
Timecard: Controlling User-Perceived Delays in Server-Based
Mobile Applications

Lenin Ravindranath Jitendra Padhye Ratul Mahajan Hari Balakrishnan
M.I.T. & Microsoft Research Microsoft Research Microsoft Research M.I.T.

Abstract
Providing consistent response times to users of mo-
bile applications is challenging because there are several
variable delays between the start of a user’s request and
the completion of the response. These delays include
location lookup, sensor data acquisition, radio wake-up,
network transmissions, and processing on both the client
and server. To allow applications to achieve consistent
response times in the face of these variable delays, this
paper presents the design, implementation, and evalu-
ation of the Timecard system. Timecard provides two
abstractions: the first returns the time elapsed since the
user started the request, and the second returns an esti-
mate of the time it would take to transmit the response
from the server to the client and process the response
at the client. With these abstractions, the server can
adapt its processing time to control the end-to-end de-
lay for the request. Implementing these abstractions re-
quires Timecard to track delays across multiple asyn-
chronous activities, handle time skew between client and
server, and estimate network transfer times. Experi-
ments with Timecard incorporated into two mobile ap-
plications show that the end-to-end delay is within 50
ms of the target delay of 1200 ms over 90% of the time.

1 Introduction
Interactive mobile applications, or “apps”, are a large
and rapidly growing fraction of software written today.
Because users expect a timely response to their requests,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

LR and HB are with the Computer Science and Artificial Intelligence
Lab (CSAIL) at M.I.T. Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522717

app developers worry about responding to each request
promptly. Responses that arrive within a predictable pe-
riod of time improve the user experience, whereas the
failure to provide consistent response times has adverse
financial implications for even small degradations in re-
sponse times [15, 5, 30].

This task is difficult enough for sophisticated devel-
opers and well-funded organizations, but for the legion
of less-experienced developers with fewer resources at
hand, the problem is acute. The problem is difficult
because the end-to-end delay between a user’s request
and its response has several different components, each
highly variable. For example, to service a user’s action,
the app may need to gather GPS or other sensor data on
the mobile device, then form and transmit a request to
one or more servers in the “cloud”. The required net-
work transmission may entail waking up the radio inter-
face on the mobile device. After the server processes the
request, the time required to transmit the response to the
client is subject to numerous vagaries of the wireless net-
work. Finally, even after the response reaches the mobile
device, the time needed to render the response may vary
depending on the client’s hardware and OS.

In this paper, we focus on mobile apps that use servers
in the cloud for some of their functions. Our goal is to
develop a system for app developers to ensure that the
end-to-end delay between the initiation of a request and
the rendering of the response does not exceed a specified
value. The system does not provide hard delay guaran-
tees, but instead makes a best-effort attempt to achieve
the delay goal.

Given the desired end-to-end delay, the idea is to al-
low the server to obtain answers to two questions:

1. Elapsed time: How much time has elapsed since
the initiation of the request?

2. Predicted remaining time: How much time will it
take for the client to receive an intended response
over the network and then process it?

The server can use the difference between the desired de-
lay bound and the sum of the elapsed time and predicted
remaining time to determine the work time for the re-

quest. To control the end-to-end delay, the server should
compute its response within the work time.

Although few services are designed with this flexibil-
ity today, many are amenable to such adaptation by strik-
ing a balance between response quality and work time.
For example, speech-to-text services naturally produce
results whose fidelity is roughly proportional to process-
ing time [13, 7]. Similarly, search services spawn work-
ers for different content types and aggregate results only
from the workers that respond within a deadline [3];
different deadlines lead to different quality of results.
Services can also adapt by changing the amount of re-
sources used for request processing, the priority with
which response is processed, or the scope of the work
(e.g., radius for a location-based query). The adaptation
mechanisms are service-specific and not the focus of our
work; we focus on answering the two questions above.

Answering these questions poses several challenges.
Tracking elapsed time requires accurate and lightweight
accounting across multiple, overlapping asynchronous
activities that constitute the processing of a request on
both the mobile device and the server. When the request
reaches the server, we must also factor in the clock skew
between the client and the server. Inference of this skew
is hindered by the high variability in the delay of cellu-
lar network links. Estimating remaining time is difficult
because it depends on many factors such as device type,
network type, network provider, response size, and prior
transfers between the client and server (which dictate the
TCP window size at the start of the current transfer).

We address these challenges by automatically instru-
menting both the mobile app code, and the cloud ser-
vice code. To this end, we extend the AppInsight in-
strumentation framework [29] to track the accumulated
elapsed time, carrying this value across the stream of
thread and function invocations on both the mobile client
and server. We also develop a method to accurately in-
fer clock skew, in which probes are sent only when the
mobile network link is idle and stable. To predict the
remaining time, we train and use a classifier that takes
several relevant factors into account, including the in-
tended response size, the round-trip time, the number of
bytes already transferred on the connection prior to this
response, and the network provider.

We have implemented these ideas in the Timecard
system. To study its effectiveness, we have modified
two mobile services to adapt their response quality us-
ing the Timecard API. Using these services and other
data, we answer two questions. First, is Timecard useful
in practice? We find that 80% of user interactions across
4000 popular Windows Phone apps that involved net-
work communication could have benefited from Time-
card. We also find that small reductions in work time for
our two services lead to proportionally small reductions

Server

App App

User request

Request reaches server
Work time

Send response

Processing
& Rendering App processing

Upstream delay Downstream delay Server delay

Response reaches client Send request

t0 t1 t2 t3 t4 t5

User-perceived delay

C1 N1 N2 C2 S

Figure 1: A typical transaction in an interactive app.

in the response quality, implying that Timecard would
enable these services to effectively trade response qual-
ity for delay. Second, how often does Timecard meet
the end-to-end delay bound for various network condi-
tions and device types? We find that the response time is
within 50 ms of the desired bound (1200 ms) 90% of the
time. These results suggest that Timecard is a practical
and useful way to build cloud-based mobile apps with
predictable response times.

2 Timecard Architecture

To describe Timecard, we need to formalize the defini-
tion of a user interaction. To this end, we use the no-
tion of a user transaction, as defined in [29]. A user
transaction in an app begins with a user request, ex-
pressed through a user interface (UI) action such as a
button press, swipe, speech utterance, device shake, or
gesture. The transaction ends with the completion of all
synchronous and asynchronous tasks (threads) in the app
that were triggered by the request.

Figure 1 shows the anatomy of a user transaction. The
request starts at time t0. The app does some initial pro-
cessing, which entails local actions such as reading sen-
sor data and possibly network operations like DNS re-
quests. At time t1 the app makes a request to the server,
which reaches the server at time t2. The server processes
the request, and sends the response at time t3, which
reaches the client at time t4. The app processes the re-
sponse and renders the final results to the user at time
t5. In some cases, transactions have richer patterns that
involve multiple calls sequential or parallel to the server.
We focus on the single request-response pattern because,
as we show in §6.1, it is dominant.

The user-perceived delay for this user transaction is
the duration t5 − t0. (In some cases a background task
may continue past the final user-visible task without im-
pacting user-perceived delay.) User-perceived delays for

Transaction
Tracker

Predictor

TimeSync/
Probing

App

Server

Logger

Transaction
Tracker

Timecard
APIs

TimeSync

Figure 2: Timecard Architecture.

mobile apps vary widely, ranging from a few hundred
milliseconds to several seconds (§6.1).

