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Abstract. Many prior trust management frameworks provide authorization log-
ics for specifying policies based on distributed trust. However, to implement a se-
curity protocol using these frameworks, one usually resorts to a general-purpose
programming language. To reason about the security of the entire system, one
must study not only policies in the authorization logic, but also hard-to-analyze
implementation code.

This paper proposes DKAL*, a language for constructing executable specifica-
tions of authorization protocols. Protocol and policy designers can use DKAL*’s
authorization logic for expressing distributed trust relationships, and its small
rule-based programming language to describe the message sequence of a proto-
col. Importantly, many low-level details of the protocol (e.g., marshaling formats
or management of state consistency) are left abstract in DKAL”, but sufficient
details must be provided in order for the protocol to be executable.

We formalize the semantics of DKAL*, giving it an operational semantics and
a type system. We prove various properties of DKAL”, including type soundness
and a decidability property for its underlying logic. We also present an interpreter
for DKAL*, mechanically verified for correctness and security. We evaluate our
work experimentally on several examples.

1 Introduction

Despite many years of successful research in protocol design, federated cloud services
continue to be plagued by flaws in the design and implementation of critical autho-
rization protocols. For example, recent work by Wang et al. [24] reveals authorization
errors in a variety of federated online payment services. Among other reasons, Wang et
al. argue that the ad hoc implementation of such services obscures the delicate proto-
cols on which they are based, making the design and implementation of these protocols
difficult to analyze for vulnerabilities. We propose to address such difficulties by pro-
viding a domain-specific language to concisely specify authorization protocols so that
the protocol design is evident (and suitable for security analysis) and executable.

To illustrate, consider the following scenario. An online retailer W wishes to use
a third-party payment provider P (e.g., PayPal) to process payments. As Wang et al.
report, many of the existing tools used to build such a website are often buggy, with no
clear specification of the protocol they implement.



Informally, we would like to start by specifying that the retailer W trusts P to
process payments. Prior authorization logics allow such trust relationships to be ex-
pressed concisely; e.g., in infon logic [14], one might write a policy for W stat-
ing that it is safe to conclude that a principal ¢ paid n for order oid, if P said so:
V¢, oid, n. P said Paid(c, oid, n) =Paid(c, oid, n).

However, the means to arrive at a specific authorization protocol based on this trust
relationship alone is unclear. Even a simple protocol involves several rounds of com-
munication between a customer C, the website 1, and the payment provider P. For
example, the protocol in Figure 1 involves five steps: (1) a customer C' requests to pur-
chase some item ¢ for a price n; (2) the retailer W requests C' to provide a certificate
from PayPal (P) authorizing C’s payment; (3) C' forwards the payment request to P;
(4) P authorizes the payment from C' to W and issues a certificate confirming the pay-
ment; (5) W, relying on a trust relationship with P, concludes that the payment has
indeed been processed and ends the protocol by returning a confirmation to C.

Typically, one implements such protocols in a general-purpose programming lan-
guage, where one makes queries to a trust management engine (e.g., SecPAL [4]) to
determine if access to a protected resource is to be permitted. While this approach pro-
vides flexibility, it leaves the design of the authorization protocol unclear, and opens
the door to vulnerabilities due to improper protocol design or other mundane program-
ming errors. Of course, such errors can be detected by using semi-automated program
verification tools, but this demands considerable expertise. Besides, even for experts, a
methodology in which the protocol design is made evident by construction, facilitates
simpler analysis.
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Fig. 1: A simple protocol for processing online payments

To address these problems, we propose DKAL*, a domain-specific language for exe-
cutable specifications of authorization protocols. We formalize the semantics of DKAL*
and implement a verified interpreter using F*, a verification-oriented dialect of ML.
DKAL* programs include three conceptual components: the quantified primal infon
logic (QPIL) for expressing distributed trust relationships; a small rule-based program-
ming language for describing message flow of protocols; and finally, DKAL* programs
may embed F* expressions, the host language of our interpreter—one can use this facil-
ity to evaluate arithmetic expressions, connect to databases, etc. Thus, having designed a
protocol in DKAL*, one may readily obtain an executable implementation in F*. Once in
F*, the source code can, in principle, be directly analyzed for high-level security proper-
ties using F*’s type system and related tools such as the Crypto Verification Toolkit [7].
However, in this work, we take DKAL* programs as specifications, and our interpreter is



proven to faithfully implement the specification, regardless of any end-to-end security
objective that the DKAL* programmer may have had in mind.

