Continuous Distributed Counting
for Non-monotonic Streams

Zhenming Liu*
zhliu@eecs.harvard.edu
Harvard School of Engineering
and Applied Sciences

ABSTRACT

We consider the continual count tracking problem in a distributed
environment where the input is an aggregate stream that originates

from k distinct sites and the updates are allowed to be non-monotonic,

i.e. both increments and decrements are allowed. The goal is to
continually track the count within a prescribed relative accuracy e
at the lowest possible communication cost. Specifically, we con-
sider an adversarial setting where the input values are selected and
assigned to sites by an adversary but the order is according to a
random permutation or is a random i.i.d process. The input stream
of values is allowed to be non-monotonic with an unknown drift
—1 < p < 1 where the case 4 = 1 corresponds to the spe-
cial case of a monotonic stream of only non-negative updates. We
show that a randomized algorithm guarantees to track the count ac-
curately with high probability and has the expected communication
cost O(min{v/k/(|p|€), Vkn/e,n}), for an input stream of length
n, and establish matching lower bounds. This improves upon pre-
viously best known algorithm whose expected communication cost
is ©(min{v/k/e,n}) that applies only to an important but more
restrictive class of monotonic input streams, and our results are
substantially more positive than the communication complexity of
Q(n) under fully adversarial input. We also show how our frame-
work can also accommodate other types of random input streams,
including fractional Brownian motion that has been widely used to
model temporal long-range dependencies observed in many natural
phenomena. Last but not least, we show how our non-monotonic
counter can be applied to track the second frequency moment and
to a Bayesian linear regression problem.

Categories and Subject Descriptors

F.2.2 [Analysis of algorithms and problem complexity]: Nonnu-
merical algorithms and problems; H.2.4 [Database management]:
Systems-distributed databases

*Work performed while an intern with Microsoft Research Cam-
bridge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PODS’12, May 21-23, 2012, Scottsdale, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1248-6/12/05 ...$10.00.

BoZidar Radunovi¢
bozidar@microsoft.com
Microsoft Research
Cambridge

Milan Vojnovi¢
milanv@microsoft.com
Microsoft Research
Cambridge

General Terms
Algorithms, theory

Keywords

Distributed counting, non-monotonic streams

1. INTRODUCTION

A continuous distributed tracking model was introduced in [7]
to address the challenges of designing an effective strategy to con-
stantly track statistics in a dynamic, distributed environment. In
this model, data arrive in multiple streams to a number of sites. All
the sites are connected to a coordinator, and the goal of the coordi-
nator is to continuously track some function of the aggregate data,
and update it as new data arrives. An exact tracking would require
each data sample to be communicated to the coordinator, which
would incur a prohibitively large communication cost - linear in
the size of the input stream. Similarly, space and time processing
requirements may be very large. However, for most applications
it is satisfactory to provide an approximate tracking. Thus, a gen-
eral formulation of a continuous distributed tracking problem is to
design an algorithm that will minimize the space, time and/or com-
munication complexity while providing approximation guarantees
on the tracking accuracy. Continuous distributed tracking problems
have recently gained much interest in the research community [23,
8, 1,22].

One of the basic building blocks for many of the existing al-
gorithms is a counter. The goal of the counter is to report, with a
given relative accuracy, the sum of values of all elements that have
arrived across the aggregate stream arriving from distributed sites.
The main assumption in almost all the previous works is that the
input stream being counted is monotonic non-decreasing and, sur-
prisingly, there is very little work on continuous distributed non-
monotonic counters. Similarly, most of the previous algorithms
using counters are not guaranteed to work correctly under non-
monotonic input stream.

However, many data streams do not satisfy the monotonicity
property. A simple motivating example is a voting/ranking applica-
tion. Suppose users’ votes come in a distributed stream. The goal is
to keep a continuous track of which of the two options has a higher
number of votes, and approximately by which voting margin. Here,
the votes for each option can essentially be seen as two separate
data streams, but we are interested in continuously monitoring the
difference of the two streams, which is clearly non-monotonic. The
naive approach of estimating the count of each option separately
and then taking the difference will not provide a relative error guar-
antee for the difference.

Non-monotonic streams are common in many situations when



dealing with instantaneous instead of cumulative phenomena, e.g.
tracking a difference. One example we analyze in more detail is
monitoring a process that exhibits long-range dependency, a phe-
nomena that has been found to be prevalent in nature, e.g. network
traffic [14]. Also, non-monotonic counters are useful as building
blocks in more complex algorithms whose inputs are not necessar-
ily monotonic. A source of non-monotonicity could be the use of
random projections that transform an input data stream into a non-
monotonic stream. Another example that we discuss is a streaming
implementation of a Bayesian linear regression problem (c.f. [2]),
which is useful in the context of machine learning platforms for
processing of large-scale data (e.g. [16]).

In this work we are interested in designing a continuous non-
monotonic distributed counter with optimal communication com-
plexity. We will also discuss its applications in different scenarios.
In the next section, we define the problem in more detail.

1.1 Problem Definition

Consider a standard distributed streaming model where k sites
are connected to a coordinator. Each site is allowed to communi-
cate with the coordinator but they cannot communicate with each
other directly (and a broadcast message counts as k messages).
Data items az, . . ., a, arrive at sites 9(1), ..., 9 (n) respectively,
at time instants 71 < --- < T,. We shall refer to the item a:
as the ¢-th update. In a general continuous distributed monitoring
problem, the coordinator is responsible to maintain a value of a
function f(a1,...,a:) at each time 7+ with a relative accuracy e.
We are interested in the counter problem, where the goal is to track
asum Sp = ) ;< @i of all the items that have arrived until time
7¢. The coordinator then needs to maintain an estimate that is be-
tween (1 —¢€).S; and (1+¢€)S;. Note that, by definition, the counter
problem has low space and time complexity, and thus we focus on
minimizing communication complexity.

A monotonic counter only allows for positive increments. In
particular, a canonical example of a monotonic counter [12] implies
ar = 1 for all ¢, meaning that a counter is incremented by one
whenever an update arrives. We relax the assumption that a; is
positive, and we call this a non-monotonic counting problem. In
the streaming literature, this input model is usually called a general
(non-strict) turnstile model [17].

To the best of our knowledge, the only research so far deal-
ing with non-monotonic input streams is Arackaparambil et al. [1],
who studied the tracking of frequency moments Fj,, where deletion
operations are allowed (a; = 1 denotes an insertion and a; = —1
denotes a deletion). There, a strong negative result is established
for the adversary input case for both tracking counts and tracking
F}, when deletion is allowed: the worst-case communication com-
plexity is 2(n) messages for an input stream of n elements. It is
straightforward to construct a worst-case input for the counter prob-
lem: consider the case where there is only one site and the updates
consist of alternations between an insertion and a deletion. In this
case, the true global counter evolves as the sequence 0, 1,0, 1, .. ..
When one update is missed from the site, then the multiplicative
error from the server becomes unbounded. Therefore, upon the ar-
rival of each update, the site has to send a message to the server,
which implies a communication lower bound of £2(n) messages.
While there is no way to circumvent this linear lower bound barrier
for the worst-case input, it is natural to ask what the communication
complexity is when the input is not fully adversarial and consider
the following question:

Can we design a continuous, distributed tracking
protocols for counter for non-monotonic updates that

has a sublinear communication complexity when the
input is randomized?

In particular, we are interested in a random permutation model.
In this model, an adversary first decides the entire sequence of up-

dates af, ..., a,, for all sites. We only assume that the sequence is
bounded. Then, the “nature” decides a random permutation 7. The
final input to the sites is a1 = aj;(1y, a2 = @ (z), .-+, n = Ay

This model is very natural in large-scale settings (such as Internet
scale, for example), where data is collected from a large number
of individuals (e.g. Twitter or Facebook users). In such a model,
a large amount of data is generated in short time intervals, and it
is reasonable to assume that the order in which the individuals en-
ter their inputs in the system is random, but the input itself can be
arbitrary.

We are also interested if sublinear algorithms can be obtained
for other types of random inputs that are well motivated by appli-
cations. For example, the use of random projections for comput-
ing sketches motivates to consider random i.i.d. updates. Another
example is found in nature where many real-world phenomena ex-
hibit self-similarity and long-range dependence (e.g. network traf-
fic [14]) which where traditionally modeled by random processes
such as fractional Brownian motion and found to be in good con-
formance with empirical data.