The work time at the server is t3 − t2. The client’s
processing is made up of two parts, C1 = t1 − t0 and
C2 = t5 − t4, which correspond to the duration before
the request is sent and the duration after the response is
received. We denote the request (“uplink”) and response
(“downlink”) network transfer times by N1 and N2, re-
spectively: N1 = t2 − t1 and N2 = t4 − t3.

Timecard helps app developers control the user-
perceived delay for user transactions. It provides an API
with two functions for this purpose:

1. GetElapsedTime(): Any component on the
processing path at the server can obtain the time
elapsed since t0.

2. GetRemainingTime(bytesInResponse):
At the server, a component can obtain an estimate
of N2 + C2. Timecard provides this estimate as a
function of the size of the intended response.

These two functions help control the user-perceived
delay. Servers that generate fixed-size responses can in-
fer how much time they have to compute the response by
querying for elapsed time and for remaining time with
the response size as input. Their work time should be
less than the desired user-perceived delay minus the sum
of times obtained from those API calls. Servers that can
generate variable-sized responses can call this function
multiple times to learn how much work time they have
for different response sizes, to decide what response they
should generate to stay within a given user-perceived de-
lay. The desired user-perceived delay for a transaction
is specified by the mobile app developer, based on the
responsiveness needs of the app and other factors (e.g.,
how often the user is refreshing). The API may also be
used for other purposes, as discussed in §7.

Determining the elapsed time requires tracking user
transactions across multiple asynchronous threads and
between the client and server, as well as synchronizing
the time between the client and the server. Estimating
the remaining time requires a robust way to predict N2

and C2. Figure 2 shows the high-level architecture of
Timecard, depicting the information flow. Transaction

tracking and time synchronization are described in detail
in §3, while N2 and C2 prediction is covered in §4.

3 Tracking elapsed time

To track elapsed time, Timecard uniquely identifies each
user transaction and tracks information about it, includ-
ing its start time, in a transaction context object (§3.1).
Timecard also synchronizes the time between the client
and the server (§3.2). The transaction context is avail-
able to any client or server thread working on that trans-
action. The elapsed time is the difference between the
thread’s current time and the transaction’s start time.

3.1 Transaction tracking

Transaction tracking is challenging because of the asyn-
chronous programming model used by mobile apps and
cloud services. Consider the execution trace of a sim-
ple app shown in Figure 3. On a user request, the app
makes an asynchronous call to obtain its location. After
getting the result on a background thread, the app con-
tacts a server to get location-specific data (e.g., list of
nearby restaurants). The server receives the request on
a listening thread and hands it off to a worker thread.
The worker thread sends the response, which is received
by the app on a background thread. The background
thread processes the response and updates the UI via a
dispatcher call, completing the transaction.

To track the elapsed time for this transaction, Time-
card passes the transaction’s identity and start time
across asynchronous calls, and across the client/server
boundary.1 Timecard instruments the client and the
server code to collect the appropriate information, and
stores it in a transaction context (TC) object (Table 1).
The instrumentation techniques used by Timecard ex-
tend the AppInsight [29] framework in four key aspects:
(i) Timecard’s instrumentation tracks transactions on the
client, on the server, and across the client-server bound-
ary, whereas AppInsight tracks transactions only on the
client; (ii) Timecard’s instrumentation enables time syn-
chronization between client and server (§3.2), unlike
AppInsight; (iii) Timecard collects additional data to
enable N2 and C2 prediction; and (iv) Timecard is an
online system, while AppInsight collected user transac-
tion data for offline analysis.

We now describe how TC is initialized and tracked
(§3.1.1), how tracking TC enables Timecard to collect
training data for predicting N2 and C2 (§3.1.2), and how
TC is reclaimed upon transaction completion.

1See (§7) for transactions that use multiple servers.

Tracked information Purpose Set by Used by
Application Id Unique application identifier Client Server and Predictor
Transaction Id Unique transaction identifier Client Client and Server

Deadline To calculate remaining time Client Server
t3 To calculate N2 for training data Server Predictor
t4 To calculate N2 and C2 for training data Client Predictor
t5 To calculate C2 for training Client Predictor

Entry Point To predict C2, and to label training data Client Server and Predictor
RTT To predict N2, and to label training data Client Server and Predictor

Network type To predict N2 and to label training data Client Server and Predictor
Client type To predict N2 and to label training data Client Server and Predictor

Size of response from cloud service To predict N2 and to label training data Server Predictor
Pending threads and async calls To determine when transaction ends Client Client

Table 1: Transaction context. The three timestamps are named as per Figure 1.

User request UI Update

UI Thread

Background thread

GPS fix Callback

UI dispatch

Background thread

Web Request

Response
Callback

Server thread

Server thread

Spawn worker

Send
response

Request Handler

App

Server

GPS Start

Figure 3: A location-based app that queries a server.

3.1.1 Transaction Context

Timecard identifies all UI event handlers in the app using
techniques similar to AppInsight [29]. It instruments the
handlers to create a new TC, assigning it a unique ID
and timestamp t0. It maintains a reference to the newly
created object in the thread’s local storage.
Tracking a transaction across asynchronous calls:
To pass a reference to the TC from the thread that makes
an asynchronous call to the resulting callback thread,
Timecard builds upon AppInsight’s “detouring” tech-
nique [29]. Before the asynchronous call is made, a
unique tracking object is created at runtime. The object
contains a method that encapsulates the original call-
back method, and has a signature that is identical to the
callback method. Timecard rewrites the asynchronous
call to include a reference to this newly created method.
Thus, when the callback is made, we can match the call-
back to the right asynchronous call. Timecard includes a
reference to the TC in the tracking object, which allows
the thread that executes the callback to access the TC.
Passing TC from client to server: When an app makes
a request to the server, the client passes some fields in
the TC to the server (Table 1) by encoding it in a special
HTTP header called x-timecard-request. To add
the header to the HTTP request, Timecard modifies all
HTTP request calls in the application.
Tracking transaction at the server: Timecard instru-
ments the service entry methods that handle client re-

quests to create a new TC object using the informa-
tion specified in the x-timecard-request header.
Timecard then tracks the TC across server threads using
the same techniques as for client threads.
Handling server response and UI updates: When
the response arrives, the client OS invokes a callback
method to handle the response. This method has ac-
cess to the correct TC due to the detouring technique de-
scribed earlier. The method processes the response and
updates the UI via asynchronous calls to a dispatcher.

3.1.2 Collecting Data to Predict C2 and N2

Transaction tracking also enables Timecard to collect the
data to train the N2 and C2 predictors for subsequent
transactions. Figure 1 shows that N2 and C2 may be
calculated from t3, t4, and t5. Timecard instruments the
server to log t3 just before it sends the response to the
client. Timecard also records the number of bytes sent
in the response. This information, along with transac-
tion id, the device type, client OS, and network provider
(Table 1) are sent to the predictor.

Timecard instruments the client’s callback handler to
log t4 as well as the time of the last UI update, t5. Once
the transaction is complete (§ 3.1.3), the values of t4 and
t5 along with the transaction id are sent to the predictor.
To reduce overhead, this data is sent using a background
transfer service on the mobile that schedules the transfer
after the app terminates [6].

3.1.3 Tracking Transaction Completion

When a transaction completes, Timecard can remove the
TC on the client. On the server, Timecard can remove
the TC as soon as t3 is recorded and sent to the predictor.

A transaction is complete when none of the associated
threads are active and no asynchronous calls associated
with the transaction are pending. Thus, to track transac-
tion completion on client, Timecard keeps track of active
threads and pending asynchronous calls. Because Time-
card instruments the start and end of all upcalls, and
is able to match asynchronous calls to their callbacks,

it can maintain an accurate list of pending threads and
asynchronous calls in the TC.

