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Abstract

We present a new semantics sensitive sampling algorithm for probabilistic pro-
grams, which are “usual” programs endowed with statements to sample from
distributions, and condition executions based on observations. Since probabilis-
tic programs are executable, sampling can be performed by repeatedly executing
them. However, in the case of programs with a large number of random vari-
ables and observations, naive execution does not produce high quality samples,
and it takes an intractable number of samples in order to perform reasonable
inference. Our MCMC algorithm called S3 tackles these problems using ideas
from program analysis. First, S3 propagates observations back through the pro-
gram in order to obtain a semantically equivalent program with conditional sam-
ple statements – this has the effect of preventing rejections due to executions that
fail to satisfy observations. Next, S3 decomposes the probabilistic program into
a set of straight-line programs, one for every valid program path, and perform-
ing Metropolis-Hastings sampling over each straight-line program independently.
Sampling over straight-line programs has the advantage that random choices from
previous executions can be re-used merely using the program counter (or line
number) associated with each random choice. Finally, it combines the results
from sampling each straight-line program (using appropriate weighting) to pro-
duce a result for the whole program. We formalize the semantics of probabilistic
programs and rigorously prove the correctness of S3. We also empirically demon-
strate the effectiveness of S3, and compare it with an importance sampling based
tool over various benchmarks.

1 Introduction

Probabilistic programs are “usual” programs (written in languages like C, Java, LISP or ML) with
two added constructs: (1) the ability to draw values at random from distributions, and (2) the ability
to condition values of variables in a program via observations. Unlike usual programs that are run to
produce outputs, the goal of a probabilistic program is to model probability distributions succinctly
and implicitly. Probabilistic inference is the problem of computing an explicit representation of
the probability distribution implicitly specified by a probabilistic program. Over the past several
years, a variety of probabilistic programming languages and inference systems have been proposed
[3, 4, 7, 8, 10, 12].

Since probabilistic programs are executable, sampling can be performed by repeatedly executing
such programs. However, in the case of programs with large number of random variables (repre-
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senting a multivariate distribution), and observations (potentially representing low probability evi-
dence), naive execution does not produce high quality samples and it takes an impractically large
number of samples to infer the correct distribution. Consequently, efficient sampling techniques for
probabilistic programs are a topic of active research [4, 13–15].

We present a new approach to perform Markov Chain Monte Carlo (MCMC) sampling for proba-
bilistic programs. Our approach, called S3, consists of three steps:

1. Propagate observations back through the program using pre-image transformation tech-
niques (from program semantics) to conditioning on sampling statements. This transfor-
mation preserves program semantics (formally defined in Section 3.1), and helps efficiently
compute a set of valid executions of the program and perform efficient sampling (defined
in the next step).

2. Decompose a probabilistic program into a set of straight-line programs, one for every valid
program path. Perform Metropolis Hastings (MH) sampling on each straight-line program
independently, by constraining proposals generated for MH using the conditioning associ-
ated with the sampling statements (as computed by Step 1). The pre-image transformation
(from Step 1) helps avoid rejections due to observations.

3. Combine the estimates from each straight-line program with appropriate weighting to pro-
duce estimates for the whole program.

Our approach offers two main advantages. First, the backward propagation of observations to sam-
pling statements prevents rejections due to executions that fail to satisfy observations, and signifi-
cantly improves the number of accepted MH samples in a given time budget. In contrast, previous
approaches [4, 13–15] have not specifically addressed rejections due to failing observations. Sec-
ond, by decomposition of a program into paths and performing MH on each individual path, we
are able to “reuse” random choices from previous executions using merely the program counter (or
line number) associated with each random choice. Path splitting also allows our algorithm to report
multi-modal distributions as answers (one mode for every path in the program). In fact, since a
straight-line program has fewer modes than the original program, performing MCMC on straight-
line programs separately is more efficient than performing MCMC on the original program. In
contrast, previous approaches [14, 15] deal with the whole program in which each execution can
follow different control paths, involving considerable book-keeping, and our approach avoids these
complications and inefficiencies by decomposing the program into paths, and performing MCMC
on each path separately.

In Section 2, we formalize the semantics of probabilistic programs and rigorously prove the correct-
ness of S3 which is presented in Section 3. In Section 4, we empirically demonstrate the effective-
ness of S3 over a set of benchmarks. In particular, we compare S3 with the QI algorithm [1] – our
empirical results show that S3 outperforms QI on a set of benchmarks and real world applications.

Though our current implementation is sequential, our algorithm is massively parallelizable: each
path can be sampled independently, and within each path, we can independently perform sampling
in parallel. Our formulation shows how to appropriately weight and combine each of the results
from such parallel computations to produce a result for the whole program.

Related work. There has been prior work on exploiting program structure to perform efficient sam-
pling, both in the context of importance sampling and MCMC sampling. BLOG [9] uses program
structure to come up with good proposal distributions for MCMC sampling. Wingate et al. [14]
use nonstandard interpretations during runtime execution to compute derivatives, track provenance,
and use these computations to improve the efficiency of MCMC sampling. Wingate et al. [15]
name random choices according to their “structural position” in the path in order to “reuse” random
choices from a previous execution during a subsequent execution. However, calculating structural
position for arbitrary program paths is difficult, and involves considerable book-keeping, and our
approach avoids these complications and inefficiencies by decomposing the program into paths, and
performing MCMC on each path separately.