In all these data models, we shall assume that an adversary
chooses the function 1/ (¢) which defines how the stream is parti-
tioned among the sites (an example is a load-balancing algorithm
that can arbitrarily scatter inputs across sites). The adversary can
only decide the function v (¢) based on the information observed
up to a point in time. This means that when the input is a random
permutation, ¢ (¢) can depend on the content of the updates decided
by the adversary, the prefix of the permutation observed so far, and
the values ¢(1), ..., ¢ (t — 1); while when the input is random, the
function v(¢) can only depend on the values of a1, ...,a;—1 and
the values of ¢(1),...,9(t — 1); . We will also assume that the
times 71, ..., 7T, at which the inputs arrive are decided by an ad-
versary. This essentially implies that the coordinator and the other
sites have no knowledge of the time instants at which an input ar-
rives to its corresponding site, and any communication can only be
initiated by a site that has received an update.

Note that our model is a strict generalization of the standard
monotonic stream model for counting (c.f. Huang et al. [12]),
where the updates are fixed to a; = 1, and the arrival times and
sites are adversarial. In our case, we relax the assumption on the
value of updates and allow for randomly permuted adversarial or
entirely random values of updates, while still keeping the adversar-
ial data partitioning and arrival times.

1.2 Our Contributions

Our main results in this paper are matching upper and lower
bounds on the communication complexity for a continuous, dis-
tributed, non-monotonic counter (up to a poly-logarithmic factor),
which are sublinear in the size of the input. While these bounds
hold for different types of inputs, we give a single algorithm that
is optimal for all the types of inputs considered, and whose com-
munication cost also matches the corresponding lower bounds. The
algorithm is lightweight in having only O(l) space and update time
complexity'.

We first provide results for the case of Bernoulli i.i.d. input
(Section 3) where we develop basic techniques that will be used in
subsequent analysis. In the Bernoulli i.i.d. model, we assume that
each update a; is a Bernoulli random variable, with Pr{a; = 1] =

'We use O(z) = x1og®™M (nk/€) notation to ignore log factors.



1 — Pr[ax = —1] = p, for some unknown parameter p € [0, 1].
The counter value S; is then a Bernoulli random walk with a drift
u = 2p — 1. In the case of a Bernoulli i.i.d. input without a drift
(u = 0), we show that a count can be tracked with O(v/kn/e)
communication cost. In case of a Bernoulli i.i.d. input with an
unknown drift € [—1, 1], the achievable communication cost is
O(min{vkn, Vk/|uu|}/€). In both cases, our algorithm does not
need to know the drift. We also give matching lower bounds for
most important cases (Section 4), showing the optimality of our
algorithm.

This result should be compared with the communication cost
O©(Vk/¢) for a monotonic counter (with a; = 1) that was recently
established in [12]. We show that the same bound holds for a more
general choice of updates (any i.i.d. Bernoulli input), as long as the
drift is a positive constant. This is perhaps not entirely surprising,
as for the constant drift case we use the algorithm from [12] as one
of the building blocks for our algorithm. The key novel insight
is that the communication cost increases to O(v/kn/e) when the
drift is |u| = O(1/+/n). Thus, we demonstrate that we are still
able to track the count with a sublinear communication cost, and
we describe the parameter ranges in which the cost is polynomial
vs. polylog in the input size.

We next turn to our main results for the permutation model.
Here we show that tracking is achievable with O (v/kn,/€) commu-
nication cost and we give a matching lower bound (Section 4). This
is to be contrasted with ©(n) lower bound for a non-monotonic
counter in a fully adversarial setting [1]. We show that, in a setting
where all other parameters are chosen by an adversary, randomly
permuting an arbitrary non-monotonic input is enough to permit
a tracking algorithm with a sublinear communication cost. This
shows that a sublinear tracking of non-monotonic input is still pos-
sible in a large number of real-world scenarios.

We further show that our algorithm can track a fractional Brow-
nian motion with Hurst parameter H € [1/2,1), where 1 < § <
1/H is an arbitrary parameter (Section 3.4) with total expected

communication cost of O~(k%5 n'~H /) messages. For the case
of independent increments (H = 1/2), we get the same bound as
before. For the case of positively correlated increments (1/2 <
H < 1), which is of most interest in applications, we get a smaller
communication cost. This is intuitive in view of the facts that in-
crements are positively correlated which makes the process more
predictable and the variance is larger. This in turn implies smaller
expected residence of the count in the region of small values where
there is a higher sensitivity to relative errors. Interestingly, the al-
gorithm does not require to know the exact value of the parameter
H, but only needs to have an estimate 1/d such that H < 1/4.

Finally, we show how our counter can be used as a building
block for some instances of distributed tracking problems (Sec-
tion 5). First, we construct an algorithm to track the second fre-
quency moment (F tracking) with O(v/kn/e?) communication
complexity (Section 5.1) and then provide a Q(min{v/kn/e, n})
lower bound that is matching in both n and k. We also show how
to use the non-monotonic counter as a building block for a Bayesian
linear regression problem (Section 5.2), and show that the Bayesian
linear regression can also be tracked with sublinear communication
cost.

It is noteworthy that while the communication cost for non-
monotonic random streams with subconstant drift is sublinear in
the input size, this is significantly larger than for monotonic streams
(O(y/n) vs O(1)), which is because the problem is intrinsically
more difficult. However, the fact that the communication cost is
sublinear in the input size would still make the algorithm of ap-

peal for practical applications. For example, Twitter users generate
more than 10% tweets a day [21]. In this scenario, the communica-
tion cost of our algorithm for tracking a single counter would only
be in the order of 10* messages per day, which is a significant re-
duction of the traffic load. Furthermore, our bounds are matching
with the bounds for the monotonic counters in k and e parameters.

Finally, we briefly discuss the main techniques used in this
paper. As we are designing algorithms for random streams in a dis-
tributed environment, our solution naturally calls for an integration
of different techniques from sampling theory, analysis of stochas-
tic processes, classical streaming algorithms, and distributed algo-
rithm design. The main ingredient in our algorithm to tackle an
otherwise intractable problem in the adversarial setting is to make
an optimal prediction on the evolution of the counter process us-
ing a scarce communication resource and adaptively changing the
tracking strategy as we continuously update our predictions. Mak-
ing the prediction requires us to understand the volatility structure
of the counter process; in our specific case, this boils down to the
analysis of first passage time of random walks and random permu-
tations. Designing a communication efficient tracking algorithm
requires us to construct a sampling based protocol that can judi-
ciously cope with the volatile structure of the process. To prove
our matching lower bounds, we needed to carefully decompose the
entire tracking process into disjoint segments so that we can apply
results from the communication complexity and sampling theory
separately on each segment and reach a strong lower bound that is
polynomial in n.

Due to space constraints, we omit some of the proofs. All the
proofs can be found in the technical report [15].

1.3 Related Work

The research on functional monitoring in distributed systems
has considered a variety of problems (e.g. [9, 10, 3, 6, 18]) includ-
ing one-shot and continuous tracking query problems. To the best
of our knowledge, Cormode et al. [7] is the first work that artic-
ulated the distributed computation model that we consider in the
present paper. Substantial progress has recently been made on un-
derstanding various problems under this model, including drawing
a sample with or without replacement (e.g. [8, 22]) and answering
holistic queries such as tracking the rank of an item or computing
a quantile (e.g. [12, 5, 23]).

The most closely related work to ours is the recent work of
Huang et al. [12] and Arackaparambil et al. [1]. The work of
Huang et al. examines the same counter problem as ours but assum-
ing an important but more restrictive class of monotonic streams,
where only positive increments are allowed. Our work relaxes this
assumption on the input by allowing for non-monotonic streams
where decrements are allowed (either i.i.d. or random permuta-
tion). Specifically, we assume that the rate of positive increments
is (1 + p)/2, for some unknown drift parameter —1 < i < 1. For
the special case of the drift parameter ;o = 1, our counter algorithm
would solve the same counter problem as in [12] with the matching
performance.

The work of Arackaparambil et al. considered non-monotonic
functional monitoring in the adversarial setting, including the prob-
lem of continuously tracking F5 that we study here. They estab-
lished an ©2(n) lower bound for the 1-site case and an Q(n/k)
lower bound for the k-site case. For the random input stream that
we study here, we establish a tight lower bound that is sublinear
in n and grows with &, suggesting that our problem under random
input may have a different structure than the one under fully adver-
sarial input.



2. ALGORITHMS AND NOTATIONS

‘We now present our algorithm for continuous distributed count-
ing for non-monotonic streams. The algorithm is applicable to all
input models, subject to choosing appropriate constants. In the sub-
sequent sections we will show how to choose the constants for each
input model under consideration.

In what follows, we shall write X; be the ¢-th input (because
the input is stochastic) and let © = E[X;] be the drift rate of the
counter process, S't be the coordinator’s estimate of S;. When the
context is clear, we refer to a; as both the ¢-th update and the item
arrived at time ¢ interchangeably though we shall be clear that the
actual physical time is irrelevant in our algorithm. Also, we shall
assume that each site always keeps track of the total number of
updates arrived locally and maintain a local sum counter. Let us
start with introducing the basic constructs we need for the design
of our distributed algorithm.

