Efficient Synthesis of Probabilistic Programs

Aditya V. Nori

Microsoft Research, India
adityan@microsoft.com

Sherjil Ozair

IIT Delhi, India
sherjilozair@gmail.com

Sriram K. Rajamani

Microsoft Research, India
sriram@microsoft.com

Deepak Vijaykeerthy

Microsoft Research, India
t-dvijay@microsoft.com

Abstract

We show how to automatically synthesize probabilistic programs
from real-world datasets. Such a synthesis is feasible due to a com-
bination of two techniques: (1) We borrow the idea of “sketching”
from synthesis of deterministic programs, and allow the program-
mer to write a skeleton program with “holes”. Sketches enable the
programmer to communicate domain-specific intuition about the
structure of the desired program and prune the search space, and
(2) we design an efficient Markov Chain Monte Carlo (MCMC)
based synthesis algorithm to instantiate the holes in the sketch with
program fragments. Our algorithm aims to efficiently synthesize a
probabilistic program that is most consistent with the data.

A core difficulty in synthesizing probabilistic programs is com-
puting the likelihood £(P | D) of a candidate program P gener-
ating data D. We propose an approximate method to compute like-
lihoods using mixtures of Gaussian distributions, thereby avoiding
expensive computation of integrals. The use of such approxima-
tions enables us to speed up evaluation of the likelihood of can-
didate programs by a factor of 1000, and makes Markov Chain
Monte Carlo based search feasible. We have implemented our algo-
rithm in a tool called PSKETCH, and our results are encouraging—
PSKETCH is able to automatically synthesize 16 non-trivial real-
world probabilistic programs.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming—Program Synthesis

General Terms Design, Experimentation, Performance

Keywords Probabilistic Programming, Program Synthesis, Markov
Chain Monte Carlo

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.

PLDI'15 June 13-17, 2015, Portland, OR, USA

Copyright © 2015 ACM 978-1-4503-3468-6/15/06. .. $15.00

DOI: http://dx.doi.org/10.1145/2737924.2737982

1. Introduction

Probabilistic models with causal dependencies can be succinctly
written as probabilistic programs [6, 8, 15, 16, 23-25]. One of the
main advantages of writing probabilistic programs is that they al-
low non machine learning experts to focus on the specification of
the probabilistic model, and not worry about complex issues such
as how to implement inference over the model. Indeed, existing
probabilistic programming tools are able to automatically gener-
ate inference code from specifications written as probabilistic pro-
grams, thus reducing the degree of expertise required to implement
a machine learning or Al task.

Another advantage of probabilistic programs is that they use
programming notation familiar to developers. Just like programs
can be thought of as transformers of states, probabilistic programs
can be thought of as transformers of distributions, and this allows
programmers to generalize intuitions they have about determinis-
tic programs to intuitions about probabilistic programs. However,
developers of probabilistic programs need to have sufficient exper-
tise in probability and statistics—they need to be able to choose the
right distributions for variables, compose primitive distributions to
build complex distributions, and estimate parameters of these dis-
tributions. Such tasks are still difficult to perform for several pro-
grammers. To alleviate this problem, we study the problem of auto-
matically synthesizing probabilistic programs from available data.
Intuitively, we would like to automatically search over the space of
all probabilistic programs, and find the program that best matches
the available data. However, such a search is infeasible since the
space of probabilistic programs is huge.

In order to make the problem tractable, we use the idea of
sketching [28], which is a very popular technique used in synthesis
of deterministic programs, and ask the programmer to provide a
skeleton or “sketch” of the probabilistic program with some “holes”
that are unfilled. The task of the synthesizer is to find the right
instantiation of the holes to get a complete program. Sketches
enable programmers to specify domain knowledge they may have
about the problem at hand, and also dramatically reduces search
complexity from the space of all probabilistic programs to the space
of all possible instantiations of the holes.

Even though sketches prune the search space, efficiently syn-
thesizing probabilistic programs is still computationally challeng-
ing due to reasons we describe next. Let us denote a program
sketch P with a hole as P[], and the instantiation of the hole
with a program fragment H as P[H]. For each possible instanti-
ation H, the synthesizer needs to evaluate a score indicating how
the completed probabilistic program P[H| matches with the avail-
able data D. Computing such a score involves estimating the like-

lihood of data D being generated by a generative model repre-
sented by the probabilistic program P[H|, and this estimation is
also computationally intensive. For instance, if £ and x> are Gaus-
sian random variables with density functions Aq(x, p1,01) and
Ao (x, po2, 02) respectively (where w1, p2 and o1, o2 are the re-
spective means and standard deviations for these distributions), the
likelihood of the program “y = x1 + z2” generating the data
“y = k” for some constant k requires computing the integral
JAL(z, pa,01) - Aa(k — , p2, 02)dz. These integrals are diffi-
cult to evaluate—computing such indefinite integrals symbolically
for arbitrary distributions is unknown, and computing definite inte-
grals using numerical techniques is expensive.

Let L(P[H] | D) denote the likelihood of program P[H]| with
respect to the data D [20]. In other words, this is the probability or
density (if D is a continuous random variable) of the data D given
the parameter P[H]. From the discussion above, we know that
computing likelihoods involves evaluating integrals. Even though
techniques for automatically computing £(P[H] | D) have been
studied before (see for example [2]), it is expensive to evaluate such
likelihoods for a large number of candidate completions of the hole
in P[-]. Our key insight is that we can approximate the computa-
tion of likelihoods using mixture of Gaussians without performing
any integration. Further, such an approximation can be computed
efficiently, and using this approximation we can speed up comput-
ing the likelihood L(P[H] | D) for a candidate H instantiating the
hole P[] significantly. Consequently, we are able to build a Markov
Chain Monte Carlo (MCMC) search to navigate large search spaces
for instantiating holes, and improve the number of candidate pro-
grams evaluated by the MCMC algorithm by a factor of 1000 (See
Figure 8). We also demonstrate (empirically) that this approximate
computation of likelihood does not affect the quality of the prob-
abilistic program synthesized by the MCMC search, and we are
able to synthesize programs that have likelihoods that are close to
manually written programs for the same task.

We have implemented our ideas in a tool called PSKETCH,
and have used PSKETCH to automatically synthesize 16 non-trivial
probabilistic programs thus showing the effectiveness of our ap-
proach.

The rest of the paper is organized as follows: we introduce prob-
abilistic programs in Section 2. In Section 3, we informally de-
scribe our approach with the help of an example. Section 4 formal-
izes the problem as well as describe our synthesis algorithm. Sec-
tion 5 describes our empirical evaluation. Section 6 places our work
in the context of existing work, and finally, Section 7 concludes the

paper.

2. Probabilistic Programs

We consider probabilistic programs that are imperative programs
with two added constructs: (1) the ability to draw values at ran-
dom from distributions via probabilistic assignments, and (2) the
ability to condition values of variables in a program via observe
statements. We refer the reader to [9] for a gentle introduction to
probabilistic programming.

