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Abstract. Verification of open programs can be challenging in the presence of an
unconstrained environment. Verifying properties that depend on the environment
yields a large class of uninteresting false alarms. Using a verifier on a program
thus requires extensive initial investment in modeling the environment of the pro-
gram. We propose a technique called angelic verification for verification of open
programs, where we constrain a verifier to report warnings only when no ac-
ceptable environment specification exists to prove the assertion. Our framework
is parametric in a vocabulary and a set of angelic assertions that allows a user
to configure the tool. We describe a few instantiations of the framework and an
evaluation on a set of real-world benchmarks to show that our technique is com-
petitive with industrial-strength tools even without models of the environment.

1 Introduction

Scalable software verifiers offer the potential to find defects early in the development
cycle. The user of such a tool can specify a property (e.g. correct usage of kernel/se-
curity APIs) using some specification language and the tool validates that the property
holds on all feasible executions of the program. There has been a significant progress in
the area of software verification, leveraging ideas from model checking [13], theorem
proving [34] and invariant inference algorithms [16,22,33]. Tools based on these prin-
ciples (e.g. SDV [3], F-Soft [24]) have found numerous bugs in production software.

However, a fundamental problem still limits the adoption of powerful software ver-
ifiers in the hands of end users. Most (interprocedural) program verifiers aim to verify
that a program does not fail assertions under all possible feasible executions of the pro-
gram. This is a good match when the input program is “closed”, i.e., its execution starts
from a well-defined initial state, and external library methods are included or accurately
modeled. Scalability concerns preclude performing monolithic verification that includes
all transitive callers and library source code. In practice, a significant portion of verifi-
cation tool development requires closing a program by (i) either providing a harness (a
client program) or a module invariant [30] to constrain the inputs and (ii) stubs for ex-
ternal library procedures [3]. The effect of modeling is to constrain the set of unknowns
in the program to rule out infeasible executions. Absence of such modeling results in
numerous uninteresting alarms and deters a user from further interacting with the tool.
“A stupid false positive implies the tool is stupid” [6]. The significant initial modeling
overhead often undermines the value provided by verifiers. Even “bounded” versions



1 // inconsistency
2 procedure Bar(x: int ) {
3 if (x ! = NULL) { gs := 1; }
4 else { gs := 2; }
5 // possible BUG or dead code
6 assert x ! = NULL;
7 m[x] := 5;
8 }
9 // internal bug

10 procedure Baz(y:int ) {
11 assert y ! = NULL; //DEFINITE BUG
12 m[y] := 4;
13 }
14 // entry point
15 procedure Foo(z: int ) {
16 call Bar(z ); // block + relax
17 call Baz(NULL); // internal bug
18 call FooBar(); // external calls
19 }

20 // globals
21 var gs: int , m:[int ] int ;
22

23 // external call
24 procedure FooBar() {
25 var x, w, z: int ;
26 call z := Lib1 ();
27 assert z ! = NULL;
28 m[z] := NULL;
29 call x := Lib2 ();
30 assert x ! = NULL;
31 w := m[x];
32 assert w ! = NULL;
33 m[w] := 4;
34 }
35 // library
36 procedure Lib1() returns ( r : int );
37 procedure Lib2() returns ( r : int );

Fig. 1: Running example.

of verifiers (such as CBMC [14]) suffer from this problem because these unknowns are
present even in bounded executions.

Example 1. Consider the example program (written in the Boogie language [4]) in Fig-
ure 1. The program has four procedures Foo,Bar,Baz,FooBar and two external library
procedures Lib1, Lib2. The variables in the programs can be scalars (of type int) or
arrays (e.g. m) that map int to int. The Boogie program is an encoding of a C pro-
gram [15]: pointers and values are uniformly modeled as integers (e.g. parameter x of
Bar, or the return value of Lib1), and memory dereference is modeled as array lookup
(e.g. m[x]). The procedures have assertions marked using assert statements. The entry
procedure for this program is Foo.