Figure 2 shows an example of DKAL* code, a policy specified by each of the three
principals in our online retail scenario. DKAL* programs are a collection of rules, each
of which can be thought of as handlers that cause specific actions to occur in response to
events that meet certain conditions. Actions include sending messages (send), forward-
ing messages (fwd), a logging facility (log), generating fresh identifiers (with fresh), and
introducing new information (learn) to the principal’s QPIL knowledge base. Conditions
have two forms: when e is satisfied if the principal has received a message that matches
the pattern constructed by the term e; the condition if e is satisfied if the proposition
constructed by the term e is derivable in QPIL. Terms include the form eval(e), where e
is an F* expression evaluated by the interpreter; variables (e.g., i, n); constants (e.g., W,
P); and constructed terms (Buy(i, n), etc.).

(x Website’s (W) policy *)

WQZ

when c said Buy(i, n)

if eval(checkPrice("”,’n”)) then
with fresh oid

send ¢ (W said Pay(c, oid, i, n))
log (W said Pay(c, oid, i, n))
where checkPrice = (x Fx code *)

(x CUSTOMER’s (C) policy *)
Cli

when C said Click(i, n) then
send W (C said Buy(i, n))

log (C said Init(W, i, n))

Cg:

when C said Init(w, i, n)

when w said Pay(C, oid, i, n) as m1

then send P (C said Auth(w, oid, n))
fwd P m1

W5Z

when W said Pay(c,oid,i,n)
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send ¢ (W said Confirm(oid,i,n))
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o 9o W
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Fig. 2: A DKAL™ policy implementing the online retail protocol

Rules C1, Wa, Cs, Py, W correspond to the steps (1)-(5) in Figure 1: (1) Rule Cy
initiates the protocol in response to a click issued by the customer. C' sends a Buy mes-
sage to the website W. C also logs an Init message to indicate that she has initiated the
transaction. (2) After receiving the Buy message, W applies rule W5 to request a pay-
ment certificate. W checks the price of the item (by calling an F* function), and sends
a message Pay to C' requesting payment. W also logs a message to keep track of the
transaction currently underway. (3) Once C gets such a message from W and checks
her log for the Init message, she applies rule C'3 to forward a payment request to P.



(4) Rule Py is P’s policy that authorizes the payment by sending a Paid message to the
website W (after checking and updating C’s balance, using F*). (5) If W receives a Paid
message, she uses her trust assumption in P (W and W), and a decision procedure for
QPIL to conclude that the item is paid, and sends a confirmation message to C (W5).

This paper makes several technical contributions.

(i) We formalize the design of DKAL* and analyze the central entailment relation
of QPIL. We give an operational semantics and a type system for DKAL* and prove
that execution is insensitive to the order of rule evaluation. Our semantics provides the
formal basis on which to analyze DKAL* policies.

(ii) We provide an interpreter for DKAL* in F*. We mechanically check with F*
that our interpreter soundly implements the formal semantics of DKAL*, including a
verified implementation of a decision procedure for QPIL. Our interpreter includes a
verified protocol based on public-key cryptography for establishing message authentic-
ity, where we can mechanically check that recipients only accept authentic messages.
Using refinement type checking, we show how to securely embed and evaluate F* terms
within DKAL*, allowing a DKAL* protocol to easily and safely interface with its envi-
ronment.

(iii) We report on an experimental evaluation of DKAL* by developing a suite of
8 examples. Our experience indicates that DKAL* specifications can be terse, convey-
ing the important high-level aspects of a distributed security protocol, while leaving
many of the low-level details necessary to produce an executable implementation to our
verified interpreter.

2 QPIL: Quantified primal infon logic

We first review QPIL, Gurevich and Neeman’s primal infon logic with quantifiers. Gure-
vich and Neeman introduced QPIL pragmatically, because of its combination of feasi-
bility and expressivity. But QPIL is arguably one of two intrinsic logics of information
(used by arbitrary principals for communication and reasoning) [5]. Our formulation
differs from theirs in that we pay close attention to binders to facilitate a mechanically
verified implementation of its decision procedure.

Syntax QPIL has two basic concepts. The first is infon, a formula which represents a unit
of information (which may be learned, communicated, etc.). The second is evidence—
an infon 7 may be accompanied by a term ¢ which serves as evidence for the validity of
1. The form of evidence is left abstract; e.g., an infon ¢ may be accompanied by a digital
signature to serve as evidence that it was communicated by a principal p; or, it may
represent a proof tree recording a derivation of ¢ from some set of hypotheses according
to the inference rules of the logic.

The syntax of QPIL is shown below. Predicates () and constants ¢ are subscripted
with their types, although we elide the subscripts when the types are unimportant. Types
include booleans and integers (and other common types), principals, and a distinguished
type for evidence terms, ev. The terms include variables z, y, z and constants c (tagged)
with their types. Later (Section 4) we add embedded F* terms to the term language.