Consider the program in Figure 1. This program represents a
simplified version of a Bayesian model called TrueSkill [12] for
estimating the skills of players based on the games played by
them. Informally, based on prior estimates of the players’ skills and
the outcomes of a set of games, TrueSkill computes the revised
estimates for players’ skills. Such a rating can be used to give
points, or match players having comparable skills for an improved
gaming experience.

In particular, the TrueSkill program TS takes as input an array
of games called games (each element has type struct game),
where each game has a unique identifier id, and is played between
players pl and p2 with a result that is either 1 or O which is the ob-

struct game {
int 1id;
int pl;
int p2;
int result;
bi

TS (struct game[] games, int count)

1 double[] skills;

2 int[] r;

3 for i=0 to count-1

4 skills[i] := Gaussian (100, 10);

5: for g in games

6: perfl := Gaussian(skills[g.pl], 15);
7 perf2 := Gaussian(skills[g.p2], 15);
8 r[g.id] = perfl > perf2;

9: for g in games

10: observe (g.result == r[g.id]);

11: return skills;

Figure 1: TrueSkill [12].

served outcome of the game, and count which is the total number
of players. Lines 3—4 contain probabilistic assignments that define
the prior for the skill of each player, which is a Gaussian distribu-
tion with mean 100 and standard deviation 10. Lines 5-8 define the
generative model for the variables—the performance of the players
in each game (which depends on the players’ respective skills) and
the result of each game (which depends on the performance of the
players in the game). Finally, lines 9-10 condition the model based
on the evidence (and this is done via the observe statement in line
10). The semantics of the observe statement classifies runs which
satisfy the boolean expression g.result == r[g.id] as valid runs.
Runs that do not satisfy this condition are classified as invalid runs.
The meaning of a probabilistic program is the distribution of the ex-
pression returned by it (conditioned on valid runs of the program).
Note that the observe statement constrains performances in a game,
and implicitly the skills of the players, since performances depend
on skills. Finally, in line 11, the skills are returned, and the mean-
ing of the probabilistic program is the distribution over elements of
skills.

Semantics. Unlike a deterministic program which produces the
same output every time it is run (with the same input), a proba-
bilistic program produces different outputs each time it is run. The
semantics of a probabilistic program is the probability distribution
over the possible values of the outputs produced by the program. In-
formally, the distribution can be produced by running the program
a large number of times and producing histograms (or other sta-
tistical measures) over the outputs produced from the runs. There
is prior work on precisely defining formal denotational and opera-
tional semantics for probabilistic programs, and we refer the inter-
ested reader to [10, 17].

Inference. Calculating the distribution specified by a probabilistic
program is called inference. The inferred probability distribution is
called posterior probability distribution, and the initial guess made
by the program is called the prior probability distribution. One way
to perform inference is to compile the probabilistic program to a
probabilistic model [16, 23] over which inference is performed us-
ing message passing algorithms such as belief propagation and its
variants [26]. Alternatively, one can execute the program several
times using sampling to execute probabilistic statements, and ob-
serve the values of the desired variables in valid runs [8, 13, 24],
and compute statistics on the data to infer an approximation to the
desired distribution.

/* Sketch «/
struct game {

int 1id;

int pl;

int p2;

int result;
}i

TSSketch (struct game[] games, int count)
1: double[] skills;

2 int[] r;

3 for i=0 to count-1

4: skills[i] := ?27?;

5: foreach g in games

6: r{g.id] = ??(skills[g.pl], skills[g.p2]);
7 foreach g in games

8 observe (g.result == r[g.id]);

9: return skills;

/+ Data x/

m.pl | m.p2 | result id | skill
0 1 1 0 105
1 2 1 1 95
0 2 1 2 | 90

Figure 2: Sketch and data for TrueSkill.

3. Overview

Writing good probabilistic programs is non-trivial. For instance, an
inexperienced programmer may replace lines 6—8 in the TrueSkill
program in Figure 1, with the simpler assignment,

r[g.id] = skills[g.p1] > skills[g.p2]

However, such a program constrains the skills of players more than
what we would like to. Just because the player g.p1 won against
g.p2 in one game, it is premature to conclude that the skill of
g.pl is more than that of g.p2. Player g.p2 may actually have a
higher skill than player g.p1 but may have lost the game because of
other extraneous reasons (such as headache or poor sleep during
the previous night). The program in Figure 1 accounts for such
possibilities using the variables perf1 and per£2, and is a better fit
for the data that is available (that is, the likelihood of the program
with respect to the data is higher).

Even though probabilistic programs free programmers from
thinking about inference, the programmer still needs training to
use idioms such as the use of latent variables (such as perfi
and perf2) in the above example. The goal of our paper is to
automatically search over the space of probabilistic programs and
automatically synthesize a probabilistic program that best fits the
given the output data we expect.

Sketching. Since the space of probabilistic programs is very large,
searching through this space and finding a program that maximizes
likelihood of that program with respect to the data is infeasible. We
borrow the idea of sketching from the synthesis of deterministic
programs [28] and allow the programmer to write a skeleton
program with holes to communicate her design intuitions, and
allow the synthesis algorithm to search over a more constrained
space. As a concrete example, in the case of TrueSkill, if the
programmer can specify that r[g.id] depends on the values of
skills[g.p1] and skills[g.p2], but not specify the exact nature of
the dependence, and the synthesis tool can automatically generate
the code in lines 6-8 which calculate r[g.id], we can greatly assist
programmers.

We consider the problem of automatically synthesizing a prob-
abilistic program from data that contains information about the de-
pendences between variables in the program, and a sketch that con-
tains the skeletal dependency structure between the variables of the
probabilistic programs. Unlike the synthesis problem for determin-
istic programs where holes can be instantiated by constants from
a finite set, or by program fragments from a finite set of possibili-
ties specified by a template, we would like the holes to be instan-
tiated from an unbounded space of (probabilistic) program frag-
ments. Consequently, we cannot use standard synthesis techniques
based on constraint solvers [28] for our purpose.

Figure 2 shows the sketch and associated data for the TrueSkill
example. As shown in the figure, the data indicates how the skills of
the players affect the outcome of a game. In this example, as seen
from the data, player O beats player 1, player 1 beats player 2, and
player O beats player 2. The skills as a consequence of these games
are also a part of the data as shown in Figure 2. In this data set,
the user of the synthesis system has picked values 105, 95 and 90
for player 0, player 1 and player 2 respectively. These values were
picked to be consistent with the user’s expectation that “if player
1 beats player 2, then player 1 has higher skill than player 2. In
the sketch, the 77 represents a hole which is the part that the user is
not sure about. This is exactly the code that our system PSKETCH
is expected to automatically synthesize. The syntax 77 in line 4
indicates a hole that does not depend on other variables, whereas
the syntax 2?2 (. ..) with arguments (line 6) denotes a hole that
depends on its arguments. The goal of the synthesis system is to
replace the holes with program fragments that are consistent with
the chosen data for the skills, so that when the program is fed
a new data set with different sets of players and different set of
game results, a suitable distribution over skills is generated, that
is consistent with the skill values for the example data given by the
user. Using the sketch and data shown in Figure 2, PSKETCH is able
to automatically synthesize the program TS in Figure 1. Informally,
PSKETCH searches for code snippets to replace the holes such that
the snippets are most consistent with the data.

