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ABSTRACT

Previous version of a program can be a powerful enabler for
program analysis by defining new relative specifications and
making the results of current program analysis more rele-
vant. In this paper, we describe the approach of differential
assertion checking (DAC) for comparing different versions
of a program with respect to a set of assertions. DAC pro-
vides a natural way to write relative specifications over two
programs. We introduce a novel modular approach to DAC
by reducing it to safety checking of a composed program,
which can be accomplished by standard program verifiers.
In particular, we leverage automatic invariant generation to
synthesize relative specifications for pairs of loops and pro-
cedures. We provide a preliminary evaluation of a prototype
implementation within the SYMDIFF tool along two direc-
tions: (a) soundly verifying bug fixes in the presence of loops
and (b) providing a knob for suppressing alarms when check-
ing a new version of a program.

Categories and Subject Descriptors

D.2.4 [SOFTWARE ENGINEERING]: Software/Pro-
gram Verification—Assertion checkers, Formal methods

General Terms
Verification, Reliability

Keywords

Differential Analysis, verification, regressions

1. INTRODUCTION

There are several factors limiting the adoption of static
analysis tools in the hands of developers. For static asser-
tion checking, these include the need to define an assertion
(or specification) to check, to provide environment speci-
fications and to provide auxiliary invariants for loops and
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procedures. Although many auxiliary invariants can be syn-
thesized automatically by invariant generation methods, the
undecidable nature (or the high practical complexity) of as-
sertion checking precludes complete automation for a general
class of user-supplied assertions.

It has often been proposed that utilizing previous versions
of an evolving program can significantly reduce the cost of
program analysis [24]. Such approaches run in two primary
directions. First, in the presence of program refactoring, two
versions can be checked for semantic equivalence to ensure
the correctness of the transformation [25, 12, 19]. Second,
verification can be performed incrementally, for example by
carrying over invariants that are unaffected by the syntac-
tic changes [28]. Although these techniques are useful in
their own right, they are applicable in very limited contexts.
First, most software changes (including some called refactor-
ing) induce some behavioral change. Equivalence checking
is too strong for such cases. Moreover, incremental verifica-
tion can only be performed when the previous version does
not have any false warnings — unfortunately, this is too
strong a requirement for the usage of static analysis tools.
Such false warnings have to be either removed by manually
specifying additional invariants, or the tool has to resort to
ad-hoc heuristics to suppress a class of warnings. The for-
mer seriously undermines the productivity gained from the
use of static analysis, whereas the latter leads to brittle tools
that may suppress true bugs.

In this paper, we propose another direction for exploiting
previous versions of a program as an implicit specification,
which appears to open up an interesting space for trading
off soundness for cost required to apply an assertion checker.
Our observation is simple:

We can often prove relative correctness between
two similar programs with respect to a set of
assertions statically with significantly lower cost
than ensuring absolute correctness.

Given a program P with a set of assertions A, one tradition-
ally asks whether there is an environment for P in which
one of the assertions in A fails. One can instead ask a rel-
ative version of this question: given two versions P and P’
containing a set of assertions A, does there exist an envi-
ronment in which P passes but P’ fails? We formalize this
idea as the problem of differential assertion checking (DAC)
— checking two versions of a program with respect to a set
of assertions. Although this provides a weaker guarantee
of correctness of P’, it closely corresponds to an interesting



class of bugs (regressions) that are often most relevant to a
developer and have a good chance of getting fixed. More-
over, we argue that DAC has several desirable traits, when
checking absolute correctness is rife with false alarms:

1. DAC allows for writing natural relative specifications
without a lot of modeling (additional ghost variables)
to express the properties.

2. DAC can be used to show that bug fixes do not cause
additional regressions for a set of assertions.

3. Exploiting the structural similarity of programs P and
P’ allows simple intermediate relative specifications to
answer the relative questions.

An idea similar to DAC was earlier proposed in the context
of filtering false alarms for concurrent programs [17] (we dis-
cuss subtle differences in Section 3). At a high level, one can
see this work as applying the idea towards evolving programs
and extending the idea to deal with unbounded loops and
recursion ([17] was restricted to bounded programs).

1.1 Motivating Example

void StringCopy.1(
wchar_t *dst,
wchar_t *src,
int size)

void StringCopy.2(
wchar_t *dst,
wchar_t *src,
int size)

wchar_t xdtmp = dst,
xstmp = src;

wchar_t xdtmp = dst,
xstmp = src;

int i; int i;
for (i =0; for (i =0;
xstmp && i < size —1&&
i < size — 1; *stmp;
i++) i++)
xdtmp++ = *stmp++; xdtmp++ = sstmp+-+;
*dtmp = 0; *dtmp = 0;

} }

Figure 1: Motivating example (in C): two versions
of StringCopy (Figure 1 [15]).

Consider the two versions of the procedure StringCopy
described in Figure 1. The version StringCopy.2 is a pro-
cedure for copying the contents of a char buffer src into
dst, described in an earlier work [15]. Let us first ignore
StringCopy.1, which is a buggy version of StringCopy.2.
In this paper, we adopt the convention that procedures on
the left side of the figures corrspond to buggy versions and
those on the right correspond to correct versions. Let us
illustrate the complexities of verifying the memory safety of
StringCopy.2 in isolation.

1. To specify memory safety, one needs to define the bounds
of a buffer for C programs (unlike Java or C#). This
can be accomplished by adding a ghost variable Bound
that maps each allocated pointer (such as dst) to a
non-negative integer. One possible way to specify the
memory safety is to precede any dereference *e with
the assertion assert Bound(e) > 0.

2. One needs a precondition that the bounds of dst and
src have some relationship with size, and the two
buffers are disjoint.

3. Finally, one needs to write a loop invariant to record
that dtmp always points inside the buffer pointed by
dst, among other things.

Even for such a simple procedure, specifying and verifying
the memory safety can be quite complex if the user is left to
define the assertions, environment conditions and interme-
diate invariants.