Tracking transaction completion also allows Time-
card to detect idle time on the client. When there are
no active transactions on the client, it means that the
app is currently idle (most likely waiting for user in-
teraction). Timecard maintains a list of currently active
transactions. When the list is empty, it assumes that the
application is “idle”.2 Timecard uses the application’s
idle time in two ways. First, Timecard garbage-collects
some of the data structures it needs to maintain to take
care of several corner cases of transaction tracking. Sec-
ond, Timecard uses the start of an idle period to trigger
and process time synchronization messages (§3.2).

3.2 Synchronizing time

The timestamps in the TC are meaningful across the
client-server boundary only if the client and the server
clocks are synchronized. Timecard treats the server’s
clock as the reference and implements mechanisms at
the mobile client to map its local time to the server’s.
The TimeSync component code to synchronize the
two times is added to the client and server using bi-
nary instrumentation. The transaction tracker queries
TimeSync on the client for a timestamp, instead of the
system time.

Before describing our method, we note that two ob-
vious approaches do not work. The first is to run the
Network Time Protocol (NTP) [20] on the clients and
servers. The problem is that NTP does not handle the
significant variability in delay that wireless clients expe-
rience; for example, the 3G or LTE interface in idle state
takes a few seconds to wake up and transmit data, and
in different power states, sending a packet takes differ-
ent amounts of time. The second approach is to assume
that the device can obtain the correct time from a cellular
base station or from GPS. Both approaches are problem-
atic: cellular base stations do not provide clients with
time accurate to milliseconds, many mobile devices may
not have a cellular service, GPS does not work indoors,
and also consumes significant energy. For these reasons,
Timecard adopts a different solution.

We conducted several measurements to conclude that
the clocks on smartphones and servers usually have a
linear drift relative to each other, and that the linearity
is maintained over long periods of time (§6). We as-
sume that the delay between the client and the server is
symmetric3. Given the linearity of the drift and the sym-
metry assumption, client and server clocks can be syn-

2This does not mean that the entire system is idle because other
apps may be active in the background.

3NTP makes this assumption as well. Cellular links can have asym-
metric delays, but the difference is typically small. See §6 for details.

chronized using Paxson’s algorithm [26, 21]. Briefly, the
method works as follows:

1. At time τ0 (client clock), send an RTT probe. The
server responds, telling the client that it received
the probe at time τ1 (server clock). Suppose this
response is received at time τ2 (client clock).

2. Assuming symmetric delays, τ1 = τ0 + (τ2 −
τ0)/2 + ε, where ε is an error term consisting of
a fixed offset, c, and a drift that increases at a con-
stant rate, m.

3. Two or more probes produce information that al-
lows the client to determine m and c. As probe re-
sults arrive, the client runs robust linear regression
to estimate m and c.

However, in case of clients connecting over wireless
networks, delays introduced by radio wake-up [17] and
by the queuing of on-going network traffic confound this
method. These delays are variable, and could be any-
where between a few tens of milliseconds to a few sec-
onds. We develop a new probing technique that is aware
of the state of the radio and traffic to produce accurate
and robust results. We apply this technique to synchro-
nize the client with each of its servers.

A useful insight is that the ideal time to send RTT
probes is soon after a transaction’s response completely
arrives from the server, as long as no additional transfers
are forthcoming. At this time, the radio will likely be in
its high-power (“ready-to-transmit”) state, ensuring that
there is no wake-up delay and a lower marginal energy
consumption relative to sending a probe when the radio
is in any other state. Furthermore, the likelihood of the
probe encountering queuing delay at either the client or
the base station is also low because mobile devices typ-
ically run only one app in the foreground. Background
apps are typically not scheduled when a foreground app
is active. Base stations maintain per-device queues and
implement fair schedulers, so queuing delays are likely
to be low at this time. The methods used for client-side
transaction tracking know when a transaction has ended
and determine when an RTT probe should be sent.

Figure 4 shows the performance of our probing
method. The graphs are based on data collected from
an app that downloads between 1 and 50 Kbytes of data
from a server over HSPA and LTE networks. The server
and the app were instrumented with Timecard. Apart
from the RTT probes sent by Timecard, the app sent its
own RTT probes. These additional probes were care-
fully timed to ensure that they were sent either when the
network was busy, or when the network was idle, and the
radio was in an idle state (we used the Monsoon hard-
ware power monitor to keep track of the power state of
the radio interface). These results show that compared to
the probes sent by Timecard, the additional probes expe-
rience highly variable round-trip delays, demonstrating

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

C
D

F

RTT (ms)

Timecard
Network Busy

Radio in High Power Idle State

(a) HSPA network. When the Radio is in Idle state, pings take
1800 ms to 2300 ms! (Not shown.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

C
D

F

RTT (ms)

Timecard
Network Busy

Radio in Idle State

(b) LTE network.

Figure 4: RTTs of probes from an app to a server
with Timecard, when the network is busy, and when
the radio is either idle or busy. (Note: There is
no high-power idle state in LTE.) Timecard’s probe
transmissions strategy results in lower variability.

the importance of sending probes only when the radio is
in a high-power state and when the network is idle.

We conclude the discussion of TimeSync by noting a
few additional features of this component. First, Time-
card includes an optimization not shown in the graphs
above: it collects RTT samples only when the signal
strength is above a threshold. The reason is that our data
shows that uplink delays are highly variable when the
signal strength is low. Second, to minimize the impact
on app performance, Timecard computes the linear re-
gression in a background process that runs only when no
foreground app is running. Third, the TimeSync compo-
nent of each app is independent because apps typically
use different servers, which may each have a different
notion of the current time.

4 Predicting Remaining Time
Timecard’s GetRemainingTime function returns es-
timates of N2 and C2 for a specified response size. The
sum of the two is the total amount of time required to
receive and render the response at the client. The esti-
mates are generated by decision tree algorithms that use
models built from historical data.

4.1 Predicting N2

N2 is the amount of time required to transmit a spec-
ified amount of data from the server to the client. N2

depends on a number of factors including the data size,
the round-trip time (RTT) of the connection, the number
of RTTs required to send the data, the bandwidth of the
bottleneck link, and packet loss rate.

Our analysis of traces from over 4000 apps (§6.1),
shows that (i) 99% of the data transfers are over HTTP
(and hence TCP), and (ii) most are quite short – the 90th
percentile of the response length is 37 KB, and median
is just 3 KB. Hence our focus is to accurately predict
duration of short HTTP transfers.

The duration of short TCP transfers over high-
bandwidth, high-RTT, low-loss paths is determined pri-
marily by the number of RTTs needed to deliver the
data [24]. Modern cellular networks (3G, 4G, LTE) of-
fer exactly such environment: bandwidths can high as
5Mbps, packet losses are rare [33]. However, RTTs can
be as high as 200ms [33]. Thus, to predict N2, we need
to predict the RTT and estimate the number of RTTs re-
quired to transfer a given amount of data.