2.1 Building Blocks

The key novel building block in our scheme is:

Sampling and Broadcasting (SBC). In this protocol, the coordi-

nator broadcasts its current estimate S; to all the sites at the begin-
ning. Each site maintains a common sampling rate ~ 1/(e2S7) that
depends only on the global estimate S;. Whenever a site receives
a new update, it samples a Bernoulli random variable R; with the
above rate. If R, = 1, the following actions will be carried out
sequentially (invoking é(k) message exchanges):

1. The site signals the coordinator to sync all data.

2. The coordinator broadcasts a message to all the sites to col-
lect their local counters.

3. Each site reports its local counter to the coordinator. The co-
ordinator computes the new exact count and broadcasts this
new count to all sites.

Upon receiving the new count S,, each site adjusts the sampling
rate of the Bernoulli random variable to

N B
Sample-Prob($;, t) = min { alog'n 1} (1
€252
where « and [ are some appropriately chosen positive constants.
We will also use the following building blocks:

HYZ counter. In [12], a distributed counter is developed to track
monotonic updates with a relative accuracy € and error probabil-
ity 0 using 0(4 log(1/6)) communication when k = O(1/€%)
and O(k log(1/8)) communication when k = w(1/¢?) (here, O(:)
hides the poly-logarithmic dependencies on n). We shall refer this
protocol as HYZ(e, 9).

Geometric Progression Search for ;. (GPSearch). The goal of
this building block is to produce a reliable estimator of . It will
report an estimate /i only when sure w.h.p. that & € [(1—e)p, (14
€)u], where € is a given constant. It also guarantees that /i is found
before time ©(logn/u?). We describe the GPSearch protocol in
more details in [15].

Straightforward Synchronization (StraightSync). In this pro-
tocol, the coordinator pulls out the exact values of ¢ and .S; from the
sites in the beginning of the protocol. When a local site receives an
update, it contacts the coordinator and executes the following steps
sequentially:

1. The site sends both the total number of local updates and the
local counter to the coordinator.

2. The coordinator updates the global count and the global num-
ber of updates.

3. The coordinator sends the updated global count and global
number of updates to the site.

2.2 Algorithm Overview

Our algorithm, called Non-monotonic Counter, consists of
two phases.

Phase 1: The first phase covers updates from¢ = O tot = 7, where
7 = clogn/(u%e) for some sufficiently large constant ¢ > 0.
During this phase, we have two communication patterns:

e When (eS;)? > k, we use the SBC protocol.

e When (e5;)? < k, we use the StraightSync protocol.

The coordinator shall make a broadcast when the algorithm makes
a switch between SBC and StraightSync protocol.

Phase 2: The second phase covers from ¢t = 7 tot = n (the
second phase could be empty when 7 > n). In the second phase,
the algorithm maintains a HYZ(© (ep), ©(1/n?)) to track the total
number of positive updates and another HYZ(0(ew), ©(1/n?)) to
track the total number of negative updates. The difference between
the positive updates and the negative updates is the estimator main-
tained by the coordinator.

In addition, our GPSearch procedure is executed in the back-
ground, and it will be able to tell us a good estimate of u, and de-
cide when Phase 1 ends. When the algorithm changes from the first
phase to the second phase, the coordinator shall make a broadcast
to inform different sites of the phase change.

3. UPPER BOUNDS

In this section, we analyze Non-monotonic Counter for i.i.d.
input, randomly ordered streams, and fractional Brownian motion.
Because the input is of stochastic nature, we shall write the updates
as X1, Xo,..., X, instead of ai,...,a, to emphasize the ran-
domness. Our analysis starts with the simplest case, where k = 1
and the input is i.i.d. with 4 = 0. Then we move to the more
complex scenarios, in which there are multiple sites and unknown
w. Finally, we generalize our algorithms and analysis to the ran-
domly ordered stream and fractional Brownian motion case, where
the updates are no longer independent. Along the way, we shall
explain the reasons why we design the algorithm in such a way and
gradually unfold the key techniques used in the analysis.

3.1 LLD. Input with Zero Drift

Recall the algorithm Non-monotonic Counter that is described
in Section 2. To analyze the behavior of our algorithm we start by
giving an upper bound for the single-site case (k = 1), and we
then turn to the multi-site case. In the single-site case, we need to
introduce a small modification to the algorithm. Since the site is
aware of the exact counter value S; = S, there is no need for the
straightforward stage and we assume that the algorithm is always
in the broadcast stage. Also, there is no need for the coordinator to
send messages back to the site.

We will use the sampling probability as defined earlier in (1)
with @ > 9/2and 8 = 2. The parameter « controls the tradeoff be-
tween communication complexity and the success probability. The
choice of p; is intuitive because the smaller S; is, the more likely
that a small change of S; will cause large multiplicative change;
therefore, the site should report the value to the coordinator with
higher probability.

We have the following theorem:



THEOREM 3.1. For the single-site case, the randomized algo-
rithm Non-monotonic Counter with the sampling probability as in
(1), with o > 9/2 and B = 2, guarantees to track the count
within the relative accuracy € > 0 with probability 1—O(1/n) and
uses the rotal expected communication of O(min{+/n/e-logn,n})
messages.

Proof is provided in [15]. Here, we comment on the intuition
of using a sampling based algorithm and setting the sampling prob-
ability as specified in (1). We want the site to send messages to
the coordinator as infrequently as possible. Suppose that at time
t, we have S; = s and a message is sent to the server. We need
to understand what the next appropriate time would be to send an-
other message. Ideally, this shall happen at the time where S; first
passes through either s/(1 + €) or s/(1 — €). Implementing this
strategy is feasible when there is only one site but it is unclear how
it can scale up to k site case (because the challenge of distributed
tracking algorithms exactly lies in the difficulties of exactly trac-
ing the aggregate statistics and thus it is hard to spot the exact first
passage time). It is therefore desirable to use a “smooth” strategy
by a site, i.e. the algorithm does not critically rely on the knowl-
edge on the time when S; first passes through some pre-specified
points. The sampling based algorithm possesses such a property.
We also need to estimate the sampling rate of the algorithm. Intu-
itively, it takes an unbiased random walk approximately (es)? time
to travel for a distance of about length es (to hit either s/(1 — ¢€)
or s/(1+ €)). When es becomes sufficiently large, we even have a
concentration result, i.e. with high probability, the time it takes to
hit either s/(1 — €) or s/(1 + €) is ©((es)?). Therefore, sampling
at rate ©(1/(es)?) is not only sufficient to maintain high accuracy
but also optimal.

‘We now extend to the multiple site case. Let us first go through
the intuition why we want to distinguish the two stages of the al-
gorithm, the straightforward (StraightSync) stage and the broad-
cast (SBC) stage, described in Section 2. The main idea of our
distributed algorithm is to simulate the behavior of the sampling
algorithm for the single site case (Theorem 3.1). For that we re-
quire that each site has a good estimate S, of the global count S;.
As S; gets updated, the copies of the counter at all sites need to be
updated, in order to maintain the correct local sampling rate. The
only way to achieve so is to broadcast the counter, which would re-
sult in ©(k) messages exchanged. The crucial observation here is
that when S; gets updated frequently (i.e., when S; is sufficiently
small), broadcasting messages after each update could be wasteful.
It may be even worse than the trivial approach where a site syn-
chronizes only with the coordinator whenever it receives an update
(resulting in ©(1) messages). This “trivial” approach is captured
in our straightforward strategy, and we switch to it whenever it is
less expensive. Note that we can use the estimator S; instead of the
actual value S; to decide whether the broadcasting or the straight-
forward strategy has the smaller communication cost, because we
guarantee a sufficiently high accuracy of the estimator.

We have the following theorem.

THEOREM 3.2. The randomized algorithm Non-monotonic
Counter with the sampling probability as in (1), with o large enough
positive constant and 3 = 2, guarantees to track the count within
the relative accuracy € > 0 with probability 1 — O(1/n) and uses
the total expected communication of O(min{vkn/e - logn,n})
messages.

Proof is provided in [15]. It is based on a coupling argument
that enables us to reuse the result of Theorem 3.1.

3.2 LLD. Input with Unknown Drift

In the previous section we have seen that the communication
complexity in the case with no drift is O (1/n). However, the mono-
tonic counter from [12] is a special case of our model with 1 = 1,
and its communication complexity is O(1). Clearly, we conclude
that a positive drift might help. The natural question then is whether
this observation holds for an arbitrary drift ;1 # 0, and how can we
exploit it when the drift is unknown.

