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Abstract. Equivalence checking of imperative programs has several applications in-
cluding compiler validation and cross-version verification. Debugging equivalence
failures can be tedious for large examples, especially for binary programs. In this
paper, we propose a simple yet precise notion of rootcause for equivalence failures
that leverages semantic similarity between two programs. Unlike existing works on
program repair, our definition of rootcause avoids the need for a template of fixes or
the need for a complete repair to ensure equivalence. We show progressively weaker
checks for detecting rootcauses that can be applicable even when multiple fixes are
required to make the two programs equivalent. We provide optimizations based on
Maximum Satisfiability (MAXSAT) and binary search to prune the search space of
such rootcauses. We have implemented the techniques and provide an evaluation on
a set of real-world compiler validation binary benchmarks.

1 Introduction

Equivalence checking between two imperative programs has several applications in soft-
ware validation. It has been used widely in the translation validation of compilers [19, 13,
10], regression verification [6], cross-version verification [11, 7] and checking independent
implementations [17, 21]. Applications such as compiler validation [7], or automatic com-
parison of student attempts to reference implementations [21], can result in thousands of
equivalence checking failures. Automated debugging and identification of the rootcause of
a verification failure is crucial for the usability of these verification tools.

The problem of rootcausing is more involved while analyzing assembly or binary pro-
grams. Such problems come up naturally in various compiler validation tasks, such as com-
paring (i) intermediate representations with binaries, or (ii) binaries with different optimiza-
tions, or (iii) binaries generated for two different platforms (e.g. x86 vs. ARM), or even (iv)
binaries from different versions of a compiler [7]. Comparing binaries (instead of source
code or intermediate representations) allows discovering low-level bugs that are introduced
during compilation and linking. However, debugging verification failures is tedious due to
the lack of (type-based) non-aliasing; most instructions read or modify the registers, flags
or the heap.

In a prior work on such binary comparisons, the number of failures even with a modest
2% failure rate, ran into thousands [7]. Equivalence failures resulted from diverse sources
such as modeling imprecision, missing environmental specifications, and presence of true
defects. Moreover, for many such applications the syntax of the two programs (e.g. x86 vs.



ARM) differ too much to benefit from syntactic difference based tools. To cope with such
large-scale applications of equivalence checking for binaries, there is a growing need for
automated techniques for understanding and bucketing failures.

In this paper, we provide a simple yet precise notion of rootcause for equivalence fail-
ures of two similar programs. Our work is inspired by work on program repair [18, 9, 14],
however our technique attempts to leverage semantic similarity of the two programs. In
a nutshell, we attempt to “fix” an equivalence failure by changing an assignment r in one
program with a value computed by an assignment l in the other program. The pair of assign-
ments (l, r) from the two programs constitute a rootcause (whenever it exists) by pointing
to the two assignments where the two programs diverge.

The simple formulation has two-fold advantage when applicable: (a) it provides corre-
spondence points in two programs that is useful in the setting of comparing two programs,
(b) it is more automatic as it does not require any template of fix that is customary in pro-
gram repair (e.g., [9, 14]), and (c) the rootcause can be found without the need to repair
the program, which we find too stringent in the presence of multiple repairs.

On the other hand, the notion of rootcause may appear overly restrictive and seldom
applicable in practice. In this work, we show several instances where the semantic struc-
tural similarity of the two programs can be exploited to find rootcauses using this notion.
First, we formulate two progressively weaker checks (with progressively weaker guaran-
tees) that work by looking for singleton fixes for more constrained equivalence problems.
(a) The first check attempts to only fix a single counterexample path of failure in one of the
two programs, thereby avoiding the need to make the entire program equivalent. (b) The
second check leverages the presence of intermediate synchronization points such as pro-
cedure calls to look for fixing the earliest synchronization point where the two programs
diverge. Second, we show examples of simple preprocessing to increase the applicability
of the existence of such rootcauses.

Although it is easy to symbolically encode the search for such a rootcause in existing
program synthesis tools [22, 9, 14], our initial attempt did not scale for the binary bench-
marks studied in this paper. We therefore provide a more enumerative solution to search
for a rootcause. We provide optimizations based on Maximum Satisfiability (MAXSAT)
and binary search to prune the space of candidate fixes. We have implemented the tech-
niques and provide preliminary evaluation on a set of real-world compiler validation bench-
marks [7]. On a set of 46 such examples used in the earlier study, our technique finds
verified rootcauses for 34 (i.e. 74%) of the cases.

1.1 Overview

We illustrate the concepts informally with the aid of two highly simplified examples of
assembly programs generated from a common C# procedure using different compiler ver-
sions [7]. For most of these examples, the heap is modeled as an array variable M and the
effect of a procedure call is modeled by applying uninterpreted functions such as f (line 7
in Figure 1) to the arguments. We refer the reader to earlier works for further details of
translating assembly instructions into the language (§ 2.1) used in this paper [7].