Metropolis Hastings Search. Our synthesis algorithm searches
through the space of possible completions of holes using the
Metropolis Hastings (MH) algorithm [3] (which is a specific kind
of Markov Chain Monte Carlo algorithm). The goal of MH is to
construct a random walk through a Markov Chain whose steady
state probability distribution is a desired distribution 7'(x). MH
works by starting at some arbitrary state x¢ and choosing each state
Zr, from the previous state x,—1 using a mechanism to propose the
new state and a mechanism to accept or reject the proposed state.
Given a current state x,—1, the next state x,, is chosen by sampling
from a proposal distribution Q (%, xn—1), and the generated state
Zr, is accepted with probability:

accept(zn | Tn-1) =

i {1, 10 x Qleocrz).)

In our instantiation of MH, we build a Markov Chain over
the space of all possible completions of the holes in the program.
Recall that we denote a sketch with a hole as P[], and the program
in which the hole is completed by a program fragment H as P[H].
Our sketches allow multiple holes in the program, and in such
cases the completion H is really a tuple of completions for all
the holes. For simplicity, we continue to use the notation P[H] in
the multiple-hole case as well. Given a current program P[H|, we
mutate the completion H of holes to a new completion H’, and
accept or reject H' with probability given by the MH acceptance
ratio. The new completion H' is obtained from H by randomly
applying mutation operations that mutate variables, constants and

operators on the abstract syntax tree of H. See Section 4.1 for
details.

Efficiently approximating likelihoods. In the above formulation
of MH, at each point x,, during the random walk, we need to eval-
uate the probability T'(z,) from the desired distribution 7. Since
our random walk is over the possible completions of holes, in our
case, the probability distribution 7°(+) is the probability of the cur-
rent completion P[H| of the program, given data D. Using Bayes
rule, this can be shown to be proportional to the probability that the
completion P[H| generates the data D, denoted by Pr(D | P[H])
assuming uniform priors over all the completions (see Section 4).
Computing this likelihood Pr(D | P[H]) requires evaluating in-
tegrals and is expensive. Using existing techniques it takes on the
order of 100 milliseconds to compute the likelihood for a given
program, and this greatly limits the number of completions we can
explore using MH search within a reasonable amount of time. We
use a novel approximation technique to speed up the computation
of likelihoods. Our first observation is that the Mixture of Gaus-
sians (MoG) distribution is known to have a universal approxima-
tion property [22]. As a result, we can approximate any continu-
ous distribution using a MoG distribution. Moreover, MoG distri-
butions are closed under usual operations such as addition, sub-
traction and conditionals. Thus, we can symbolically calculate the
likelihoods of expression trees written using MoG distributions at
compile time, and plug in the desired data to evaluate the likeli-
hood Pr(D | P[H]) in linear time. As a result of this approxima-
tion, we are able to evaluate approximate likelihoods in the order
of one tenth of a millisecond, allowing to increase the efficiency of
the MH search by a factor of 1000. See section 4.3 for a precise
description of the MoG approximation of likelihood computation.

In practice, we find that in all the examples we have tried, it
suffices for the programmer to specify only the deterministic part of
the program, and leave out all the code that deals with probabilistic
reasoning using holes. Our algorithm is able to synthesize programs
that match the best hand-written program we know of in terms of
the likelihood value (see Table 1 in Section 5).

4. The Synthesis Algorithm

We consider a language that is an imperative probabilistic program-
ming language with facilities for specifying sketches. The syntax of
the language is shown in Figure 3. In particular, the sketching lan-
guage has an additional construct called a hole. Holes can be used
anywhere where an expression is expected, and serves as a place-
holder for unknown code. There are two types of holes:

e Independent hole (denoted 77). This type of hole is a place-
holder for code that does not make use of any variables defined
in the environment provided by the sketch.

® Hole with dependences (denoted ?7(E1, - - - , Ey)). This type of
hole is a placeholder for code which makes use of the parame-
ters passed to it, i.e., 1, - -+ , En.

Given a sketch P[] (a program in the sketching language de-
fined in Figure 3), we are interested in synthesizing a program
P[H] that is “most” consistent with the data D (where H is an
instantiation of the hole). If the sketch has multiple holes, we abuse
notation and use “-” to denote a tuple of holes, and H to denote
a tuple of completions to these holes. Specifically, given a sketch
P[], we want to synthesize a probabilistic program P[H | that max-
imizes the probability of the data D. In other words, we are inter-
ested in the probabilistic program P[H *] such that:

H* = arg max Pr(P[H] | D) (1)

where H™ is the desired instantiation of the hole, and the search is
performed over the set of all program fragments H that are valid

r € Real
T € Vars
wop == {!} unary operators
bop == {+,—, x,&&,|,>} binary operators
top = {ite} ternary operators
D = .- declarations
& = expressions
| z variable
| c constant
| £1 bop &2 binary operation
| uop € unary operation
| top £1&2€3 ternary operation
| 77 hole
| ?22(E1, -+ ,ER) hole with dependences
S = statements
| skip skip
|z =& deterministic assignment
| x ~ Dist(0) probabilistic assignment
| observe (¢) observe
| S1;S2 sequential composition
| if £ then S; else So conditional composition
| fori:=1tondoS forloop
P w= DS programs

Figure 3: Syntax of the sketching language.

Algorithm 1 MCMC-SYN

Input: Data D, and sketch P[-].

Output: Program P[H"].

:S8:=0

c H~ Ep[]

: for i to N do

: H':=mutate(H)

if accept(P[H'] | P[H]) then
H:=H'

end if

. S=SU{H}

: end for

10: H* :=maxpesPr(D | P[H])
1

1
2
3
4
S:
6:
7
8
9
0
1: return P[H™]

completions of the sketch P[-]. Using Bayes’ rule, Equation 1 is
equivalent to:

H" = arg max Pr(P[H])Pr(D | P[H]) 2)

Assuming a uniform prior Pr(P[H]) (i.e., all completions H are
equally likely), we have:

H" = arg max Pr(D | P[H]) 3)

where Pr(D | P[H]) is the likelihood function for the program
P[H]. This optimization problem can be looked upon as a maxi-
mum likelihood (ML) estimation [20] over the higher order search
space of programs. Exact ML estimation is usually very expensive
except in the case of simple probabilistic programs. We tackle this
problem by approximating the ML estimate via standard MCMC
sampling [20]. The synthesis algorithm MCMC-SYN (shown in
Algorithm 1) takes a dataset D and a sketch P[] as input, and re-
turns a probabilistic program P[H], where H™ is an approximate
solution to Equation 2.