Pfeffer [13] presents several structural heuristics (such as conditional checking, delayed evaluation,
evidence collection and targeted sampling) to help make choices during sampling that are less likely
to get rejected by observations during importance sampling. Chaganty et al. [1] generalize these
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x ∈ Vars
T ::= · · · C basic types
uop ::= · · · C unary operators
bop ::= · · · C binary operators
ϕ,ψ ::= · · · logical formula

D ::= | T x1, x2, . . . , xn declaration

E ::= expressions
| x variable
| c constant
| E1 bop E2 binary operation
| uop E1 unary operation

S ::= statements
| x = E deterministic assignment
| x ∼ Dist(θ̄) probabilistic assignment
| observe (ϕ) observe
| skip skip

| S1;S2 sequential composition
| if E then S1 else S2 conditional composition
| while E do S1 loop

P ::= D S return (E) program

Figure 1: Syntax of PROB.

techniques uniformly using pre-image transformations on observations to perform efficient impor-
tance sampling for straight-line programs. Our work differs from this work in two broad ways.
First, we define pre-image as a separate transformation on programs. Thus, we are able to first use
pre-image on the whole program, split a program into straight line programs efficiently, and then
use pre-image (again) on the straight-line programs to avoid rejections. In contrast, Chaganty et al.
use a testing routine to collect straight-line programs (without using pre-image transformation) and
rejections can happen during this process if testing is used, or expensive symbolic execution tech-
niques need to be used to split a program into paths. Second, our sampler is based on MH sampling
that exploits knowledge from previous samples, whereas Chaganty et al. is based on importance
sampling that is agnostic to previous samples or states. Further, we also present a new method for
combining the sub-expectations for straight-line programs in order to compute the expectation for
the whole program.

2 Probabilistic Programs

Our probabilistic programming language PROB is a C-like imperative programming language with
two additional constructs:

1. The sample statement “x ∼ Dist(θ̄)” draws a sample from a distribution Dist with a vec-
tor of parameters θ̄, and assigns it to the variable x. For instance, “x ∼ Gaussian(µ, σ2)”
draws a value from a Gaussian distribution with mean µ and variance σ2, and assigns it to
the variable x.

2. The observe statement “observe(ϕ)” conditions a distribution with respect to a predicate
or condition ϕ that is defined over the variables in the program. In particular, every valid
execution of the program must satisfy all conditions in observe statements that occur along
the execution.

The syntax of PROB is formally described in Figure 1. A program consists of variable declarations,
a statement and a return expression. Variables have base types such as int, bool, float and dou-
ble. Statements include primitive statements (deterministic assignment, probabilistic assignment,
observe, skip ) and composite statements (sequential composition, conditionals and loops). We omit
the discussion of arrays, pointers, structures and function calls in the language. Our implementation,
however, is able to handle all these features.

The meaning of a probabilistic program is the expected value of its return expression. A state σ of a
program is a valuation to all its variables. The set of all states (which can be infinite) is denoted by
Σ. The probabilistic semantics (S, σ) ⇓v̄ (p, σ′) denotes that the outcome σ′ of the program S with
initial state σ is determined by a sequence of samples v̄ with probability density p. The sequence of
samples v̄ belongs to the measure space S defined by: S =

⊎
n≥0(N ] R)n.
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The operational semantics of PROB is completely specified using the following rules:

(x = E , σ) ⇓ε (1, σ[x← σ(E)])

(x ∼ Dist(θ̄), σ) ⇓(v) (p, σ[x← v]) if v ∈ N ] R ∧ p = Dist(σ(θ̄))(v) > 0
(observe(ϕ), σ) ⇓ε (1, σ) if σ(ϕ) = true

(skip, σ) ⇓v̄2 (1, σ)

(S1;S2, σ) ⇓v̄1·v̄2 (p1 × p2, σ2) if (S1, σ) ⇓v̄1 (p1, σ1) ∧ (S2, σ1) ⇓v̄2 (p2, σ2)
(if E thenS1 elseS2, σ) ⇓v̄1 (p1, σ1) if σ(E) = true ∧ (S1, σ) ⇓v̄1 (p1, σ1)
(if E thenS1 elseS2, σ) ⇓v̄2 (p2, σ2) if σ(E) = false ∧ (S2, σ) ⇓v̄2 (p2, σ2)

(while E doS, σ) ⇓v̄1 (p1, σ1) if σ(E) = true ∧ (S; while E doS, σ) ⇓v̄1 (p1, σ1)
(while E doS, σ) ⇓v̄2 (1, σ) if σ(E) = false

The operational semantics of a program S gives rise to an unnormalized PDF PS on S, which can
be seen as a distribution on program executions because program executions are identified with a
subset of S.