Single fix Figure 1 describes two procedures p1 and p2 that differ in an extra load from
memory M in p2. The underlined lines are additional instrumentation inserted by our tool,



1 procedure p1(M:[int]int, x:int)
2 returns (r1:int, M1:[int]int)
3 {
4 M1 := M;

5 r5 := M1[x]; //ld r5, [x]

6 assume(r5@5 == r5);
7 M1, r1 := f(M1,r5); //call f
8 r1 := r5; //mov r1, r5
9 M1, r1 := g(M1,r1); //call g

10 return;
11 }

1 procedure p2(M:[int]int, x:int)
2 returns (r2:int, M2:[int]int)
3 {
4 M2 := M;
5 r6 := M2[x]; //ld r6, [x]
6 M2, r2 := f(M2,r6); //call f

7 r2 := M2[x]; //ld r2, [x]

8 r2 := r5@5;
9 M2, r2 := g(M2,r2); //call g

10 return;
11 }

Fig. 1. Optimizing loads. The rootcause pair is highlighted and underlined lines are part of program
instrumentation.

and not part of the original programs. Procedure p2 has two loads (lines 5 and 7) from x;
the two loads can yield different results if the procedure call f can modify M at the location
x. The compiler for p1 optimizes the second load in p1 based on the knowledge that the
call to f does not modify M at the location x. Such internal assumptions from the compiler
are often not readily available to the equivalence checker, thereby resulting in equivalence
failure. For this example, our tool first inserts the underlined lines in the two procedures.
The assume in line 6 in p1 uses a symbolic constant r5@5 to capture the value computed
in r5 after the load in line 5. The assignment in line 8 in p2 overwrites the assignment in
line 7 with the value in r5@5, thereby making the two procedures equivalent. We highlight
the rootcause as the pair of original instructions (5, 7) that participate in the fix. Note that
we do not actually “repair” the program p2, since it contains values (e.g. r5@5) that are
only computed by p1.

Weaker fixes Figure 2 illustrates a case where our technique can identify a fix even though
multiple fixes are required to make the two procedures equivalent. The source of difference
between the two procedures is that fields of a class are laid out at different offsets by the
two compilers. The field accesses are reflected in the accesses to the heap M using different
offsets from a base location x (e.g. lines 7, 11, 14 in p1). Note that the fields in p2 have an
additional offset of 4 compared to fields in p1. This example is challenging since at least
3 fixes are required to make the two procedures equivalent. Searching for multiple fixes
is significantly more expensive and a complete repair may be elusive when two programs
have several differences. However, for the purpose of rootcausing, we have observed that
it suffices to highlight the earliest instruction pair where the two programs diverge. By ex-
ploiting the semantic similarity, we can often pose weaker equivalence checks (with weaker
global guarantees about the entire program) that may still be verified with a single fix.

Let us assume that the equivalence failure provides a counterexample cex that takes
the “then” branch of the conditional in p1 and the “else” branch in p2.1 We present two
separate ideas to create a weaker equivalence problem. (i) First, we constrain p1 to take
only that path which was taken by the counterexample; this is achieved by instrumenting
assumptions denoting branch conditions satisfied in the counterexample (e.g. line 5 in p1).
(ii) Second, we exploit the fact that semantically similar programs often have intermediate
program points where the two programs are expected to synchronize — i.e. certain part of
the states are expected to be equal. In the presence of such synchronization points, we can

1 Notice that the branches are rearranged to mimic common compiler transformations.



1 procedure p1(M:[int]int, x:int)
2 returns (r1:int, M1:[int]int)
3 {
4 M1 := M;
5 assume(M1[x] == 42); //Fix path
6 if (M1[x] == 42) {

7 r1 := M1[x + 4]; assume(r1@7 == r1);

8 M1 := f(M1,r1); assume(M1@8 == M1);
9 }

10 else {
11 r1 := M1[x+16];
12 M1 := g(M1,r1);
13 }
14 r1 := M1[x+32];
15 ...
16 }

1 procedure p2(M:[int]int, x:int)
2 returns (r2:int, M2:[int]int)
3 {
4 M2 := M;
5 if (M2[x] != 42) {
6 r2 := M2[x+20];
7 M2 := g(M2,r2);
8 }
9 else {

10 r2 := M2[x + 8];

11 r2 := r1@7;
12 M2 := f(M2,r2);
13 assume (M1@8 != M2); //Early assume
14 }
15 r2 := M2[x+36];
16 ...
17 }

Fig. 2. Partial fix. The rootcause pair is highlighted and underlined lines are part of program instru-
mentation.

look for fixing the violations of such intermediate equalities in addition to the final equiva-
lence. For compiler validation, it is often assumed that the two procedures synchronize on
procedure calls — the sequence of procedure calls and the values returned from them are
equal on both sides on a common input [13, 10, 7, 11]. One reason for this assumption is
that the heap is passed as a map in and out of procedure calls in these settings (we discuss
exceptions in Figure 4). Let us assume that the counterexample cex assigns different out-
puts for M1 and M2 at lines 8 and 12 respectively. We add the underlined assume after the
update in line 12 in p2 to make the two maps disequal, assuming procedures synchronize
on calls to f. Intuitively, the assumption weakens the final equivalence assertion with an
equality over intermediate state of the two programs. The singleton fix (7, 10) does not
satisfy this assumption and therefore blocks execution of the instrumented program after
line 13 in p2, which leads to the equivalence check to succeed.

Contributions. The contributions of the paper include (a) the first precise formulation of
rootcause for the problem of equivalence failure that does not require a template of fixes
or the need to repair a program, (b) mechanisms to improve the applicability of the root-
cause by postulating weaker checks by leveraging similarity of the two programs, and (c)
an implementation and evaluation on a set of challenging real-world binary equivalence
failures.

Organization. We describe a simple programming language used to model binary pro-
grams in Section 2. We formalize our notion of rootcause for equivalence failures in Sec-
tion 3 along with the weaker checks. We describe an algorithm to search for rootcauses in
Section 4 along with various optimizations. We present our evaluation in Section 5, and
discuss related work in Section 6.