Infons ¢ include the true infon T; the application of a predicate symbol @ to a se-
quence of terms ¢; a conjunction form ¢ A j; an implication form ¢ = j; the form



p said ¢, which is the modal operator of speech applied to an infon; and finally justified
infons, Ev t i, which associates an evidence term ¢ with an infon ¢. Note that when a
principal sends Ev ¢ ¢, he is merely asserting that ¢ is evidence for ¢, and the receiver
of the message, if he desires so, can check ¢. An example of an authorization is the
infon: Bob said CanRead(Alice,"file.txt"). QPIL includes quantified infons ¢, where
an infon ¢ may be preceded by a sequence of binders for universally quantified vari-
ables z:7. The use of quantifiers allows for more general and flexible policies such as:
V(x:prin). Bob said Trusted(x) = CanRead(x, "file.txt"). Quantified infons may also
be justified by associating them with evidence using Ev ¢ ¢. Unless explicitly mentioned,
we blur the distinction between quantified infons and infons.

Syntax of QPIL

I
Meta-variables: z,y, z variables; Q= predicates; ¢, constants

type T ::= bool | int | prin | ev term ptu=2a|cr
infon 4,5 =T|QzT|iAj|li=j quantifiedinfon. ==4|Evt.|VTT.a
| psaidi | Evits type context I = |z7 | I, T

infonset M, K ::=1

Typing QPIL has three typing judgments (shown below): I" I~ ¢ for quantified infons;
I' i for infons; and I' I ¢ : 7 for terms, where the typing context I" maps variables
to their types. Intuitively, I" - ¢ ensures that the variables of ¢ appear in I at suitable
types. The typing judgments also rely on a well-formedness judgment for the context:
we write I" ok for an environment where no variable appears twice, and I'(z) for the
type 7 such that I" contains x : 7.

Typing terms and infons
I

I ok I ok I ok Iz ki Vill'Ft:T
I'kFer:m I'txz:I'(x) T I'=VzZ7.a I'-Q-t

I'ti I'kj I'+ti I'kj I'kFp:prin  I'ki I'kFt:ev Ik
I'Hing I'i=j ' psaidi I'FEvt.

The typing rules for terms are straightforward—constants are typed using their sub-
scripts, and variables by the typing context. The rules for infons are straightforward,
with only one subtle point to mention. The last rule is overloaded to apply to both jus-
tified infons and justified quantified infons.

Entailment We define an entailment relation for QPIL, a Hilbert-style calculus defining
the inference rules of the logic. Our formulation relies on the notion of a prefix 7, a
possibly empty sequence of terms £ of type prin. We write 7 ¢ to mean ¢ when 7 is
empty, or ¢ said (' ¢) when = = ¢, 7’. The calculus includes two relations, K;I" E ¢
for quantified infons and K; I" F ¢ for infons. The context in each of these relations
includes an infostrate, K, a set of infons, representing a principal’s knowledge, and a
typing context I'. We write K ok for an infostrate where for each « € K we have - - ¢,
i.e., K is a set of well-typed closed infons. We write K'; I" ok for (K ok and I" ok).



Entailment relations: K; ' F.and K; I F i
I
K: I ok F}—WTT K;I'ok 1€K 1=4¢ TF/

Hyp-K
KTErxT K:TE/ P
K;I'Emi I‘(;F.):wj ] K;Fﬁﬂ(i/\.j) AEL K;F':ﬂ'(i/\.j) AED
K;I'En(iNj) K, I'Ewi K;I'knj
K;T'En(i=j)
I't-ni K;I'Ewj K;I'Emni K;I'En(Evty)
-WI -E Ev-E
KiTFali=g) KTFaj KilFne
K;I'N'zTEq ol K;I'=EvVTT.j Viﬁ.f‘}—ti:n QE

K;I'EVzZT4 K;I'E j[t/x]

The inference rule (T) allows well-typed infon 7T to be derived from any well-
formed context. The rule (Hyp-K) allows using infostrate hypotheses ¢« € K, but only
after they have been suitably a-converted to ¢/, to avoid the bound names of ¢’ clashing
with the names in the context. The premise I" - ¢/ guarantees no name clashing. The
definition of alpha equivalence, ¢ =, ¢/, is standard and elided due to space constraints.

The rule (A-I) is an introduction rule for conjunctions, with (A-E1) and (A-E2) the
corresponding elimination rules. The modality 7 distributes over the conjuncts.

The rule (=-WI) is the weak introduction rule for implications, and the rule (=-E)
is the usual elimination form. The weak form of implication is characteristic of primal
infon logic—it allows deriving 7(¢ = j) only if 7 j can already be derived. This may
seem pointless, except for two reasons: (1) this weak form of implication lends itself
to an efficient linear-time decision procedure, at least for the propositional primal infon
logic; and (2) in the case of authorization, a principal may know the conclusion 7 j, but
may be willing to share only a weaker part 7 (i = j) with another principal.

The rule (Ev-E) is the elimination form for evidence—note that the only way of
introducing justified infons is by hypothesis or by elimination. Finally, we have (Q-I)
and (Q-E) for introducing and eliminating quantifiers.