PS(v̄) =

{
p if (S, σINIT) ⇓v̄ (p, σ)
0 otherwise (1)

In the above equation σINIT denotes the initial state of the program, where all variables are assigned
default values from the domain (booleans are assigned false, integers assigned zero, etc.). The
normalized PDF P̃S is defined as follows:

P̃S(v̄) =
PS(v̄)

ZS
with ZS =

∫
v̄∈S

PS(v̄) dv̄ (2)

The return expression of a program is a function f : Σ→ R from program states to reals. From the
PDF on program executions of S, we can calculate the expectation ES(f) as follows:

ES(f) =

∫
v̄∈S

RS(f, v̄)× P̃S(v̄) dv̄ (3)

where

RS(f, v̄) =

{
f(σ) if (S, σINIT) ⇓v̄ (p, σ)
0 otherwise (4)

We define the semantics JSK of a program S as its expectation function:

JSK = ES (5)

We say two programs S1 and S2 are equivalent when their semantics coincide:

S1 ≡ S2 ⇐⇒ JS1K = JS2K (6)

Suppose a program S is split into a set of straight-line programs {Si}i∈I (one for every valid path
of S). Then we have:

{(v̄, p, σ) | (S, σINIT) ⇓v̄ (p, σ)} =
⊎
i∈I
{(v̄, p, σ) | (Si, σINIT) ⇓v̄ (p, σ)} (7)

Thus, we have PS(v̄) =
∑
i∈I PSi(v̄) and ZS =

∑
i∈I ZSi . So, the expectation of any function f

for the program S can be rewritten as follows:

ES(f) =

∫
v̄∈S

RS(f, v̄)× P̃S(v̄) dv̄ =

∫
v̄∈S

RS(f, v̄)× PS(v̄)

ZS
dv̄

=
1

ZS
×
∫
v̄∈S

RS(f, v̄)× (
∑
i∈I PSi(v̄)) dv̄ =

1

ZS
×
∑
i∈I

∫
v̄∈S

RS(f, v̄)×PSi(v̄) dv̄

=
1

ZS
×
∑
i∈I

∫
v̄∈S

RSi(f, v̄)×PSi(v̄) dv̄ (∵ RSi(f, v̄) = RS(f, v̄) if PSi(v̄) 6= 0)

=
1

ZS
×
∑
i∈I

(
ZSi ×

∫
v̄∈S

RSi(f, v̄)× P̃Si(v̄) dv̄

)
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Therefore, we have

ES(f) =

∑
i∈I ZSi ×ESi(f)∑

i∈I ZSi
(8)

We can transform a program P with while loops to a program P ′ without while loops by unrolling
the loop a fixed number of times. If an exact bound can be determined for the maximum number
of times a loop can execute, we can unroll that many times, and this transformation is semantics
preserving. If not, P ′ approximates P (in the sense that the expectation of P ′ approximates the
expectation of P ), and the error between the expectation of P ′ and P can be made arbitrarily close
by unrolling P enough number of times. In the remainder of the paper, we assume that such an
unrolling has been done, and hence consider only loop-free programs.

3 The S3 algorithm

Algorithm 1 describes the main procedure S3 of our semantics sensitive sampler. This procedure
takes a PROB program P and parameters κ1, κ2 as input and returns the expected value of the
variable ret as output. Line 1 calls the procedure PRE (described in Section 3.1) that statically
analyzes P and produces a program P̂ that is semantically equivalent to P . The program P̂ has the
property that it samples from truncated distributions. Line 2 initializes a set Π that stores information
about straight-line programs in P̂ . Every straight-line program in Π corresponds to a valid path of P̂ .
Lines 3 – 6 iterate κ1 number of times. In each iteration, init(P̂ , P ) runs the program P̂ (line 4) and
returns the resulting run in the form of a straight-line program Q that is a valid path in the original
program P (which is accumulated into the set Π in line 5). For every run, init executes every sample
statement in P̂ conditioned on the observe statement that immediately follows it. This ensures that
every run of P̂ is successful and results in a valid straight-line program. Next, for each straight-line
program Q (lines 7 – 10), the PRE operation is performed and this results in semantically equivalent
program Q̂. Next, a Metropolis-Hastings sampler MH that operates on Q̂ is called, and this results
in a tuple Ω[i] (line 9, this is described in Section 3.2). Line 11 returns the expected value of ret for
the program P , which is calculated according to Equation 8.

Algorithm 1 S3(P, κ1, κ2)
Input: A PROB program P .
Output: The expected value of the variable ret returned by P .

1: P̂ , := PRE(P, true)
2: Π := ∅
3: for i = 1 to κ1 do
4: Q := init(P̂ , P )
5: Π := Π ∪ {Q}
6: end for
7: forQ ∈ Π do
8: Q̂, := PRE(Q, true)

9: Ω[i] := MH(Q̂, κ2)
10: end for
11: return

∑
1≤i≤|Π| fst(Ω[i])×snd(Ω[i])∑

1≤i≤|Π| fst(Ω[i])

Algorithm 2 PRE(S, ϕ)
Input: A predicate ϕ defined over program variables and a statement
S.
Output: A program Ŝ that maps every sample statement with
a pre-image predicate (via an observe statement immediately fol-
lowing the sample statement), and a pre-image predicate over
S.
1: switch (S)
2: case x = E:
3: return ((x = E), ϕ[E/x])
4: case x ∼ Dist(θ̄):
5: return ((x ∼ Dist(θ̄); observe(ϕ)), ∃x.ϕ)
6: case observe (ψ):
7: return (skip, ϕ ∧ ψ)
8: case skip:
9: return (skip, ϕ)
10: case S1;S2:
11: (S′2, ϕ

′) := PRE(S2, ϕ)

12: (S′1, ϕ
′′) := PRE(S1, ϕ

′)

13: return ((S′1;S′2), ϕ′′)

14: case if E then S1 else S2:
15: (S′1, ϕ1) := PRE(S1, ϕ)

16: (S′2, ϕ2) := PRE(S2, ϕ)

17: return ((if E then S′1 else S′2), (E ∧ϕ1)∨(¬E∧ϕ2))

18: case return ret:
19: return ((return ret), ϕ)
20: end switch

Theorem 1 As κ1 → ∞, κ2 → ∞, S3(P, κ1, κ2) converges to the expected value of ret for the
program P .
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Proof: This follows from Theorem 2, Theorem 3 and Equation 8.