2 Background

2.1 Programs

Figure 3 describes the syntax of programs. Vars denotes the set of variables and includes
parameters and locals. We simplify exposition by assuming the programs contain no glob-



als. We distinguish scalar variables (denoted by x) from array or map variables (denoted
by X). Consts denotes a set of symbolic constants. Relations and Functions denote
the set of relations and functions that appear in the program. Relations and functions
can either be uninterpreted or be interpreted by an underlying theory such as arithmetic
(e.g. {≤,≥} ∈ Relations and {+,−, ∗} ∈ Functions). Map operations x := X[y] and
X[y] := x are modeled as x := sel(X, y) and X := upd(X, y, x) respectively, where sel
and upd are functions in Functions interpreted by the theory of arrays [20]. Maps can also
be updated at an unbounded number of locations by functions returning map values (e.g.
X := f(X, . . .)).

Statements in Stmt include skips (skip), assertions (assert), assumptions (assume),
assignments, sequential composition (s; s) and choice statements (s � s). Parallel assign-
ments (e.g. line 7 in Figure 1) are desugared as assignments using additional temporary
variables. A choice statement s � t non-deterministically executes either s or t. In this pa-
per, choice statements are solely used to model conditional statements where a conditional
if (φ) {s} else {t} is modeled as {assume (φ); s} � {assume (¬φ); t}.

x,X ∈ Vars
θ ∈ Consts
q ∈ Relations
f, g, h ∈ Functions
e ∈ Expr ::= x | X | θ | f(e, . . . , e)
φ ∈ Formula ::= true | false | e == e |

q(e, . . . , e) | φ ∧ φ | ¬φ
s ∈ Stmt ::= skip | x := e | s; s | s � s |

assert φ | assume φ
p ∈ Proc ::= g(xg, . . .) : (rg, . . .) { sg }

Fig. 3. Syntax of programs.

A procedure p consists of a
list of parameters and return vari-
ables, and a body (sg ∈ Stmt).
Procedures are side-effect free,
and all the modifications are re-
flected explicitly by the return
variables. As is standard in most
prior works on compiler equiv-
alence checking [13, 10, 6, 11], a
procedure call is either inlined or
the effect of a call is modeled
by assigning the return variables
an uninterpreted function over the
parameters (e.g. line 7 in Fig-
ure 1). The treatment in this paper
ignores loops; we assume they are

either unrolled to a bounded depth or modeled as tail-recursive procedures [12].
A state σ of a program at a given program location is a valuation of the variables in

scope. Let Σ be the set of all program states. We omit the definition of an execution as
it is quite standard for the statements [1]. We recall that the semantics of assume φ is to
block execution when executed in a state σ that does not satisfy φ. For a procedure p, an
input state is a valuation of the parameters at entry and an output state is a valuation of the
returns at exit. The semantics of a procedure p is given by a relation R(p) ⊆ Σ ×Σ over
pairs of input and output states, where (σ, σ′) ∈ R(p) if and only if there is an execution
of p starting at σ and ending in σ′.

2.2 Equivalence checking

Given two procedures p1 and p2 and a one-one mapping of the parameters −→x and re-
turns −→r , we define p1 and p2 to be partially equivalent if for every (σ, σ′) ∈ R(p1) and
(σ, σ′′) ∈ R(p2), σ′ = σ′′. In other words, if both p1 and p2 do not block (due to assumes)
on an input σ, then the outputs are equivalent. We will drop the term partial henceforth



when referring to partial equivalence. We check equivalence of two such procedures p1
and p2 by creating the composed procedure p12 (where p1 and p2 are inlined) and checking
the final assertion:

p12(−→x ){−→r1 := p1(−→x );−→r2 := p2(−→x ); assert −→r1 == −→r2 ; }

Since we have assumed p1 and p2 are loop-free, p12 is a bounded program. Several well-
known techniques [1] exist to transform a loop-free and call-free procedure with assertions
into a compact logical formula in the Satisfiability Modulo Theories (SMT) format by a
process called verification-condition (VC) generation. For our purpose, we define VC (p)
to be a logical formula that is valid if and only if p does not fail any assertion. If VC (p12)
is valid then p1 and p2 are equivalent; otherwise we obtain a counterexample cex along
paths in p1 and p2 for which at least one of the return variables differ.

3 Problem formulation

When p1 and p2 are not equivalent, the counterexample cex allows the user to debug the
equivalence failure. However, such counterexamples can often be hundreds of lines long
and finding the relevant instructions that lead to the failure can be cumbersome. Under-
standing counterexamples for equivalence failures is often laborious due to several factors:
(a) most statements in a program are relevant to an equivalence assertion, and (b) one has to
proceed simultaneously along both p1 and p2. In our prior experience of debugging equiv-
alence failures from compiler validation, summarizing the “core reason” (or rootcause) for
equivalence failure was the main ask for the adoption of equivalence checking tools in a
production setting [7].

In this section, we formulate a natural notion of rootcause for equivalence failure that
exploits the structure of both programs. We pose the rootcause problem as the problem of
finding a pair of scalar assignments l : x1 := e1 (from p1) and r : x2 := e2 (from p2) at
labels l and r respectively, such that replacing e2 in p2 with the value of e1 computed in p1
makes the two procedures equivalent. Observe that the proposal is different from replacing
the expression e2 with e1 in p2; such a change may not even yield a well-typed program as
the expression e1 may contain local variables not in scope in p2. Thus, the rootcause does
not really repair the program p2, but rather yields (when the pair exists) a pair of program
points where the two procedures should have been equivalent. We term such a pair (l, r) as
a fix.

A reader may be concerned about trivial fixes in the form of setting the outputs of p2 to
the outputs of p1. In our experience this seldom happens due to the following reasons: (a)
Binary programs contain arrays to model the heap. Most equivalence failures result in the
output maps being different at a large (even unbounded) number of locations. Since we do
not consider updates to maps for potential fixes, a trivial fix does not work in such cases.
(b) A similar argument holds when a procedure has multiple outputs that differ. In addition,
for cases when multiple such fixes exist, we always pick the fix that appears earliest in the
lexicographic ordering of the pair of labels.