There are several sources of unknowns or unconstrained values in the program:
the parameter z to Foo, the global variable m representing the heap, and the return
values of library procedures Lib1 and Lib2. Even a precise verifier is bound to return
assertion failures for each of the assertions in the program. This is due to the fact that
all the assertions, except the one in Baz (the only definite bug in the program) are
assertions over unknowns in the program and (sound) verifiers tend to be conservative
(over-approximate) in the face of unknowns. Such demonic nature of verifiers will result
in several false alarms.

Overview Our goal is to push back on the demonic nature of the verifier by prioritizing
alarms with higher evidence. In addition to the warning in Baz, the assertion in Bar is
suspicious as the only way to avoid the bug is to make the “else” branch unreachable in
Bar. For the remaining assertions, relatively simple constraints on the unknown values
suffice to explain the correctness of these assertions. For example, it is reasonable to
assume that calls to library methods do not return NULL, their dereferences (m[x]) store
non-null values and calls to two different library methods do not return aliased point-
ers. We tone down the demonic nature of verifiers by posing a more angelic decision
problem for the verifier (also termed as abductive inference [20,10]):



For a given assertion, does there exists an acceptable specification over the
unknowns such that the assertion holds?

This forces the verifier to work harder to exhaust the space of acceptable specifications
before showing a warning for a given assertion. Of course, this makes the verification
problem less defined as it is parameterized by what constitutes “acceptable” to the end
user of the tool. At the same time, it allows a user to be able to configure the demonic
nature of the tool by specifying a vocabulary of acceptable specifications.

In this paper, we provide a user a few dimensions to specify a vocabulary Vocab that
constitutes a specification (details can be found in Section 4). The vocabulary can indi-
cate a template for the atomic formulas, or the Boolean and quantifier structure. Given a
vocabulary Vocab, we characterize an acceptable specification by how (a) concise and
(b) permissive the specification is. Conciseness is important for the resulting specifica-
tions to be understandable by the user. Permissiveness ensures that the specification is
not overly strong, thus masking out true bugs. The failure in Bar is an example, where
a specification x 6= NULL is not permissive as it gives rise to dead code in the “else”
branch before the assertion. To specify desired permissiveness, we allow the users to
augment the program with a set of angelic assertions Â. The assertions in Â should
not be provable in the presence of any inferred specification over the unknowns. An
angelic assertion assert e ∈ Â at a program location l indicates that the user expects at
least one state to reach l and satisfy ¬e. For Bar one can add two assertions assert false
inside each of the branches. The precondition x 6= NULL would be able to prove that
assert false in the “else” branch is unreachable (and thus provable), which prevents it
from being permissive. We describe a few such useful instances of angelic assertions in
Section 3.1.

We have implemented the angelic verification framework in a tool called An-
gelicVerifier for Boogie programs. Given a Boogie program with a set S of entrypoints,
AngelicVerifier invokes each of the procedures in S with unknown input states. In the
absence of any user-provided information, we assume that S is the set of all proce-
dures in the program. Further, the library procedures are assigned a body that assigns
a non-deterministic value to the return variables and adds an assume statement with
a predicate unknown i (Figure 2). This predicate will be used to constrain the return
values of a procedure for all possible call sites (Section 4) within an entrypoint.

AngelicVerifier invokes a given (demonic) verifier on this program with all entry-
points in S. If the verifier returns a trace that ends in an assertion failure, AngelicVerifier
tries to infer an acceptable specification over the unknowns. If it succeeds, it installs the
specification as a precondition of the entry point and iterates. If it is unable to infer an
acceptable specification, the trace is reported as a defect to the user.

Figure 3 shows the output of AngelicVerifier applied to our example:

– For a trace that starts at Bar and fails the assert on line 6, we conjecture a spec-
ification x 6= NULL but discover that it is not permissive. The line with “AN-
GELIC WARNING” is a warning shown to the user.