With these definitions, we can state and prove our first lemma, namely that entail-
ment derives only well-typed infons.

Lemma 1 (Entailment is well-typed). For all K, I',., if K; ' = v then I' F .

Decidability of QPIL There exists a complete decision procedure for QPIL entailment.
Gurevich and Neeman [14] present a linear-time algorithm for the multiple derivability
problem for propositional primal infon logic (PIL). It relies on a sub-formula property
of PIL entailment, namely that the derivation K;- F ¢ only uses the sub-formulas of
K, i. QPIL exhibits an analogous property. We refer the reader to a companion technical
report for the full development [17].

While the existence of a complete decision procedure for QPIL is useful, the rest of
DKAL* is designed so that it may also be used with other, more powerful authorization
logics, e.g., the full infon logic with a more standard form of implication introduction.



3 The design and semantics of DKAL*

We now define DKAL*, a rule-based language for specifying the communication pat-
terns in an authorization protocol. DKAL™ artifacts are, simultaneously, programs, poli-
cies and specifications—we use the terms interchangeably, unless explicitly noted oth-
erwise. This section introduces DKAL*’s syntax and semantics, relying on our online
retail scenario for illustrative examples.

Syntax of DKAL* The display below shows the syntax of DKAL*. A program R is a
finite set of rules, each of the form (C' then A). The semantics of DKAL* executes a
program by evaluating the guards C' of each rule against a principal’s local configu-
ration, and applying the actions A of only those rules whose guards are satisfied. The
local configuration P of a principal p is a triple (K, M, R). It includes (1) an infostrate,
K, which is a monotonically increasing set of infons, representing p’s knowledge; (2)
a message store, M (also a set of infons), which p may use to retain messages that it
receives; and, (3) the program R itself. The global configuration G is the parallel com-
position of configurations (p, P), one for each principal p. We give a message-passing
semantics for DKAL* in which the reduction of a local configuration P causes infons to
be sent to other principals.

Syntax of DKAL* (with syntactic sugar on the right)
I

program R :=CthenA|RR]- when ¢ then A = upon Ev x ¢ as m
local cfg. P = (K, M, R) then (A, drop m)
global cfg. G ::= (p,P) | G || G for fresh  and m
guards Cu=uponcasz|ife|CC|- log ¢ = send Self ¢
actions A xz=sendpe|fwdpe | drope

| learn: | withfreshz A| A A
infon i o=

typing ctxt. I" ::= ... | :infon | z:qginfon
| |

Guards come in two flavors. The guard (upon ¢ as z) is a pattern which checks
whether a message matching ¢ is present in the principal’s message store M and binds
the message to x if matched. We extend the syntax of infons ¢ so that they may contain
pattern variables x. Evaluating an upon condition requires computing a substitution o
for the pattern variables such that o ¢ is in the message store M. In order to ensure that
pattern variables are properly used, we extend our syntax of typing environments I to
include bindings for variables typed as infons and quantified infons (ginfon).

Guards also include boolean conditions of the form (if ¢). Evaluating this guard
involves a call to a decision procedure of QPIL to check that the infon ¢ is derivable
from the principal’s knowledge K. If derivable, the actions of the rule are applied;
otherwise the rule is inactive. This kind of guard does not bind pattern variables.

Actions include (send p ¢), which sends ¢ to p authenticated by the sender; (fwd p ¢),
which forwards a previously received message to p; (drop ¢), which deletes a message
from M (learn ¢), which adds an infon to the knowledge K; and, finally, a construct
(with fresh = A) to generate fresh identifiers. In writing examples, we also use the syn-
tactic sugar shown at the right of the display, where Self is a principal constant for the
local principal.



Operational semantics of DKAL* The operational semantics of DKAL*, deriving from
semantics of ASMs, are carefully set up to ensure a few properties. We discuss these
properties informally here, motivating various elements of the design—we formalize
these properties in the metatheory study of Section 3.

State consistency. We desire a semantics with a consistent notion of state updates. To
achieve this, we have a message passing semantics for global configurations. But, the
reduction of each principal’s configuration P is given using a big-step reduction in
which all applicable actions from the rules in P are computed atomically, with respect
to an unchanging local state. Big steps of local evaluation are interleaved with messages
being exchanged among the principals, modifying their local states.

Determinism. We aim to ensure that the semantics of a program is independent of the
order of execution of the rules in a program R. We achieve this by evaluating the set of
actions computed from a set of rules in a canonical order.

We begin by presenting the big-step evaluation of local configurations, P |, A,
where a local configuration P for a principal p evaluates to a set of actions A. The rule
(Ev) picks arule C then A from the rule set and evaluates its guard C'. Guard evaluation
produces a set of substitutions ¢ = {071, ...,0,} of the free variables in C' such that
the conditions o;C are satisfied. The actions [o; A] are added to the actions computed
from the evaluation of the other rules in the program. Here, the function [A] interprets
a set of actions A by introducing fresh integer constants in the actions A, as required by
the (with fresh « A) construct.