First, MCMC-SYN chooses a probabilistic program fragment
H from the set of valid completions ¥ p[of the sketch P[] (line

2). Then, it iteratively (for a maximum of N iterations) performs the
following steps (lines 3-9):

1. First, in line 4, a probabilistic program fragment H’ is obtained
by mutating the program fragment H using a proposal distribu-
tion. The procedure mutate is described in Section 4.1).

2. Next, in lines 5-9, if H' is accepted then, we add H' to a set S
of accepted program fragment samples. Otherwise, the previous
sample H is added to S. The acceptance criterion is described
in Section 4.2.

In line 10, we select the program fragment H™ in the set of
samples S with the maximum value of Pr(D | P[H™]). Finally,
in line 11, MCMC-SYN returns the desired synthesized program
P[H™].

4.1 Program Mutation

The mutate function in line 4 of Algorithm 1 takes a probabilis-
tic program H as input, and returns a probabilistic program H’
sampled from a proposal distribution Pr(H’ | H). To sample a
program H' from Pr(H' | H), we first pick a number n from a
geometric distribution (this is to ensure that the probability of pick-
ing n decreases with increasing n). Next, starting with the program
H, n mutation operations are sequentially applied to obtain H' (es-
sentially, this corresponds to the process of mutating the program
until we get a “good” program). Each mutation operation is defined
over the abstract syntax tree (AST) of the program H, and proceeds
as follows: First, a node from the AST of H is chosen uniformly
at random. Then, one of the following mutation operations is per-
formed, depending on the type of the node:

e Operation-1. If the node is a variable which is a parameter
to the hole, then the variable is replaced with one of the other
parameters of the hole chosen uniformly at random.

Operation-2. If the node is a constant with a real value ¢, then
it is replaced by a sample from a normal distribution with mean
c and a predefined standard deviation.

e Operation-3. If the node is an operator, then the operator is re-
placed by a new operator which is chosen uniformly at random
from the set of operators with equivalent type.

Operation-4. This operation is applicable for all node types.
It first replaces the node with a non-terminal (from Figure 3)
corresponding to the subtree rooted at that node. Then, a entire
subtree for the non-terminal is produced using the syntax rules
in Figure 3 chosen with a bias to replace all non-terminals with
terminals.

Depending on the node type only some of the mutation operations
may be applicable, and one of these applicable operations is chosen
uniformly at random. For example, for a variable node, Operation-
1 and Operation-4 are applicable, and one of these two operations
is chosen uniformly at random. We illustrate the mutation process
with the help of an example. Consider the program snippet H;
shown below:

Gaussian(x, 11.3) + Gaussian(y, 11.9)

We illustrate how H; is transformed to the program snippet H>
shown below

Gaussian(x, 11.7) - Gaussian(z, 14.3+y)

upon applying a sequence of 4 mutation operations. As described
earlier, program mutation first chooses the number of mutation
operations to be performed. In our example, this number n = 4.
First, the constant node “11.7” is chosen and mutated to “11.3”
using Operation-2. Second, the “+” node is chosen and replaced

[Taxt)

with “-” using Operation-3. Third, the “y” node is chosen and

replaced with “z” using Operation-1. Finally, the node “11.9” is
chosen, and replaced with the nonterminal £ using Operation-4,
and then the expression tree “14.3 + y” is derived from £ using
the production rules from Figure 3. Once the mutated program is
generated, we perform a quick syntactic check and reject programs
which are nonsensical (perform use before definition, produce ill-
typed expressions, etc.). Even though some undesirable programs
escape our check, these programs get low likelihood scores (using
the equations in Section 4.3), and hence the MCMC search never
selects undesirable programs. We also ensure that parameters of
distributions are only variables (and not general expressions) while
generating the programs.

4.2 MH Acceptance Criterion

A mutation from program P[H| to P[H'] is accepted with the fol-
lowing probability during MCMC sampling (line 5 in Algorithm 1):

accept(P[H'] | P[H]) =

. {1 Pr(D | P[H)')Pr(P[H] | P[H'])}
" Pr(D | PH))Pr(PLH] | P[H])

This computation is often very expensive resulting in significant
degradation in the performance of sampling. In order to overcome
this issue, we propose an efficient approximation to the likelihood
function Pr(D | P[H]) which results in an order of magnitude
speedup over the exact computation. We describe our approxima-
tion scheme to the likelihood computation next.

4.3 Efficient Likelihood Computation

The MCMC-SYN algorithm described in Algorithm 1 requires the
computation of the likelihood function Pr(D | P[H]) for each
candidate program P[H]| and dataset D. The success of the al-
gorithm depends crucially on very efficient computation of this
likelihood for every sample program. Our initial implementation
used the algorithm in [2] for computing the probability distribution
for any variable in a probabilistic program. However, the algorithm
makes use of integrals which are computationally expensive. Con-
sequently, in our experiments, by using this algorithm, we were
only able to compute the likelihoods for tens of sample programs
per second which renders the MCMC search ineffective. In con-
trast, the likelihood computation approach described next allows
us to compute likelihoods for ten thousands of sample programs
per second (see Figure 8 in Section 5).

The main idea is to compute the likelihood expression of a
probabilistic program symbolically, and represent it approximately
using a family of simple distributions. We choose the family of
Mixture of Gaussians (MoG) distribution for this purpose due to
their universal approximation property [22]. A Gaussian mixture
model is a weighted sum of ng component Gaussian densities as
defined by the following equation:

ng
MOG(iU, ne,w, W, U) = Z wlg(‘r7 Hi, 0'7;)
i=1

where w, i and o are arrays of size ng, and represent the mixing
fraction, mean, and the standard deviation of each Gaussian density
in the mixture. The probability density function g(z; i, o;) for a
simple univariate Gaussian distribution with mean p; and standard
deviation o; is defined as:

(x — pi)?
exp(—
2mo? (207)

Let S be the body of a probabilistic program P[H]. We first ex-
ecute S symbolically using the operator LL(S, v, po) (defined in
Figure 5), where v, is a initial environment that maps every vari-
able to L, and p, is the identity constraint (which evaluates to 1 on

g($;/h;,0'i) =

TS (struct game[] games, int count)

1: double[] skills;

2: int[] r;

3: double perfl, perf2;

4: for i=0 to count-1

5: skills[i] := Gaussian (100, 10);

6: for g in games

7 perfl := Gaussian(skills[g.pl], 15);
8: perf2 := Gaussian(skills[g.p2], 15);
8: r[g.id] = perfl > perf2;

10: for g in games

11: observe (g.result == r[g.id]);

12: // p=pX ng‘ ite(g.result == r[g.id], 1,0)

13: return skills;

skill[0] | MoG(skill[O]; 1, [1], [100], [10])

skill[l] | MoG(skill[l]; 1, [1], [100], [10])

perfl MoG(perfl; 1, [1], [ski11[O]], [15])

perf2 MoG(perf2; 1, [1], [skil1[1]], [15])

£[0] Bernoulli(c[0]; 1 + Lerf(ZELIO_ I,

Pr(D | P[H]) = Bernoulli(z[0]; & + Lerf(2Ok) mo(sk111[0]; 1, [1], [100], [10])xMoG(ski11[1]; 1, [1], [100], [10])x

2
ng‘ ite(g.result ==r[g.id], 1,0)

Figure 4: A candidate completion of the sketch for TrueSkill (2 players & 1 game).

any state). Let (v, p) the environment and constraint expression re-
turned by LL(S, v, o). The likelihood Pr(D | P[H]) is obtained
by taking the product of the likelihood of each the values of D from
the final environment v, and taking the product with the constraints
in p (ensuring that observe statements are respected).