– For the trace that starts at Baz and fails the assert on line 11, we block the assertion
failure by installing the constraint y 6= NULL. The code of Bar does not have any
indication that it expects to see NULL as input.



function unknown 0(a: int ): bool;
function unknown 1(a: int ): bool;

procedure Lib1() returns ( r : int ) {
assume unknown 0(r);
return;

}

procedure Lib2() returns ( r : int ) {
assume unknown 1(r);
return;

}

Fig. 2: Modeling of external
procedures by AngelicVeri-
fier. All variables are non-
deterministically initialized.

// Trace: Bar→ assert on line 6
SPEC :: x 6= NULL, Spec not permissive
ANGELIC WARNING: Assertion x != NULL fails in proc Bar
// Trace: Baz→ assert on line 11
SPEC :: y 6= NULL
// Trace: FooBar→ assert on line 27
SPEC :: (∀ x 1: unknown 0(x 1)⇒ x 1 6= NULL)
// Trace: FooBar→ assert on line 30
SPEC :: (∀ x 2: unknown 1(x 2)⇒ x 2 6= NULL)
// Trace: FooBar→ assert on line 32
SPEC :: (∀ x 2, x 1: unknown 1(x 2) ∧

unknown 0(x 1)⇒ (x 2 6= x 1 ∧ m[x 2] 6= NULL))
// Trace: Foo→ Baz→ assert on line 11
ANGELIC WARNING: Assertion y != NULL fails in proc Baz

Fig. 3: Output of AngelicVerifier on the program
shown in Figure 1. A line with “SPEC” denotes
an inferred specification to suppress a trace.

– For the three traces that start at FooBar and fail an assertion inside it, we block them
using constraints on the return values of library calls. Notice that the return values
are not in scope at the entry to FooBar; they get constrained indirectly using the
unknown i predicates. The most interesting block is for the final assertion which
involves assuming that (a) the returns from the two library calls are never aliased,
and (b) the value of the array m at the value returned by Lib2 is non-null. (See
Section 4)

– The trace starting at Foo that calls Baz and fails on line 11 cannot be blocked (other
than by using the non-permissive specification false), and is reported to the user.

Contributions In summary, the paper makes the following contributions: (a) We provide
a framework for performing angelic verification with the goal of highlighting highest
confidence bugs. (b) We provide a parametric framework based on Vocab and Â to con-
trol the level of angelism in the tool that a user can configure. (c) We describe a scal-
able algorithm for searching specifications using ExplainError (Section 4). We show
an effective way to deal with internal non-determinism resulting from calls to library
procedures. (d) We have implemented the ideas in a prototype tool AngelicVerifier
and evaluated it on real-world benchmarks. We show that AngelicVerifier is competitive
with industrial-strength tools even without access to the environment models.

2 Programming language

Syntax. We formalize the ideas in the paper in the context of a simple subset of the
Boogie programming language [4]. A program consists of a set of basic blocks Block ;
each block consists of a label BlockId , a body s ∈ Stmt and a (possibly empty) set
of successor blocks. A program has a designated first block Start ∈ Block . Most
statements are standard; the havoc x statement assigns a non-deterministic value to
the variable x. An expression (Expr ) can be a variable identifier or an application
of function f ∈ Functions . A formula (Formula) includes Boolean constants, ap-
plication of a predicate p ∈ Predicates , and closed under Boolean connectives and



P ∈ Program ::= Block+

BL ∈ Block ::= BlockId : s; goto BlockId∗

s, t ∈ Stmt ::= skip | assert φ | assume φ | x := e | havoc x | s; s
x, y ∈ Vars
e ∈ Expr ::= x | f (e, . . . , e)
φ, ψ ∈ Formula ::= true | false | p(e, . . . , e) | φ ∧ φ | ∀x : φ | ¬φ

Fig. 4: A simple programming language.

quantifiers. The constructs are expressive enough to model features of most program-
ming languages such as C [15] or Java [1]. Conditional statements are modeled us-
ing assume and goto statements; heap is modeled using interpreted array functions
{read ,write} ⊆ Functions [35].