The evaluation of guards is given by the function holds,, K’ M C, which computes a
set of substitutions. Evaluation of multiple guards involves composing the substitutions
returned by the evaluation of each guard.

Local rule evaluation: P |, A
(K,M,(R1,R2)) Il A’ holds, K MC =75
(K7 M, (R17 (C then A)? RQ)) ‘U’p A Ui IIO-ZA]]

EVEmp (K,M,~) ‘U’P {}

[1:A— A
[A] = A when (with freshz A") ¢ A
[A, with fresh z A'] [A], [A'[cint/z]] for c fresh

holds, : K x M x C — 2°

holds, K M (upon ¢ as z) = {(o,z + ot) | oo € M A Fov A domo =FV(1)}

holds, K M (if ¢) ={id| K; -E}

holds, K M - = {id}

holds, K M (C1,C2) = {(o2001) | 01 € holds, K M C1 A o3 € holds, K M (o1 C2)}

Evaluation of an (upon ¢ as ) guard returns every substitution o such that a well-
typed message ot can be found in the store M. Our verified implementation ensures
that messages that match patterns are always properly justified, should they contain any
evidence. For (if ¢), we require that the infon ¢ be derivable from the hypotheses in the
infostrate K. Note that, unlike for the evaluation of (upon ¢ as x), the semantics requires
the infon ¢ to be a closed term for rule evaluation to succeed.

We now define G — G, a small-step reduction relation for global configurations.
The single rule in the semantics (GoP) picks a principal p and evaluates the rules of p to



obtain a set of actions A, and then applies these actions atomically to the configuration
G. In order to ensure that the effect of applying the actions is independent of the order
of evaluation of the rules, we require that all the (drop ) actions in A precede all the
other actions. We do this through a unary operator on actions, order(A), that reorders a
set of actions A according to a partial order in which all the (drop ¢) actions come first.

Reduction semantics of global configurations: G — G’
I 1

GoP PlpA
Gi |l (p, P) || G2 — app (G1 || (p, P) || G2) p (order(A))

order: A — A
order(A) = A1, A2 where Ay = {drop ¢|dropt € A} and A; = A\ A
app: G >p—>A—>G

appGp- =G
app (G1 || G || G2) p A =G || (appl G p A) || G2
appGp (4, A" =letG' =appGpAinletG’' =appG' pA'inG”

appl: (px P)—>p—A— (pxP)
appl (p, (K, M, R)) p (drope) = (p, (K, (M \ {}), R))

( ,
appl (pa (K,M,R))p(learn L) = (p,((K, L)vaR))
appl (¢, (K, M, R)) p (fwd q¢) = (d', (K, (M,¢), R))
appl (qlv (K7 M, R)) p (Send q L) = (qlv (K7 (M7 Evi¢ L)v R))

The definition of app(G, p, A) applies a set of actions A according to this partial
order. We use appl(G,p, A) in the base cases to apply a single action, following the
syntax given in section 3. Note that, when p sends or forwards a message and to model
the network imperfectness, the actual recipient ¢’ may not be the intended principal q.

A type system for DKAL* We provide a type system to ensure that the reduction of
DKAL* programs is well-behaved, i.e., that configurations remain well-typed as reduc-
tion proceeds, and that that rule evaluation is deterministic.

Arbitrary DKAL* programs may execute in undesirable ways. For exam-
ple, an ill-scoped program may inject ill-typed infons into the infostrate, poten-
tially allowing nonsensical terms to become derivable. Consider the example pro-
gram upon (V(p:principal). ALICE said x) as m then learn x. When evaluating this program
against a message store M that contains the infon V(p:principal). ALICE said Good(p),
the upon condition is satisfiable, with ¢ = [x +— Good(p)]. However, applying the
action o (learn x) results in adding the term Good(p) to the infostrate, which is clearly
ill-formed—the variable p has escaped its scope.

Our type system is designed to rule out this and other undesirable behaviors. After
defining several judgments on rules, actions and guards, it defines a judgment G ok
for well-formedness of a global configuration GG. Space constraints prevent us from
presenting the full details of the type system here—the companion technical report
contains the full development [17].

Theorem 1 ensures that well-formedness of a configuration is preserved under re-
duction. The corresponding progress property (that a well-formed configuration can
always make a step) is trivial, since identity steps (G — ) are always possible. The-
orem 2 ensures that the order of evaluation of rules in a local configuration does not
matter.



Theorem 1 (Type soundness). Given a configuration G such that G ok, if G — G’
then G’ ok.

Theorem 2 (Determinism of local rule evaluation). Given a configuration G, a local
configuration (p, P) such that G || (p,P) ok and A1, As such that P |, A, and

P, As; then app((G || (p, P)), p, A1) = app((G || (p, P)),p, A2).