Example. Figure 4 illustrates this procedure for an example. The
table in the right side of Figure 4 shows the final environment ob-
tained by symbolically executing the program using the LL(-) oper-
ator. Note that each variable maps to either a Bernoulli or mixture
of Gaussians distribution (which is an approximation) using the
rules from Figures 5 and 6, without any expensive computations
(such as integration). The likelihood expression Pr(D | P[H])
is obtained as a product of the final symbolic expressions of the
variables r[0], skill[0] and skill[1] (for which we have data), and
the product of the constraints obtained during evaluation of the ob-
served statements by LL(-).

The LL(-) operator. We now explain the details of the LL(-)
operator, which is one of the central contributions of this pa-
per. The LL(-) operator takes a statement, an initial environ-
ment and an initial constraint as input, and symbolically exe-
cutes the statement returning a final environment and a final set
of constraints. The operator uses MoG distributions to perform
approximations to continuous distributions. We assume that, in
the case of an if-then-else statement, both branches update the
same set of variables. We make a pre-pass to transform the pro-
gram so that this assumption holds—as an example, we transform
the program “if (e) thenx = el else y = e2” to the program
“if (e) thenx = el; y = yelse x = x; y = e2” (that includes
dummy identity assignments).

The rules for the LL(-) operator are shown in Figure 5 (with
additional rules for expression evaluation in Figure 6). Given a
statement S, an environment v mapping variables to either MoG or
Bernoulli distributions, and a constraint p, we have that LL(S, v, p)
returns a pair (', p’), where v/ is the updated environment and p’
conjoins constraints from observe statements in S to p. The observe
statement is the only primitive statement that affects the constraint
p. All the other primitive statements update only the environment
v and leave the constraint p unaffected.

We have that LL(skip, v, p) simply returns the inputs (v, p). In
the case of a deterministic assignment statement (x = &), p re-
mains unaffected and the corresponding entry to variable x in the
environment is set to [£], (using rules shown in Figure 6). For a
probabilistic assignment statement (z ~ Dist(0)), p remains un-
affected and the entry that corresponds to variable x in the envi-
ronment is set to the symbolic expression of the approximate like-

lihood of the distribution in the statement. Due to the universal ap-
proximation property of MoG distributions, we can approximate all
continuous distributions as MoG distributions. We show approx-
imations for Beta, Gamma and Poisson distributions in Figure 5.
The Gaussian distribution can be precisely represented with a sin-
gle component mixture of Gaussians, and the Bernoulli distribution
is represented “as is”.

The observe statement (observe(y)) adds an extra product to
the constraint p. The resulting constraint evaluates to O if the ex-
pression ¢ evaluates to false and helps reject program mutations
that are inconsistent with observe statements during the MH search.
The observe statement does not affect the environment v.

In the case of sequential composition statement (S1; S2), the
function LL(-) is applied to the statements in the order in which
they appear in the program. The environment updates are composed
and the constraints are multiplied. For an if-then-else statement
(if &£ then S;1 else S2), we apply LL(+) to both the branches,
and merge the resulting environments and constraints with the
conditional expression. We use UV (S) to denote the variables
updated by statement S. Recall that we have made sure that both
branches of the conditional update the same set of variables using
a pre-pass transformation. The for loop (fori := 1 to ndoS) is
handled by unrolling the loop, which is feasible since we assume
bounded loops.

We describe the evaluation performed by []. for various types
of expressions £ in Figure 6. Given an arbitrary expression &, we
have that [£], evaluates the expression in the environment v and
returns approximation in the form of either a Bernoulli or a MoG
distribution. We exploit the property that MoG distributions are
closed under the operations of addition, subtraction and condition-
als. For instance, addition of two MoG distributions is always an
MoG, and it is carried out by considering each pair of mixture com-
ponents, and using the additive property of Gaussians on the two
Gaussian components. The resulting distribution has a component
corresponding to each pair of components of the operands, and the
mixing fraction each component is the product of the mixing frac-
tions of the pair of operand components. Other operations on pairs
of MoG distributions are carried out in a similar way. The Gaussian
distribution is not closed under the product operator, so we use an
approximation to the likelihood in that case. This approximation is
defined precisely in Figure 6.

In order to compare two MoG distributions with the > oper-
ator, we use the error function (erf), which allows us to compute
Pr(X > 0), and thus Pr(X > Y). In the case of ite, the number
of components in the resulting distribution is the sum of the com-
ponents in the two branches of the ite. The component means and

LL(skip, v, p) :=
LL(z =&, v, p) :=

*LL(z ~ Beta(z; a1, a2),v, p) :=

*«LL(z ~ Gamma(o1, a2), v, p) :=

*«LL(z ~ Poisson(\), v,

LL(z ~ Bernoulli(p), v,

),5P)
LL(z ~ Gaussian(y,o0),v,p) :=

), 5 P)

), v5p) i=

LL(observe(yp), v,

LL(S1; S2,v,p) =

LL(if £ then S else Sz, v, p) :=

LL(fori:=1tondoS,v,p) =

(v, p)
let £ =[£], in
(wlz &', p)

(v [= MoG(s 1, 1], [255,

[\/(Ot1+042)2(0t1+042+1)])] ’)
(y[m < MoG(z; 1, [1], [araa),

[varaz)] . p)

= V[:E <~ MOG(l‘; 1, [1]7 P‘]v [\/X])Lp
T < MoG(x; 1, [1], [u], [0])], p)

N

oF o = <
N
8
[ve)
[0}
R
=]
o
=]
=
o
=
S
D)
S
=
>
2

let (v/,p') = LL(S1,v, p) and
(") = LL(Sa, v,) i
(y//7p//)

let envmerge (v, v1,v2,E,V) =
V3 1= UV;
foreach(v € V)
vy 1=

valv = [ite(€, v1(v), v2(v))]wsl;

vs

and

(v1,p1) =LL(S1,v,1) and

(llg,pQ) = LL(SQ, v,1) and
= [€]v in

imation of the target distribution. We empirically demonstrate the
convergence property of our approach by comparing the respec-
tive log-likelihoods of the target and the synthesized programs (see
Table 1 in Section 5).