To gain an intuition on the input’s behavior for an arbitrary
drift, it is helpful to re-parameterize each input X; as X = pu+ Z;,
where  is the drift term and Z; is a random variable representing
the “noise” term, We shall intuitively view Z; as noise that behaves
similar to Gaussian noise. We want to identify which term con-
tributes more to the estimation error. Suppose S; = s. It takes the
drifting term et time units to reach +-es while it takes the noise term
(es)? to do so. When et < (es)?, the drifting term dominates the
process, otherwise, the noise term dominates the process. Approx-
imating s by its mean s = ty and solving the equation, et < (es)?,
we get t ~ 1/(u*¢). Therefore, the random walk S; qualitatively
behaves as follows: up to time ¢t = ©(1/(ep?)), the “noise” sum
term dominates the process; after time ©(1/(eu?)), the drifting
term dominates the process. Therefore, intuitively, for ¢ < 1/(eu?)
we should use the algorithm that deals with the non-drift case, and
for t > 1/(ep?) we might be able to use the monotonic counter
HYZ.

Note that the algorithm does not know the actual value of the
drift ;1. We use an online estimator (the GPSearch algorithm, de-
scribed in Section 2) to obtain an estimate /. Our estimator is con-
servative in the sense that it does not report £ until confident that it
is within [(1 — €") i, (1 + €’) ] (the performance of the GPSearch
estimator is discussed in [15]). Once the estimator /i is reported,
we can safely switch to the monotonic counter HYZ.

However, we need to guarantee correctness of the algorithm
even before we have an estimate of 4. The monotonic counter
HYZ essentially samples with sampling probability ©(1/(et)). So
to guarantee the correctness before we know whether we are in the
no-drift phase or in the drift phase, we need to sample with the
maximum of the sampling rate ©(1/(e?s%)) of the no-drift phase
and the sampling rate ©(1/(et)) of the monotonic counter. We
shall choose a slightly more conservative rate by tuning the con-
stants in the sampling probability (1) so that Sample-Prob(S¢, ) >
O(1/€%s% 4 1/et) forall t < 1/(ue).

The crucial observation here is that this conservative way of
sampling will not result in substantial increase in communication
resource. Indeed, we have two types of unnecessary communica-
tion costs:

e Type 1: when t < 1/(eu?), the term O(1/et) in the sam-
pling rate is wasteful.

e Type 2: whent > 1/(eu?), the term ©(1/(es)?) in the sam-
pling rate is wasteful.

The total expected communication cost of type 1is O(>, ., (1/t))
= O(logn), which is acceptable. Computing the waste of type 2 is
a bit more tedious, but we would be able to see that in expectation

i<t j(enzy L/(€257) = Q (Etgn 1/(525}2)). In other words,

S ety <van L/(€57) = O (Loca ) 1/(57) ) e theto-

tal wasted communication from the term ©(1/(es)?) is bounded by
the total “useful” communication from the same term. Therefore,
the conservative sampling strategy is also optimal.

Finally, we can also split the no-drift phase into the the straight-
forward (StraightSync) stage and the broadcast (SBC) stage, as



discussed in the previous section. We then have the following the-
orem.

THEOREM 3.3. There exists a choice of constants o and 8 > 0
for the randomized algorithm Non-monotonic Counter, for the k-
site count problem with unknown drift, to guarantee the continuous
tracking within a prescribed relative accuracy € with high proba-
bility and the following communication cost in expectation:

e O (min{ vk ‘/H,

Tule? ™ e

n} + ﬂ) ifk = O(1/(ue)?), and

e O (min {%, @,n} + k) ifk = w(1/(ue)?).

Notice that our algorithm’s communication cost has two types
of asymptotic behaviors for different k£ because the HYZ counter
uses different strategies for different k. Proof of Theorem 3.3 is
provided in [15].

3.3 Randomly Ordered Data Streams

We now move to the random permutation case. We use the
same tracking algorithm described in Section 2 to solve this prob-
lem by using the sampling rate defined in (1) with 5 = 2 and suffi-
ciently large o > 0.

THEOREM 3.4. Let a1, ...,an be an arbitrary, randomly per-
muted, sequence of bounded real values. The randomized algo-
rithm Non-monotonic Counter with the sampling probability in (1)
for B = 2 and sufficiently large constant o > 0 guarantees to track
the count within the relative accuracy e with probability 1—O(1/n)
and uses the total expected communication of O(\/@ /e -logn +
log® n) messages.

Note that here, because of the adversarial choice of the input se-
quence, we cannot exploit the drift. We remark that when the up-
date is a fractional number from [—1, 1] rather than {—1, 1}, our
Non-monotonic Counter algorithm still holds. The key difference
between the analysis for Theorem 3.4 and the one for i.i.d. input
is that the updates are correlated when the content of the stream is
decided in advance. This difference boils down to a modified anal-
ysis for the first passage time of the partial sums. In the Bernoulli
ii.d. case, a straightforward application of Hoeffding’s inequality
suffices to give a bound on the first passage time. While here Ho-
effding’s inequality is no longer applicable, we are able to use tail
inequalities for sampling without replacement [11, 20] to circum-
vent this problem. Technical report [15] gives a detailed analysis.

3.4 Fractional Brownian Motion

In this section we consider the counting process S; evolv-
ing as a fractional Brownian motion with parameters ¢ > 0 and
0 < H < 1 where we extend the counting process to contin-
uous time in a natural manner. We briefly discuss some of the
basic properties of fractional Brownian motion (more details can
be found, e.g. in [19]). Fractional Brownian motion is a process
with stationary increments whose finite dimensional distributions
are Gaussian. Specifically, for a fractional Brownian motion St,
we have E[S;] = 0, for every ¢ > 0 and the covariance of the
process is defined as

2
BIS:S.) = T (17 + > — |u—¢*").
Thus, the variance of the process is E[S7] = o2|t|*7, for every

t > 0. The parameter H is known as the Hurst parameter. For
H = 1/2, the process corresponds to a Brownian motion whose

increments are independent. For 0 < H < 1/2, the variance of
S grows sublinearly with ¢ and the process has a negative auto-
correlation while for 1/2 < H < 1, the variance of S; grows
superlinearly with ¢. The process is self-similar, meaning that ran-
dom variables S,; and a™ S; have the same distribution. To sim-
plify notation, in the remainder, we will assume o? = 1. Notice
that this is without loss of generality as it amounts only to rescal-
ing of the time units. It is noteworthy that the fractional Brownian
motion is one of standard statistical models that captures some of
the salient properties of temporal statistical dependencies that were
observed in many natural phenomena, including self-similarity and
long-range dependency (see, e.g. [19]).

We present an algorithm that requires only an upper bound on
the Hurst parameter H and guarantees continual tracking within
prescribed relative accuracy with high probability for the range
H € [1/2,1). Note that this is the range of particular interest
in practice since typical values of the Hurst parameter observed in
nature fall precisely in this region. For the purpose of deriving an
upper bound on the communication complexity, we will write the
sampling probability in the following form, for 1 < ¢ < 2,

as log“r‘;/2 n }

CEAL @

Sample-Prob(St, t) = min {
where a5 = ¢(2(c 4 1))%/2, for any ¢ > 3/2.
As before, we start with the single site (k=1) case. We have
the following theorem (proof in Technical report [15] ).

THEOREM 3.5. For the single site (k = 1) case, the random-
ized algorithm Non-monotonic Counter with the sampling proba-
bility as in (2) guarantees to track the count within the relative ac-
curacy € > 0 with probability 1 — 1/n forevery 1/2 < H < 1/6,
where 1 < & < 2, with the total expected communication of
O(n'~H /e -1og'/?*1/% n) messages.

‘We observe that for standard Brownian motion, which we may
interpret as a continuous-time analog of a random walk, we have
H = 1/6 = 1/2, and in this case, the sampling probability and
the result of the last theorem matches that of Theorem 3.1. For
values of the Hurst parameter H in (1/2,1), the communication
complexity of the algorithm is sublinear in n, with the upper bound
increasing with n as a polynomial with the exponent decreasing
with H as 1 — H (up to a poly-logarithmic factor). Note that this is
inline with the intuition as a larger value of the parameter H means
a larger variance and thus less of a concentration around value zero
where the relative error tolerance is the most stringent.

Multiple sites. Finally, we look at the case with multiple sites.
Let the sampling probability be as in (2) but with constant 7y, s
redefined as follows as = 9 - 2°/2(¢ 4 1)*+%/2, for any ¢ > 3/2.
Using the same coupling argument as in Theorem 3.3, we have the
following corollary (proof in [15].)