3.1 Pre-image program analysis

Algorithm 2 describes the analysis where all the observe statements in the input program P are
hoisted to all sample statements. The output of this phase is a new program P̂ , semantically equiv-
alent to P , such that every sample statement in P̂ is immediately followed by an observe statement
with a corresponding pre-image predicate. A property of the pre-image predicate is that a program
state σ satisfies it if and only if there exists an execution starting from σ satisfying all subsequent
observations in the program. In other words, sampling from distributions truncated by their cor-
responding pre-image predicate will always produce acceptable samples and also all acceptable
samples can be generated in such a way. The algorithm operates over the syntactic structure of
the program in order to perform the pre-image analysis. In particular, the algorithm starts with the
predicate true and uses the rules encoded in each of the case statements in Algorithm 2 to push the
predicate backward all the way to the start of the program. For instance, as seen in lines 2 and 3, the
pre-image of a predicate ϕ with respect to an assignment statement x = E is defined to be ϕ[E/x])
(this denotes the predicate obtained by replacing all occurrence of x in ϕ with E). As a result of the
backward propagation of pre-image predicates, we have pre-image predicates associated with every
sample statement via an observe statement (line 5). The following theorem proves the correctness
of this transformation.

Theorem 2 For any probabilistic program P with at least one successful execution, the program P̂

with (P̂ , ) = PRE(P, true) is semantically equivalent to P (denoted as P ≡ P̂ ).

Proof: Proof in the appendix of supplementary material.

It is important to note that the S3 algorithm in Algorithm 1 invokes PRE twice, once in line 1, and
also for every straight-line program in line 8. The first call is a whole program transformation which
allows us to obtain valid executions (or straight-line programs) efficiently via the call to init in line
4. The second call to PRE for every straight-line program propagates not only the observe statement,
but also predicates due to conditionals and loops along the path. As a result, every sample statement
is truncated or conditioned by a stronger pre-image predicate, so that every execution satisfies not
only all observations, but also the conditions needed to execute the specific path.

3.2 The MH sampler

In this section, we describe a new Metropolis-Hastings algorithm for sampling from probabilistic
straight-line programs. This is called in line 9 in Algorithm 1. The procedure MH (shown in Algo-
rithm 3) takes a straight-line program P together with κ as inputs. The parameter κ represents the
number of times we would like to run the program P (lines 2 – 26). The output of the algorithm is
the expected value of ret for P . The procedure MH maintains two variables: (1) α which is useful
for computing the probability of executing the straight-line program in the context of the original
program, and (2) β which is used to decide whether the sample generated is to be accepted or re-
jected. Both α and β are initialized in line 3 together with a program state σ to be σINIT. This state
gets updated as the program is executed. We also initialize αPREV and ΘPREV to be undefined val-
ues (denoted by ⊥). Note that this initialization is reasonable as the samples generated from these
undefined values can be included in the burn-in period of the MH routine. Lines 4 – 18 execute
the program P one statement at a time. In particular, if the current statement is a sample state-
ment “(x ∼ Dist(θ̄); observe(ϕ))” (line 6), then a value v is sampled from a proposal distribution
PROP(Dist(σ(θ̄)),ΘPREV[l](x)) | {u | σ[x ← u](ϕ)} (line 7), where σ[x ← u] is the result of
updating σ with the value of x set to u, and σ(θ̄) and σ[x← u](ϕ) are the values of the parameters θ̄
and the predicate ϕ evaluated with respect to the current program state σ and the updated program
state σ[x ← u]. The expression ΘPREV[l](x) represents the value of x at l during the previous run
(i.e., the previously sampled value). By DIST | X , we denote the truncated distrbution that re-
sults from restricting the domain of the distrbution DIST to the set X . Thus, the samples generated
from the above truncated proposal distributions always satisfy the observe statement observe(ϕ).
Specifically, our implementation uses the following underlying proposal distributions:
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Algorithm 3 MH(P, κ)
Input: A straight-line program P , and κ, the number of samples to be generated.
Output: A tuple with the first component being the probability of executing P , and second component the expected value of the variable ret returned by P .