The number of RTTs required to download a given
amount of data depends on the value of the TCP win-
dow at the sender when the response is sent. It would
seem that the TCP window size and RTT can be eas-
ily queried at the server’s networking stack. However,
many cellular networks deploy middleboxes [32] that,
terminate and split an end-to-end TCP connection into
a server-to-middlebox connection and a middlebox-to-
client connection. With such middleboxes, the server’s
window size or RTT estimate are not useful to predict
N2. Other factors that confound the prediction of N2

include the TCP receiver window settings in the client
OS, whether TCP SACK is used or not, and other TCP
details. Under these circumstances, a method that mea-
sures the factors mentioned above and plug them into
an analytic TCP throughput formula does not work well.
Hence, we use an empirical data-driven model to predict
N2. After some experimentation, we settled on a model
with the following features:

1. The response size: The size of the response, and
TCP dynamics (see below), together determine the
number of RTTs required.

2. Recent RTT between the client and server: We
re-use the ping data collected by the TimeSync
component (§3.2). We also keep track of TCP con-
nection delay for these probes, to account for pres-
ence of middleboxes [32].

3. Number of bytes transmitted on the same con-
nection before the current transfer: This feature
is a proxy for the TCP window size at the sender,
which can either be the server or the middlebox, if
one is present. We are forced to use this metric be-
cause we have no way to measure the TCP window
size at a middlebox. However, since TCP sender’s
window size generally grows with the number of

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600

C
2
 (

m
s
)

Datasize (KB)

Figure 5: C2 from one of the data heavy transactions
in the Facebook app.

bytes already sent over the connection, we can use
the cumulative number of bytes that were previ-
ously transferred on the connection as a proxy for
the sender’s TCP window size.

4. Client OS version and client network provider:
This combined feature is a proxy for the TCP pa-
rameters of the client and the middlebox. The client
OS version determines the maximum TCP receiver
window size and other TCP details. The network
provider is the combination of the cellular carrier
(Verizon, AT&T, etc.) and network type (LTE, 4G,
3G, etc.). WiFi is a distinct network provider.

Each user transaction provides information about
these features and the corresponding response time to
the prediction module. The module buckets the ob-
served response-time data into the features mentioned
above. Multiple observed response time samples may
map to the same bucket, creating a histogram of values
for each bucket. The predictor is implemented as a deci-
sion tree on these features, It finds the best match among
the buckets and returns the median4 response time value
for the bucket. The buckets used by the predictor are
updated each time a Timecard-enabled app uploads the
feature vector and response time information. Thus, this
is an online predictor, with a constantly updating model.

The model used by the N2 predictor is independent
of the application or the service. Thus, we can combine
data from multiple Timecard-enabled apps and services
to build a more accurate model. We can also bootstrap
the model by using offline measurements done by a ded-
icated measurement app (§6).

4.2 Predicting C2

To understand the factors that affect the processing and
rendering time on the client after the response is received
(i.e. C2), we analyzed thirty apps that had 1653 types
of transactions. For most transactions, C2 was highly
correlated with the size of the response. Figure 5 plots
C2 for a popular transaction in the Facebook application,
showing that C2 is roughly linear in the response length.

4In future, we plan to experiment with other statistics such as the
mean or the 90th percentile.

C2 typically includes two components: parsing de-
lay and rendering delay. Many servers send data in the
form of JSON, XML or binary (for images). On a mo-
bile device, parsing or de-serializing such data takes a
non-trivial amount of time. Our controlled experiments
on popular off-the-shelf JSON, XML and image parsers
show that, for a given data structure, this delay is linear
in the data size. We also found that the rendering delay
is linear in the data size consumed by the UI which is
typically a subset of the response data.

Since the downstream processing is typically
computation-bound, C2 also depends on the device type
and its processing speed. In general, it also depends on
whether the current set of apps being run on the device
is exhausting memory or CPU resources.

To predict C2, we build a decision tree model simi-
lar to N2 with app id, transaction type, device type, and
response data size as the features5. The C2 predictor
continuously learns from previously completed transac-
tions. After each transaction, the Timecard client logs
the above specified features with a measured value ofC2

and sends it to the predictor. Thus, like the N2 predictor,
the C2 predictor is also an online predictor. However,
unlike the N2 predictor, the C2 predictor uses numer-
ous models, one per transaction type (which includes the
app id), making this predictor difficult to bootstrap. Cur-
rently, Timecard requires the app developer to provide
rough models for the transaction types in the app, and
refines them as more data becomes available. Without
developer-provided models, Timecard can simply dis-
able predictions until enough data is available.

5 Implementation
Timecard is implemented in C# with 18467 lines of
code. It is currently targeted for Windows Phone Apps
and .NET services. We do binary instrumentation of
both the client- and server-side code. Our instrumen-
tation framework is currently designed for .NET. Over
80% of the apps in the Windows Phone app store is writ-
ten in Silverlight. Many web services are powered by
.NET (for e.g. ASP.NET) and hosted through IIS. With
the popularity of cloud providers such as Amazon Web
Services and Azure, developers are able to easily host
their services with minimal infrastructure support.

Incorporating Timecard into an app or a service re-
quires little developer effort. We provide Timecard as a
Visual Studio package, which can be added into a ser-
vice or a app project workspace. Once added, it auto-
matically includes a library into the project that exposes
the Timecard APIs to the developer. It also modifies
the project metadata to include a post-build step where

5We currently do not consider memory and CPU utilization.

it runs a tool to automatically instrument the built bi-
nary. When the instrumented server and the app are de-
ployed, they jointly track transactions, synchronize time,
estimate elapsed time, and predict remaining time.

Timecard does not require any modification to Sil-
verlight, the Phone OS, IIS, or the cloud framework.

6 Evaluation
We now evaluate Timecard. In §6.1, we demonstrate that
network and client delays are highly variable, and thus a
system like Timecard is needed to manage end-to-end
delays for mobile apps. In §6.2 we show that Time-
card can successfully control the end-to-end delays for
mobile apps. In §6.3, we measure the accuracy of N2

and C2 prediction methods. In §6.4 we validate the two
key assumptions in the time synchronization method. Fi-
nally, we evaluate the overhead of Timecard in §6.5.

6.1 Is Timecard Useful?
The usefulness of Timecard depends on three questions.
First, how common is the single request-response trans-
action (Figure 1) in mobile apps? This question is impor-
tant because Timecard is designed specifically for such
transactions. Second, how variable are user-perceived
delays? Using Timecard, app developers can reduce
the variability, and maintain the overall delay close to
the desired value. Third, how variable are the the four
components (C1, C2, N1, N2) of the user-perceived de-
lay that Timecard is designed to measure or estimate?
If these delays are not highly variable, a sophisticated
system like Timecard may not be needed.

6.1.1 Common Communication Patterns

We study common communication patterns in mobile
apps using the AppInsight and PhoneMonkey datasets
(Table 2). The AppInsight dataset is based on 30 popu-
lar Windows Phone apps instrumented with AppInsight.
We only instrument the clients because we have no con-
trol over the servers that these apps use. We persuaded
30 users to use these instrumented apps on their personal
phones for over 6 months. Our dataset set contains over
24,000 user transactions that contact a server and 1,653
transaction types. This data set is an extended version of
the dataset used in our earlier paper [29].

Over 99% of the transactions in the dataset use HTTP-
based request-response communication. Further, 62% of
these transactions involve exactly one request-response
communication depicted in Figure 1.

The dominance of this pattern is further confirmed by
our study of 4000 top Windows Phone apps. We instru-
mented these apps AppInsight [29], and ran them us-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000 100000

C
D

F

Data size (bytes)

AppInsight
PhoneMonkey

Figure 6: Size of data downloaded by apps in AppIn-
sight and PhoneMonkey datasets.