Semantics. A program state σ is a type-consistent valuation of variables in scope
in the program. The set of all states is denoted by Σ ∪ {Err}, where Err is a special
state to indicate an assertion failure. For a given state σ ∈ Σ and an expression (or
formula) e , eσ denotes the evaluation of e in the state. For a formula φ ∈ Formula ,
σ |= φ holds if φσ evaluates to true. The semantics of a program is a set of execution
traces, where a trace corresponds to a sequence of program states. We refer the readers
to earlier works for details of the semantics [4]. Intuitively, an execution trace for a
block BL corresponds to the sequence of states obtained by executing the body, and
extending the terminating sequences with the traces of the successor blocks (if any). A
sequence of states for a block does not terminate if it either executes an assume φ or an
assert φ statement in a state σ ∈ Σ such that σ 6|= φ. In the latter case, the successor
state is Err . The traces of a program is the set of traces for the start block Start . Let
T (P) be the set of all traces of a program P. A program P is correct (denoted as |= P)
if T (P) does not contain a trace that ends in the state Err . For a program P that is not
correct, we define a failure trace as a trace τ that starts at Start and ends in the state
Err .

3 Angelic verification

In this section, we make the problem of angelic verification more concrete. We are
given a program P that cannot be proved correct in the presence of unknowns from
the environment (e.g. parameters, globals and outputs of library procedures). If one
takes a conservative approach, we can only conclude that the program P has a possi-
ble assertion failure. In this setting, verification failures offer no information to a user
of the tool. Instead, one can take a more pragmatic approach. If the user can charac-
terize a class of acceptable missing specifications Φ that precludes verification (based
on experience), one can instead ask a weaker verification question: does there exist a
specification φ ∈ Φ such φ |= P?. One can characterize the acceptability of a spec-
ification φ along two axes: (i) Conciseness — the specification should have a concise
representation in some vocabulary that the user expects and can inspect. This usually
precludes specifications with several levels of Boolean connectives, quantifiers, or com-
plex atomic expressions. (ii) Permissive — the specification φ should not be too strong



to preclude feasible states of P that are known to exist. We allow two mechanisms for
an expert user to control the set of acceptable specifications:

– The user can provide a vocabulary Vocab of acceptable specifications, along with
a checker that can test membership of a formula φ in Vocab. We show instances of
Vocab in Section 4.

– The user can augment P with a set of angelic assertions Â at specific locations, with
the expectation that any specification should not prove an assertion assert e ∈ Â.

We term the resulting verification problem angelic as the verifier co-operates with
the user (as opposed to playing an adversary) to find specifications that can prove the
program. This can be seen as a particular mechanism to allow an expert user to cus-
tomize the abductive inference problem tailored to their needs [20]. If no such speci-
fication can found, it indicates that the verification failure of P cannot be categorized
into previously known buckets of false alarms.

We make these ideas more precise in the next few sections. In Section 3.1, we
describe the notion of angelic correctness given P, Vocab and Â. In Section 3.2, we
describe an algorithm to prove angelic correctness using existing program verifiers.

3.1 Problem formulation

Let φ ∈ Formula be a well-scoped formula at the block Start of a program P. We
say that a program P is correct under φ (denoted as φ |= P), if the augmented program
Start0 : assume φ ; goto Start with “Start” block as Start0 is correct. In other words,
the program P is correct with a precondition φ.

Let A be the set of assertions in program P. Additionally, let the user specify an
additional set Â of angelic assertions at various blocks in P. We denote the program
PA1,A2

as the instrumented version of P that has two sets of assertions enabled:

– Normal assertions A1 ⊆ A that constitute a (possibly empty) subset of the original
assertions present in P, and

– Angelic assertions A2 ⊆ Â that constitute a (possibly empty) subset of set of addi-
tional user supplied assertions.

Definition 1 (Permissive precondition) For a program PA,Â and formula φ,

Permissive(PA,Â, φ) holds if for every assertion s ∈ Â, if φ |= P∅,{s}, then true |=
P∅,{s}.

In other words, a specification φ is not allowed to prove any assertion s ∈ Â that was
not provable under the unconstrained specification true.