1: Ω := ∅, αPREV :=⊥, ΘPREV :=⊥
2: for i = 1 to κ do
3: α := 1.0, β := 1.0, σ := σINIT

4: for l = 1 to lines(P ) do
5: switch (stmt(l))
6: case (x ∼ Dist(θ̄); observe(ϕ)):
7: v ∼ PROP(Dist(σ(θ̄)),ΘPREV[l](x)) | {u | σ[x← u](ϕ)}
8: σPREV := ΘPREV[l− 1], vPREV := ΘPREV[l](x)
9: w :=

∫
u∈{u|σ[x←u](ϕ)} DENSITY(Dist(σ(θ̄)))(u) du

10: α := α× w
11: β := β × DENSITY(Dist(σ(θ̄)))(v) × DENSITY(PROP(Dist(σPREV(θ̄)),v)|{u|σPREV [x←u](ϕ)})(vPREV)

DENSITY(Dist(σPREV(θ̄)))(vPREV) × DENSITY(PROP(Dist(σ(θ̄)),vPREV)|{u|σ[x←u](ϕ)})(v)

12: σ := σ[x← v]
13: break
14: default:
15: σ := eval(σ, l, P )
16: end switch
17: Θ[l] := σ
18: end for
19: if i = 1 ∨ β ≥ 1 ∨ BERNOULLI(β) then
20: Ω[i] := (α, σ(ret))
21: ΘPREV := Θ
22: αPREV := α
23: else
24: Ω[i] := (αPREV,ΘPREV[l](ret))
25: end if
26: end for
27: return

(
κ∑κ

i=1
1/fst(Ω[i])

, 1
κ

∑κ
i=1 snd(Ω[i])

)

• For any discrete distribution, the underlying proposal distribution is the same distribution,
being independent of the previous sample vPREV:

PROP(Discrete(θ̄), vPREV) := Discrete(θ̄)

• For any continuous distribution, the underlying proposal distribution is always a Gaussian
distribution with mean vPREV and a suitably chosen variance ν2:

PROP(Continuous(θ̄), vPREV) := GAUSSIAN(vPREV, ν
2)

In line 9, w is assigned the probability of satisfying ϕ when the value of x is sampled from the non-
truncated distribution Dist(σ(θ̄)), and this is accumulated across sample statements in the variable
α (line 10).

In line 11, β is computed and is used to decide whether the sample is to be accepted or rejected (this
is similar to the standard Metropolis-Hastings procedure). In line 12, the state σ is updated with the
value of x set to v.

If line l is not a sample statement, then the state σ is updated by executing that statement (line 15).
The map Θ is also updated to contain the state σ at index l. If i = 1 (first run) or β is greater than 1,
then the sample σ(ret) is accepted, otherwise it is accepted with probability β (lines 19 – 25).

Finally, in line 27, MH returns a tuple – the first component is the harmonic mean of the α values
from each run, and the second component is the arithmetic mean over the return values from each
run. Theorem 3 (below) states that the first component is the probability of executing the straight-
line program P in the context of the whole program, and the second component is the expected value
of ret with respect to the probability distribution defined by P .

Theorem 3 Let (P̂ , ) = PRE(P, true) for a straight-line probabilistic program P . As κ → ∞,
MH(P, κ) computes the probability of executing P as well as the expected value of ret with respect
to the distribution defined by P .

Proof: Proof in the appendix of supplementary material.
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NAME DESCRIPTION REFERENCE
Grass Model Small model relating the probability of rain, having observed a wet lawn. [4, 6].
Burglar Alarm Estimate the probability of a burglary, having observed an alarm, earthquake ... . Adapted from Pearl

Noisy OR Given a DAG, each node is a noisy-or of its parents. Find posterior
marginal probability of a node, given observations. [6]

Chess Skill rating system for a Chess tournament consisting of 77 players and 2926 games. [5]

Halo Skill rating system for a tournament consisting of 31 teams, at most 4 players per team
and 465 games played between teams. Adapted from Figure 1 in [5]

Table 1: Benchmark programs.

NAME ALGORITHM SAMPLES TIME TAKEN(s)
Burglar Alarm S3 90 0.012

QI 90 2.36
S3-SP 90 0.021

Noisy OR S3 1600 1.68
QI 3200 154.24
S3-SP 1600 17.68

Grass Model S3 1600 0.52
QI 2000 81.12
S3-SP 1600 349.36

Chess S3 100000 2910
QI ⊥ ⊥

Halo S3 500000 3989.6
QI ⊥ ⊥

Table 2: Evaluation results.

4 Empirical Evaluation

We evaluated S3 on three popular benchmarks (Burglar Alarm, Noisy OR and Grass model) as well
as two real world applications (Chess and Halo which are two different variations of the TrueSkill
skill rating system in Xbox live [5]). We compared S3 with the importance sampling algorithm QI
in [1] (note that this algorithm is already an improvement over the Church algorithm [4]). These
benchmarks are described in Table 1 and the results are reported in Table 2. We have implemented
S3 in C++ and use the Z3 theorem prover [2] in order to represent and manage pre-image predicates.

The results in Table 2 show that S3 significantly outperforms QI when the objective is to obtain the
same degree of precision with both algorithms – this difference is clearly visible for the Chess and
Halo benchmarks where QI does not produce an answer with precision comparable to S3 even after
3 hours (denoted by ⊥ in the table). Note that the SAMPLES column denotes the total number
of samples generated by each algorithm to obtain answers with comparable precision. One of the
reasons for this improvement is due to the fact that S3 is able to improvise based on its current state
in order to move into regions of high density. On the other hand, QI is agnostic to previous samples,
and therefore can produce samples with very low quality or weight. It is interesting to note that for
the Burglar alarm benchmark, S3 is faster than QI even when both algorithms generate the same
number of samples. This is due to extra computation performed by QI to compute weighted average
(over importance weights and samples) to compute the expectation. On the other hand, S3 computes
the arithmetic mean for expectations (second component of the tuple in line 27 of Algorithm 3).