5. Evaluation

We have implemented our synthesis algorithm in a tool called PS-
KETCH, and evaluate its effectiveness on 16 probabilistic program
benchmarks. All experiments were performed on a 2.00 GHz Intel
3rd Gen Core i7 processor system with 8 GB RAM running Mi-
crosoft Windows 8.

Goals. The goal of our empirical evaluation is to answer the fol-
lowing two questions:

1. Is PSKETCH able to synthesize interesting probabilistic pro-
grams? In order to answer this question, we collected various
probabilistic programs, and replaced the interesting probabilis-
tic computations in these programs with holes. Then we syn-
thesized probabilistic programs from these sketches using PS-
KETCH and evaluated the quality of the generated programs
(with respect to the original programs we started).

2. How much faster is the mixture of Gaussians approximation
(described in Section 4.3) for computing likelihoods when com-
pared with traditional methods for computing likelihoods? In
other words, how much speedup does the approximation really
buy us?

Benchmarks. We picked 16 benchmark programs from existing
literature on probabilistic programs. We describe the programs
below:

(envmerge(l/ vi,v2,E, UV (81)),
p x ite(&', p1,p2))

let rec loopfunc(S,n,v, p) =
if(n > 1) then

let(v/, p’') = LL(S,v, p) in
loopfunc(S,n — 1,v/, p")
else (v, p)

in

loopfunc(S, n, v, p)

Figure 5: Given a statement S, an environment v, and a con-
straint p, the function LL(S, v, p) returns (v, p’), where v/ is the
updated environment and p’ is conjoins constraints from the ob-
serve statements in S to p. The expressions MoG(z; n, w, u, o) and
Bernoulli(z;p) are the likelihoods of mixture of Gaussians and
Bernoulli distributions respectively. Rules which introduce approx-

imations are marked by a

*. Rules without a * are precise.

standard deviations remain the same. However, their mixing frac-
tions get multiplied by the probability of the branch being taken,
i.e., Pr(b) or 1 — Pr(b), where b is the event that the if branch is
taken. Other operators such as and and or follow from the proper-
ties of mixture distributions and Gaussian distributions. When un-
supported operators are present in an expression, [], returns the
unit expression (which always evaluates to 1) as an approximation.

4.4 Convergence

Our synthesis algorithm MCMC-SYN (Algorithm 1) searches
through the space of possible completions of holes using the
Metropolis Hastings (MH) algorithm. The MH algorithm is al-
ways guaranteed to converge asymptotically (with the number of
samples) to the target distribution [3]. In practice, with a reason-
able number of samples obtained by running the algorithm for a
few minutes, the MH algorithm converges to a reasonable approx-

e Burglary is Pearl’s burglary example, first described in [14].

e TrueSkill [12]is a skill rating system which is a variant of
the example described in Section 2.

Clinical [23] models alab setting where the effectiveness of
a drug is inferred by observing its performance on control and
placebo groups.

e The Clickthrough [23] benchmarks mainly consist of pro-
grams which model how the relevance and appeal of links
in a web search result affect which links the user exam-
ines and clicks on. The programs Clickthroughl and
Clickthrough2 only model link examination. The pro-
grams Clickthrough3 and Clickthrough4 model both
link examination and click, and thus are harder to synthesize.

e Conference [23] models the accept/reject decision of a paper
based on the quality of the paper, the expertise of the reviewer,
and the possible error made while reviewing the submission.

Grading [1] models the answers given to questions by stu-
dents based on the ability of the student, the difficulty and dis-
criminative ability of the question, and the true answer. Using
this model, it is possible to estimate the true answers to all ques-
tions in an exam, using data for only the responses students gave
to the questions.

e Handedness [23] models the probability that a given person
is left or right handed.

e Gender Height [23] models the height of male and female
persons and their relative comparison.

e The MoG benchmarks consists of the Mixture of Gaussian
model. To synthesize the MoG1 benchmark, values for both
the data and the latent variable are given as input to PSKETCH.
For the MoG2 benchmark, values for only the data variable are
given as input, and PSKETCH is expected to infer the existence

[c]»
[Bernoulli(z;p)].

|IMOG($; n,w, |, U)HV

[uop £]v

[E1 bop &)

[top(&1,E2,E3)]w

*HMOG(x? ni, wi, Ky, 01)+
MoG(y; n2, w2, po, 2)]v

*[MoG(2;n1, w1, py,01)—
MoG(y; n2, w2, g, 02)]w

*MoG(z; n1, w1, iy, 01) X
MoG(y; n2, w2, ty, 02)]y

:=MoG(c; 1, [1.0], [c], [B])
:= Bernoulli(z;p)
= MOG(Z‘; n,w, \u, 0')

=1let & =[€] in
[uop 5/]]V

:=let &, = [&1], and
52/ = [[52]],/, in
[[51 bop 52]]!/

= let Si = [€1]v and
Sé = [&2]» and
&y = [[é:g]]y/ in,
[top(&1, &5, E3)]w

:= MoG(z; n3, w3, 3, 03)
where,
z=x+Yy
ng =nip X ng
w0 = wi x w)
py =t 4

0527 = \/(0})? + (0})?

1= MoG(z; n3, w3, 3, 03)
where,
z=x—y
ng = ni X n2

nai+j _ q J
wg =wj] Xw

noi+j i
pg® = pi — pg

G;ziﬂ‘ _ /(01)2_’_(0%)2

1= MoG(z; n3, w3, U3, 03)
where,

Z=xT*xyY
ng = ni X n2
w§21+] = w! X w)
L P52 0,02
ngi+j _ K195 tpp0q
H3 = T2
ol +o‘2
L 02,32
n21+J _ D'l X0'2
a. — T .5 .2
3 2, _Jj2
o +a’2

[ite(Bernoulli(z;p),
MoG(y; n1, w1, py,01),
MoG(y; n2, w2, Ko, 02))]w 1= MoG(y; ng, w3, 3, 0'3)

where,
n3 =n1 + n2
wé:wﬁ xp Vie{0,...,n1 — 1}
oy =0] Vi€ {0,...,n1 — 1}
w§1+] =w) x (1 —p)
Vj € {‘0,...',77,2 — 1}
p,gl+J. =uh Vje{0,...,n2 — 1}
a3nl+] =0} Vje{0,...,np — 1}

*[MoG(z; 1, [1], [MoG(z; n1, w1, 1y, 01)],

[MoG(y; n2, w2, Ha, 02)])]w := MoG(z; n3, w3, U3, 03)

where,

z=N(z,y)

n3 =mnL

wy = wi

Py =Hyp .

oy = ph+ (01)” + 0%

2], = v(x)

[!(Bernoulli(z;p))]v := Bernoulli(y;1 — p)

where,

y=lx

*[MOG(x7 ni,wi, Ky, 0-1) >
MoG(y; n2, w2, Ko, 02)], := Bernoulli(z; p)

where,
z =1ite((z > y),1,0)