Definition 2 (Angelic correctness) Given (i) a program P with a set of normal asser-
tions A, (ii) an angelic set of assertions Â, and (iii) a vocabulary Vocab constraining
a set of formulas at Start , P is angelically correct under (Vocab, Â) if there exists a
formula φ ∈ Vocab such that: (i) φ |= PA,∅, and (ii) Permissive(P∅,Â, φ) holds.

If no such specification φ exists, then we say that P has an angelic bug with respect
to (Vocab, Â). In this case, we try to ensure the angelic correctness of P with respect to
a subset of the assertions in P; the rest of the assertions are flagged as angelic warnings.



Examples of angelic assertions Â If one provides assert false at Start to be part
of Â, it disallows preconditions that are inconsistent with other preconditions of the
program [20]. If we add assert false at the end of every basic block, it prevents us
from creating preconditions that create dead code in the program. This has the effect
of detecting semantic inconsistency or doomed bugs [21,19,23,36]. Further, we can
allow checking such assertions interprocedurally and at only a subset of locations (e.g.
exclude defensive checks in callees). Finally, one can encode other domain knowledge
using such assertions. For example, consider checking the correct lock usage for
if(∗){L1 : assert ¬locked(l1); lock(l1); } else {L2 : assert locked(l2); unlock(l2); }.
If the user expects an execution where l1 = l2 at L2, the angelic assertion
assert l1 6= l2 ∈ Â precludes the precondition ¬locked(l1) ∧ locked(l2), and re-
veals a warning for at least one of the two locations. As another example, if the user
has observed a runtime value v for variable x at a program location l, she can add an
assertion assert x 6= v ∈ Â at l to ensure that a specification does not preclude a known
feasible behavior; further, the idea can be extended from feasible values to feasible
intraprocedural path conditions.

3.2 Finding angelic bugs

Algorithm 1 describes a (semi) algorithm for proving angelic correctness of a program.
In addition to the program, it takes as inputs the set of angelic assertions Â, and a
vocabulary Vocab. On termination, the procedure returns a specification E and a subset
A1 ⊆ A for which the resultant program is angelically correct under E. Lines 1 and
2 initialize the variables E and A1, respectively. The loop from line 3 — 16 performs
the main act of blocking failure traces in P. First, we verify the assertions A1 over P.
The routine tries to establish E |= P using a sound and complete program verifier; the
program verifier itself may never terminate. We return in line 6 if verification succeeds
and P contains no failure traces (NO TRACE). In the event a failure trace τ is present, we
query a procedure ExplainError (see Section 4) to find a specification φ that can prove
that none of the executions along τ fail an assertion. Line 10 checks if the addition of
the new constraint φ still ensures that the resulting specification E1 is permissive. If
not, then it suppresses the assertion a that failed in τ (by removing it from A1) and
outputs the trace τ to the user. Otherwise, it adds φ to the set of constraints collected so
far. The loop repeats forever until verification succeeds in Line 4. The procedure may
fail to terminate if either the call to Verify does not terminate, or the loop in Line 3
does not terminate due to an unbounded number of failure traces.

Theorem 1 On termination, Algorithm 1 returns a pair of precondition E and a sub-
set A1 ⊆ A such that (i) E |= P when only assertions in A1 are enabled, and (ii)
Permissive(PA,Â,E ).

The proof follows directly from the check in line 4 that establishes (i), and line 10
that ensures permissiveness.



Input: Program P with assertions A,
Input: Angelic Assertions Â,
Input: Vocabulary Vocab,
Output: A permissive specification E,
Output: A set of assertions A1 ⊆ A for

which E |= PA1,∅
1: E ← ∅
2: A1 ← A
3: loop
4: τ ← Verify(PA1 ,∅,E) /* E |= P */
5: if τ = NO TRACE then
6: return (E,A1)
7: end if
8: φ← ExplainError(P, τ,Vocab)
9: E1 ← E ∪ {φ}

10: if ¬Permissive(P∅,Â,E1 ) then
11: Let a be the failing assert in τ
12: A1 ← A1 \ {a} /* Report a */
13: else
14: E ← E1