In order to make a comparison with structural position based variable indexing [15], we implemented
such an indexing for S3. We denote these results with the label S3-SP. For all benchmarks, structural
position based indexing is more expensive than the PC (or line number) based indexing implemented
in S3. In the case of the Grass model benchmark, S3 with strucural-position based indexing is also
more expensive than QI. We note that the PC based indexing is possible in S3 because the first phase
of S3 splits a program into paths.

5 Conclusion

We have presented a new MCMC algorithm S3 for efficiently sampling from probabilistic programs.
Our algorithm splits the program into straghtline paths, computes estimates separately for these
paths, and combines them to produce an estimate for the program. A unique feature of our algorithm
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is that it uses ideas from program analysis such as pre-image computation in order to avoid rejection
due to conditioning in the program.

We have formalized the semantics of probabilistic programs and rigorously proved the correctness
of S3. Our experimental results are also encouraging —we show that S3 significantly outperforms
the importance sampling algorithm QI on a set of benchmarks and two real world applications.

As future work, we would like to extend Algorithm 3 to Hamiltonian Monte Carlo sampling [11].
Note that this would entail replacing line 7 in Algorithm 3 with leapfrog computation steps. In
addition, we would like to parallelize S3. Though our current implementation of S3 is sequential,
our algorithm is massively parallelizable: each path can be sampled independently, and within each
pth, we can independently perform sampling in parallel. Using Equation 8, we can appropriately
combine the results from such parallel computations to produce a result for the whole program. An
implementation of this approach is also interesting future work.
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A Proof of Theorem 2

In order to prove the theorem, we first prove that the following lemma holds.

Lemma 1 For any S, ϕ and (Ŝ, ϕ̂) = Pre(S, ϕ), we have: ∀σ0, v̄, p, σ.

(σ(ϕ) = true ∧ (S, σ0) ⇓v̄ (p, σ)) ⇐⇒ (σ0(ϕ̂) = true ∧ (Ŝ, σ0) ⇓v̄ (p, σ))

Proof: We prove the lemma by induction on the structure of S.

• When S is skip: we have Ŝ = S and ϕ̂ = ϕ.
The lemma holds trivally.

• When S is x = E : we have Ŝ = S and ϕ̂ = ϕ[E/x].

⇒: We have σ0[x ← σ0(E)] = σ by definition of ⇓ and thus we have σ0[ϕ̂] = σ0[ϕ[E/x]] =
σ0[x← σ0(E)](ϕ) = σ(ϕ) = true.

⇐: Similarly, we have σ(ϕ) = σ0(ϕ̂) = true.

• When S is x ∼ Dist(θ̄): we have Ŝ = (x ∼ Dist(θ̄); observe(ϕ)) and ϕ̂ = ∃x. ϕ.

⇒: We have σ0[x ← v̄(1)] = σ by definition of ⇓. Thus σ0(ϕ̂) = σ0(∃x. ϕ) = true follows
from σ0[x ← v̄(1)](ϕ) = σ(ϕ) = true. Also, due to the assumption σ(ϕ) = true, we have
(Ŝ, σ0) ⇓v̄ (p, σ).

⇐: We have σ(ϕ) = true due to observe(ϕ) statement. (S, σ0) ⇓v̄ (p, σ) holds trivally.

• When S is observe(ψ): we have Ŝ = skip and ϕ̂ = ϕ ∧ ψ.

⇒: We have σ(ϕ) = true by assumption and σ = σ0 and σ(ψ) = true by definition of ⇓. Thus
we have σ0(ϕ̂) = σ(ϕ ∧ ψ) = true. And (Ŝ, σ0) ⇓v̄ (p, σ) holds trivally.

⇐: We have σ0(ϕ̂) = true by assumption and σ = σ0 by definition of ⇓. Since σ0(ϕ̂) = σ(ϕ ∧
ψ) = true, we have σ(ϕ) = true and σ(ψ) = true, from which (S, σ0) ⇓v̄ (p, σ) follows.

• When S is S1;S2: we have Ŝ = Ŝ1; Ŝ2 with (Ŝ2, ϕ
′) = Pre(S2, ϕ) and (Ŝ1, ϕ̂) = Pre(S1, ϕ

′).

⇒: From (S, σ0) ⇓v̄ (p, σ) we have v̄1, v̄2, p1, p2, σ
′ such that (S1, σ0) ⇓v̄1 (p1, σ

′) ∧ (S2, σ
′) ⇓v̄2

(p2, σ) ∧ v̄ = v̄1 · v̄2 ∧ p = p1 × p2. By the induction hypothesis we have σ′(ϕ′) = true and
(Ŝ2, σ

′) ⇓v̄2 (p2, σ), again by the induction hypothesis we have σ0(ϕ̂) = true and (Ŝ1, σ0) ⇓v̄1

(p1, σ
′). Thus (Ŝ, σ0) ⇓v̄ (p, σ) holds by definition.