Now we define relative memory safety of StringCopy.2
with respect to StringCopy.1. First, observe that the dif-
ference in the two versions lies in the loop exit condition
where the conjunction (&&) is applied in reverse order —
this gives different behaviors due to the short-circuit seman-
tics of &&. We want to check that StringCopy.2 accesses
only the memory locations which StringCopy.1 accesses for
any input. We can define and check relative memory safety
in a generic fashion as follows:

1. Define an uninterpreted predicate Valid that maps each
pointer to a Boolean value. Each dereference *e is pre-
ceded by assert Valid(e).

2. Let ok.i be a global Boolean variable for String-
Copy . i procedure that is true if no assertion has failed.
We replace assert ¢ by code that sets ok.i to false if
¢ is false. We say StringCopy.2 is correct relative to
StringCopy.1 if, when both start in the same state
(parameters and the heap) and both terminate, if the
former terminates in a state where ok.1 is true, then
the latter also terminates in a state satisfying ok. 2.

3. Assuming the two loops are automatically extracted as
tail-recursive procedures (§ 9) loop.1 and loop.2 re-
spectively, we show how to construct a composed pro-
cedure for the two loops and attach a simple relative
specification on the composed procedure.

pre stmp.l == stmp.2 &&
dtmp.1l == dtmp.2 &&
Mem_char.1 == Mem_char.2 &&
il ==i2&&
size. 1 == size.2 &&
ok.l1 <==> ok.2

post ok.l ==> ok.2 &&
dtmp.1l == dtmp.2
proc MS_loop.1_loop.2(dst.1, ..., dst.2, ..);

Here pre refers to a precondition and post refers to a
postcondition, and Mem_char.i refers to a global ar-
ray that models the state of the heap. Moreover, we
show how such a specification can be inferred using the
techniques in this paper.

Note that we did not require any precondition about the in-
puts to the program, nor any correlation about the bounds
nor any relationship with null-terminated buffers. This check-
ing succeeds and we have proven that StringCopy.2 has a
memory footprint no larger than StringCopy.1. On the
other hand, if one were to check the relative correctness of
StringCopy.1 with respect to StringCopy.2 under the rela-
tive memory safety specification, one would get a counterex-
ample where size equals 0 and pointer src does not satisfy
Valid. This counter-example captures the seeded bug: an
address that StringCopy.1 dereferences but StringCopy.2
does not.
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Figure 2: A simple programming language. The set
of goto statements do not form any cycles in the
control flow graph.

1.2 Overview

In the rest of the paper, using the background developed
in § 2, we formalize the notion of differential assertion check-
ing (DAC) (§ 3), and illustrate its use for defining relative
specifications (§ 3.1). We provide an algorithm for check-
ing DAC modularly by transforming the relative correctness
problem into verifying assertions over a single composed pro-
gram (§ 4). This allows us to leverage standard off-the-shelf
program verifiers and invariant generation tools to check
the relative correctness problem. We demonstrate a sim-
ple scheme based on HOUDINI [11] that suffices for a class
of programs (§ 5.1). We have created a prototype imple-
mentation of our method inside SYMDIFF [19], a semantic
differencing tool. We evaluate the tool along two different
directions. First, we use DAC to soundly verify that the
version after a bug fix is relatively correct with respect to
the buggy version (§ 6.1). Second, we show that DAC can
provide a systematic knob for suppressing alarms when an-
alyzing a new version of a program (§ 6.2). Together, the
experiments indicate the potential of DAC to be a generic
framework to exploit previous versions of a program.

2. BACKGROUND

Figure 2 describes a simple programming language (a sub-
set of the BOOGIE [2] programming language) with recur-
sive procedures and an assertion language. We assume that
loops are already desugared into recursive functions of this
language (we describe a method in § 9). The language sup-
ports variables (Vars) and various operations on them. Ex-
pressions (Ezpr) can be variables, constants, or the result
of applying a (possibly interpreted) function U to a list of
expressions. The expression old(e) refers to the value of e at
the entry to a procedure. Formula represents Boolean val-
ued expressions and can be the result of (interpreted or un-
interpreted) relational operations on Ezpr, Boolean opera-
tions ({A, =}), or possibly quantified expressions (Vu : int.¢).
Note that the programming language is fairly expressive
and can be used to model arrays. An array can be mod-
eled in this language, by introducing two special functions
sel € Functions and upd € Functions; sel(e1, e2) selects the
value of a map value e; at index ez, and upd(e1, ez, e3) re-
turns a new map value by updating a map value e; at loca-
tion ex with value es.

A state of a program at a given program location is a
valuation of the variables in scope (procedure parameters,

locals and global variables) and a program counter pc that
indicates the next statement to be executed. A program
consists of a set of basic blocks, where each basic block con-
sists of a statement s € Stmt terminated with a control
flow statement CFStmt (goto or return statement). A goto
statement goto L, ..., L, non-deterministically sets the pc
to any one of the n labels. We restrict the use of goto state-
ments to not form any cycles in the control flow graph. The
statement skip denotes a no-op. The statement assert ¢ is
used to statically check that the formula ¢ holds; assert ¢
has no effect on the dynamic state. The statement assume ¢
behaves as a skip when the formula ¢ evaluates to true in the
current state; else the execution of the program is blocked.
The assignment statement is standard, havoc x scrambles
the value of a variable x to an arbitrary value, and s;t de-
notes the sequential composition of two statements s and
t. Conditional statements are modeled by using the goto
statement and assume statements. Procedure calls are de-
noted using the call statement, and can have a side effect by
modifying one of the global variables.

Let ¥ be the set of all states for a program. For any
procedure p € Proc, we assume a transition relation 7, C
Y. x ¥ that characterizes the input-output relation of the
procedure p. In other words, two states (o,0’) € T, if there
is an execution of the procedure p starting at o and ending
in ¢’. The transition relations can be defined inductively on
the structure of the program and is fairly standard for our
simple language [2].

There are a host of tools for modeling most high level
languages (such as C, C#, Java) in this language (such
Havoc [7] for C). We note that such translations use arrays
to model the heap (e.g. an array per field in Java) where the
arrays are indexed by objects or pointers. We defer further
discussion of the translations to these earlier works.