COROLLARY 3.6. The randomized algorithm Non-monotonic
Counter, with the sampling probability given in (1), guarantees to
track the count across k sites within the relative accuracy € > 0
with probability 1 —O(1/n) for every 1/2 < H < 1/, where 1 <
0 < 2, with the total expected communication ofé(nlfHk¥ /€)
messages

4. LOWER BOUNDS

In this section, we establish matching lower bounds for the
two cases of inputs: i.i.d. Bernoulli and random permutation. Re-
call that we denote with M,, the number of messages exchanged



over an input of size n. We are interested in the lower bounds on
the expected number of messages E[M,,] that is necessary to track
the value over an interval of n updates within € relative accuracy
with high probability. We use sample-path arguments to prove the
results.

We start by presenting lower bounds for the single site case,
first without and then with a drift. We then provide our main results
that provides a lower bound parameterized with the number of sites
k for the case without drift. We conclude by giving a lower bound
for the case with random permutation input stream.

THEOREM 4.1. Consider the single site (k = 1) continual count-
tracking problem for an input of n random i.i.d. updates without a
drift (Pr[X; = 1] = Pr[X; = —1] = 1/2) within relative accu-
racy € > 0 with probability at least 1 — O(1/n). Then the expected
number of messages exchanged is Q(min{\/n/e,n}).

Proof is provided in Technical report [15] . The key idea of
the proof is the observation that whenever the value of the counter
isin€ = {s € Z : |s| < 1/e}, the site must report the value to
the coordinator as otherwise an error would occur with a constant
probability. The proof then follows by noting that >, . Pr[S; €
£] = Q(Vn/e).

The lower bound in Theorem 4.1 is established by counting
the average number of visits to the set £, and we can use the same
argument to establish a lower bound for the general case of Bernoulli
updates with with an arbitrary drift —1 < p < 1 (thatis 0 < p <
1). Intuitively, the no drift case should be the worst case with re-
spect to communication complexity as observed in Section 3. Also,
for any constant ;& > 0 we expect to have the lower bound similar
to the bound from [12] for a monotonic counter E[M,] = Q(1/¢).
It is thus of interest to ask what the lower bound would be for small
but non-zero drift © = o(1). We have the following result (proof
in Technical report [15] ).

THEOREM 4.2. Consider the single site (k = 1) continual count-
tracking with Bernoulli random walk updates with drift u = o(1)
and relative accuracy parameter € > 0. Suppose € = w(1/+/n)
and |p| = O(e). Then, for the tracking to succeed with proba-
bility at least 1 — O(1/n), the expected number of messages is
Q (min {\/fz, ﬁ} - %)

The result is in line with the intuition that any non-zero drift
may only reduce the communication complexity, and it matches
the bound in [12] for large enough p. Our lower bound matches the
corresponding upper bound result (presented in Technical report
[15] ) up to poly-logarithmic factors.

We now move to the main result of this section which pro-
vides a lower bound that is parameterized with the number of sites
k. We consider only the non-drift case, as this is used to estab-
lish the lower bound for the permutation model. While the proof
for k = 1 case essentially only needs to exploit the structure of
a simple random walk, here we need to carefully integrate tech-
niques from communication complexity theory with the structure
of random walks. The main step is a reduction to a query problem
(Lemma 4.4) that at a time instance asks whether the sum of up-
dates over all k sites is larger than or equal to a G)(\/E) threshold,
which requires (k) communication to guarantee a sufficiently low
probability of error; otherwise, the overall error probability does
not satisfy the requirements.

We start our analysis by introducing a building block for com-
munication complexity.

DEFINITION 4.3 (TRACKING k INPUTS). Let c be a constant.
Consider the following functional monitoring problem: let X1, Xo,

..., Xy bei.id. variables from {—1,1} such that Pr[X; = —1] =
Pr[X; = 1] = 1/2 that arrive uniformly to each of the sites (i.e.
each site receives exactly one update). Upon the arrival of the last
update, we require the coordinator to

e be able to tell whether the sum is positive or negative if

|2 i<k Xil > cVk.
e do anything (i.e. no requirement) when | 3, -, Xi| < cVk.
We have the following lemma.

LEMMA 4.4. Solving the tracking k inputs problem with prob-
ability 1 — co (w.rt. both the protocol and the input) for some
constant cq requires O (k) communication.

We provide a proof in Technical report [15] that is based on
the same main ideas as in the proof of Lemma 2.2 in [12] with
some minor technical differences to account for particularities of
our setting.

We are now ready to present our main lower bound theorem
for the k-site case.

THEOREM 4.5. Forthe case of k < n sites, the expected amount
of communicated messages to guarantee relative accuracy € > 0
with probability at least 1 — O(1/n) is Q(min{Vkn/e,n}).

Proof is provided in Technical report [15] . Here, again our
lower bound matches the corresponding upper bound presented in
Theorem 3.3. The intuition behind the result is as follows. We
chop the stream into phases of k£ updates each, where each site gets
exactly one update per phase. If the counter value S is in between
—+v/k/e and vk /€, we show that our problem is equivalent to the
tracking of & input problems, and © (k) messages need to be sent
to guarantee correctness. Summing the expected number of visits
of the counter to these states, we obtain the lower bound.

Random Permutation. Finally, we have the following corollary
providing a lower bound on the communication complexity for ran-
domly permuted input stream (proof in [15]).

COROLLARY 4.6. The expected total communication in pres-
ence of a randomly permuted adversarial input, with —1 < a; <1
forall1 <t < mn,isat least Q(v kn/e) messages.

S. APPLICATIONS
5.1 Tracking the Second Frequency Moment

We now apply our distributed counter algorithms for continu-
ously tracking second frequency moment of the randomly ordered
stream. Let us recall the F» problem. The input stream consists
of a1, az,...,an, where a; = (o, 2¢), a¢ are all items from the
universe [m], and z; € {—1,1} for all ¢ < n. Denote with
mi(t) = 3 <0, —; #s the sum of elements of type 4 in the stream
at time ¢. Here, we allow the count mn;(t) to be non-monotonic in
t (i.e. allow decrements of the counts). Our goal is to continuously
track the second moment of the stream, i.e. F5(t) = > .. mi(t),
at the coordinator. We shall refer to this problem as monitoring
F»(t) with decrements.

Next, we review the fast AMS sketching algorithm for this
problem (see [4] and references therein). Consider a set of coun-
ters (Si,;)i<r,j<s whose values at the ¢-th update are S;;(t), and
set S;;(0) = 0. Letg; : [m] — {—1,1} and h; : [m] — J
(for 5 < I) be two sets of 4-wise independent hash functions.
Upon receiving the ¢-th item (o, 2¢), we add z: - g;(a¢) to all



(Sj.hj(ar)(t))j<i- When I = O(log1/d) and J = O(1/€?), we
are able to recover F> with e-relative guarantee with prob. 1 — ¢
for a specific t. We can then execute log n copies of the fast AMS
sketches in parallel to make sure our estimator is correct for all
updates.

An important property of fast AMS sketching is that it updates
only O(log(1/6) 4+ logn) = O(1) counters after each update. Let
ni =Y ., I{as = i} be the number of occurencies of item ¢
in the stream until time ¢. Clearly, >°,_
Nij = {k € [m] : hj(k) = i} be the set of items that map to
the counter S;;. Tracking counter S;; in randomly ordered stream

[m)] Vi = T Further, let

takes O(, k>, e, /€) communication. Summing over all

counter, and using Jensen inequality, we get that the expected to-
tal number of communicated messages is O(v/kn/e?). We also
remark that the lower bound Q(v/kn/e) for counter in randomly
ordered stream is also a lower bound for F»(-) for randomly or-
dered streams. We may summarize the upper bound and the lower
bound results in the following corollary.

COROLLARY 5.1. The communication lower bound for track-
ing the frequency moment F>(t) with decrements in randomly or-
dered stream is Q(min{v/kn/e,n}). There exists a randomized
algorithm for tracking F>(t) using the total expected communica-

tion of O(vV'kn/e?) messages.

5.2 Bayesian Linear Regression

We next describe another application of a distributed non-
monotonic counter in tracking the posterior of the coefficients in
a Bayesian linear regression. Recall the Bayesian linear regres-
sion problem (c.f. [2]): assume we are given a set of training data
(x1,91), (X2,Y2), - . ., (Xn, yn), where x; is a row-vector x; € R?
and y; € R. We are interested in carrying out a linear regression
over this data, i.e. finding a w € R such that y = w’ - x best
fits the training data {(x¢, y¢)}t<n. Furthermore, we impose an
initial prior knowledge over the vector wo, and in particular we
assume that it follows a multivariate Gaussian distribution wgo ~
N (mo, So). Our goal is to maintain a posterior belief over wy, as
the training data {(x¢, y¢) }+<» arrives.