Another concern would be the adequacy of the space of our fixes. This concern is in-
deed justified due to either (i) several paths may require a fix, or (ii) a long counterexample
requires several fixes to align the outputs. We leverage the semantic similarity between the
two programs to formulate two progressively weaker checks (with progressively weaker



guarantees) that work by looking for singleton fixes for more constrained equivalence prob-
lems. Let us refer to the first (original) check that checks to fix p12 with the pair (l, r) as
AllFix check. The second check (LeftPathFix ) attempts to only fix a single counterexam-
ple path of failure, thereby avoiding the need to make the entire program equivalent. The
third check (LeftPathEarliestFix ) leverages the presence of intermediate synchronization
points such as procedure calls to look for fixing the earliest synchronization point where
the two programs diverge.

In the next few sections, we formalize the different notions of rootcauses with the aid
of a program instrumentation.

3.1 Instrumentation

For a pair of procedures p1 and p2, let L and R be the sequence of labels in the left (re-
spectively p1) and right (respectively p2) procedures. Each label l corresponds to a scalar
assignment xl := el. We sometimes treat L and R as sets instead of a sequence. We define
an instrumentation that transforms a statement to another statement:

– For each scalar assignment instruction l : x := e with a label l ∈ L, we transform it to:

l : x := e; assume(θ@l == x)

where θ@l is a fresh constant for storing the value of x after the assignment at label l.
– For each assignment instruction r : x := e with a label r ∈ R, we transform it to:

r : x := e; x := γr? θ@r : x; assume
∧
l∈L

(βl
r ⇒ x == θ@l)

Here θ@r and γr are fresh constants for label r. Setting γr to true replaces the current
assignment at r with a completely unconstrained value θ@r in p2. For each l ∈ L,
we also create a Boolean constant βl

r to denote a candidate fix (l, r). The constant βl
r

constrains x to be equal to the value assigned at label l ∈ L. It is easy to see that setting
γr to true and exactly one of βl

r to true (and other candidates βl′

r to false) is equivalent
to an assignment x := θ@l, which is the intended fix.

For all further discussions, we refer p12 to mean the instrumented version of p12. We next
describe the meaning of two operations ConstrainFix and AssignFix , that strengthen the
formula being checked by the SMT solver:

– ConstrainFix (p12, L
′, R′) takes two sets of labels L′ ⊆ L and R′ ⊆ R and constrains

all the candidates in L′ ×R′ to true. It generates the following logical formula:

(
∧
r∈R
¬γr ∧

∧
(l,r)∈L′×R′

βl
r ∧

∧
(l,r)∈(L×R)\(L′×R′)

¬βl
r)⇒ VC (p12)

– AssignFix (p12, (l
′, r′)) takes a fix (l′, r′) and overwrites the assignment at r′ with

value computed at l′. It generates the following logical formula:

(γr′ ∧ βl′

r′ ∧
∧

r∈R\{r′}

¬γr ∧
∧

(l,r)∈L×R\{(l′,r′)}

¬βl
r)⇒ VC (p12)



The encodings give rise to a few simple facts.

Lemma 1. For L1 ⊆ L2 ⊆ L and R1 ⊆ R2 ⊆ R, if ConstrainFix (p12, L1, R1) is valid,
then ConstrainFix (p12, L2, R2) is valid.

Lemma 1 follows from the fact that setting more βl
r constants to true adds more assumes

to p12, thus making the specification weaker.

Lemma 2. For l ∈ L and r ∈ R, if the formula AssignFix (p12, (l, r)) is valid, then the
formula ConstrainFix (p12, {l}, {r}) is valid.

Lemma 2 follows from the observation that replacing an unconstrained constant θ@r with
a more constrained expression e in the assignment r : x := e can never change a valid
formula into an invalid formula.

Theorem 1. For L1 ⊆ L and R1 ⊆ R, if ConstrainFix (p12, L1, R1) is not valid, then
AssignFix (p12, (l, r)) is not valid for any (l, r) ∈ L1 ×R1.

The theorem follows immediately from the two lemmas. The utility of the theorem is in
providing a sufficient condition to prune a subset of candidate fixes, without explicitly
trying each of them. We use this for optimizations in section 4 and 4.

3.2 Different checks

We now formalize the different checks starting with the strongest check.

Definition 1 (AllFix ). AllFix (p1, p2) is true if there exists a fix (l, r) ∈ L × R such that
AssignFix (p12, (l, r)) is valid.

For the example in Figure 1, both (5, 7) and (8, 7) constitute a fix according to the AllFix
check. We highlight the pair (5, 7) since it is lexicographically smaller than (8, 7).

If AllFix does not hold, then we can try a weaker check. Given a counterexample path
cex , we define HoldLeftPath(p12, cex ) as constraining p1 to only take the path taken in
cex . Figure 2 shows an example (line 5 in p1) where the branch condition of the taken
branch is assumed before the conditional statement.

Definition 2 (LeftPathFix ). LeftPathFix (p1, p2, cex ) is true if there exists a fix (l, r) ∈
L×R such that AssignFix (HoldLeftPath(p12, cex ), (l, r)) is valid.

Observe that the check LeftPathFix does not yield a fix for the example in Figure 2. This
is because even this single path requires at least two fixes to constants in lines 10 and 15.