3. DAC

In this section, we formalize our approach of differential
assertion checking (DAC). The basic concept of DAC ap-
pears in a previous work in the context of filtering false
alarms in verification of concurrent programs using sequen-
tial executions [17]. However, it was described in a simpler
setting of bounded programs: loops were unrolled and re-
cursive procedures were inlined a bounded number of times.

Before proceeding, we establish a few notations that we
follow in the paper unless explicitly stated otherwise. First,
we assume that any assertion assert ¢ is replaced by the as-
signment ok := ok A ¢ to a global ok variable. Second, given
that we are considering two versions P; and P, of a pro-
gram, we suffix the names of procedures, globals (including
ok) and parameters with the version number. Third, we la-
bel a state o as failing if ok variable is false in o. Finally, we
assume a one-one (not necessarily onto) mapping between
the globals, procedures, and their parameters between the
two versions; we often equate states from two versions when
we really mean that the two states assign the same value to
the mapped variables of the two states.

Definition 1. (Differential assertion checking) Given two
procedures p; and p2, p2 has a differential error with respect
to p1 (denoted as DAC(p2, p1)) if there exists an input state
o such that (1) there exists a state o such that (o,07) € T,,
and o7} is non-failing, and (2) there exists a state o5 such that
(0,0%) € Tp, and o3 is failing.



We define a procedure p2 to be relatively correct with re-
spect to p1 if DAC(p2,p1) does not hold.

The above definition differs from the definition of differ-
ential error (DiffErr(pz,p1)) [17] in a subtle way. The dif-
ference lies in whether we insist the input ¢ to be non-failing
for every execution in p1 (in Diff Err(pz2,p1)) as opposed to
be failing on some execution in p1 (in DAC(p2,p1)). We
provide a simple example that distinguishes the two views
in Figure 3.

proc p1() {
havoc x;
if (x) assert false; }

proc p2() {
assert false;

Figure 3: Example differentiating DiffErr and DAC

For this example, DAC(p2,p1) holds as there is a state
(empty) from which p1 succeeds (when the internal variable
x is assigned false) and p2 fails. However, DiffErr(p2,pl)
does not hold because there is no input state from which
all executions are non-failing for p1. It is easy to observe
that if DiffErr(p2,p1) holds then DAC(p2,p1) holds, but
not otherwise.

The definition of DiffErr was motivated by comparing
concurrent interleaved executions with their sequential coun-
terparts. We adopt the slightly modified definition for DAC
to several reasons. First, the check for DAC (p2,p1) can be
encoded very naturally using single program verifiers:

assume il == i2 && gl == g2;
call p1(il); call p2(i2);
assert (ok.l ==> ok.2);

where we use i and g to denote parameters and globals.
On the other hand, the DiffErr check is more complicated
because checking it is undecidable even for bounded pro-
grams. This added complexity is not needed for comparing
similar versions of a program; we have found that inter-
nal non-deterministic choices are less common. Whenever
non-determinism is present (say reading chars using scanf),
the choices can be aligned on the two sides to return the
same arbitrary sequence of choices in the two programs (see
[19]). In such a modeling, the non-deterministic choices be-
come reads from an input array, thereby converting internal
non-determinism to input non-determinism.

3.1 Relative Specifications

Recall that writing meaningful specifications often require
access to a host of ghost state that is not present explicitly
as part of the program state (§ 1.1). In addition to checking
existing assertions in the two versions differentially, DAC
also facilitates writing relative specifications using the same
syntax of single program assertions. Instead of defining the
buffer overrun checks on the two programs and checking
them differentially, it often helps to pose questions such as:
are there inputs for which P» accesses buffer regions that
are not accessed by P1? Such specifications can be written
by introducing an uninterpreted predicate Valid and adding
an assertion before accessing any pointer p: assert Valid(p).
Such a specification will be useless for checking a single
program (every pointer dereference might be flagged as a
warning), but will naturally provide a relative specification.

Moreover, such a specification can be strengthened using
semantics of the particular property that is desired. For ex-
ample, when checking for non-null pointer dereferences, one
can constrain the predicate by adding an axiom:

axiom(Vz :int :: z % 0 = Valid(p))

Similarly, while checking for buffer overflows, one can add
an axiom:

axiom(Vz : int,y :int :: ¢ < y = Valid(y) = Valid(x))

This will allow the DAC to not show a warning when the
program P> accesses an index that is smaller than an index
accessed by P;. This is specially useful when the entire his-
tory of indices accessed by P is not stored (especially while
doing a modular proof of DAC (§ 4) that only records an
abstraction of the history of accesses on the two programs).
Finally, one can even capture properties such as equivalence
of two procedures (modulo termination). For a procedure
p € P, let o be the set of out parameters and g be the set
of globals modified by p. If we assert ValidEQ(o,g) (for an
uninterpreted predicate ValidEQ) on the post-state of p and
then perform DAC on two versions p; and pz, then the rel-
ative specification is correct if and only if the two programs
are equivalent.

4. MODULAR DAC

In the previous section, we defined the problem of differen-
tial assertion checking DAC(p2,p1) for a pair of procedures
p1 and p2. In this section, we provide a mechanism to check
for DAC(p2,p1) (or rather verify that ps is relatively correct
with respect to p1) in a procedure modular manner. In other
words, we will verify the relative correctness without inlining
the callees inside a procedure, but rather using some spec-
ifications. We provide a program transformation technique
that compiles the relative correctness check of two programs
P and P, into a single composed program, which can be
analyzed by an off-the-shelf program verifier. In particular,
the transformation allows us to leverage existing invariant
inference mechanisms for single programs for inferring rela-
tive specifications. The transformation is not specific to the
problem of differential assertion checking, and is applicable
whenever there is a need to compare two programs.