In the distributed functional monitoring setting, the training
data {(x¢, y¢) }+<n arrives at different sites in a streaming fashion
and the coordinator has to continuously track an approximate esti-
mate of the mean m; and the variance S; of w;. We assume that
the training data is an arbitrary bounded sequence selected by an
adversary, and randomly permuted, as in the random permutation
model.

We next describe how we may use O(d?) counters to track the
posterior belief. Let A; be an ¢ X d matrix so that the i-th column of
Ay is x;. Also, denote withy; € R? a vector whose i-th component
is y;. Furthermore, let 8 be the inverse of the variance of the noise
variable in the model, i.e., y: = wl. A, +N(0, ,8_1). The value of
[ is usually assumed to be a known parameter (see Bishop [2] for a
detailed description of the model). It turns out that the posterior of
w is also a Gaussian distribution with mean m; and variance S;,
where

m;, = S¢(S;'mg+ BATy)

S7t = So '+ BAT Ay )

The inverse of S; ! at time ¢ is also referred as the precision ma-
trix. Observe that tracking the precision matrix S, ! as well as the
vector A7y suffices to recover the posterior structure of w. Our
specific goal here is to continuously track S; Yand ATy, by using
our counter algorithm.

Upon the arrival of the ¢ + 1-st update, we have

1 ~1 T
St =5 +8 Tiy1Te+1

outer product of z¢41

and Afy1yer1 = ATye + (o1 X (@)1, Y1 X (Teg1)2, oo,
Ye+1 X (Te+1)a)” -

Therefore, to track S, L e R¥%? it suffices to keep d? coun-
ters {C} ; }i,5<a such that upon the arrival of the ¢-th training data,
Ci,j < Cij + B(z¢)i(ze);. Similarly, we may keep another d
copies of counters {D;};<q to track ATy,, where D; < D; +
yt X (x¢); at the t-th update. Notice that here our algorithm can
guarantee each entry in S, ! and ATy has at most e-relative error.
The actual error of our estimate for m;, however, also depends on
how sensitive of the precision matrix’s inverse is when it is per-
turbed.

The total communication complexity using this algorithm thus
is O(v/knd? /€), being sublinear in the size of training data for a
wide range of parameters.

Acknowledgments

We thank Zengfeng Huang, Ke Yi and Qin Zhang for useful dis-
cussions regarding the relation of Lemma 2.2 in [12] and the lower
bound for the sampling problem in Lemma 4.4. We thank Graham
Cormode for pointing out how to improve the bound for F> track-
ing using the fast AMS sketching.

6. REFERENCES

[1] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional
monitoring without monotonicity. In Proc. of ICALP, 2009.

[2] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[3] G. Cormode and M. Garofalakis. Sketching streams through
the net: Distributed approximate query tracking. In Proc. of
International Conference on Very Large Databases, 2005.

[4] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases, 2011.

[5] G. Cormode, M. Garofalakis, S. Muthukrishnan, and
R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. In Proc. of
SIGMOD, June 2005.

[6] G. Cormode, S. Muthhukrishnan, and W. Zhuang. What’s
different: Distributed, continuous monitoring of
duplicate-resilient aggregates on data streams. In Proc. IEEE
International Conference on Data Engineering, 2006.

[7] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for
distributed functional monitoring. In Proc. of SODA, 2008.

[8] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang.
Optimal sampling from distributed streams. In Proc. of
PODS, June 2010.

[9] M. B. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. of SIGMOD,
pages 58-66, 2001.

[10] M. B. Greenwald and S. Khanna. Power-conserving
computation of order-statistics over sensor networks. In
Proc. of PODS, 2004.

[11] W. Hoeffding. Probability inequalities for sums of bounded
random variables. American Statistical Association Journal,
pages 13-30, March 1963.



[12] Z. Huang, K. Yi, and Q. Zhang. Randomized algorithms for
tracking distributed count, frequencies, and ranks. In
arXiv:1108.3413v1, Aug 2011.

[13] T. Konstantopoulos. Markov Chains and Random Walks.
Lecture notes, 2009.

[14] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the
self-similar nature of ethernet traffic. [IEEE/ACM
Transactions on Networking, 2(1):1-15, 1994.

[15] Z. Liu, B. Radunovi¢, and R. Vojnovi¢. Continuous
distributed counting for non-monotonic streams. In Technical
Report MSR-TR-2011-128, 2011.

[16] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. Hellerstein. Graphlab: A new framework for parallel
machine learning. In Proc. of the 26th Conference on
Uncertainty in Artificial Intelligence (UAI), 2010.

[17] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Computer Science,
2005.

[18] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In Proc.
ACM SIGMOD International Conference on Management of
Data, 2003.

[19] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian
random processes. Chapman & Hall, 1994.

[20] R.J. Serfling. Probability inequalities for the sum in
sampling without replacement. Ann. Statist, 2(1):39-48,
1974.

[21] T.S. Team. The engineering behind twitter’s new search
experience, 2011.

[22] S. Trithapura and D. P. Woodruff. Optimal random sampling
from distributed streams revisited. In Proc. of DISC, Roma,
Italy, Sep 2011.

[23] K. Yiand Q. Zhang. Optimal tracking of distributed heavy
hitters and quantiles. In Proc. of PODS, June 2009.

APPENDIX
A. ADDITIONAL NOTATIONS

We will repeatedly use some notation in the rest of the ap-
pendices which we summarize in the following. We will denote
the sampling probability in SBC for the t-th update with p: =
Sample-Prob(S¢,t). For an algorithm, we define E,, to be the
number of errors observed over an input of size n. We will be
interested in algorithms such that Pr[E, > 0] = O(1/n). We
define M, to be the number of messages transmitted over an input
of size n. We note that it is sufficient to limit the size of a mes-
sage to O(logn) bits to convey any possible counter value. Thus
the number of bits transmitted over an input of size n is ©(M,,).
We define R: to be 1 if a message is sent to the coordinator and
otherwise ?; = 0. We further denote with Uy the time until next
message is sent to the coordinator as observed at time ¢. Similarly,
we define V; to be the time until the count process exits the ball
BE(St) = {S S Z: ‘.’L’ — St| S ESt}‘

For the purpose of exposition, we will first start with the most
fundamental case with Bernoulli i.i.d. increments. Recall that in
this case Pr[X; = 1] = p and Pr[X; = —1] = 1 — p. The
expected increment in each step is then yu £ p — (1 —p) = 2p — 1.
We shall refer to p as the drift of the problem. We will first treat the
case without drift (uw = 0 and p = 1/2) and then the general case
with an unknown drift. The analysis for other distributions heavily
utilizes the idea developed for these simple cases.

B. ANALYSIS FOR LLD. INPUT WITH
ZERO DRIFT

B.1 Single Site Case

In this subsection, we prove Theorem 3.1.

Communication cost. We first show that the expected number of
communicated messages is bounded as asserted. Let 9 = y/a/e -
log n and note

E[R:] = Pr[|S| < 9] + ﬂQE[$I(|St| > 9)].

Since Pr[|S:| < 9] = ©(¥/+/t) and E[élﬂst\ > )] = O(1/(9V1)),
t
it follows
E[R:] = ©(9/V1).
Hence, the expected number of transmitted messages is

> E[R] = O(Wv/n) = O(v/n/e - logn).

t<n

Correctness. We next establish the asserted bound on the prob-
ability of error. Let us write F; to be the o-algebra generated by
Xi,...,X¢ and Rq,..., R, i.e. all the information available up
to the ¢-th update is measurable by F:. Define the indicator vari-
able R; that sets to 1 if and only if at the ¢-th update the site sends
a message to the coordinator. Notice that our algorithm guarantees
that Ry = 1. Let U; be the number of updates until the next re-
port is sent to the coordinator as observed at the ¢-th update, i.e.
Ui = min{r > 0 : Ry, = 1}. We remark that U; depends
on a future event and thus, it is not measurable by JF;. Next, let
Vi = min{r > 0 : Si1+ ¢ B(S)} be the number of updates
until the first instance at which the coordinator fails to track the
counter within the relative accuracy e, and let £, be the number of
such update instances. Notice that a necessary and sufficient con-
dition that at least one error happens is that there exists at least one
t < n such that Ry = 1 and V; < U;. We thus have

Pr[E, > 0] =Pr[R; =1and V; < Uy, forsome 1 < t < n],

where I(-) is an indicator function that sets to 1 if and only if its
parameter is true. By using the union bound, we have

PrE, > 0] < > B[R, - I(Vi <Uy)]. @)
t<n
Using the fact that R; is measurable by F;, we have
E[R: - I(V: < U)] = Exr[ERIV: <U) | F]]
= Ex [RE[I(V: <U) | Fi]
= Er [RePr[Vi <U: | S]]
< Eg [Rt ~max Pr[V; < U | St = s]]
= Ez[R] maxPr[Vi < U | Sy = s].