 0

 1000

 2000

 3000

 4000

 5000

 0 2000 4000 6000 8000 10000

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

m
s
)

Mean End-to-End delay (ms)

Figure 7: User-perceived response time and its stan-
dard deviation for different transactions.

ing an UI automation tool called PhoneMonkey. The
PhoneMonkey runs the apps in an emulator. It starts the
app, selects a random UI control on the current screen,
acts on it to navigate to the next screen. Across all apps,
we obtained over 10,000 unique user transactions with
at least one request to a server. We call these traces
the PhoneMonkey dataset. Over 80% of PhoneMonkey
transactions have the single request-response pattern.

Recall that our prediction models is geared towards
short HTTP transfers (§4.1). Figure 6 shows the amount
of data downloaded in the AppInsight and PhoneMon-
key data. The median is only about 3 KBytes, and the
99th percentile less than 40 KBytes.

Thus, we see that Timecard addresses the dominant
communication pattern in today’s mobile apps.

6.1.2 Variability of User-perceived Delay

Figure 7 shows a scatter plot of user-perceived delay and
its standard deviation for different types of user trans-
actions in the AppInsight dataset. Each point corre-
sponds to a unique transaction type. We see that the user-
perceived delays for a transaction are high —the mean
delay is more than 2 seconds for half of the transactions
— and also highly variable. This highlights the need for
a system like Timecard that can control the variability.

6.1.3 Variability of Individual Components

We now show that client-side processing (C1 and C2)
and network transfer times (N1 and N2) both contribute
to this variability.

Name Summary Used in
AppInsight 30 instrumented apps, 30 users, 6 months. Over 24K network transactions. 6.1, 6.3
PhoneMonkey 4000 instrumented apps driven by UI automation tool. 6.1
NetMeasure 250K downloads over WiFi/3G/HSPA/LTE over ATT/Sprint/Verizon/TMobile. 20 users + lab. 1 month. 6.1, 6.3
EndToEnd 2 instrumented apps on 20 user phones sending requests to 2 instrumented services. Over 300K transactions. 6.2

Table 2: Data sets used for evaluation of Timecard.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

C
D

F

Client Processing Delays (ms)

C1
C2

(a) Absolute values

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Fraction of Total Delay

C1
C2

(b) Fraction of total delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Coefficient of Variation

C1

C2

(c) Coefficient of variation

Figure 8: Client processing delays.

Client processing delays (C1 and C2): Figures 8(a)
and 8(b) show the absolute values of C1 and C2 and the
fraction they contribute to the user-perceived response
delay seen in the AppInsight data set. The median delays
are around 500 and 300 ms for C1 and C2, while the
median ratios are 0.3 and 0.15, respectively. Figure 8(c)
shows the Coefficient of Variation (CoV) (σ/µ) for each
unique transaction type. The median values of CoV for
C1 and C2 are 0.4 and 0.5, suggesting high variability.
Possible factors that make C1 and C2 variable have been
discussed in §3 and §4.
Networking delays (N1 andN2): The AppInsight data
cannot be used to analyze N1 and N2 because it does
not have server-side instrumentation. Thus, we built a
custom background app for Windows Phone and An-
droid. The app periodically wakes up and repeatedly
downloads random amounts of data from a server. Be-
tween successive downloads, the app waits for a random

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

C
D

F

Networking Delays (ms)

N1
N2

Figure 9: Network transfer delays.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000
C

D
F

Elapsed Time (C1+N1) (ms)

Context Ads
Twitter Analysis

Figure 11: Elapsed time (C1 +N1) from two apps.

amount of time (mean of 10 seconds, distributed uni-
formly). The download size is drawn from the AppIn-
sight distribution (Figure 6). The app and the server are
instrumented to perform time sync, and log N1 and N2.

We ran the app on the personal phones of 20 users, all
in the same city, as well as four Android test devices in
two different cities. These phones used a variety of wire-
less networks and providers such as 3G, 4G (HSPA+),
and LTE, on AT&T, T-Mobile, Verizon, and Sprint. The
users went about their day normally, through their mo-
bility patterns (indoors and outdoors, static, walking,
driving, etc.). The interval between successive wake-ups
of the apps was set to anywhere between 1-30 minutes,
depending on user’s preference. In all, we collected data
from over 250K downloads over a period of one month.
We term this the NetMeasure dataset (Table 2).

Figure 9 shows the CDF of N1 and N2. We see that
the delays are high, and highly variable. The median
delays are 75 and 175 ms. Thirty percent of the N2 sam-
ples are over 400ms. Given the values of user-perceived
response times in mobile apps (Figure 7), these delays
represent a substantial fraction of the total. As discussed
in §3 and §4, the variability arises from many factors.

6.2 End-to-End Evaluation

For end-to-end evaluation of Timecard, we instrumented
two services and associated mobile apps with Timecard.
The apps were installed on the primary mobile phones

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1200 1400 1600 1800 2000

C
D

F

Total End-to-End Delay (ms)

With Timecard
Without Timecard

Desired End-to-End Delay

(a) Context ads delay.

 0

 0.2

 0.4

 0.6

 0.8

 1

 800 1000 1200 1400 1600 1800 2000

C
D

F

Total End-to-End Delay (ms)

With Timecard
Without Timecard

Desired End-to-End Delay

(b) Twitter analysis delay.

Figure 10: User-perceived delays for two apps. With Timecard, delays are tightly controlled around the desired
value.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-400 -200 0 200 400

C
D

F

Actual minus Assigned Work Time (ms)

Twitter Analysis

(a) Error due to discrete work times

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

C
D

F

Absolute Error in Downstream Prediction (ms)

Context Ads
Twitter Analysis

(b) Downstream prediction error

Figure 12: Deadline control errors: discrete work time in one app and N2 prediction errors.

of twenty users. The apps ran in the background on the
phones. Running the apps in this manner allows us to
collect more detailed traces. We term these traces the
EndToEnd data set (Table 2).

We first describe the services and the associated apps.
Next, we show that Timecard helps meet the end-to-end
deadline. Finally, we discuss the quality vs. timeliness
trade-off for these two services.

The first service is an ad server that delivers contex-
tual ads to apps [22]. The ad server is coupled with a
mobile ad control; which is a small DLL that the app
developer incorporates into her app. At run time, the
mobile ad control scrapes the page displayed by the app
for keywords, and forwards them to the ad server. The
server spawns multiple requests to an ad provider using
these keywords. It sorts the received ads according to
their relevance and returns the top ad to the app. The
returned ad is a small text string, less than 1KB in size.
The ad provider needs at least 500 ms to generate one
response. By waiting longer, the server can receive ad-
ditional responses from the ad provider, which can im-
prove the relevance of the returned ad. Hence, there is
a trade-off between server work time and the ad quality.
The ad server uses the API described in §2 to determine
how long the service should wait before sending an ad
to the client. Note that the specified delay is not a hard
deadline; Timecard tries to keep the actual delay around
the specified value, seeking to reduce the delay variance
around that value.

We built a simple app and added the ad control to it.
The app wakes up at random times and feeds randomly
selected keywords (based on data in [22]) to the ad con-
trol. We set the desired end-to-end deadline for fetching
ads to be 1.2 seconds.

The second service is a Twitter analysis service, with
an associated mobile app that has been in the Windows
Phone store for over 2 years. The app lets the user spec-
ify a keyword, which it sends to the analysis service.
The service fetches recent tweets for the keyword, cat-
egorizes them into positive and negative tweets (senti-
ment), and sends an aggregated sentiment score back to
the app.