4.1 Composed Program

proc f1(x1): rl proc f2(x2): r2

modifies gl modifies g2

{ {
sl; s2;

L1: L2:
wl := call hl(el); w2 := call h2(e2);
tl t2

} }

Given two programs P; and P> each containing a set of
procedures, and a one-one mapping between procedures, let
us consider two particular mapped procedures £f1 € P; and
£2 € P,. We have specified the modified set of globals for
each procedure using modifies keyword. For ease of expo-
sition, we have assumed that the read set of a procedure is
a superset of the set of modified variables.



proc MS_f1_f2(x1,x2) returns (rl,r2)
modifies gl, g2

// initialize call witness variables

b_lI1, b_I2, .= false, false, ..
[[s1:]]

L1:
ill, gill :=el, gl; //store inputs

call wl := hl(el);
b_Il := true; //set call witness
o_ll, go_ll :=wl, gl; //store outputs

[[t1:]]

[([s2:]]
L2:

i12, gil2 :=e2, g2; //store inputs
call w2 := h2(e2);

b_12 := true; //set call witness

o012, go 12 := w2, g2; //store outputs

[[2;]]

//one block for each pair of call sites
//for a pair of mapped procedures

if (bl && bI2) { //for (L1,L2) pair
//store the globals
st gl, st.g2 :=gl, g2;

gl, g2 :=gill, gil2;

call k1, k2 := MS_h1_h2(i_I1, i_I2);
assume (k1 == o_I1 && gl == go_I1);
assume (k2 == o_12 && g2 == go_I2);

// restore globals
gl, g2 :=stgl, stg2;

return;

Figure 4: Composed procedure for f1 and f2.

Figure 4 describes a composed procedure MS_f1_£2 that is
constructed for each pair of mapped procedures. First, note
that the signature (parameters, modifies sets) of the proce-
dure is a disjoint union of the signatures of the individual
procedures. The body of MS_f1_f2 consists of sequential
composition of the bodies of £1 and £2, in addition to some
extra instrumentation. Since loops are already extracted as
tail-recursive procedures, the body of any procedure con-
tains no loops.

The instrumentations consist of two parts. The first part
consists of storing the input and the output state at each call
site. The second part consists of constraining the outputs of
pairs of call sites (from different programs) to be the result
of executing the corresponding composed procedure over the
input states at the two call sites. This allows us to infer facts
about pairs of procedure calls and to apply them in context.

We describe each of the steps in detail with respect to a
pair of call sites from f1 and £2 respectively. At a given
call site (say for label L1), we store the arguments and the

input value of global variables into local variables (i_11 and
gi_11) respectively. Since £1 only modifies globals from g1,
it suffices to store this subset of globals. Similarly, we record
the returned value and the globals after return into local
variables (o_11 and go_11) respectively. Each call site also
has a local Boolean witness variable (b_11) that is initialized
to false and set to true after the call has returned. The
figure shows the transformation of the two particular call
sites; other call sites in the remainder of the procedures are
similarly instrumented (indicated by the double brackets in
“Is117)-

After the instrumentation of the bodies of the two proce-
dures, we add a conditional block for each pair of mapped
call sites. The blocks are guarded by the Boolean witness
variables for the call sites; these blocks are executed only
when the corresponding call sites were encountered in an
execution and both returned. Each block first stores the
values of the globals into local st_gi variables. Next, it
calls the composed procedure MS_h1_h2 (this time for the
pair of callees), with the calling contexts restored from the
gi_1i variables, passing stored arguments i_1i as inputs to
the composed procedure. The return values (returns and
globals) are constrained to be the recorded values from af-
ter the two calls, using the assume statements. Finally, the
globals are restored from the st_gi variables, erasing the
effect of the call.

We use the notation o1 @ o2 to denote a composed state
consisting of a state from the two programs with disjoint
signatures.

THEOREM 1. For two programs P1 and P> and two proce-
dure p1 € P1 and p2 € Ps, (01,01) € Tpy and (02,0%) € Tp,
if and only if (01 @ 02,01 B 04) € TMS p1_ps -

PrOOF. We only sketch the main ideas here. The first
part of MS_pi_ps has the effect of executing p; and p2 in
parallel, recording the pre- and post-states of the procedure
calls in ghost variables. The second part always has a termi-
nating execution and has no effect. That is, by induction on
recursion depth, we can assume the theorem for the call to
M S_hi_ho. This guarantees a behavior for which the subse-
quent assume statements are true. Moreover the program’s
global state is restored. Thus the net effect of M S_pi_p2 is
simply to execute p1 and pa. [

Theorem 1 illustrates that the transformation performed
is not just limited to performing differential assertion check-
ing, but provides a general method to exploit similarity
between procedures in program proving. The main power
of the transformation comes from providing the additional
composed procedures over which one can write specifications
towards the proof of a final specification (like DAC). An in-
variant inference engine now has the extra flexibility to infer
invariants about the composed procedures in addition to the
procedures in P, and Ps.

Consider two versions of Foo (Figure 5) where the second
version accesses fewer indices in the array a. Let us assume
that the loops are extracted into procedures Loop.1 and
Loop. 2 respectively (omitted for brevity). Our approach will
generate the following composed method MS_Loop.1_Loop.2.
The relative specification (using the keyword post) says that
if the values of i and ok are equal at the start of a loop exe-
cution, then Loop.2 fails less often than Loop.1. This is an
inductive specification, and also sufficient to prove the DAC
property for the outer procedures Foo.1 and Foo.2.



var a.l:int]int;
const MAX: int;
proc Foo.1() {
var i: int, t:int;
i =0
while (i <= MAX) {

var a.2:[ int]int;
const MAX: int;
proc Foo.2() {

var i: int, t:int;

i =0;

while (i < MAX) {
assert Valid(i); assert Valid(i);
t:=a.lfi]; t:=a.2i];
i=i4+1 =1+ 1;

Figure 5: Running example.

post (i.1 ==i.2 && old(ok.1) <==> old(ok.2))
==> (ok.1 ==> ok.2)
proc MS_Loop.1_Loop.2(i.1, t.1, i.2, t.2)
returns (i.1", t.1', i.2", t.2");

modifies ok.1, ok.2

The example also illustrates one other important aspect.
The specifications of composed procedures typically have a
simple relative form, but are not entirely trivial to obtain. If
we had included the equality t.1 == t.2 alongside i.1 ==
i.2 our specification would have been too weak, since t is
not initialized on entry to the loops. Mutual specifications
are often mostly independent of the specific invariants of
procedures (a great advantage) but may not always be the
trivial equality over all the state variables in scope.