We next proceed to give an upper bound for Pr[V; < Uy | St = s].
Note that for every r > 0, it holds

Pr[V, < Uy | Si = o]

= Pr[Vi< Uy, Vi >1| S =4
+Pr[Vi < U, Vi <1 | 5S¢ = 5]

< Prr< Ui | Si =5,V >r|+Pr[V, <r|S =s](5

We start by giving a bound on Pr[V; < r | S; = s]. Notice
that under Sy = s the distribution of V; is equal to the distribution



of the first passage time of either value [s/(1 — €)] — s or value
|s/(1+4¢€)| — s for a symmetric random walk started at the origin.
The following lemma follows by standard results from the theory
of random walks (c.f. [13]) and the Hoeffding bound:

LEMMA B.1. Forevery r > 0, it holds

€ 2 2
Pr[Vi <r|S¢=s] < 2exp(—i

) ©

PROOF. Let V;" denote the number of steps until the random
walk up-crosses the value [ 21, starting from value s. Similarly,
we define V,~ to be the number of steps until the random walk

down-crosses the value | 13- | starting from value s. Then,

Pr[Vi <r|Si=s] <
< 2Pr[Vit <7|S; = s].

Now, let b = [°-| — s and note that by the reflection princi-

ple of random walks, we have

Pr[V;f <r|Si=s] = PriXi+Xo+ -+ X, =10
+2Pr[ X1 + Xo+ - + X > b
< 2Pr[Xi+ Xo 4o+ X >0

By applying the Hoeffding’s inequality, we bound the the probabil-
ity in the right-hand side with exp(— g—i) which yields the asserted
result. [

From (6), we observe that Pr[V; < r | S; = s] < 2/n° for

given ¢ > 0, iff it holds
< 1 € 2 52
~ 2clogn \1—¢ '

Prir < Uy|S; =5,V > 1] < (1= pe(s))” M

Cl): r

‘We next note

where p.(s) = Sample-Prob(s/(1—¢), t). Requiring that the right-
hand side in the above inequality is less than or equal to 1/n°, we
obtain

clogn
C2):  pe >1-— —).
(C2): pe(s) = 1 — exp( = E)27)
Indeed, both conditions (C1) and (C2) hold true by taking r =

2
Selog (1; s? and p(s) = min{%ﬂ}. The latter

choice is a sufficient condition for (C2) in view of the fact that
min{z,1} > 1 — e~ %, for z > 0. Therefore, we showed that for
Pr[V; < Uy|Sy = s] < 3/n° to hold, it suffices that the sampling
probability satisfies

2¢%logn
€252

pe > min{ 1}. 8)

Combining with (4), we have

Pr(E, >0] < Y E[R] O(1/n°)

t<n

= O@Wn'* %) =0(n"*  logn).

From the last inequality, we note that no error occurs with high
probability provided that ¢ > 3/2. Hence, in view of the inequality
(8), it suffices to to choose the sampling probability as in (1) with
a =2¢* > 9/2and B = 2. This completes the proof.

Pr[V;" <r|S: = s] + Pr[V,” <r|S; = s

B.2 Multiple Sites

In this subsection, we prove Theorem 3.2. We need again to
show that the algorithm is correct and the communication complex-
ity is as described. We start with showing the correctness part.

Correctness. We will invoke a coupling argument that will al-
low us to reuse the results of Theorem 3.1. We couple the pro-
posed multiple sites algorithm with the single site sampling algo-
rithm with a different set of error parameters over the same set of
input. Specifically, we also execute a single site algorithm with
relative accuracy ¢/3 and success rate 1 — O(1/n?)?, in parallel
to the multiple sites algorithm over the same input sequence. We
shall couple the random tosses in these two algorithms and show
that when the single site algorithm makes no error, our multiple
sites algorithm will also make no error.

We need a few more notations. Let ps ; be the sampling rate
for the single site algorithm and R ; be its corresponding Bernoulli
random variable. Let p,,,; be the sampling rate for the multiple
sites algorithm and R, ; be its corresponding Bernoulli random
variable. When we are in the straightforward stage, we shall as-
sume py,,; = 1. Finally, let S, ; be the estimator of the single site
algorithm at time ¢ and S”m,t be the estimator for the multiple sites
algorithm.

We couple the Bernoulli random variable in the following way.

e When ps,; > pm,:: the two Bernoulli variables are sampled
independently.

e When ps; < pm,i: if Rs;; = 1, then we set R,,,; = 1; oth-
erwise, we set Ry,,; = 1 with probability (pm,; — ps,:)/(1 —
ps,i) and Ry, ; = 0 otherwise. One may see that we still have
Pr[Rmyi = 1] = pm,i.

Now using the above coupling rules, we show that when the
single site makes no error, our multiple sites algorithm also makes
no error. Suppose on the contrary that at time ¢ the multiple sites
algorithm makes the first error. Then our algorithm ensures that for
every T < t, itholds p, - > ps,- (by our choice of sampling prob-
abilities), i.e. the multiple sites algorithm samples more frequently
than the single site algorithm. Therefore, our coupling rule gives us
Sm,t = St, and Ss ¢ = St,, where t1 > to, i.e. the multiple sites
algorithm is holding a more recent value of the count. We can now
get a contradiction using the following arguments,

1. At time ¢, the single site algorithm’s estimator is Sy, and is
correct. Therefore, Sy, € Be, (S, ), i.e.

St = S| < 5 Stal. ©)

2. At time t, the multiple site algorithm is wrong. Therefore,
Stl ¢ Be(St), i.e.
|St, — St| > €| St (10)

3. At time ¢, the single site algorithm is correct, i.e. Sy, €
B.(S:). We have S, — S¢| < €|S|. Wecanusee < 1
to relax this inequality and get

|Se,| < 2[S]. 1)

Using (9) and (10) and a triangle inequality, we have

2
St = Stl > €lSel = 5ISea| = ISl = T1S: = gISil. (12)

2To boost the success rate, we need to use a larger con-

stant in the sampling parameter, i.e. Sample-Prob(S:,t) =
2 2

min{w, 1} , any ¢ > 3/2

242
€257



The second inequality holds because of (11). (12) implies that the
single site algorithm errs at time ¢, which contradicts with our as-
sumption.

Communication cost. We have the following types of communi-
cations,

1. At the straightforward stage, whenever there is an update,
O(1) messages are exchanged.

2. At the broadcast stage, whenever there is an update, O(k)
messages are exchanged.

3. At the beginning and the end of the broadcasting stage, the
coordinator needs to make a broadcast to signal the stage
change, which takes © (k) messages.

Notice that in order to change from the broadcast stage to straight-
forward stage, type 2 messages are sent for at least once. There-
fore, the total complexity of the type 3 messages is asymptotically
smaller than type 2 messages. We need to only focus on the com-
munication complexity for the first two type of messages.

Let C; be the communication cost associated with the ¢-th
update and let R, ; indicates the event that a message is sent to the
communicator after the ¢-th update (R, + shall correspond with R
in Theorem 3.1). Therefore, when (eS’t)2 < k, Cy = 1; otherwise,
E[C:] = kE[Rm +]. We estimate C using the following rule:

o If (1 —¢)(eSi)? <k, weset C;y = 1;
o If (1 + ¢€)(eS:)? > k, we set Cy = kE[Run 4]

This rule intuitively gives a conservative guess on which stage we
are in (conditioned on the estimator being correct). Notice that
when (1 — €)(eS:)? < k < (1 + €)(eS)?, in this case, we can
set C¢y = 1 + kE[Ry,:] without impacting the asymptotic behav-
ior. The case where our estimator makes an error (and thus the
above rules may not give an overestimate of C}) is an asymptoti-
cally smaller term.

We next proceed with computing the expectation of C using
our overestimation rule,

Vk
E[Ct} S PI‘[St S E\/ﬁ

straightforward stage

+ kB[R, I(S; > Ei)]

1+e (13)
broadcast stage
+ 0(1/n%)
N——

estimator fails

= O(YElgn)

We can compute the above terms using Theorem 3.1. Thus, the
total communication cost in expectation is O(v/nk/¢ - log® n).

]

C. COMMUNICATION COMPLEXITY
LOWER BOUNDS

In this section we provide proofs for our results on lower
bounds on the communication complexity of the continuous dis-
tributed counting problem with non-monotonic input stream.

