors. The first four columns
of Table 3 list the average power consumption (over
5 runs) of a stream operator querying an on-phone sen-
sor at the rate of once every 5 seconds over a period of
5-minutes. The table indicates that the GPS is expen-
sive to read. Indoors, however, an application can save
power by disabling GPS, which cannot receive signals
anyway. To infer whether the device is indoors or not a
lower power sensor like GSM can be used to correlate
associated GSM tower ID history with the GPS signals.

To gauge the impact of this adaptive sensing strat-
egy on power consumption we conducted a 30-minute
experiment in which the mobile phone was indoors for
half the time. With the fixed sensing strategy the de-
vice read the GPS, accelerometer, and the battery sen-
sors once every 5 seconds (total power consumption is
shown in the Fixed column of Table 3). With the adap-
tive strategy the device used GSM tower associations to
determine whether it was outdoors or indoors (Figure 2
lists the code). When the device detected itself to be
outdoors, a stream operator read the GPS, accelerom-
eter, and battery sensors once every 5 seconds. When
the device detected itself to be indoors, the operator
read just the GSM, and battery sensors at the same fre-
quency. The total power consumption is shown in the
Adaptive column of Table 3.

Power measurements for the two strategies (Fixed
and Adaptive) indicate that adaptive sensing can save
30% of energy in this setting. Note that adaptive sens-
ing has a small overhead even if the device were to be

Accel. | GSM | Battery | GPS | Fixed | Adaptive Power Consumption (Watt) | Network Traffic (MB)
0.27 0.28 0.19 0.88 | 1.00 0.70 None | Batch | Batch+Zip | Batch/None Zip
1.35 0.50 0.45 2.087 0.392

Table 4. Impact of different sync stream optimiza-
tions.

outdoors at all times. This is because GSM is usually
an always-on hardware on a mobile phone, and the al-
gorithm to detect indoor status has low CPU usage.
Sync stream. Sonora relieves developers from optimiz-
ing mobile-cloud communication by providing a sync
stream abstraction. Table 4 shows the impact of vari-
ous sync stream optimizations for a HTC phone dur-
ing a 30-minute run where a sync stream was used to
transmit GPS data from the phone to the cloud at a rate
of 1Kb/s. Without any optimizations the phone con-
sumed the most energy. When the sync stream batched
GPS data into a single transmission every 1 minute, the
phone saved 60% power. Although compression did not
save much power compared to batching, it did decrease
network traffic from 2.087MB to 0.392MB — an 81.2%
improvement. All of these optimizations are transpar-
ent to the programmer, and can be enabled adaptively.

Sync streams also help applications gracefully han-
dle disconnections. Figure 12 plots the total KB trans-
mitted from a phone to the cloud using a single sync
stream over time. When a disconnection occurs at time
to, network throughput drops to zero. The sync stream
buffers the location data during the 1 minute discon-
nection and uploads the buffered data in a burst after
the phone reconnects to the cloud at ¢;.

Our intent with these measurements was not to iden-
tify an optimal point: tradeoffs could change signif-
icantly due to changes in hardware (e.g. CPU fre-
quency), and context (e.g. mobile versus stationary).
Instead, these experiments illustrate how Sonora can
enable different configurations to be expressed with
ease, and how Sonora can help programmers under-
stand and identify the best tradeoffs for their scenario.

5.4 Optimizing Mobile-Cloud Computation

Sonora’s use of the same stream interface on the mo-
bile and in the cloud makes it convenient to attempt
different placements of modules between the two plat-
forms. For instance, in one section of the PEIR code a
change to fewer than 10 lines of code sufficed to move
a transportation mode inference module from the mo-
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// OLD code (all on mobile):
Stream<Sample> samples =...;
Stream<double> speeds = samples.Select(...);

/I NEW code:
/[ on mobile:
Stream<Sample> samples =...;
SyncStream<Sample> mobOut = new
SyncStream<Sample>();
9 samples.Subscribe((Sample x) => mobQOut.Append(x));
10 //in cloud:
11  SyncSinkStream<Sample> cloudIn =
mob0Out.GetSink();
12 Stream<double> speeds = cloudIn.Select(...);
13
14 // Transportation mode inference ...

[c BN o) SRV T

Figure 13. Code changes to move transportation
mode inference from the mobile and into the cloud.

bile into the cloud. Lines 2 and 3 in Figure 13 show the
original code that was executed on the mobile. Adding
a sync stream, subscribing the sync stream to the sen-
sor readings, and having the cloud receive the readings
took four additional lines (lines 8-12) and moved the
execution of the following transportation mode infer-
ence code into the cloud. In our experience we found
that this example generalizes — the stream interface en-
couraged us to explore different module configurations
because of the low programming effort.

Moving transportation mode inference to the cloud
reduces mobile CPU utilization, leading to power sav-
ing. But this move doubles the network bandwidth be-
cause the cloud now also needs to receive accelerom-
eter, GSM signal, and battery status measurements. In
aggregate, however, power consumption was reduced
by 40% due to the optimizations implemented in the

sync stream. Note that this improvement is made at the
expense of increased server load.