4.2 Relative and Absolute Specifications

On the other hand, let us consider the complexity of the
specifications without the composed procedure. To prove the
DAC property on the two versions of Foo, one will need to
provide the following precondition for Foo.2:

pre forall j: 0 <=j && j <= MAX ==> Valid(j)

Informally, this provides the weakest precondition of Foo.1
to ensure that the procedure does not fail. In addition, we
will need a loop invariant on Loop.2 procedure:

pre 0 <=i2 &&i.2 <= MAX

Although this is another way to prove the DAC property, it
demonstrates that one may require program specific (possi-
bly quantified) invariants (since it talks about MAX) that may
become arbitrarily complex to specify and more difficult to
infer. On the other hand, the relative specification used for
proving the DAC property using the composed procedure
can be fairly easy to guess as it may depend little on details
of the actual procedures.

S. INFERRING RELATIVE CONTRACTS

Since the composed procedures have the same syntax as
the underlying procedures in P; programs, we can use any
invariant inference technique that can be used to generate
invariants for P; programs. In particular, we can use ideas
based on abstract interpretation [8], predicate abstraction
techniques [13], and interpolants [22]. However, any invari-
ant synthesis technique is necessarily incomplete and might
either be limited by the underlying domain or may diverge

trying to find the inductive invariant. Therefore, it is wise to
inject some domain knowledge while looking for invariants
for proving differential properties like DAC.

In general, there are two forms of contracts for a com-
posed procedure such as MS_fi_f> in Figure 4. The pre-
condition of such a procedure would be a predicate over
the parameters and globals (i1,1i2, g1, g2), and the postcon-
dition would be predicate over the input and output param-
eters and globals (i1,142,0ld(g1),0ld(g2),71,72,91,92) — we
assume that the read sets are also included in g; globals. Fur-
ther, many natural two-state postconditions have the form
@(i1,12,0ld(g1),0ld(g2)) = ¥(r1,72,91,92). Finally, each of
¢ and 1 usually relate mapped variables (whenever such a
mapping can be easily obtained by matching names or types)
from the two programs using relations such as equality, in-
equality and Boolean implications.

5.1 Conjunctive Relative Specifications

We describe a simple scheme for synthesizing a subset of
the specifications described above, namely conjunctive rela-
tive specifications. For each composed procedure we auto-
matically generate a set of candidate preconditions and can-
didate postconditions and use the HOUDINI algorithm [11] to
infer a subset of these that are inductive for the program
and prove the specification. HOUDINI performs a greatest
fix-point computation starting with the set of all candidate
contracts as live (preconditions and postconditions) and kills
a candidate when it cannot be proved modularly assuming
the other live candidates. The process is repeated until ei-
ther no candidate can be removed, or the desired specifica-
tion can no longer be proved. In the former case, a sufficient
inductive invariant has been synthesized for the specifica-
tion; the latter case indicates either the property does not
hold or the set of candidates is insufficient. For BOOGIE pro-
grams, one can use an efficient implementation of HOUDINI
algorithm using the /contractInfer switch in BooGIE [30].

Now, we describe the set of candidates that are auto-
matically generated for each composed procedure such as
MS_fi_f> in Figure 4. For simplicity, we also assume that
each program P; has a single entry procedure (say p?) that
is not called from within P; and all procedures in P; have
a body. For each f; (¢ € {1,2}), let us denote I; as in-
parameters, M, as the ref set of globals, R; as the out-
parameters and G; as the mod set of globals. For each pro-
cedure other than the entry procedure, we first define the
sets V; as I; U M; (for preconditions) and R; UG; (for post-
conditions). For any pair of mapped variables v1 € V4 and
ve € Vo, we add the following expressions as either precondi-
tions or postconditions: (i) {v1 = vz, v2 = v1} for Booleans,
(ii) {v1 < v2,v2 < w1} for integers and (iii) {v1 = v2} other-
wise. Given these candidates, HOUDINI algorithm generates
the strongest inductive conjunctive invariant (if any) over
these candidates that can prove the DAC specification.

6. EVALUATION

In this section, we describe an implementation and evalua-
tion of DAC inside SYMDIFF [19]. SYMDIFF is an infrastruc-
ture for leveraging program verification techniques for com-
paring programs. The tool is agnostic to source languages
(C, Java, C#, x86) as it operates on the BOOGIE interme-
diate verification language. It currently has a front-end for
C programs (using the HAvoc [7] tool) that we use for our
experiments. Internally, SYMDIFF leverages the efficient ver-



ification condition generation in BOOGIE [3] along with the
Z3 [9] theorem prover to verify loop-free and call-free frag-
ments. The implementation of DAC consists of around 800
lines of C# code and mainly performs the following program
transformations: (i) introduces an ok variable and rewrites
the assertions present in a program, (ii) generates the com-
posed procedures (Figure 4), (iii) adds the DAC specification
for the entry procedures, and (iv) generates the candidate
contracts for the composed procedures (§ 5.1). In addition,
for each procedure p, it adds a postcondition ok = old(ok)
— this captures the semantics that the ok variable can only
transition from true to false.

In the next two subsections, we describe our experience
with applying DAC towards two directions. First, we eval-
uate the inference of relative specifications for verifying bug
fixes for a set of small C examples with unbounded loops
(§ 6.1). Next, we evaluate the effectiveness of DAC as a
mechanism for filtering alarms for evolving programs com-
pared to checking assertions on a single program (§ 6.2).

6.1 Verifying Bug Fixes

Table 1 describes the result of performing DAC on a set of
C examples (except iter which is a hand written BOOGIE
example). Each example contains between one and three
procedures with at least one loop. The first two examples
are already described in this paper, iter in Section 4 and
strcpy in Figure 1. The rest of the examples are drawn
from the VERISEC suite containing “snippets of open source
programs which contained buffer overflow vulnerabilities, as
well as the corresponding patched versions.” [31]. For each of
these benchmarks, we add an assertion assert Valid(p) before
any dereference to a pointer expression p. This includes
array accesses where afi| is treated as *(a + m * ) for an
array whose base type occupies n bytes. Performing DAC
checks that the corrected version is dereferencing only the
memory locations which the buggy version does and the bug
fix has not inadvertently increased the memory footprint.