—1 -11
p= Z?:lo Z?io 2

©_ . J
+lerf(*‘}7f‘2_)
2 a2 +ed)?)

x(wi x w3)

[Bernoulli(z;p1)&&
Bernoulli(y;p2)]. := Bernoulli(z;pip2)
where,
z = z&&y

[Bernoulli(xz;p1)||

Bernoulli(y;p2)]y :=Bernoulli(z;1 — (1 — p1)(1 — p2))
where,
z=zlly

x[ite(Bernoulli(z; p1),
Bernoulli(y;p2),
Bernoulli(y;ps))]v := Bernoulli(y; p1p2
+(1 —p1)ps)

Figure 6: Given an arbitrary expression £ and an environment v, [£], returns an approximation to £ as either a Bernoulli or a mixture
of Gaussians distribution. We use MoG(z;n, w, i, o) and Bernoulli(z;p) to denote mixture of Gaussians and Bernoulli distribution
respectively. Rules which introduce approximations are marked by a *. Rules without a * are precise. The function erf(z) is called the
error function: it equals twice the integral of a Gaussian distribution with mean 0 and standard deviation 1/+/2. The value of b is drawn from
aBeta(0.1, 1) distribution. All rules assume that the variables x, y and z are distinct.

of a latent variable. For the MoG3 benchmark, although the val-
ues for the hidden variable are not given, it is mentioned in the

sketch.

e RATS [4]is a clinical study of the growth of a rat’s weight based
on the number of days in observation.

e The Gaussian benchmark is a simple Gaussian model for a
single variable.

Results. For each probabilistic program benchmark, we generated
data sets by running the program multiple times and collecting the
outputs generated (recall that the output of a probabilistic program

is a set of samples from the probability distribution represented
by the program). We also wrote sketches for the benchmarks by
replacing parts of the program that involved probabilistic reasoning
with holes. As a specific example, we replaced the probabilistic
computations in the TrueSkill example (as shown in Figure 1)
with the sketch shown in Figure 2. We did similar replacement
of probabilistic computations in all the 16 examples with holes.
Then we ran PSKETCH on the sketches with the generated data
sets to produce a solution. As seen in Table 1, PSKETCH takes
time in minutes and often in seconds to synthesize a program from
its sketch and data. The column “target program LL” is the data
log-likelihood of the original program (which we call as “target

0.05-

0.04- 4
3,0.04

0.05-
0.04-

% 0.03 .Synthesized ® .Synthesized % 0.03- .Synthesized
c c c
@©0.02- D0.02- @©0.02-
[a] (=l

0.01- ZTrue ZTrue 0.01- ZTrue

0.00- : y I ; 1 0.00- I y ;i 0.00-] !] ;

80 100 120 140 160 75 100 125 60 80 100 120
skill1 skill2 skill3

(a) Skill distributions of player 1.

(b) Skill distributions of player 2.

(c) Skill distributions of player 3.

Figure 7: Skill distributions of players 1, 2 and 3 w.r.t the actual and the synthesized TrueSkil1l program (3 players & 3 games).

o o ~ — — (=]

10000 2 & B8 & 3 B 5§

~ ~ 3 3 3 3 3

10000 [= =]
1000
100

10

[
T rue ski | I tl-l.l.l.l-l.l.l.2l-;-.l.l.l-l.l.l.l-l.l.l.
Bu rgl ary =P
£

Number of programs generated/100 secs

Clickthrough Ell R
Clickthrough2 ==
Clickthrough3 §11
Clickthroughd En T

= 14259

Cli n ica l F.-.......-...]...;-.......-.......-.......-..

A PSKETCH [Baseline

o [Ty} o0 o~ ™~ ™~
™~ @] =] ™ 0 @ ©
® & & & @ @ =
g =1 o =] =) = a o
- & qo He e i
e v K 2 K = K S
. ﬂ]_ﬂ o ﬂm ::Im ::”]] = |]:|:|l & ﬂﬂ]
[ap o = o~ [} c
o = a < [} [} ‘©
S = < 2 o] 2
5 & 3 = s = 5
u o k-] 2 o
5 c] 9
S I £ 2
b i a
u—
® £
] @a
2

Figure 8: Number of sample programs generated per 100 secs with and without the approximation proposed in Section 4.3.

Table 1: Synthesis Results For PSKETCH.

Benchmark time (sec) | target synthesized | data set
program LL. | program LL | size
Burglary 89 -71.94 -71.37 100
TrueSkill 114 -718.33 -697.68 400
Clinical 149 -102.26 -98.09 100
Clickthroughl | 117 -102.75 -103.91 400
Clickthrough2 | 37 -102.75 -102.34 400
Clickthrough3 | 120 -263.73 -263.82 400
Clickthrough4 | 312 -263.73 -263.12 400
Conference 113 -251.81 -195.33 400
Grading 353 -179.04 -181.82 400
Handedness 145 -90.71 -90.32 100
Gender Height | 451 -780.02 -727.88 100
MoG1 113 -479.15 -472.59 100
MoG2 7 -405.27 -411.19 100
MoG3 2 -405.27 -405.43 100
RATS 215 -1140.68 -1047.54 400
Gaussian 10 -1483.67 -1479.2 400

program”), and column “synthesized program LL” is the data log-
likelihood of the synthesized program. The column “ data set size”
is the number of rows in the data set used as the specification for
synthesis.

Next, we evaluate how well the posterior distribution of the
synthesized probabilistic program matches with the intended dis-
tribution. For this purpose, we computed posterior distributions on
the skill variables of 3 particular players, and measured how they
compared with the analytically computed skill values (which we

computed manually from the original probabilistic program). Fig-
ure 7 compares the marginal distributions of the skill variables of
the original program and the program synthesized by PSKETCH.
It can be observed from the plots that the samples converge to the
corresponding stationary distributions.

Finally, we evaluate the effectiveness of the approximations for
computing likelihoods proposed in Section 4.3. Figure 8 compares
the number of sample programs generated per 100 secs with and
without the approximation (where the integrals are computed using
the approach proposed by Bhat et al. [2]) for each of the bench-
marks. It is evident from the plots that using the approximation
improves the runtime of the MCMC algorithm by a factor of 1000.
From the values of the log likelihood of the synthesized programs
(in Table 1), we also see that the approximate computation of like-
lihood does not affect the quality of the synthesized programs.

Summary. To summarize, our experiments demonstrate that (1)
PSKETCH is able to synthesize interesting probabilistic programs
from holes in several examples, (2) the programs synthesized by
PSKETCH have likelihood values and posterior distributions very
close to the target programs we expect to synthesize, and (3)
our techniques for approximate computation of likelihoods during
MCMC improved the runtime of PSKETCH by a factor of 1000.

6. Related Work

Our work is related to program synthesis in the programming lan-
guages area and the rich literature in automatically learning proba-
bilistic models in the machine learning area.