We also observed that an identical optimization may
have different effects on the mobile and in the cloud.
For instance, we used incremental computation and
common subcomputation elimination to optimize the
Discrete Fast Fourier Transform in PEIR’s transporta-
tion mode inference. On the mobile this reduced power
by less than 5% — the low sampling frequency (once
every 5 seconds) left the CPU idling for most of the
time. Due to aggregation, the gain was much more sig-
nificant when the optimization was performed in the
cloud — peak throughput of a single machine increased
by over 200%.

Module placement involves understanding the trade-
offs between mobile energy efficiency, service response
time, server load, and other factors. Sonora greatly sim-
plifies the process of identifying these tradeoffs be-
tween the two platforms. In the future we hope to outfit
Sonora with task partitioning algorithms to repartition
tasks as conditions change.

6. Related Work

Sonora was influenced by distributed execution en-
gines in data centers, such as MapReduce [16] and
Dryad [22], which process large amounts of data. The
Sonora stream interfaces also contains elements of
high level declarative languages such as SCOPE [9],
DryadLINQ [45], and Pig Latin [37]. These systems
are optimized for batch processing and throughput.
Instead, Sonora targets continuous mobile-cloud ser-
vices, often with some latency requirements. The cor-
responding different design implications are elaborated
in details in Section 4.

Recently there are also efforts to “streamline” the
computation between different stages in the MapRe-
duce/Drayd framework. These include Hadoop On-
line [13], HaLoop [6], Naiad [32], and Spark [46].
While the focus of these projects is on enabling pipelin-
ing between stages in a batch job, the mechanism is
also shown to be useful for continuous queries. Sonora
addresses two problems that are also deemed important
in that paper, namely, dynamic adaptation and failure
recovery. Sonora’s failure recovery mechanism is dif-
ferent, partly due to our focus on continuous mobile-
cloud services. Continuous bulk processing (CBP) [28]
focuses on stateful bulk processing for incremental an-



alytics, where each execution is incremental. It is not
intended for interactive applications.

Yahoo! Pipes [44] is a web service that provides pro-
grammability over multiple streams with a declarative
language interface. Unlike Yahoo! Pipes Sonora targets
continuous services. Sonora also uses stream optimiza-
tions for efficient mobile-cloud communication.

Twitter’s Storm [40] is a cloud-based real-time pro-
cessing engine with the similar goal as Sonora. How-
ever, Sonora provides a different fault tolerant mecha-
nism taking the mobile-cloud computing environment
into account. Furthermore, Sonora makes a case that
stream 1is also a useful abstraction in developing mo-
bile programs.

The stream abstraction in Sonora is related to prior
work on continuous query processing in databases
and sensor networks, including Telegraph, Aurora,
TinyDB [3, 8, 10, 30]. There are also commercial prod-
ucts available like IBM System S (a.k.a. InfoSphere
Streams) and Microsoft StreamlInsight [21, 33]. From
these systems Sonora borrows the notion of window,
along with common optimizations such as incremen-
tal computation and sub-expression elimination [49].
Sonora further applies the notion of streams to mobile
platforms and augments the stream abstraction with the
sync stream interface to improve mobile-cloud com-
munication, which has been studied extensively in the
mobile research community [23, 26].

Many parallel stream database system like Bore-
alis [5], Telegraph’s FLuX [39], and SGuard [24] also
provide load balancing and failure recovery. These sys-
tems are usually engineered to meet a stringent latency
requirement. Sonora instead targets continuous pro-
cessing that does not necessarily have such requirement
and allows a different latency/throughput/scalability
tradeoffs. This is reflected in Sonora’s mechanisms,
such as redirecting incoming data to reliable storage
to absorb load fluctuation and using re-computation to
perform non-deterministic replay for failure recovery,
as discussed in detail in Section 4.

Sonora’s data-driven architecture is similar to SEDA
[42] where applications consist of a network of event-
driven stages connected by explicit queues. SEDA also
makes use of a dynamic resource controller to keep
stages within the appropriate operating regime despite
fluctuations in load. However, the SEDA architecture is
generally intended for scalable Internet services while
the Sonora architecture targets efficient stream process-

ing across the mobile and cloud platforms. Other event-
driven systems with publish/subscribe mechanisms in-
clude LIME [35] and Limbo [15]. These two systems
provide event triggering on top of a tuple space and do
not provide a stream abstraction. Sonora’s event-trigger
programming interfaces also leverage features in func-
tional programming languages.

Systems like Spectra [17], Chroma [4], and the more
recent Maui [14] dynamically partition and offload
computation tasks from a mobile device to a more
powerful server or cloud. Sonora supports execution
partitioning, however, this is less of a focus in Sonora
and is currently left as a decision to programmers.

7. Conclusion

Mobile and cloud computing are two emerging trends
that are likely to reshape computing in the coming
years. The convergence of the two is inevitable. Sonora
is a distributed platform that embraces this conver-
gence, with a focus on supporting an emerging class of
services that perform continuous data-oriented mobile-
cloud computing. To ease development of such services
Sonora exposes a simple and uniform stream abstrac-
tion that coherently incorporates mechanisms from mo-
bile, database, and distributed systems. To cater to the
spectrum of latency/scalability requirements that char-
acterize these services Sonora introduces innovations
in fault-tolerance, adaptation, and scalability.
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