15: end if
16: end loop

Input: Program P, failure trace τ, vocabulary
Vocab

Output: A formula that blocks τ
1: τ1 ← ControlSlice(P, τ)
2: φ1 ← wlp(τ1, true)
3: φ2 ← EliminateMapUpdates(φ1)
4: atoms1 ← FilterAtoms (GetAtoms(φ2),

Vocab.Atoms)
5: if Vocab.Bool = MONOMIAL then
6: S ← {a | a ∈ atoms1 , and a |= φ2}
7: return S = ∅ ? false : (

∨
a∈S a)

8: else
9: return ProjectAtoms(φ2, atoms1 )

10: end if

Algorithm 1: AngelicVerifier Algorithm 2: ExplainError

4 ExplainError

Problem Given a program P that is not correct, let τ be a failure trace of P. Since a
trace can be represented as a valid program (Program) in our language (with a single
block containing the sequence of statements ending in an assert statement), we will
treat τ as a program with a single control flow path.

Informally, the goal of ExplainError is to return a precondition φ from a given vo-
cabulary Vocab such that φ |= τ, or false if no such precondition exists. ExplainError
takes as input the following: (a) a program P, (b) a failure trace τ in P represented as a
program and (c) a vocabulary Vocab that specifies syntactic restrictions on formulas to
search over. It returns a formula φ such that φ |= τ and φ ∈ Vocab ∪ {false}. It returns
false either when (a) the vocabulary does not contain any formula φ for which φ |= τ,
or (b) the search does not terminate (say due to a timeout).

Note that the weakest liberal precondition (wlp) of the trace [18] is guaranteed to
be the weakest possible blocking constraint; however, it is usually very specific to the
trace and may require enumerating all the concrete failing traces inside Algorithm 1.
Moreover, the resulting formula for long traces are often not suitable for human con-
sumption. When ExplainError returns a formula other than false, one may expect φ to
be the weakest (most permissive) constraint in Vocab that blocks the failure path. How-
ever, this is not possible for several reasons (a) efficiency concerns preclude searching
for the weakest, (b) Vocab may not be closed under disjunction and therefore the weak-
est constraint may not be defined. Thus the primary goals of ExplainError are to be (a)



scalable (so that it can be invoked in the main loop in Algorithm 1), and (b) the resulting
constraints are concise even if not the weakest over Vocab.

Algorithm Algorithm 2 provides the high-level flow of ExplainError. Currently, the
algorithm is parameterized by Vocab that consists of two components:

– Vocab.Atoms : a template for the set of atomic formulas that can appear in a
blocking constraint. This can range over equalities (e1 = e2), difference constraints
(e1 ≤ e2 + c), or some other syntactic pattern.

– Vocab.Bool : the complexity of Boolean structure of the blocking constraint. One
may choose to have a clausal formula (

∨
i ei), cube formulas (

∧
i ei), or an arbitrary

conjunctive normal form (CNF) (
∨
j(
∧
i ei)) over atomic formulas ei.

Initially, we assume that we do not have internal non-determinism in the form of
havoc or calls to external libraries in the trace τ – we will describe this extension later
in this section.

Let wlp(s, φ) be the weakest liberal precondition transformer for a s ∈ Stmt
and φ ∈ Formula [18]. wlp(s, φ) is the weakest formula representing states from
which executing s does not lead to assertion failure and on termination satisfies φ.
It is defined as follows on the structure of statements: wlp(skip, φ) = φ, wlp(x :=
e, φ) = φ[e/x] (where φ[e/x] denotes substituting e for all free occurrences of x),
wlp(assume ψ, φ) = ψ ⇒ φ, wlp(assert ψ, φ) = ψ ∧ φ, and wlp(s; t, φ) =
wlp(s,wlp(t, φ)). Thus wlp(τ, true) will ensure that no assertion fails along τ. Our
current algorithm (Algorithm 2) provides various options to create predicate (under)
covers of wlp(τ, true) [22], formulas that imply wlp(τ, true). Such formulas are guar-
anteed to block the trace τ from failing.