Table 1: Bug fix verification results. “Glbs” denotes
globals in the BOOGIE translation of each program,
“Cands” denotes candidate preconditions or post-
conditions, “Infrd” denotes the subset of “Cands”
that were inferred by HOUDINI.

Example # Glbs | # Cands | # Infrd
iter 2 13 6
strcpy 19 29 28

apache-1 23 88 72
madwifi-1 36 187 59
madwifi-2 30 141 117
sendmail-1 20 77 49
sendmail-2 24 65 56

The examples in the VERISEC suite range from around
20 to 50 lines of C code (see Figure 6 for the sendmail-1
example). Table 1 indicates that the number of global vari-
ables is non-trivial in each example (except iter which is
a manually encoded BOOGIE program). These globals (gen-
erated by HAvoc [7]) model various aspects of C semantics
including maps for each pointer types and fields, allocation
status of pointers, and deterministic sequence of values re-
turned by functions such as nondet_int (Figure 6). Finding

the right relative specifications can be extremely time con-
suming given the sizes of product programs. Therefore, the
inference is quite invaluable in discovering the relative in-
variants needed to prove the DAC property, even for these
small C examples. Only one example (apache-1) required
an additional (absolute) specification not generated by our
tool — it specifies that a loop index variable never decreases.
For the rest of the benchmarks, we were able to automati-
cally infer contracts which were sufficient to prove that the
memory footprint of the correct version was no larger than
the footprint of the buggy version.

The pair of procedures for sendmail-1 in Figure 6 illus-
trates a couple of challenges for differential reasoning. First,
note that the fix resets the counter £b to 0 under some con-
dition. Therefore, the values of £b on the two programs will
get out of sync after fb reaches MAXLINE, since the buggy
program will continue to increment £b. Hence the precondi-
tion of the composed procedure for the loops only satisfies
the specification £b.2 < fb.1 as opposed to £b.2 == fb.1.
Second, if Valid is completely unconstrained, one may not
be able to prove the DAC property modularly without using
quantifiers in the invariants to record the history of accesses
in the first loop. Instead, we constrain Valid by the axiom
Va,y . x < y A Valid(y) = Valid(x) (§ 3.1), allowing the
simple relative specifications to prove the DAC property.

int main (void)

{

int main (void)

{ fb =0;
while ((c1 = nondet_int ())
fb = 0; ! = EOF) {
while ((c1 = nondet_int ()) /x OK x/
1= EOF) { fbuf [fb] = c1;
/* BAD x/ fb++;
fbuf [fb] = c1; if (fb >= MAXLINE)
fb++; fb = 0;
/* force out partial /* force out partial
last line x/ last line x/
if (fb >0){ if (fb >0){
/* BAD x/ /* OK x/

fbuf [fb] = EOS; fbuf [fb] = EOS;

return 0; return 0;

} }

Figure 6: Example of modular bug fix verification
(sendmail-1). The “BAD” and “OK” denote buggy
and fixed buffer accesses respectively.

Hence, we have demonstrated that DAC can be used for
verification of bug fixes. Starting from buggy and correct
versions of programs from a standard buffer overflow bench-
mark, DAC automatically infers relative contracts and proves
that the bug fix does not introduce dereferences of new lo-
cations; hence, eliminating the possibility of a regression.

6.2 Filtering Warnings

In this section, we evaluate the trade offs of differential
reasoning as a mechanism for filtering warnings from a pro-
gram verifier for evolving programs. When a single program
is analyzed for some specification (say memory safety) by
a verifier, for some programs, invariably there is a flood of



warnings. Many such warnings are false alarms due to the
limitations of static checking. A developer in such a situa-
tion will need some knobs which can lead him to warnings
of interest. In evolving software projects, a user is often less
concerned with warnings that were present in the earlier re-
leases.

In this section, we perform two case studies for exploring
such knobs: with benchmarks from Software-artifact Infras-
tructure Repository [27, 10] and Windows device drivers'.
For this section, we check the DAC property with respect
to the absence of null dereference errors. Each dereference
of a pointer p is preceded with an assertion about Valid(p).
Unlike the previous section, we however do not solely fo-
cus on changes that correspond to bug fixes for this class of
assertions.

For the purpose of this section, we have done several re-
strictions and simplifications. First, the loops present in any
procedure are unrolled two times. This is done to separate
the benefits of DAC from the precision gain obtained by
using an invariant inference engine. Second, we only con-
sider one candidate postcondition for the composed proce-
dure where the mapped procedures are semantically equal.
This is the default summary considered by SYMDIFF for per-
forming equivalence checking. In other words, the summary
of the composed procedure M S_pi_ps is limited to either the
procedure equivalence or the trivial summary true.

We instantiate the framework with five configurations: (i)
single: each procedure in P, (without taking P; into ac-
count) affected by the change is checked modularly without
any preconditions and callee postconditions. This is the de-
fault behavior of the static analysis performed by HAvoc.
(ii) sound: when analyzing P, and P, differentially, we use
the candidate summaries described above for the callees.
(iii) unsound: we assume that callees do not modify the
ok variables. This amounts to unsoundly assuming that
callees do not fail even when called from different states in P
compared to Pi. (iv) shallow: we unsoundly assume that
callees are equivalent including the effect on the ok variables.
(v) nonmodular: we check DAC non-modularly by inlining
callees and do not use any specifications. We have designed
the different options to compare modular DAC (represented
closest by sound) with (a) non-differential reasoning (sin-
gle), (b) non-modular DAC (nonmodular), (c) effect of in-
creasing unsoundness (unsound and shallow), which in turn
restricts the adversarial environments a static analysis can
consider while analyzing a procedure, on a large class of ex-
amples. Note that the degree of unsoundness increases in
going from sound to unsound to shallow. These modular
analyses try to find a single input for an internal proce-
dure for which P; does not fail, but P» does. On the other
hand, nonmodular performs an analysis assuming equal in-
puts only for the entry procedures only and not for the inter-
nal procedures — hence it is incomparable with the other
options. As expected, our experiments demonstrate that
sound D unsound O shallow in terms of versions that have
warnings. We have also observed that the runtime of non-
modular is often 10-100 times more expensive compared to
the modular approaches.