We can further weaken the final assertion by exploiting statically defined intermedi-
ate synchronization points for the two procedures, where certain variables are expected to
match up on the two sides. For example, for compiler translation validation, it is common
to assume that the sequence of procedure calls and the values returned from them are equal
on both programs on a common input. In the presence of such synchronization points, we
can look for fixing the violations of such intermediate equalities in cex in addition to the
final equivalence.

For a counterexample cex , let l1, . . . , lm and r1, . . . , rn be the sequence of assignment
labels from p1 and p2 respectively. Further, let a subset of instruction pairs (l1, r1), . . . , (lj , rj)
(ordered by cex ) are expected to be the synchronization points. We find the earliest pair



where the synchronization is violated by asserting the equality between each pair and find-
ing the first pair where the assertion does not hold; for these checks, we disable the final
assertion and restrict the paths in p1 and p2 to follow cex . Let (lk, rk) be the earliest vio-
lation of synchronization (it may not always exist) and let x be the variable assigned in rk.
We insert the following assume statement after the assignment at rk:

rk : x := e; assume(x 6= θ@lk)

Intuitively, the assume weakens the final equivalence check by pruning behaviors that sat-
isfy the synchronization at (lk, rk). In turn, this expects less from a fix: a fix does not
need to check the final equivalence if it can synchronize (lk, rk). For compiler validation,
it is often assumed that p1 and p2 synchronize on procedure calls, for which x would rep-
resent the heap that is passed out of the procedure calls. We define the instrumentation
AddEarlyDiseqAssumes(p12, cex ) to insert such assumes into p12. Figure 2 shows an in-
stance of such assume in line 13 in p2 for map variable M.

These assumptions are most useful when the counterexample path is constrained to cex .
Otherwise, the verifier can find an alternate path and avoid the inserted assume statement.
Hence we use this in conjunction with the instrumentation of HoldLeftPath(p12, cex ).

Definition 3 (LeftPathEarliestFix ). LeftPathEarliestFix (p1, p2, cex ) is true if there ex-
ists a fix (l, r) ∈ L×R such that the logical formula represented by
AssignFix (HoldLeftPath(AddEarlyDiseqAssumes(p12, cex ), cex ), (l, r)) is valid.

The example in Figure 2 satisfies this weaker check and yields the rootcause pair high-
lighted in the figure.

It is worth pointing the difference with an alternate option of inserting an assertion
assert(x == θ@lk) at rk and removing the final assertion. Such a check can be verified
with spurious fixes that avoid the path leading to the assertion, and we have found it to
be true in practice. Finally, the following theorem formalizes the relationship between the
three checks:

Theorem 2. Given procedures p1 and p2, and a counterexample cex to VC (p12),
AllFix (p1, p2, cex )⇒ LeftPathFix (p1, p2, cex )⇒ LeftPathEarliestFix (p1, p2, cex ).

In summary, there are several advantages to our natural formulation of rootcause:

– We can exploit the semantic similarity of the two closely related programs by moving
“values” computed in p1 into p2 for the fix. Our notion of rootcause is precise, but does
not require a complete repair to the program.

– The formulation does not require separate templates for repairing a program [14, 21].
This is useful when the repair templates may not be obvious (e.g. the repair of p2 in
Figure 1 requires strengthening the environment assumptions of callees).

– When such a fix exists, it points to correspondence points in the two programs that
differ under cex but are necessary for equivalence. We have found this to be much more
informative than fixing one statement in p2, as would be done by existing rootcause
methods [21].

– The semantic similarity between the two programs (as opposed to a specification versus
a program) can be exploited to formulate weaker checks that can yield a rootcause.



Algorithm 1 FindRootCause(p12 , cex )

Input: Combined procedure p12
Input: A counterexample cex to equivalence failure of p12
Output: {NOROOTCAUSE ,ROOTCAUSE(l, r)}
1: (L,R)← Scalar assignment labels in cex
2: PruneCandidatesStatic(cex ,L,R)
3: if CheckSAT (ConstrainFix (p12, L,R)) 6= UNSAT then
4: return NOROOTCAUSE /* No fix exists */
5: end if
6: /* Binary search based pruning */
7: (low, up)← (0, |R|)
8: while (up− low > 1) do
9: curr ← low + (up− low)/2

10: if CheckSAT (ConstrainFix (p12, L, [1, curr])) 6= UNSAT then
11: low ← curr
12: else
13: up← curr
14: end if
15: end while
16: /* MAXSAT based pruning */
17: for r ∈ [low + 1, |R|] do
18: L′ ← L \ CheckMAXSAT (ConstrainFix (p12, L, {r}), {βl

r | l ∈ L})
19: for l ∈ L′ in program order do
20: if CheckSAT (AssignFix (p12, (l, r))) == UNSAT then
21: return ROOTCAUSE(l, r)
22: end if
23: end for
24: end for
25: return NOROOTCAUSE

4 Searching for a fix

Our first attempt was to leverage a counterexample-guided inductive synthesis (CEGIS)
based program synthesis engine to symbolically encode the search for a fix [22, 15]. The
algorithm searches for an assignment to boolean constants β ∪ γ (at most one fix for each
r ∈ R) such that p1 and p2 are equivalent. Promisingly, CEGIS can find multiple fixes; in
the case of figure 2, it finds all 3 fixes needed to make p1 and p2 equivalent. However, we did
not succeed in scaling the CEGIS-based algorithm to the compiler validation benchmarks
due to timeouts in the theorem prover. There are several reasons why CEGIS does not scale
for our benchmarks: (a) the benchmarks contain several hundred lines along with heavy use
of quantifiers to model semantics of binary programs, and (b) the size of the instrumented
program fed to CEGIS is quadratic in the size of the two input programs. The combination
of these two factors make the problem of generating a model or satisfiable input more
difficult for SMT solvers.