Program synthesis. There have been several approaches for syn-
thesis of deterministic programs [11, 28, 29]. The use of sketches
for synthesizing deterministic programs was pioneered by Solar-
Lezama et al. [28]. Our tool PSKETCH draws inspiration from this
work and applies the notion of sketching to probabilistic programs.
Recent work [27] deals with the problem of loop-free binary super-
optimization, where the objective is to synthesize an optimal code
sequence for a straight-line sequence of instructions. A novel fea-
ture of this work is that the search for an optimal code fragment
is modeled as a stochastic search problem over the space of deter-
ministic programs. There has been increasing interest in the ma-
chine learning community to tackle the problem of program syn-
thesis via generative models. [18] propose an approach to synthe-
size deterministic programs for multiple related tasks using an hi-
erarchical Bayesian model. [21] propose an approach to synthesize
natural code using a variant of probabilistic context free grammars
(PCFGs).

In contrast to these approaches, the synthesis algorithm in PS-
KETCH is a stochastic search over the space of probabilistic pro-
grams where the search is guided by the data. The problem of eval-
uating the likelihood of a probabilistic program with respect to the
given data is central to this problem. Our novel approach of using
the mixture of Gaussians approximation to solve this problem is an
essential ingredient which makes the approach feasible in practice.

Learning probabilistic models. [19] propose an algorithm for
learning Bayesian networks. [7] learn high tree-width Markov net-
works where inference is still tractable. More recently, [5] describe
an algorithm for learning a new class of deep probabilistic mod-
els called sum-product networks (SPNs). In comparison, PSKETCH
employs the notion of a sketch for a probabilistic program to signif-
icantly reduce the search complexity. It also uses the structure and
semantics of the probabilistic program for efficient likelihood com-
putation that makes the MCMC based search feasible. We are un-
aware of any work for learning the network structure of such a gen-
eral class of models (as rich as programs), when only the skeletal
dependency structure between the variables is provided as a sketch.

7. Conclusion

Probabilistic programming is an exciting and emerging area of ac-
tive research with several applications on the horizon. However,
writing probabilistic programs requires a certain degree of expertise
in machine learning and statistics. In this paper, we have introduced
the problem of synthesizing probabilistic programs, and proposed
a solution that is based on stochastic search that relies on a mixture
of Gaussians approximations, and also exploits domain knowledge
in the form of program sketches and datasets. Our tool PSKETCH is
able to successfully synthesize a number of complex probabilistic
programs. With these encouraging results, we believe that our so-
lution is one step towards making probabilistic programming more
accessible to a larger class of application programmers.

Acknowledgments

We thank Timon Gehr and Martin Vechev for their help with fixing
errors and improving the presentation of this paper.

References

[1] Y. Bachrach, T. Graepel, T. Minka, and J. Guiver. How to grade a test without
knowing the answers—a bayesian graphical model for adaptive crowdsourcing
and aptitude testing. arXiv preprint arXiv:1206.6386, 2012.

[2] S.Bhat, J. Borgstrom, A. D. Gordon, and C. V. Russo. Deriving probability den-
sity functions from probabilistic functional programs. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 508-522, 2013.

[3] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm.
American Statistician, 49(4):327-335, 1995.

[4] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.
Bayesian data analysis. CRC press, 2013.

[5] R. Gens and P. Domingos. Learning the structure of sum-product networks. In
International Conference on Machine Learning (ICML), pages 873-880, 2013.

[6] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for
complex Bayesian modelling. The Statistician, 43(1):169-177, 1994.

[7] V. Gogate, W. A. Webb, and P. Domingos. Learning efficient markov networks.
In Neural Information Processing Systems (NIPS), pages 748-756, 2010.

[8] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenen-
baum. Church: a language for generative models. In Uncertainty in Artificial
Intelligence (UAI), pages 220-229, 2008.

[9] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic
programming. In Future of Software Engineering, FOSE 2014, pages 167-181,
2014.

[10] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic
programming. In Future of Software Engineering (FOSE), pages 167-181, 2014.

[11] S. Gulwani. Dimensions in program synthesis. In Princi-
ples and Practice of Declarative Programming (PPDP), 2010.
http://research.microsoft.com/ sumitg/pubs/ppdp10-synthesis.pdf.

[12] R. Herbrich, T. Minka, and T. Graepel. TrueSkill: A Bayesian skill rating system.
In Neural Information Processing Systems (NIPS), pages 569-576, 2006.

[13] M. D. Hoffman and A. Gelman. The no-U-turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, in
press, 2013.

[14] J. H. Kim and J. Pearl. A computational model for causal and diagnostic
reasoning in inference systems. In IJCAI, volume 83, pages 190-193. Citeseer,
1983.

[15] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domin-
gos. The Alchemy system for Statistical Relational AI. Technical report, Uni-
versity of Washington, 2007.

[16] D. Koller, D. A. McAllester, and A. Pfeffer. Effective Bayesian inference for
stochastic programs. In National Conference on Artificial Intelligence (AAAI),
pages 740-747, 1997.

[17] D. Kozen. Semantics of probabilistic programs. Journal of Computer and System
Science (JCSS), 22:328-350, 1981.

[18] P.Liang, M. I. Jordan, and D. Klein. Learning programs: A hierarchical bayesian
approach. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 639-646, 2010.

[19] D. Lowd and P. Domingos. Learning arithmetic circuits. In Uncertainty in
Artificial Intelligence (UAI), pages 383-392, 2008.

[20] D.J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cam-
bridge University Press, New York, NY, USA, 2002.

[21] C.J. Maddison and D. Tarlow. Structured generative models of natural source
code. In International Conference on Machine Learning (ICML), pages 649—657,
2014.

[22] V. Maz’ya and G. Schmidt. On approximate approximations using gaussian
kernels. IMA Journal of Numerical Analysis, 16:13-29, 1996.

[23] T. Minka, J. Winn, J. Guiver, and A. Kannan. Infer.NET 2.3, 2009.

[24] A. V. Nori, C.-K. Hur, S. K. Rajamani, and S. Samuel. R2: An efficient
memc sampler for probabilistic programs. In AAAI Conference on Artificial
Intelligence. AAAI Press, July 2014.

[25] A. Pfeffer. The design and implementation of IBAL: A general-purpose proba-
bilistic language. In Statistical Relational Learning, pages 399-432, 2007.

[26] J. Pfeffer. Probabilistic Reasoning in Intelligence Systems. Morgan Kaufmann,
1996.

[27] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superoptimization. In Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 305-316, 2013.

[28] A. Solar-Lezama, R. M. Rabbah, R. Bodik, and K. Ebcioglu. Programming by
sketching for bit-streaming programs. In Programming Language Design and
Implementation (PLDI), pages 281-294, 2005.

[29] S. Srivastava, S. Gulwani, and J. Foster. From program verification to program

synthesis. In Principles of Programming Languages (POPL), pages 313-326,
2010.