Table 2 describes the results on the SIEMENS and SPACE
suite of C benchmarks, available from the Software-artifact
Infrastructure Repository [27]. Each program in this suite

'Microsoft Windows Driver Kit (WDK), available at

http://www.microsoft.com/whdc/devtools/ddk/default.mspx

has several versions (the column versions) that correspond
to injecting various bugs encountered during the develop-
ment of these benchmarks. However, these bugs are usu-
ally functional bugs (changing some conditional or mutating
an arithmetic operation) that often do not manifest in null
dereference errors. As can be seen from the table, the num-
ber of warnings (110 versions out of a total of 127 versions
in 848 procedures) arising while checking null dereference
absolutely (single) can be quite high, even when focusing
on the procedures impacted by the change. In comparison,
number of warnings progressively decreases with the use of
sound, unsound, and shallow options. The nonmodular rep-
resents the true set of DAC errors; however, inlining does not
scale to large programs such as SPACE. Out of these warn-
ings, we have confirmed that 2 warnings in schedule are
true null-dereference bugs caused by the change. We also
notice that unsound and shallow options are very similar
in nature, except that more procedures can fail in unsound
(e.g. schedule2).

Figure 7 (from schedule2) shows an example where per-
forming differential reasoning allowed suppressing a warning
generated by single. On analyzing just a single procedure,
every dereference of job is flagged as a warning, since the
input value of job can be null. DAC is able to show relative
correctness: the second program does not dereference a null
pointer if the first one does not.

int int

get_process (prio, ratio, job) get_process(prio, ratio, job)
int prio; int prio;
float ratio; float ratio;

struct process *x job; struct process xx job;

/.'7.‘.(ratio < 0.0 || l");(ratio < 0.0 ||
ratio > 1.0) ratio >=1.0)
return (BADRATIO), return (BADRATIO);

>|<.j-6b = *next; *_]Ob = xnext;

if (xjob) { if (xjob) {
r.e“turn(TRUE); r-é-turn(TRUE);

else return(FALSE); else return(FALSE);

Figure 7: Difference between “Single” and “Sound”
on schedule2. The line in italics shows the change.

For the same example, the difference in unsound and shal-
low can be seen by looking at the caller upgrade_prio of
get_process (that is syntactically unchanged) (either ver-
sion in Figure 8). unsound flags a warning because it expects
get_process to return different values in P; and P» for the
job variable after its call to get_process (since the two ver-
sions of get_process are not equal), whereas shallow does
not.

Finally, Figure 8 shows an example where a false warning
was caused due to a missing specification of a callee (again
from schedule2): whenever get_process returns a positive
value in the status variable, the variable job is initialized
to a non-null value. Hence, even with strong unsound as-
sumptions made by shallow for the callees, modular DAC
can still cause false warnings due to missing summaries.



Table 2: Name is the name of the benchmark; version is the number of different versions analyzed. LOC is lines
of code and #procs is the number of procedures in each program. The numbers z(y) mean that = versions and
y procedures show warnings. “MO” is a out-of-memory exception.

Name single sound unsound | shallow | nonmodular | versions LoC #procs
PrintTokens 5 (6) 5 (6) 0 (0) (0) 0 5 565 18
PrintTokens2 6 (6) 3(3) 0 (0) (0) 0 10 508 19
Replace 32 (103) 10 (44) 4 (4) 4 (4) 2 32 562 21
Schedule 9 (17) 6 (14) 3(3) 3 (3) 3 9 410 18
Schedule2 8 (16) 5 (36) 3(7) 3(3) 3 10 306 17
TotInfo 12 (12) 6 (8) 2 (2) 2 (2) 2 23 405 7
Space 38 (688) | 15 (179) | 10 (101) | 10 (10) MO 38 9128 136
Total 110 (848) | 50 (290) | 22(117) | 22 (22) 10+ 127 11884 236

Table 3: Name is the name of the benchmark; Diff is the number of procedures syntactically modified between
Vista and Win7, SymDiff is the number of procedures for which the summary is true for the composed
procedure. LOC is lines of code and #procs is the number of procedures in Win7 driver.

Name Diff | SymDiff | single | sound | unsound | shallow | nonmodular | LOC | #procs
firefly 1 1 1 1 1 1 1 634 7
moufilter 4 2 0 0 0 0 0 504 6
pciide 4 0 1 0 0 0 0 182 5
sfloppy 14 6 11 1 1 1 2 3404 20
diskperf 4 4 4 3 2 2 2 2319 24
event 1 1 0 0 0 0 1 555 5
cancel 3 1 0 1 0 0 0 476 5
Total 31 15 16 6 4 4 6 8074 72

int upgrade prio(prio, ratio) int upgrade_prio(prio, ratio)

int prio; int prio;
float ratio; float ratio;
{ . {
int status; int status;
struct process * job; struct process * job;
if (prio <1 ||

prio > MAXLOPRIO)
return(BADPRIO);
if (( status =
get_process ( prio,
ratio, &job)) <= 0)
return( status );
job— priority = prio + 1;

} }

if (( status =
get_process ( prio,
ratio, &job)) <= 0)
return( status );
job— priority = prio + 1;

Figure 8: Imprecision in shallow

Table 3 shows the result of comparing two versions of
sample device drivers in the Windows Device Driver Kit
(WINDDK). The drivers for Windows Vista were considered
as P; and the drivers for Windows 7 were considered as Ps.
The first column shows the name of the driver. The second
column shows the number of procedures which were syn-
tactically modified in going from Vista WINDDK to Win7
WINDDK for the same driver. The third column shows
the number of functions which SYMDIFF failed to prove
equivalent. Again the results are expected: the number of
alarms are more for absolute correctness (single) than rel-

ative correctness. The sound strategy raises more alarms
than the unsound and shallow strategies. As mentioned ear-
lier, the examples sfloppy and event illustrate that the set
of warnings from sound does not always overapproximate
nonmodular. For cancel, the option sound shows a warning
whereas single does not — this happens due to the fact
when mapped callees in the programs are called with differ-
ent inputs, sound allows for the callee in the old program to
pass and the callee in the new program to fail.