We now present an alternate algorithm for searching for a fix in Algorithm 1. We
assume that p12 has already been instrumented with one of the three checks {AllFix ,
LeftPathFix , LeftPathEarliestFix}. It returns NOROOTCAUSE to denote that no sin-
gleton rootcause exists, and returns ROOTCAUSE (l, r) for a pair (l, r) that fixes p12. A



naı̈ve solution will enumerate every pair of assignments (l, r) over p1 and p2 and check for
AssignFix (p12, (l, r)). This can lead to a best case quadratic (in the size of p12) number of
theorem prover checks when no such fix exists. In section, we describe a few techniques to
prune the space of candidate fixes where a fix cannot be found.

The search for a singleton fix enables a few simple optimizations. Given a counterexam-
ple cex , the first step is to collect into (L,R) only the scalar assignments that appear along
cex (line 1). The method PruneCandidatesStatic prunes pairs (l, r) such that cex (l) =
cex (r), i.e. the assignments that produce equal value in cex . For any such pair (l, r), apply-
ing that fix will not prevent the counter-example cex . Therefore, PruneCandidatesStatic
fixes the βl

r constants to false permanently.
For the remaining pairs, we perform pruning based on calls to an automated theorem

prover. The operation CheckSAT (φ) checks if ¬φ is satisfiable (SAT ) or unsatisfiable
(UNSAT ); these cases correspond to φ being invalid and valid respectively. Line 3 checks
if constraining p12 with all the remaining assumes guarded by βl

r (except those disabled
in line 2 earlier) can verify p12. If the result is SAT , there can be no fix with (L,R)
(Theorem 1). The check for a fix is done in line 20; if the formula is valid, then we return
the rootcause pair (l, r). Lines 6-15 use binary search to prune a subset of candidates.
Lines 16-24 use Maximum Satisfiability (MAXSAT) to prune a subset of candidates. We
describe these optimizations in the next two sections.

Binary search based pruning We are interested in pruning the sub-range of R where no
fix can lie. We observe that for any fix (l, r) (such that AssignFix (p12, (l, r)) is valid),
the following condition follows from Theorem 1: r > r′ for any r′ ∈ R for which
ConstrainFix (p12, L, [1, r

′]) is not valid. We use binary search over [1, |R|] to find the
largest r (returned in the variable low) such that ConstrainFix (p12, L, [1, r]) is invalid.
We use two markers low and up with the following loop invariants: (i) ConstrainFix (p12,
L, [1, low]) is invalid, and (ii) ConstrainFix (p12, L, [1, up]) is valid, and (iii) low ≤ up.
The binary search converges in at most log(|R|) steps since the distance between low and
up is halved at each step.

MAXSAT based pruning For a fixed r ∈ R, we are also interested in pruning a subset
of L where no fixes can lie. We use Maximum Satisfiability (MAXSAT) to perform this.
For a given r ∈ R if ConstrainFix (p12, L, {r}) is valid, then we find the largest subset
L′′ ⊆ L such that ConstrainFix (p12, L′′, {r}) is invalid. From Theorem 1 we know that
a fix (l, r) cannot be found for any l ∈ L′′. Computing the largest (invalid) subset L′′ can
be performed by the call to CheckMAXSAT (ConstrainFix (p12, L, {r}), {βl

r | l ∈ L}),
where the first argument is a formula φ and the second argument is a set S of Boolean
constants that are “soft”. CheckMAXSAT (φ, S) returns the largest subset S′ ⊆ S such
that ¬φ∧

∧
s∈S′ s is satisfiable. For our purpose, the set of soft constants consists of the set

of all candidate fixes from L for a given r ∈ R.
As an example, consider this optimization in the context of Fig. 1. Consider the MAXSAT

query when considering the statement r2 := M2[x]. The potential set of candidates from p1
are (ignoring updates to maps):

L
.
= {5 : r5 := M1[x], 7 : r1 := f(M1, r5), 8 : r1 := r5, 9 : r1 := g(M1, r1)}



The instrumentation of 7 : r2 := M2[x] is as follows:

7 : r2 := M2[x]; r2 := γ7? θ@7 : r2; assume
∧

l∈[5,7,8,9]

(βl
7 ⇒ r2 == θ@l)

For this program, both (5, 7) and (8, 7) are valid (singleton) fixes and make the two program
equivalent.

Consider the case when γ7 is false and the subset {β7
7 , β

9
7} are true. The two pro-

grams are not equivalent under this constraint. In other words, the verification condition
VC (p12) is SAT even with these constraints. The call to CheckMAXSAT with {βl

7 | l ∈
{5, 7, 8, 9}} as the soft clauses will return the largest set {β7

7 , β
9
7} that is satisfiable, thereby

pruning the set of candidates that have to be explicitly tested by 2.

5 Evaluation

In this section, we describe an implementation of the techniques and an evaluation on a
set of binary benchmarks from compiler validation. Our implementation is part of SYMD-
IFF sources [23], and takes as input a Boogie program p12 generated by the equivalence
checker tool SYMDIFF [11]. The inputs to SYMDIFF are Boogie programs p1 and p2 and
a mapping between the two procedures. These Boogie programs can be generated from
various languages such as C [4], or from various compiler back-end formats [24, 7]. For
this section, we only focus on Boogie programs generated from compiler validation bench-
marks [7]. Note that the core algorithm is agnostic of the binary nature of the benchmarks;
we do report some preprocessing heuristics to control the search in this section.