4 A verified interpreter for DKAL*

This section describes our verified interpreter for DKAL*, implemented in F*, a vari-
ant of ML with a more expressive type system. F* allows programmers to write down
precise specifications using dependent types where types depend on values. F*’s type
checker makes use of an SMT solver to automatically discharge proofs of these specifi-
cations. F* enables general-purpose programming, with recursion and effects; it has li-
braries for concurrency, networking, cryptography, and interoperability with other NET
languages. After typechecking, F* is compiled to .NET bytecode, with runtime support
for proof-carrying code.

We present selected elements of the mostly ML-like code of our interpreter (slightly
simplified for the paper), discussing F*-specific constructs as they arise. We refer the
reader to Swamy et al. [22] for full definition of F*. The full code of our verified inter-
preter is available from http://dkal.codeplex.com.

We highlight three key elements of our interpreter:

A verified decision procedure for QPIL. We formalize the QPIL entailment relation
using a collection of inductive types in F*. We then implement a unification-based,
backwards chaining decision procedure for QPIL and prove it sound, i.e., that it only
constructs valid entailments.

Authenticity of infons. Whereas the previous sections left the evidence terms associ-
ated with an infon abstract, in our interpreter evidence terms are represented as digital
signatures. By relying on previously developed verified libraries for cryptography, we
prove a correspondence property on execution traces of DKAL* configurations.

Secure embedding of F* in DKAL*. We show how to securely implement the (eval e)
construct, where the term e is an F* expression embedded within DKAL*. By relying on
the type checker of F*, we show that embedded terms can safely be executed without
breaking the invariants of the rest of the interpreter. This mechanism significantly broad-
ens the scope of DKAL*, empowering programmers with a powerful general-purpose
programming language when needed, and allowing a DKAL* protocol to seamlessly
integrate within the context of a larger secure system.

As is usual in ML, our interpreter defines DKAL* syntax using a collection of al-
gebraic types. We separate the syntax of quantified infons (polyterm) from infons, but,
unlike in Section 2, we use a single type term to represent both terms ¢ and infons <.
This representation is flexible in that it allows terms and infons to be represented by
a single type term, but it allows malformed terms to be constructed. We recover well-
formedness by expressing the typing judgment for QPIL using inductive types (see the
companion technical report [17]).
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Verifying a decision procedure for QPIL entailment We show below our mechanical
formalization of QPIL entailment and the implementation of its decision procedure.
We define two mutually recursive inductive types, entails and polyentails. The type
entails K G i corresponds to the judgment K; I |= 4, and polyentails K G i corresponds
to the judgment K; I' = ¢ (from Section 2).

type prefix = list term

logic function Prefix : prefix — term — term

assume Vi. (Prefix []1) =i

assume Vp pi i. (Prefix (p::pi) i) = (Prefix pi (App SaidInfon [p; i]))

type entails :: and polyentails ::
infostrate = vars = term = P= infostrate = vars = polyterm = P =
| Entails_And_Elim1: K:infostrate — G:vars | Entails_Hyp_Knowledge :
— i:term — j:iterm — pi:prefix K:infostrate — G:vars — okCtx K G
—entails KG — i:polyterm{In i K} — i’:polyterm
(Prefix pi (App AndInfon [i; j1)) — alphaEquiv i i’ — polytyping G i’
— entails K G (Prefix pi j) — polyentails KG 1’

The code above illustrates two features of F*. First, we define the notion of an infon
¢ with a quotation prefix 7 (written 7 % in Section 2). A quotation prefix is simply a
list of terms and we define a function symbol Prefix to attach a prefix to term. This
function is axiomatized by the assume equations, allowing the SMT solver underlying
F*’s typechecker to reason about applications of the Prefix function symbol. Using this
construct, we can define the constructor Entails_And_Elim1, which corresponds to the
rule (A-E1).

The constructor Entails_Hyp_Knowledge corresponds to the rule (Hyp-K), with the
relation okCtx representing the well-formedness of the context and alphaEquiv corre-
sponding to the relation =,. The premise ¢ € K from (Hyp-K) is represented by the
ghost refinement type i:polyterm{IniK}, another feature of F*. This is the type of a
polyterm i for which the property In i K is derivable by the SMT solver, without the pro-
grammer to supply a (lengthy) constructive proof.

With the above types as our specification, we implement and prove sound a
unification-based, goal-directed proof search procedure to (partially) decide QPIL en-
tailment. Our algorithm is implemented by the function derivePoly, whose signature is
shown below. The type says that in an infostrate K, given a quantified infon goal with
free variables included in the set U, if successful in proving the goal, the function returns
a substitution s whose domain includes the variables in U such that the substitution s
applied to the goal is derivable from K.

val derivePoly: K:infostrate — U:vars — goal:polyterm
— option (s:substitution{Includes U (Domain s)} * polyentails K [] (PolySubst goal s))

The completeness of QPIL comes from [8]. We aim to extend our implementation
to include a complete algorithm.