The experiments illustrate the feasibility of modular DAC
towards providing a set of systematic knobs to narrow down
the set of warnings resulting due to the program modifica-
tion.

7. RELATED WORK

The idea of relative specifications is certainly not new;
it goes back at least to checking simulation between two
designs (usually at different levels of abstraction) using re-
finement mappings [1]. In contrast, DAC specifications are
not necessarily refinement checks; the assertions present in
a given program can be used to induce the relative spec-
ification. We use the reference program both to infer the
unknown environment specification and also to help con-
struct a modular proof. A concept similar to DAC has been
explored in the context of filtering alarms for assertion check-
ing of concurrent programs [17], however, this method ap-
plies only to bounded programs (see § 3 for details). Relative
relaxed progress and memory safety have been formalized in
the context of approximate program transformations [5, 6];
however little automation exists in checking them.



The most popular form of relative specifications for pro-
grams is equivalence checking. Such specifications come up
most naturally while checking for compiler optimizations us-
ing translation validation [26, 23, 18] and program refactor-
ing [12, 25, 19] — however, such specifications are often too
strong for most program changes during the course of evolu-
tion. Although DSE [25] provides differential summaries (for
loop-free and recursion-free procedures) for arbitrary pro-
gram changes, it does not provide a decision problem that
DAC provides. In our experience with SYMDIFF, separating
intended changes from unintended ones is the hardest prob-
lem when displaying differences to a user; DAC provides an
intuitive specification whose violations are expected to be in-
teresting for a user. Moreover, the DAC specifications need
not be very program specific and can talk about relative
specifications (such as using the Valid predicate for check-
ing memory safety differentially) that are fairly abstract and
thus applicable to most programs.

Product programs have been studied in the context of
translation validation [32] and checking information flow
properties [29]; these methods have been unified and gen-
eralized by recent works of Barthe et al. [4]. Similarly, sev-
erals works on translation validation [26, 18, 33] infer simula-
tion relations between synchronization points in two proce-
dures to prove equivalence after intraprocedural transforma-
tions. However, these approaches only deal with intraproce-
dural transformations and do not account for interprocedu-
ral transformations. The construction of the composed pro-
gram (§ 4) allows for specifying and inferring (intermediate)
relative specifications for pairs of (possibly non-equivalent)
procedures.

Finally, unlike previous approaches we provide a mecha-
nism to leverage any off-the-shelf program verifier and invari-
ant inference engine to check these relative specifications.
The idea of comparing two programs with respect to asser-
tions present has been suggested in previous works [20, 17,
5], but they do not provide a mechanism to specify or gener-
ate intermediate relative specifications, especially for loops
and recursion. Mutual summaries [16] provide a mechanism
for writing relative specifications by using quantified axioms
to constrain the summaries of a pair of procedures. These
mutual summaries can be seen as postconditions on the com-
posed procedures. However, the approach cannot leverage
off-the-shelf invariant inference engines to discover the in-
termediate relative specifications. On the other hand, [16]
provides a modular checking for relative termination that is
currently not handled by our DAC formulation. In the con-
text of verifying safety of bug fixes, Gu et al. [14] investigate
the completeness of a bug fix with distance-bounded weakest
precondition, but cannot provide any soundness guarantees
in the presence of unbounded loops and recursion.

8. CONCLUSION

In this work, we have described DAC as a mechanism
for trading off cost for guarantees obtained while verifying
evolving programs. We have reduced checking DAC to the
analysis of a single program that can utilize standard pro-
gram verification and invariant inference tools. We have pro-
vided an implementation of a simple scheme for automating
the inference, and applied it towards verifying bug fixes and
filtering alarms in real programs. We are currently integrat-
ing other tools based on interpolants [22] to generate relative
specifications when the current scheme does not suffice.

9. SUPPLEMENTARY INFORMATION

In this section, we describe how loops are transformed
into tail-recursive procedures. ? Although extracting loops
as tail-recursive procedures is fairly standard, our approach
differs from previous approaches [21] by avoiding the intro-
duction of non-determinism in modeling the extracted pro-
cedure. This is important when comparing two programs;
internal non-determinism makes program comparison diffi-
cult [17]. Our approch requires that the control flow graph
is reducible, i.e., there is only one entry point for a loop.
This assumption is true for almost any program generated
from high-level languages such as C and Java.

We illustrate our approach informally using the example
below where we use goto statements to model various control
flow constructs present in high-level languages:

LO:
sl;
goto LO; //continue
s2;
goto L1; //break/jmp/return
s3;

go,to LO; //loopback
L1:
s4;

The loop is replaced by the following code fragment, where
we use “[[s]]” to denote transforming any loops recursively
inside a statement s.

LO: i’ := call LO_loop(i);
[[s1;]]
assume false; //goto LO;
[[s2;]] ,
goto L1; //break/jmp/return
([s3:]]

I_12.1ssume false; //goto LO;
([s4:]]

Here i represents the non-global variables in scope. In
addition to the call to the tail recursive procedure LO_loop,
the interesting aspect is the duplication of the last iteration
of the loop body after the recursive call. The purpose of
this is to handle goto statements that jump out of the loop
(such as goto L1) [21]. The body of the tail recursive pro-
cedure transforms jumps to the loop head as tail-recursive
calls. The main change to make the extracted procedure
deterministic is to replace the jumps outside the loop by a
statement that restores the state of the return and globals
to the initial state.

proc LO_loop(i): i" {
I ' — g

=i
[[s1:]] . _ ,

i’ = call LO_loop(i'); //tail —recursive call
return;

[[s2:]]

i’ :==1i; g:=old(g); return; //restore state
[[s3:]] . . .

i’ = call LO_loop(i'); //tail—recursive call
return;

}

2The exact Boogie options to be specified are /print-
Instrumented /extractLoops /deterministicExtract-
Loops.
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