The main goal of our experiment is to determine how often our notion of rootcause
can be found in real benchmarks. The evaluation consists of two parts. In Section 5.1, we
evaluate the implementation on 15 smallest benchmarks of equivalence failures resulting
from comparing the output of the .NET CLR compiler across two different optimization
levels. In Section 5.2, we evaluate the implementation on 46 benchmarks comparing the
output of the .NET CLR compiler in Just In Time (JIT) mode to the compiler in mostly-
ahead-of-time mode (based on the MDIL [16] machine-dependent intermediate language).
We restrict to the smallest 15 for the former category to be able to manually establish
the ground truth (the true reason for failure) of these failures, which can be quite tedious.
For the latter benchmarks, previous syntactic heuristics provided good starting points for
establishing the ground truth. Thus we report more quantitative evaluation for the latter
category.

5.1 Different optimization levels

We successfully find a total of 12 rootcauses (80% of the cases) out of the 15 benchmarks
in this category. These benchmarks have 68 lines of assembly code on average, and the
generated Boogie programs have 510 Boogie statements on average. In most cases, we
found a fix with either the LeftPathFix and LeftPathEarliestFix checks. However, some
of the examples violated the assumption that the two programs have equal set of callees.
We illustrate the problem and an additional preprocessing step that alleviates the problem
without any changes to the algorithm.



1 procedure p1(M:[int]int, x:int)
2 returns (r1:int, M1:[int]int)
3 {
4 M1 := M; r1 := M1[x];
5 assume(M1@5 == M1);

6 M1, r1 := getLength(M1, r1);

7 M1 := M1@5;
8 assume(r1@6 == r1);
9 if (r1 > 0) {

10 M1, r1 := writeToFile(M1,r1);
11 }
12 ...
13 }

1 procedure p2(M:[int]int, x:int)
2 returns (r2:int, M2:[int]int)
3 {
4 M2 := M; r2 := M2[x];

5 r2 := M2[r2 + 8];

6 r2 := r1@6;
7 if (r2 > 0) {
8 M2, r2 := writeToFile(M2,r2);
9 }

10 ...
11 }

Fig. 4. Example for side-effect free preprocessing heuristic.

Heuristic AllFix LeftPathFix LeftPathEarliestFix
Candidates R/NR time(sec) R/NR time(sec) R/NR time(sec)

callee 125 12/27 85.4 14/25 77.8 24/15 85.0
load 128 2/37 113.1 3/36 98.6 6/32 129.1
imm 128 7/5 193.8 7/4 191.0 16/0 181.0
callWind1 107 13/9 142.1 14/9 154.7 23/0 212.7
callWind2 272 6/8 264.7 7/8 251.7 14/0 289.8

Total 140 15/24 134.1 18/22 128.4 34/5 154.4

Fig. 5. Summary on benchmarks returning either ROOTCAUSE or NOROOTCAUSE .

Figure 4 illustrates a case where our technique fails to identify a fix when a procedure
call in p1 is replaced by access to the object’s field in p2. This is an instance of a common
compiler optimization of inlining simple methods (such as side-effect free “getter” meth-
ods) with their implementations. Our tool fails to find a rootcause because (i) procedure
call to getLength can modify the heap M1 arbitrarily and cause it to differ from M2, and
(ii) return value r1 of getLength is allowed to differ from the field access M2[r1+ 8]. To
account for (i), we exploit the fact that semantically similar programs often have identical
procedure calls — i.e. if a procedure only appears in one program, then it is likely to be
side-effect free. In a preprocessing step, we modify p1 to insert an assume in line 5 and re-
store M1 in line 7. Then, our rootcause analysis identifies the singleton fix (6, 5). Similarly,
we find examples that make several calls to the same procedure in p1 that are optimized
to only one call in p2 because the compiler is able to prove idempotence. We perform a
similar instrumentation as figure 4 to handle this case.

5.2 JIT vs. compiled binaries

Benchmarks These benchmarks have 165 lines of assembly code on average, with the
largest benchmark having 574 lines.2 The generated Boogie programs have 1242 Boogie
statements on average, with the largest benchmark having 4323 statements. The consid-
erable sizes make it difficult to apply program synthesis to find the rootcauses. In fact,
we describe a few heuristics to (unsoundly) prune the search space to be able to find the
rootcauses within 800 seconds.

Heuristics for pruning candidates We define heuristics to match certain syntactic patterns
in the assignments being considered. We define the following three heuristics for finding

2 We are unable to release these specific compiler benchmarks due to confidentiality agreement.



rootcauses of x86 programs. The callee heuristic only considers assignments of the callee
before making an indirect call. The heuristic load only considers instructions that load a
register from a memory address, and the heuristic imm only considers assignments that
contain an arithmetic constant or an arithmetic operation in the expression. In addition,
we also use a heuristic that exploits the synchronization of p1 and p2 across procedure
calls. Let f1, . . . , fm and g1, . . . , gn be the sequence of procedure calls along cex in p1
and p2 respectively. We define a pair of calls (fi, gi) as the earliest mismatched calls if the
calls (f1, g1), . . . , (fi−1, gi−1) return matching outputs and (fi, gi) mismatch. We define
a heuristic callWindk that only considers fixes in the region between fi−k, . . . , fi and
gi−k, . . . , gi in p1 and p2 respectively.

Experimental setup Each benchmark consists of two procedures p1 and p2 being compared,
and a syntactic filter ∈ {callee, load, imm, callWind1, callWind2}. With each of the 5
syntactic filters, we experiment with 46 pairs of procedures, giving us 230 benchmarks in
total. Each benchmark is run with all optimizations from Sec. 4 enabled. We instantiate
LeftPathEarliestFix by synchronizing at procedure call boundaries.