Main interpreter loop The top-level of our interpreter is the infinite loop shown in
the code below. At a high level, given a program represented by a list of rules rs, the
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interpreter computes and applies all enabled actions, and then, unless the actions cause
a change to the local state, blocks waiting for new messages before looping.

let rec run (rs:list rule) = let actions = allEnabledActions rs in
let stateChanged = applyAllActions actions in
if stateChanged then run rs else (block_until_messages_received(); run rs)

Conceptually, the function allEnabledActions implements the local rule evaluation
judgments P |}, A, while applyAllActions implements message dispatch over the net-
work, corresponding to the global transition step in the semantics of Section 3. Recall
that in our semantics the local configuration of a process, in addition to the rule set,
involves two components: the infostrate K and the message store M. We represent
each of these using mutable state and globally scoped references. Each interpreter also
has a single global constant, me:principal, the name of principal on whose behalf the
interpreter runs.

We also axiomatize rules corresponding to the holds function of Section 3, and
prove that the interpreter can apply only actions that have satisfiable guard conditions.
As such, we prove a soundness property for our interpreter—the set of actions executed
by the interpreter is a subset of the actions that may be executed in the operational
semantics of Section 3. A limitation, as in the case of the decision procedure, is that
we do not prove completeness of our interpreter, i.e., we do not prove that al/l enabled
actions are indeed computed and applied.

Authenticity of communications As discussed earlier, the semantics of DKAL* presented
in Section 3 is clearly insecure—a principal p can freely forge an infon. However, our
setup hints at a solution: justified infons, terms of the form Ev ti carry evidence terms t
that can be used to convince a recipient of the authenticity of the infon. In this section,
we instantiate t using digital signatures.

Our goal is to prove an authenticity property by analyzing execution traces of a
DKAL™ protocol running in the presence of a Dolev-Yao network adversary. Informally,
we relate an event recording the receipt of a message Ev ¢ (¢ said ¢) by an honest
participant p at step k in an execution trace, to a corresponding event at step k' < k
recording the sending of the message Ev ¢ (¢ said ¢) by ¢, unless the signing key of ¢ has
been compromised, i.e., a standard correspondence property on traces [25] to establish
the authenticity of communications.

We set up the verification of this property following a methodology due to Gordon
and Jeffrey [13], and later in RCF [6] and F*. The basic idea is to augment the dynamic
semantics of the programming language with a facility to accumulate protocol events
in an abstract log, and to prove trace properties by analyzing the abstract log.

Broadly, we record the sending of messages by adding an event (Sent p i) to the log
when p sends a message ¢, and when receiving a message, through the use of a verified
library of cryptographic primitives, we attempt to prove that the corresponding Sent
event is in the log, unless the key of p has been leaked to the attacker.

We give a flavor of the main elements in our proof in the companion technical
report [17]—the constructions are essentially standard; the reader may consult Swamy
et al. [22] for more details about our cryptographic libraries.
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Embedding F* in DKAL* Our interpreter provides a simple and elegant solution to
extend DKAL* with more general-purpose programming facilities. The example in Sec-
tion 1 embeds an F* expression checkBalance "c""n" within a DKAL* protocol using
the eval construct. When evaluating the if-condition, the interpreter executes the eval’d
term by calling the F* function checkBalance defined along with the policy. Once in F*,
we have the power of a full-fledged programming language at our disposal—we query
a database to check if the customer has sufficient funds, update the database, and return
the result (an infon) to the eval context.

Of course, one may be concerned that eval’ing an arbitrary F* term may be dan-
gerous, e.g., it may inappropriately access internal data structures of the interpreter, or
it could accept improperly signed messages, etc. However, because the eval’d term is
statically typed by F*, we ensure that it never breaks any such critical invariants.

When evaluating the F* function, the interpreter passes in a variable environment as
an argument, which contains bindings for each of the pattern variables in scope at the
point where the eval’d term is defined. In the future, we plan to exploit this idiom at a
larger scale, aiming to build and deploy full-fledged cloud services using this DKAL*/F*
hybrid language.

Experimental evaluation The table below shows 8 examples we developed using
DKAL*. Configuration files contain cryptography keys and communication ports for
principals. Each principal stores her policies in a DKAL* file. The DKAL* file is com-
piled to F* for the interpreter to evaluate the rules. We measure the sizes of configuration
files (column config), the DKAL* files (column DKAL), and the resulting F* files (column
F*). All numbers are line counts of files.