⇐: From (Ŝ, σ0) ⇓v̄ (p, σ) we have v̄1, v̄2, p1, p2, σ
′ such that (Ŝ1, σ0) ⇓v̄1 (p1, σ

′) ∧ (Ŝ2, σ
′) ⇓v̄2

(p2, σ) ∧ v̄ = v̄1 · v̄2 ∧ p = p1 × p2. By the induction hypothesis we have σ′(ϕ′) = true and
(S1, σ0) ⇓v̄1 (p1, σ

′), again by the induction hypothesis we have σ(ϕ) = true and (S2, σ
′) ⇓v̄2

(p2, σ). Thus (S, σ0) ⇓v̄ (p, σ) holds by definition.

• When S is if E thenS1 elseS2: we have Ŝ = if E then Ŝ1 else Ŝ2 and ϕ̂ = (E ∧ ϕ1) ∨
(¬E ∧ ϕ2) with (Ŝ1, ϕ1) = Pre(S1, ϕ) and (Ŝ2, ϕ2) = Pre(S2, ϕ).

⇒: From (S, σ0) ⇓v̄ (p, σ) we have (σ0(E) = true ∧ (S1, σ0) ⇓v̄ (p, σ)) or (σ0(E) = false ∧
(S2, σ0) ⇓v̄ (p, σ)). In the former case, by the induction hypothesis, we have σ0(ϕ1) = true

and (Ŝ1, σ0) ⇓v̄ (p, σ). Thus we have σ0(ϕ̂) = (σ0(E)∧σ0(ϕ1))∨ (¬σ0(E)∧σ0(ϕ2)) = true

and (Ŝ, σ0) ⇓v̄ (p, σ). In the latter case, by the induction hypothesis, we have σ0(ϕ2) = true

and (Ŝ2, σ0) ⇓v̄ (p, σ). Thus we have σ0(ϕ̂) = (σ0(E)∧σ0(ϕ1))∨ (¬σ0(E)∧σ0(ϕ2)) = true

and (Ŝ, σ0) ⇓v̄ (p, σ).

⇐: From (Ŝ, σ0) ⇓v̄ (p, σ) we have (σ0(E) = true ∧ (Ŝ1, σ0) ⇓v̄ (p, σ)) or (σ0(E) = false ∧
(Ŝ2, σ0) ⇓v̄ (p, σ)). In the former case, σ0(ϕ1) = true follows from σ0(ϕ̂) = true and
thus by the induction hypothesis, we have σ(ϕ) = true and (S1, σ0) ⇓v̄ (p, σ), from which
(S, σ0) ⇓v̄ (p, σ) follows. In the latter case, σ0(ϕ2) = true follows from σ0(ϕ̂) = true
and by the induction hypothesis, we have σ(ϕ) = true and (S2, σ0) ⇓v̄ (p, σ), from which
(S, σ0) ⇓v̄ (p, σ) follows.
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Now we prove Theorem 2. Suppose (P̂ , ψ) = PRE(P, true). From the fact that P has a successful
execution (i.e., (P, σINIT) ⇓v̄ (p, σ) for some v̄, p, σ), we have σINIT(ψ) = true by Lemma 1 since
σ(true) = true. Since σINIT(ψ) = true and σ(true) = true for any σ, again by Lemma 1 we
have, for any v̄, p, σ:

(P, σINIT) ⇓v̄ (p, σ) ⇐⇒ (P̂ , σINIT) ⇓v̄ (p, σ) .

Thus we have JP K = JP̂ K by definition of J−K.

B Proof of Theorem 3

Let (P̂ , ) = PRE(P, true) for a straight-line probabilistic program P . Without loss of generality,
suppose that P̂ has the following n sampling with observe statements:

(x1 ∼ Dist1(θ̄1); observe(ϕ1)), . . . , (xn ∼ Distn(θ̄n); observe(ϕn)).

During the execution of (P̂ , σINIT), the program state at the first sampling is uniquely determined
(say σ1 ∈ Σ), and the state at the second sampling is dependent on the value generated at the first
sampling (say σ2 ∈ (N ] R) → Σ), and so on (say . . . , σn ∈ (N ] R)n−1 → Σ). Then we simply
write ψi and Di for i = 1, . . . , n as follows:

ψ1 := {u | σ1[x← u](ϕ1)}
ψ2(v1) := {u | σ2(v1)[x← u](ϕ2)}

...
ψn(v1, . . . , vn−1) := {u | σn(v1, . . . , vn−1)[x← u](ϕn)}

D1(v1) := DENSITY(Dist1(σ1(θ̄1)))(v1)
D2(v2 | v1) := DENSITY(Dist2(σ2(v1)(θ̄2)))(v2)

...
Dn(vn | v1, . . . , vn−1) := DENSITY(Distn(σn(v1, . . . , vn−1)(θ̄n)))(vn)

We further write ψ and D as follows:

ψ := {(v1, . . . , vn) | v1 ∈ ψ1 ∧ v2 ∈ ψ2(v1) ∧ . . . ∧ vn ∈ ψn(v1, . . . , vn−1)}
D(v1, . . . , vn) := D1(v1)×D2(v2 | v1)× . . .×Dn(vn | v1, . . . , vn−1)

Then one can easily see that for any execution (P̂ , σINIT) ⇓v̄ (p, σ) we have v̄ ∈ ψ and p = D(v̄).
Thus the unnormalized PDF PS on (N ] R)n ⊆ S can be rewritten as follows