C.1 Proof of Theorem 4.1

Let £ = {s € Z : |s| < 1/e}. Our crucial observation here is
that whenever S; walks inside the region £ we have €|S;| < 1
and no errors are allowed. Specifically, let I; be the indicator
random variable that sets to 1 if and only if S; € £. Notice

that E[I;] = Pr[S; € & = Q(€]/vVt) = Q(1/(Vte)) and
E[}, ., I:] = ©(min{y/n/e,n}). On the other hand, our error
requirement gives us Pr[M,, > >°,_, I;] > 1—1/n. We can then
derive E[M,,] from E[Y", . I1] using the following argument. Let
A be the subset of the probability space where M,, > 3 ven It
and let —.A be the subset where this does not hold. We have

E[M.] > /Mnsz/ > LdF
A A

t<n
= ED _I]- / > LAF > E[Y_IL]-1
t<n -A t<n t<n

where the last equality follows from the facts that ), <n It < by
construction, and that [ , dF < 1/n.

C.2 Proof of Theorem 4.2

The proof is by direct analysis of the probability of event S; €
& ={s € Z :|s| <1/e}, where the distribution of S; is given by

Pr[S; = s] = <t+ts>pt? 1-p)7.
2

We remark that in the proof it is implicitly assumed that p, ; and e
are sequences indexed with n, but we omit to make this explicit in
the notation for simplicity of presentation.

For convenience, we introduce the notation 0> = Var[X;] =

4p(1 —p) and let p = , / 7. We then have

1{¢) .
Pr[S; = s] = Ut2t<t+s>p .
2

) — \/g% for s = o(\/i), we have

. 1 t
Since 57 ( ths

Pr[S: = s] = \/%%Utps [1+o(1)], for s = o(V/1).

In order to simplify the notation and with a slight abuse in the re-
mainder of the proof we omit to write the factor [1 + o(1)].

Let 6o > 0 and 6; > 0 be such that |6g| = o(v/%) and 61 =
o(+/t) and consider Pr[S; € [~6o,61]], fort = 1,2,...,n. For
1/2 < p < 1 and s = o(\/t), we have

21, &
Pr[S; € [—60,61]] = ;Wat > o

s=—#0p

01+1 fo+1 _
T (),
T\t p—1
Let £, [—00, 61] denote the number of visits of the set [0y, 61]
by the counter .S; and let 7, = w(max{6o, 61}). Then, note

BIE,[~00.01]) > 3 Pr{S: € [~00.6.]

t=7p

= (p01+1 = 1+p90+1 _1 - 1) . g i iat
p—1 Vor SVt

Notice that for every ¢ > 0,

Z 1 o "1 —ctdt > /2\/5 —ﬁuzd
—e = —e > e u
¢ \/z Tn \/i 2/Tn

_ 2\/§[<b(x/ﬂ) — ®(v2er,)]




where @ is the distribution of a standard normal random variable.

Therefore,
4anb
E[En[—00,61]] > —F——— (14)
log'/?(%)
where

01+1 _ fo+1 _

an = p L+p L 1
p—1
1 1

bn = @(log"?(—5)Vn) — @(log"*(—3) V).

Now, we consider the case of a small but non-zero drift y =
p—(1—p) =o0(1)and 6y = 6 = 1/e where 1/¢ is a positive
integer. We will assume that 7, = o(n) and 7, = w(1/€?), thus
¢ = w(1/\/n).

It is straightforward to show that the following asymptotes
hold:

p = 1+p+0@u
p—1 = pu+0’)
2 2
o = 1—p
1
log(—) = 1 +0(u’)

For the term a,,, it holds

ERE . 1 2 u
B = 1=2(ec = 1) [1+0(1)].
— “(e% — 1)1+ o(1)
Hence, a, = ©(1/p), for u = O(e). Notice that for the case
€ = o(p), an grows as Q(e!/€).
For the term b,,, we observe

b = Blog"/(25) Vi) — B(log"*(15) V)

= [®(uvn) = 2(uy/7)] - [1+ o(1)]

and is easy to derive that b, = ©(1), for 4 = O(1/4/n) and
bn = O(uy/n) for p = o(1/+/n). Indeed, these are easy to derive
from the above asymptotes and the facts ®(u/n) — @ (u\/mn) =

L= 1/2 = 1/2 for i = w(1/v/m) and @) — B(uy/7) >
e (v - ).

The assertion of the theorem follows by plugging the derived
asymptotes for a,, b, and log'/?(1/0?)) = p[1 + o(1)] into (14).

C.3 Proof of Lemma 4.4

The proof in this section follows that of Lemma 2.2 in [12].
Here, we only need to argue that the communication lower bound
still holds for a two round deterministic protocol such that

e in the first round, a subset of sites report their individual val-
ues to the coordinator;

e in the second round, the coordinator probes a subset of sites
to make the decision.

The lemma follows in view of the fact that a randomized pro-
tocol can be seen as a distribution over a set of deterministic algo-
rithms. It suffices to consider the case where o(k) messages are
sent in the first round, as otherwise we are done with the proof.
This essentially reduces the communication complexity problem to
a known sampling complexity problem [12]. The only remaining
obstacle here is that the input distribution under our consideration
is not exactly the same as the one studied in [12]. Therefore, we
need to re-establish the sampling lower bound in our setting, which
is provided in the remainder of this section.

Let k' = ©(k) be the number of sites that have not sent any
messages in the first round, and without loss of generality, assume
that these sites are 1,2, ..., k’. Since the number of messages sent
in the first round is o(k), in the second round, we need to solve a
problem that is at least as hard as the following one:

o answer whether the sum 3., X is positive or negative, if
| Y Xil > eV
o do anything (i.e. no requirement) when | >, ,, X;| < eVk'

where c is a positive constant.

Let us denote with z the number of sites that are sampled by
the coordinator in the second round, and without loss of general-
ity, let us assume that these sites are 1,2,...,2. To contradict,
let us suppose z = o(k’). Let N = 3. X; be the cumulative
update value of the sampled sites and U = 3 s<i<p Xi be the
cumulative update value of the unsampled sites. Clearly, the op-
timal detection algorithm for the sampling problem is to declare
Siew Xi > VK if N > 0, to declare 3, .,, Xi < —cVk' if
N < 0 and to declare either (with probability 1/2) if N = 0. The
probability of error is then

Prlerror] > Pr[N <0,N +U > cVE]
> Pr[—cyz < N < 0]Pr[U > ¢(VE + /2)).

Since N is a sum of independent and identically distributed random
variables of mean zero and variance 1, we have E[N] = 0 and
Var[N] = z, and thus Pr[—cy/z < N < 0] = O(1). Similarly,
since U is a sum of independent and identically random variables
of mean zero and variance 1, we have E[U] = 0 and Var[U] =
k' — z, and under our assumption z = o(k’), it holds c(v/k' +
Vz) = ek —z - [1 4+ 0(1)] = c¢Var[U] - [1 + o(1)], and thus
Pr[U > ¢(Vk'++/Z)] = ©(1). Therefore, the probability of error
is (1) which contradicts the error requirement, for sufficiently
small constant ¢y in the statement of the lemma.

C.4 Proof of Theorem 4.5

We partition the updates into n/k phases, each of which con-
sists of k£ updates. In each phase, the k£ updates are randomly
matched to £ sites (so that each site receives exactly one update).
Let I; be an indicator random variable that sets to 1 when, at the be-
ginning of the jth phase, the sum is in the interval [—a; k., aj, k]
where a; .. = min{vk/e, /jk}. Notice that when the sum is
in the interval [—a; k.e, aj,k,¢|, the additive error we can tolerate is
at most evk /e = Vk. Therefore, at the end of the jth stage, the
tracking algorithm has to be able to tell whether the absolute value
of j-th phase’s sum is below ,\/E, above \/E, or in between the
two. This is at least as difficult as the tracking k inputs problem we
studied above, with © (k) communication lower bound.

Let M, be the total number of messages exchanged between
the coordinator and the sites. Our correctness requirement gives
us Pr{Mn > Q(k3, ., ), 1i)] = 1 —1/n. Using the fact that

E[}>", ;] = min{y/n/(ek),n/k}, and following similar argu-
ments as in the proof of Theorem 4.1, we get Q(min{v'kn/e, n}).

C.5 Proof of Corollary 4.6

Consider an adversary that select each input a; randomly such
that Prfa; = 1] = Pr[a; = —1] = 1/2. Then the process
(a:) obtained by randomly permuting (a;) is also a sequence of
Bernoulli variables, and from Theorem 4.5 we know that E[M,,] >
Q(\/%/ €). Clearly, using an averaging argument, there is at least
one deterministic sequence a; that, randomly permuted, requires
on average (v/kn/e) messages. This proves the claim.