We modified the app to specify a deadline of 1.1 sec-
onds in addition to specifying the keyword. The server
uses Timecard to decide how many tweets to fetch and
analyze, given the deadline. The quality of the response
(sentiment analysis and the aggregated score) improves
with the number of tweets, but fetching and analyzing
more tweets takes more time. If more tweets are fetched,
the size of the response sent back to the app increases as
well. The service sends back 8 KB to 40 KB of data.
The app simply parses and renders the response.

Due to restrictions imposed by Twitter’s web API, the
service can only fetch and process tweets in multiples of
100, so the work time can be adjusted only in steps of
roughly 150 ms. As a result, we cannot always meet the
deadline precisely, but the server attempts to ensure that
the user-perceived delay is smaller than the 1.1-second

deadline. We pre-computed the expected work times for
fetching and analyzing different numbers of tweets by
separately profiling the service.

The N2 predictor for both services was bootstrapped
using the NetMeasure data set. The C2 predictor was
bootstrapped using offline measurements.

Figure 10 shows that with Timecard these two apps
achieve user-perceived delays that are tightly distributed
around the desired value. This result is significant be-
cause the upstream elapsed time when the request hits
the server is highly variable, as shown in Figure 11. Over
90% of the transactions are completed within 50 ms of
the specified deadline for ad control.

The difference between the observed and the desired
delay can be attributed to two main factors. For the Twit-
ter analysis service, the work time is limited to be a mul-
tiple of 150 ms. Figure 12(a) shows that this causes 80%
of the transactions finish before the deadline, and over
half the transactions finish 50 ms early. The errors in
N2 and C2 prediction is the other main reason for the
observed delay being different than the desired delay.
Figure 12(b) shows that the median error in N2 + C2

is only 15 ms for the ad control app, because the service
returns a small amount of data for each request. The
median error is higher (42.5 ms) for the Twitter analysis
app. TimeSync error also likely contributes to the down-
stream prediction error; unfortunately we have no way
of measuring its precise impact.

As the two services described above try to meet the
end to end deadline, they trade-off quality of results for
timeliness of response. We now illustrate this trade-off.

Figure 13(a) shows the trade-off between the ad server
work time and probability of fetching the best ad. Re-
call that we had set the total deadline to be 1.2 seconds.
Thus, the best ad is the ad that would have been top
rated if the server had spent the entire 1.2 seconds. If
the server spends less time, it may not always find the
best ad. Using trace data from 353 apps, 5000 ad key-
words [22] and about 1 million queries to the ad server,
we calculate the probability that the best ad is found for
various work times. As one might expect, the probabil-
ity increases as the server spends more time. Similarly,
Figure 13(b) shows the trade-off between fetching and
analyzing different number of tweets (mapped to aver-
age server work time) and the quality of sentiment anal-
ysis. The data is based on over 150,000 tweets for 100
popular keywords. We see that the as the server spends
more time to fetch and analyze more tweets, the error
in aggregated sentiment score compared to fetching and
analyzing the maximum of tweets (1500) from twitter is
reduced.

We stress that these trade-off curves are specific to
each service, and we do not claim that the above curves
are representative in any manner.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

C
D

F

Absolute Error in N2 Prediction (ms)

Timecard Prediction for all data
Timecard Prediction for Wifi

Timecard Prediction for Cellular
Timecard Prediction for data size < 40KB

(a) N2 Prediction error

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

C
D

F

Absolute Error in N2 Prediction (ms)

Timecard Prediction
Prediction without cumulative data size

(b) N2 Prediction with and without cumulative data

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

C
D

F

Absolute Error in C2 Prediction (ms)

Timecard Prediction
Datasize-unaware Prediction

Timecard Prediction for C2 < 1s

(c) C2 Prediction error

Figure 14: Accuracy of N2 and C2 prediction

6.3 Prediction Accuracy

Accuracy of N2 Prediction: We evaluate accuracy of
N2 prediction using the NetMeasure dataset (Table 2).
We randomly split the data into two halves for training
and testing. Figure 14(a) shows the CDF of absolute
errors in the prediction. The median error is 23 ms; the
90th percentile error is 139 ms. To dig deeper, we look
at WiFi and cellular links separately. We find that our
prediction is more accurate for WiFi (median error 11.5
ms median, 90th percentile 31 ms) than it is for cellular
networks (median 31 ms, 90th percentile 179 ms). Some
of the longer tail errors (>100 ms) for cellular networks
are due to radio wake-up delays on the downlink. In
certain device models and carriers, the radio does not
go to highest power state during upload, since upload
transfers (i.e. client requests) are assumed to be small.
Full wake-up happens only when the download begins.

The data size also has an impact on prediction delay,
due to complex interactions between server TCP state,
middlebox TCP state, and client TCP parameters. For
smaller data sizes, these interactions do not matter as
much, thus the prediction error is low when we down-
load less than 37KB. (median 17 ms, 90th percentile 86

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 600 700 800 900 1000 1100 1200

P
ro

b
a
b
lit

y
 o

f
b
e
s
t
a
d

Server Work Time (ms)

(a) Context ads server trade-off.

 0

 2

 4

 6

 8

 10

 12

 500 1000 1500 2000 2500

A
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e

e
rr

o
r

in
 s

e
n
ti
m

e
n
t
s
c
o
re

Server Work Time (ms)

(b) Twitter analysis server trade-off.

Figure 13: Trade-off between server work time and quality of result.

-5

 0

 5

 10

 0 200 400 600 800 1000 1200 1400

D
ri
ft
 (

s
)

Time (minutes)

Figure 15: Clock drift in smartphones.

ms). Recall that in the AppInsight data set, 37 KB rep-
resents the 90th percentile download size (Figure 6).

Recall from §4.1 that we use the amount of data al-
ready transferred on the connection as a coarse way of
modeling the TCP window behavior at the middlebox
or the server. Figure 14(b) shows that it is important to
include this feature in the model. Without the cumula-
tive data sent, the median error in N2 prediction is 54%
higher, and almost double for the 90th percentile.
Accuracy of C2 prediction: We use the AppInsight
data set to evaluate the accuracy of C2 predictor. In 30
apps, we identity 100 transaction types that have at least
20 transactions each from different users or different ses-
sions. We use half the data for training and the other half
for testing. Figure 14(c) plots the absolute error in C2

prediction. The median error is 8 ms, but the 90th per-
centile error is 261 ms. When normalized for transaction
duration, the median error is 4.6%, while 90th percentile
is 22%. Both the percentage and absolute errors are low
for shorter transactions. The graph shows that for trans-
actions with C2 < 1 second, the 90th percentile C2 pre-
diction error is 100 ms (10%). It also shows that C2

predictor must take the size of the downloaded data into
account. Without it, the median error is over 150 ms.

6.4 TimeSync
Our TimeSync method assumes that the clock drift is
linear and that the uplink and downlink delays are sym-
metric. We now test these hypotheses.

We connected a smartphone to a desktop machine and
sent TimeSync RTT probes from the smartphone to the
desktop over the low delay USB link. We found that

the combined drift between the smartphone clock and
desktop clock is linear, and stayed linear over several
days. We repeated this experiment on many different
smartphone models and obtained similar results. Fig-
ure 15 shows the clock drift on seven different smart-
phones over a day. A simple linear regression fits the
data and the mean error is 0.8 ms.