PS(v̄) =

{
D(v̄) if v̄ ∈ ψ
0 otherwise

Then we consider the Metropolis-Hastings simulation using the proposal distribution Q defined as
follows:
Q1(u1 → v1) := DENSITY(PROP(Dist1(σ1(θ̄1)), u1) | ψ1)(v1)
Q2(u2 → v2 | v1) := DENSITY(PROP(Dist2(σ2(v1)(θ̄2)), u2) | ψ2(v1))(v2)

...
Qn(un → vn | v1, . . . , vn−1) := DENSITY(PROP(Distn(σn(v1, . . . , vn−1)(θ̄n)), un) | ψn(v1, . . . , vn−1))(vn)
Q(u1, . . . , un → v1, . . . , vn) := Q1(u1 → v1)×Q2(u2 → v2 | v1)× . . .×Qn(un → vn | v1, . . . , vn−1)

By our definition of PROP, one can easily see that for any ū, v̄ such that PS(ū) > 0 and PS(v̄) > 0,
we have Q(ū→ v̄) > 0. Thus the proposal distribution Q is valid.

To generate the next sample v̄ from the current sample ū with PS(ū) > 0 according to Q, one can
generate each component vi one by one as follows:

v1 ∼ Q1(u1 → −)
v2 ∼ Q2(u2 → − | v1)

...
vn ∼ Qn(un → − | v1, . . . , vn−1)

12



And the acceptance rate β is calculated as follows:

β =
PS(v̄)×Q(v̄ → ū)

PS(ū)×Q(ū→ v̄)
=

D(v̄)×Q(v̄ → ū)

D(ū)×Q(ū→ v̄)
(∵ PS(ū) > 0 ∧ v̄ ∈ ψ)

=
D1(v1)×Q1(v1 → u1)

D1(u1)×Q1(u1 → v1)
× D2(v2 | v1)×Q2(v2 → u2 | u1)

D2(u2 | u1)×Q2(u2 → v2 | v1)
× . . .×

Dn(vn | v1, . . . , vn−1)×Qn(vn → un | u1, . . . , un−1)

Dn(un | u1, . . . , un−1)×Qn(un → vn | v1, . . . , vn−1)

Algorithm 3 generates samples (v̄1, . . . , v̄κ) this way and returns the mean of the value of ret :
RP̂ (fret , v̄1) + . . .+ RP̂ (fret , v̄κ)

κ
for fret(σ) = σ(ret).

Thus by correctness of Metropolis-Hastings simulation we have

EP̂ (fret) =

∫
v̄∈S

RP̂ (fret , v̄)× P̃P̂ (v̄) dv̄ = lim
κ→∞

RP̂ (fret , v̄1) + . . .+ RP̂ (fret , v̄κ)

κ

This proves that the second component of the tuple returned by Algorithm 3 is the expected value of
ret with respect to the distribution defined by P̂ .

Now we show that Algorithm 3 correctly computes the probability ZP̂ of executing P̂ . First, we
define α as follows (note that this is exactly the same as α at the end of a run of P̂ in Algorithm 3):

α(v1, . . . , vn) =

(∫
y1∈ψ1

D1(y1) dy1

)
×

(∫
y2∈ψ2(v1)

D2(y2 | v1) dy2

)
× . . .

×

(∫
yn∈ψn(v1,...,vn−1)

Dn(yn | v1, . . . , vn−1) dyn

) (9)

Then, for samples (v̄1, . . . , v̄κ) generated by Algorithm 3, by correctness of Metropolis-Hastings
simulation we have the following:

lim
κ→∞

1
α(v̄1) + . . .+ 1

α(v̄κ)

κ
=

∫
x̄∈S

1

α(x̄)
× P̃P̂ (x̄) dx̄ (10)

We can simplify the RHS as follows.∫
x̄∈S

1

α(x̄)
× P̃P̂ (x̄) dx̄ =

∫
x̄∈ψ

1

α(x̄)
× D(x̄)

ZP̂
dx̄ =

1

ZP̂
×
∫
x̄∈ψ

D(x̄)

α(x̄)
dx̄

=
1

ZP̂
×

(∫
x1∈ψ1

D1(x1)∫
y1∈ψ1

D1(y1) dy1
×

(∫
x2∈ψ2(x1)

D2(x2 | x1)∫
y2∈ψ2(x1)

D2(y2 | x1) dy2
× . . .

×

(∫
xn∈ψn(x1,...,xn−1)

Dn(xn | x1, . . . , xn−1)∫
yn∈ψn(x1,...,xn−1)

Dn(yn | x1, . . . , xn−1) dyn
dxn

)
. . . dx2

)
dx1

)

=
1

ZP̂
×

(∫
x1∈ψ1

D1(x1)∫
y1∈ψ1

D1(y1) dy1
×

(∫
x2∈ψ2(x1)

D2(x2 | x1)∫
y2∈ψ2(x1)

D2(y2 | x1) dy2
× . . .

×
(

1

)
. . . dx2

)
dx1

)
...

=
1

ZP̂
× 1

Therefore, we have

ZP̂ =
1∫

x̄∈S
1

α(x̄) × P̃P̂ (x̄) dx̄
=

1

limκ→∞
1

α(v̄1)
+...+ 1

α(v̄κ)

κ

= lim
κ→∞

κ
1

α(v̄1) + . . .+ 1
α(v̄κ)

This proves that the first component of the tuple returned by Algorithm 3 is the probability ZP̂ of
executing P̂ .
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