Results Figure 5 presents the results. Excluding those benchmarks that return UNKNOWN ,
the table presents the following metrics: 1) average number of candidates generated for each
benchmark, 2) benchmarks for which a rootcause is found (R) or not found (NR), and 3)
average runtime (in seconds). The benchmarks that return UNKNOWN fail either from
out-of-memory exceptions in Boogie/Z3, or from our 800 second timeout. These results
indicate that progressively weakening the check to LeftPathFix and LeftPathEarliestFix
identifies rootcause in more benchmarks. The “Total” row describes the total number of
distinct rootcauses found across the different heuristics. We find a total of 34 out of 46
rootcauses (74% of the cases), which we find quite encouraging. For the remaining exam-
ples, the most common reasons for NOROOTCAUSE include: (i) the need for multiple
fixes even for the weakest check LeftPathEarliestFix , (ii) insufficient semantic similarity
between p1 and p2, whereby p1 is devoid of a value that fixes p2, and (iii) several missing
assumptions about the read and write sets of callees and aliasing assumptions.

We also investigate the effect of our optimizations on runtime and the number of can-
didate fixes. For each optimization, we study the effect of the optimization by disabling it
while enabling the remaining optimizations. We measure the impact of an optimization ∈
{Binary Search, MAXSAT} with respect to (a) the number of candidates pruned, and (b)
the reduction in runtime. Figure 6 and Figure 7 (in Section A) show the effect of disabling
Binary Search and MAXSAT, respectively. Both optimizations perform a substantial re-
duction in candidates, more pronounced for larger instances, with MAXSAT (resp., Binary
Search) giving us a significant 49% (resp., 12%) reduction in runtime and 691% (resp.,
34%) reduction in candidates. Observe that the average runtime improvement is lower than
the average improvement in candidates. In fact, there are few cases in Binary Search and
MAXSAT where the optimization results in a slowdown because performing the optimiza-
tion itself requires invoking the solver.

6 Related Work

Automated debugging and repair are certainly not new problems. Our work is inspired
in part by program repair techniques [21],[2],[14], and in part by error localization tech-



niques [3]. The novelty of our work is in providing formal guarantees for the rootcause
(unlike localization approaches) without requiring to completely repair the program. Un-
like our work, none of these approaches deal with the complexities of analyzing binary
programs.

Error Localization. BugAssist by Jose et al. [8] analyzes a specific failing input to
compute a minimal set of program statements that can be potentially changed to prevent
the failing execution. Ermis et al. [5] propose a concept of error invariants to slice error
traces using interpolants. In our context, we observe that most instructions in the program
are relevant for equivalence failure. Consequently, both techniques end up retaining most
of the instructions along the counterexample path. However, there is no guarantee that these
rootcauses (program expressions) can be changed to repair the program.

Repair. On the other hand, there is active research in using synthesis for repairing pro-
grams. Nguyen et al. [14] assume a single-fix assumption to synthesize a repair such that the
program passes all its test cases. Könighofer et al. [9] relax the single-fix assumption and
perform template-based repair using a counterexample guided inductive synthesis (CEGIS)
loop. Singh et al. [21] use constraint-based synthesis to automatically provide feedback to
students in an introductory programming course. They use the instructor’s solution only as
a specification for synthesizing a set of fixes to the student’s solution i.e. their approach
extends to the multiple-fix model. The sizes of examples from compiler validation are at
least an order bigger than the benchmark sizes for student attempts; Furthermore, the space
of all repairs is quite large in our setting (all x86 instructions with all possible operands).
Our work differs from all three of [14], [21], and [9] by (i) exploiting similarity in the two
programs and therefore not requiring repair templates, and (ii) alleviating scalability issues
by not insisting on a complete fix. However, our approach may fail to identify a rootcause
when the program requires multiple fixes, or when p1 does not possess a value that can
fix p2. In other related work, Samanta et al. [18] repair boolean programs with the single-
fix assumption using QBF solving. In our setting, we do not abstract assembly language
programs as boolean programs.

7 Conclusion
In this effort, we have proposed a new formulation of rootcause for equivalence failures
of similar binary programs. We have implemented our technique and evaluated it on sev-
eral real-world binary equivalence failures and report the potential to be useful. We believe
the idea is general and can be applied to other equivalence checking domains (e.g. grad-
ing assignments). We are currently extending the formulation to handle multiple fixes and
combining our search with counterexample-guided synthesis methods.
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5. E. Ermis, M. Schäf, and T. Wies. Error invariants. In FM 2012: Formal Methods, pages 187–201.
Springer Berlin Heidelberg, 2012.

6. B. Godlin and O. Strichman. Regression verification. In DAC, pages 466–471, 2009.
7. C. Hawblitzel, S. K. Lahiri, K. Pawar, H. Hashmi, S. Gokbulut, L. Fernando, D. Detlefs, and

S. Wadsworth. Will you still compile me tomorrow? static cross-version compiler validation. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, pages 191–201, New York, NY, USA, 2013. ACM.

8. M. Jose and R. Majumdar. Cause clue clauses: Error localization using maximum satisfiability.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 437–446, New York, NY, USA, 2011. ACM.

9. R. Konighofer and R. Bloem. Automated error localization and correction for imperative pro-
grams. In Formal Methods in Computer-Aided Design (FMCAD), 2011, pages 91–100, Oct
2011.

10. S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using parameterized program
equivalence. In Programming Language Design and Implementation (PLDI ’09), pages 327–
337. ACM, 2009.

11. S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. Symdiff: A language-agnostic se-
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Fig. 7. The improvement in number of candidates is 0% at the minimum, 4000% at the maximum,
691% on average (geomean 408%). The runtime improvement is -38% at the minimum, 483% at the
maximum, 49% on average (geomean 35%).