Cellular networks can have asymmetric uplink and
downlink delays [17]. To estimate the asymmetry, we
connected a smartphone to a desktop and sent probes
from the desktop through the phone’s cellular connec-
tion (tethering), back to the desktop’s Ethernet connec-
tion. By using a single clock to measure uplink and
downlink delays, we can measure the difference between
the two (i.e., the asymmetry). We find that for three
LTE networks, the difference between the uplink and
downlink delay is less than 5 ms. But on 3G networks,
the difference can be as high as 30 ms. The error in
time synchronization can be as high as this difference,
which impacts the accuracy of the elapsed time estima-
tion. Thus, highly asymmetric links can cause the Time-
card to miss the overall deadline. We also find that low
signal strength greatly impacts the cellular uplink, mak-
ing the probe delays asymmetric. Thus, we do not col-
lect probes samples when the signal strength is low.

6.5 Overhead

To quantify the overhead of Timecard, we use an HTC
Mazaa running Windows Phone 7.1 as client and an HP
Z400 2.8 GHz dual-core with 16 GB RAM as server.
App run time: The impact of Timecard on app’s run
time is negligible. The average overhead of tracking an
edge in the transaction graph is 50 µs. For the apps in the
AppInsight data set, we estimate that the average total
increase in app’s run time would be 2 ms, which is less
than 0.1% of the average transaction length. Overhead of
sending and processing of RTT probes is minimal, due to
various optimizations described in (§3.2). Timecard in-
creases app launch time slightly (2 ms), since it needs
to initialize various data structures. Regular garbage
collection and bookkeeping of various data structures

is done during app idle time. The AppInsight data set
shows that all apps have more than 10% idle time, which
is sufficient for our needs.
Service run time: The overhead of Timecard at the
server is small. The average time required for tracking
an edge is less 10 µs. Overall, for the two services we
instrumented, Timecard adds less than 0.1 ms to process-
ing of each request.
Memory: Timecard consumes between 20 KB to 200
KB of additional memory to keep track of various data
structures. Since the average memory consumption of
apps in the AppInsight data set is 25 MB, the memory
overhead of Timecard is less than 1%. On the server, the
memory overhead of Timecard is negligible.
Network: Timecard consumes network bandwidth dur-
ing app execution to send transaction context to server
(§3.1) and to send RTT probes for TimeSync (§3.2). It
also sends log data to the predictor to improve the pre-
diction models. The size of the extra header is only 50–
100 bytes. In rare cases, however, adding extra bytes can
increase the request size just enough so that TCP incurs
an extra round trip to send the request. TimeSync probes
are small packets and transfer only a few bytes of data.
The amount of data sent to predictor per transaction is
just 20 bytes. Furthermore the training data is uploaded
using background transfer. The total network overhead
is less than 1% for the apps we instrumented.

The server incurs roughly the same network overhead.
Most cloud services are deployed in well-provisioned
data centers, and the marginal overhead is insignificant.
Battery: The battery overhead of Timecard that results
from additional network usage is worth discussing; the
CPU overhead is small. We time our RTT probes to
avoid a radio wake-up power surge (§3.2). The battery
impact of the few additional bytes sent in each request
header is small. Thus, although we have not actually
measured the marginal battery consumption, we see no
reason why it would be significant.

7 Discussion and Limitations

Limitations of N2 predictor: Our approach for pre-
dicting N2 has several limitations. First, for large trans-
fer sizes, the number of RTTs matters less than the bot-
tleneck rate of the connection. This limitation does not
matter much for our purposes, because our focus is on
request-response interactions (the common case for mo-
bile apps). Second, a cellular provider could arbitrar-
ily alter middlebox parameters, so the learning has to
be continuous and may require retraining. In our exper-
iments we observed consistent middlebox behavior for
over a month, but that behavior may not always hold.
Third, our model does not use the client’s location as a

feature. A network provider could deploy differently-
behaving middleboxes in different areas, reducing the
predictor’s effectiveness. If that is observed, we would
need to include the location as a feature. Fourth, our
predictor depends on recent RTT samples. For geo-
replicated servers, we could end up measuring RTT to
a different server than the one client eventually down-
loads data from. If that happens, our prediction can be
erroneous. In practice, we believe that this rarely hap-
pens, due to the nature of replica selection algorithms.
Complex transactions: We focused on user transac-
tions that included a single request to a cloud service.
However, Timecard can be extended to more complex
patterns (parallel or sequential requests to servers, com-
plex dependencies between server requests, etc.) as well.
For the GetElapsedTime() call, Timecard needs to
ensure that the right timestamp is used with the right
server. Extending GetRemainingTime() is more
complex, and may require the developer to apportion
budgets among multiple servers.
Privacy and security: Timecard does not collect any
information that app developers cannot collect for them-
selves today. However, any logging and tracing system
must carefully consider privacy implications, a topic we
plan to study. For example, we plan to investigate the
smallest amount of information that Timecard needs to
log to function effectively. There are other security im-
plications as well. For example, clients may manipulate
the transaction data sent to the server, so that they get
the “best possible” service. We plan to investigate these
issues as part of our future work.
Server processing time: We have not shown that the
server processing time (S in Figure 1) is a significant
portion of the user-perceived delay for popular mobile
apps. To do so, we would need to instrument several
third-party mobile services6, which is a challenging, if
not impossible, task. We also note that while several
services such as search offer a clear trade-off between
processing time and quality of results, such trade-off is
not possible for all services. However, even such ser-
vices can use Timecard, as discussed next.
Other applications of Timecard: The API functions
GetElapsedTime() and GetRemainingTime()
can be used even by services that cannot control the
response quality vs. processing time trade-off. For
instance, a server can use the APIs to prioritize the
order in which requests are served, so that requests
most in danger of missing user-perceived delay dead-
lines are served first. The server can also allocate dif-
ferent amount of resources to requests based on their
deadline. A component on the mobile device may use
the GetElapsedTime() to decide not to contact the

6Without such instrumentation, we cannot tease apart S and N2.

server but use a cached response if the elapsed time is al-
ready too long. Alternatively, if the request involves the
delivery of speech or sensor samples, it can adjust the
sampling rate depending on the elapsed time. We leave
the exploration of such alternative uses to future work.
Applicability to other platforms: The current imple-
mentation of Timecard focuses on Windows Phone apps
and .NET services. However, we believe that Timecard
can be easily ported to other platforms as well. In Time-
card, N2 predictor, C2 predictor and time sync com-
ponents are independent of the framework and can be
reused with minimal modifications. Instrumentation and
transaction tracking is specific to Silverlight and .NET.
The client instrumentation can be ported to other mobile
platforms [29]. The server instrumentation can be ported
to any platform where we can correctly identify the entry
points of a service, as well as all thread synchronization
primitives.

8 Related Work

Mobile app monitoring and analysis: Timecard
extends AppInsight’s [29] instrumentation framework.
AppInsight is primarily an analytic tool, focused on
client performance. In contrast, Timecard allows devel-
opers to manage user-perceived delays. SIF [16] is an-
other system closely related to AppInsight. Unlike Ap-
pInsight, SIF includes a programming framework to help
the developer instrument selected code points and paths
in the code. Like AppInsight, SIF focuses on client per-
formance only. Other systems for monitoring mobile
apps have primarily focused on profiling battery con-
sumption [28, 25]. Flurry [11] and PreEmptive [27] pro-
vide mobile app usage monitoring. These systems do
not provide tools for managing end-user response times,
nor handle cloud-based mobile apps.
Predicting mobile network performance: A number
of recent studies have focused on mobile network per-
formance; we discuss two recent ones that have focused
on prediction. In [33], the authors propose a UDP-
based end-to-end protocol called Sprout for interactive
mobile applications. The protocol uses a model based
on packet inter-arrival times to predict network perfor-
mance over short time periods. Another related system
is Proteus [34]; it passively collects packet sequencing
and timing information using a modified socket API, and
uses a regression tree model to predict network perfor-
mance over short time periods. Proteus is also primar-
ily applicable to UDP flows. Timecard can use any im-
provements in techniques to predict mobile network per-
formance. However, our current implementation does
not borrow from either Sprout or Proteus, since our pri-
mary focus is on apps that use TCP.