Name Description Config DKAL| F*
Hello world Two parties exchange hello messages. 13 14| 45
Ping-Pong Two parties bounce messages. 13 10| 54
File system A system restricting file accesses. 15 18] 89
Calculator Integer arithmetic. 27 27115
Turing Machine|A simulator of Turing machines. 22 40(121
Rumors Four principals spread messages. 32 22(144
Retail Our online retail example in the Intro. 25 591195
Clinical Trials |Checking that a physician can conduct a trial. 57 86(296

These examples cover diverse scenarios, ranging from simple message exchanges,
to authorization, arithmetic, simulating turing machines, and online retailing. “Hello
world” and “Pingpong” are simple message exchanges. “File system” has user U send a
justified message U said Ask(‘“f.txt”’, U, “‘read”’) to the file system to request file access
and responds if authorized. “Calculator” implements integer arithmetic, demonstrating
the eval construct. “Turing Machine” simulates turing machines. It uses DKAL* policies
to control state transitions. “Rumors” involves trust management among four parties.
“Retail” is our example in Section 1.

Our most complex example is “Clinical Trials”, which simulates a pharmaceutical
company hiring an independent research organization to conduct a clinical trial be-
fore releasing a new drug. This scenario was originally discussed by Blass et al.[10].
Briefly, the research organization hires sites such as hospitals or labs to execute the
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trial. Each site finds appropriate patients and assigns physicians to work with them. We
use DKAL* to specify a protocol to enforce patient privacy: patient records are guarded
by a key manager, which gives only authorized physicians the keys to access patient
records. The protocol involves four message exchanges among the principals and rea-
soning about integer arithmetic and authorization delegation. We tie the abstract DKAL*
specification to a concrete implementation of messages and wire formats through the
use of standard cryptographic protocols for authentication, but with implementations
that are verified (in a symbolic model) against the abstract DKAL* specifications. The
arithmetic reasoning is performed by embedded F* expressions.

5 Related work

The design of DKAL* is informed by a long line of work on abstract state machines
(ASMs), also called evolving algebras or dynamic structures [15], and especially by
the work on applications of the specification language AsmL [16] and the ASM-based
Spec Explorer tool [11]. More directly, DKAL* derives from its predecessor Eviden-
tial DKAL [10]. Evidential DKAL extends the authorization logic DKAL [14] with a
construct similar to our Ev ¢ «. The evidential nature of DKAL is related to Necula’s
proof-carrying code [20] that was followed by proof-carrying authentication [3] and
more recently by evidence-based audit [23] and code-carrying authorization [1].

Our work improves on Evidential DKAL in a number of ways. First, we formu-
late QPIL in a manner suitable for mechanical verification—the prior formulation is
informal in its treatment of quantifiers and variables. Next, although Evidential DKAL
suggests incorporating an ASM-based language, it does not formalize this language—
our semantics is novel. Our verified implementation and embedding of F* in DKAL*
is new. In the process of our verification, we found and fixed several bugs in the prior
formulation, including one serious bug related to ill-scoped variables.

Our authorization logic QPIL is related to many prior logics used in a variety of trust
management systems. These are too numerous to discuss exhaustively here—Chapin
et al. [12] provide a useful survey. One representative however is SD3 [19], where the
problem of deciding authorization by means of solving a query on a distributed database
is studied. SD3 has a certified evaluator, which is related to our verified decision proce-
dure for QPIL. Both systems not only decide the validity of a query, but also construct
a proof witness. SD3 requires an additional proof checking step, whereas our system
statically guarantees that we construct only valid proofs.

Another line of related work includes programming languages that are combined
with authorization logics. For example, Aura [18] is a dependently typed functional
programming language whose type system embeds the authorization logic DCC [2].
Aura programmers build constructive proofs of authorization before performing secu-
rity sensitive operations, whereas we provide a decision procedure within the runtime,
and allow the embedding of F* terms in the specification.

Compiling DKAL* to F* allows the possibility of using F*’s verification-oriented
type system to prove various properties of the protocol implementation. Thus DKAL*
stands to benefit both from the extensive study of properties of abstract protocol mod-
els and the automated verification of protocol implementations. This line of work, too
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extensive to discuss in detail here, is covered thoroughly by a recent survey on protocol
verification [9].

Our approach to embedding F* terms inside DKAL* compiling the result to F* for in-

terpretation is a weak form of meta-programming. It is related to template Haskell [21]
in that after code generation, we typecheck the resulting program as a normal F* pro-
gram before interpretation. However, unlike template Haskell, we do not support exe-
cution of embedded F* code when generating F* from DKAL*. As such our approach
is similar to inlining assembly instructions by many C compiler, with additional type-
checking before execution.
Conclusions. DKAL* is a language that allows for the specification and execution of
distributed authorization protocols.We have formalized DKAL*, giving it an operational
semantics and a type system. We have also built a DKAL* interpreter, mechanically ver-
ified to soundly implement its semantics. Protocol designers can use our formalization
to describe and analyze their authorization policies, while programmers can use our
verified interpreter to deploy them.
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