Server performance monitoring: The literature on
monitoring transactions in distributed systems goes back
several decades. We discuss three recent proposals.
Magpie [4] monitors and models server workload. Un-
like Timecard, it has no client component. XTrace [12]
and Pinpoint [8] trace the path of a request using a spe-
cial identifier. Timecard uses similar techniques, al-
though our focus is managing end-to-end delays.
Data center networking: A lot of effort has been de-
voted to understanding and minimizing the delays in
data centers that host delay-sensitive services. A number
of proposals seek to minimize datacenter delays, includ-
ing new network architectures [14, 2, 18], new transport
protocols [3, 31], and techniques to rearrange computa-
tion and storage [1, 23]. None of these proposals focus
on managing end-to-end deadlines.
Time Synchronization: A number of innovative pro-
posals for time synchronization in various domains, such
as the Internet [26, 21, 20], wireless sensor networks [10,
19], and large globally-distributed databases [9] have
been put forth. Timecard currently uses algorithms pro-
posed in [26, 21], but can leverage any appropriate ad-
vances in this area.

9 Conclusion

In this paper we presented Timecard, to help manage
end-to-end deadlines of cloud-based mobile apps. We
showed that tracking elapsed time and predicting re-
maining time are the two key requirements for managing
end-to-end deadlines, and described solutions to the sev-
eral technical problems that arise in providing these time
estimates. Our solutions to these problems are embodied
in Timecard. Using several experiments and measure-
ments, we showed that Timecard can effectively manage
user-perceived delays in interactive mobile applications.
We believe that the ability to accurately measure the
elapsed time, and estimate the remaining time will en-
able the developers of mobile services to re-design their
services to better achieve the trade-off between quality
and user-perceived delay.

Acknowledgments

We thank the SOSP reviewers and our shepherd, Mike
Swift, for several useful comments and suggestions that
improved this paper. LR and HB were supported in
part by the National Science Foundation under Grant
0931508 and MIT Center for Wireless Networks and
Mobile Computing (Wireless@MIT).

References
[1] A. Agarwal, S. Kandula, N. Bruno, M. Wu, I. Sto-

ica, and J. Zhou. Re-optimizing Data-Parallel
Computing. In NSDI, 2009.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scal-
able, Commodity Data Center Network Architec-
ture. In SIGCOMM, 2008.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Pad-
hye, P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data center TCP (DCTCP). In SIG-
COMM, 2010.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for Request Extraction and Work-
load Modelling. In OSDI, 2004.

[5] J. Brutlag. Speed matters for Google web search.
http://googleresearch.blogspot.com/2009/06/
speed-matters.html#!/2009/06/speed-matters.
html, 2009.

[6] Background Transfer Service for Windows
Phone. http://msdn.microsoft.com/en-us/library/
hh202955(v=vs.92).aspx.

[7] C. Chelba, D. Bikel, M. Shugrina, P. Nguyen,
and S. Kumar. Large scale language modeling in
automatic speech recognition. Technical report,
Google, 2012.

[8] M. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Pat-
terson, A. Fox, and E. Brewer. Path-Based Failure
and Evolution Mangement. In NSDI, 2004.

[9] J. C. Corbett et al. Spanner: Googles Globally-
Distributed Database. In OSDI, 2012.

[10] J. Elson and D. Estrin. Time Synchronization for
Wireless Sensor Networks. In IPDPS, 2001.

[11] Flurry. http://www.flurry.com/.

[12] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-Trace: A Pervasive Network Tracing
Framework. In NSDI, 2007.

[13] G. Görz and M. Kesseler. Anytime algorithms for
speech parsing? In Proceedings of the 15th confer-
ence on Computational linguistics, 1994.

[14] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kan-
dula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A Scalable and Flexible Data
Center Network. In SIGCOMM, 2009.

[15] J. Hamilton. The cost of latency.
http://perspectives.mvdirona.com/2009/10/31/
TheCostOfLatency.aspx.

[16] S. Hao, D. Li, W. Halfond, and R. Govindan. SIF:
A Selective Instrumenation Framework for Mobile
Applications. In MobiSys, 2013.

[17] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A Close Examination of Per-
formance and Power Characteristics of 4G LTE
Networks. In MobiSys, 2012.

[18] S. Kandula, J. Padhye, and P. Bahl. Flyways To
De-Congest Data Center Networks. In HotNets,
2009.

[19] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi,
and D. Culler. Elapsed Time on Arrival: A simple
and versatile primitive for canonical time synchro-
nization services. International Journal of Ad hoc
and Ubiquitous Computing, 2(1), 2006.

[20] D. Mills, J. Martin, J. Burbank, and W. Kiasch.
Network time protocol version 4: Protocol and al-
gorithms specification. RFC 5905, 2010.

[21] S. Moon, P. Skelly, and D. Towsley. Estimation and
removal of clock skew from network delay mea-
surements. In INFOCOM, 2009.

[22] S. Nath, F. Lin, L. Ravindranath, and J. Padhye.
SmartAds: Bringing Contextual Ads to Mobile
Apps. In MobiSys, 2013.

[23] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann,
J. Howell, and Y. Suzue. Flat Datacenter Storage.
In OSDI, 2012.

[24] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP Throughput: A Simple Model and
its Empirical Validation. In SIGCOMM, 1998.

[25] A. Pathak, Y. C. Hu, and M. Zhang. Where Is The
Energy Spent Inside My App? Fine Grained En-
ergy Accounting on Smartphones with Eprof. In
EuroSys, 2012.

[26] V. Paxson. On calibrating measurements of packet
transit times. In SIGMETRICS, 1998.

[27] Preemptive. http://www.preemptive.com/.

[28] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Profiling Resource Usage for Mo-
bile Applications: A Cross-Layer Approach. In
MobiSys, 2011.

[29] L. Ravindranath, J. Padhye, S. Agarwal, R. Maha-
jan, I. Obermiller, and S. Shayandeh. AppInsight:
Mobile App Performance Monitoring in the Wild.
In OSDI, 2012.

[30] E. Shurman. The user and business impact of
server delays, additional bytes, and http chunking
in web search. O’Reilly Velocity, 2009.

[31] V. Vasudevan, A. Phanishayee, H. Shah, E. Kre-
vat, D. Andersen, G. Ganger, G. Gibson, and
B. Mueller. Safe and effective fine-grained TCP
retransmissions for datacenter communication. In
ACM SIGCOMM, 2009.

[32] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and
M. Zhang. An Untold Story of Middleboxes in
Cellular Networks. In SIGCOMM, 2011.

[33] K. Winstein, A. Sivaraman, and H. Balakrish-
nan. Stochastic Forecasts Achieve High Through-
put and Low Delay over Cellular Networks. In
NSDI, 2013.

[34] Q. Xu, S. Mehrotra, Z. M. Mao, and J. Li. PRO-
TEUS: Network Performance Forecast for Real-
Time, Interactive Mobile Applications . In Mo-
biSys, 2013.