The first step ControlSlice performs an optimization to prune conditionals from τ
that do not control dominate the failing assertion, by performing a variant of the path
slicing approach [25]. Line 2 performs the wlp computation on the resulting trace τ1.
At this point, φ1 is a Boolean combination of literals from arithmetic, equalities and
array theories in satisfiability modulo theories (SMT) [34]. EliminateMapUpdates (in
line 3) eliminates any occurrence of write from the formula using rewrite rules such as
read(write(e1 , e2 , e3 ), e4 ) → e2 = e4 ? e3 : read(e1 , e4 ). This rule introduces new
equality (aliasing) constraints in the resulting formula that are not present directly in τ.
Line 4 chooses a set of atomic formulas from φ2 that match the vocabulary. Finally, the
conditional in Line 5 determines the Boolean structure in the resulting expression.

The MONOMIAL option specifies that the block expression is a disjunction of atoms
from atoms1 . Line 7 collects the set of atoms in atoms1 that imply φ2, which in turn
implies wlp(τ, true). We return the clause representing the disjunction of such atoms,
which in turn implies wlp(τ, true). The more expensive ProjectAtoms(φ2, atoms1 )
returns a formula φ3 that is a CNF expression over atoms1 , such that φ3 ⇒ φ2, by
performing Boolean quantifier elimination of the atoms not present in atoms1 . We first
transform the formula φ2 into a conjunctive normal form (CNF) by repeatedly applying
rewrite rules such as φ1 ∨ (φ2 ∧ φ3) → (φ1 ∨ φ2) ∧ (φ1 ∨ φ3). We employ a theorem
prover at each step to try simplify intermediate expressions to true or false. Finally, for
each clause c in the CNF form, we remove any literal in c that is not present in the set
of atoms atoms1 .



Example Consider the example FooBar in Figure 1, and the trace τ that cor-
responds to violation of assert w 6= NULL. The trace is a sequential composi-
tion of the following statements: z := x 1, m[z] := NULL, x := x 2, w := m[x],
assert w 6= NULL, where we have replaced calls to Lib1 and Lib2 with x 1
and x 2 respectively. wlp(τ, true) is read(write(m, x 1,NULL), x 2) 6= NULL,
which after applying EliminateMapUpdates would result in the expression
(x 1 6= x 2 ∧ m[x 2] 6= NULL). Notice that this is nearly identical to the blocking
clause (except the quantifiers and triggers) returned while analyzing FooBar in Fig-
ure 3. Let us allow any disequality e1 6= e2 atoms in Vocab. If we only allow MONOMIAL

Boolean structure, there does not exist any clause over these atoms (weaker than false)
that suppresses the trace.

Internal non-determinism In the presence of only input non-determinism (parameters
and globals), the wlp(τ, true) is a well-scoped expression at entry in terms of parame-
ters and globals. In the presence of internal non-determinism (due to havoc statements
either present explicitly or implicitly for non-deterministic initialization of local vari-
ables), the target of a havoc is universally quantified away (wlp(havoc x, φ) = ∀u :
φ[u/x]). However, this is unsatisfactory for several reasons: (a) one has to introduce
a fresh quantified variable for different call sites of a function (say Lib1 in Figure 1).
(b) Moreover, the quantified formula does not have good trigger [17] to instantiate the
universally quantified variables u. For a quantified formula, a trigger is a set of sub-
expressions containing all the bound variables. To address both these issues, we intro-
duce a distinct predicate unknown i after the i-th syntactic call to havoc and introduce
an assume statement after the havoc (Figure 2): assume unknown i(x), The wlp rules
for assume and havoc ensure that the quantifiers are more well-behaved as the resultant
formulas have unknown i(x) as a trigger (see Figure 3).

5 Evaluation

We have implemented the ideas described in this paper (Algorithms 1 and 2) in a tool
called AngelicVerifier, available with sources.3 AngelicVerifier uses the Corral verifier
[31] as a black box to implement the check Verify used in Algorithm 1. Corral per-
forms interprocedural analysis of programs written in the Boogie language; the Boogie
program can be generated from either C [15], .NET [5] or Java programs [1]. As an op-
timization, while running ExplainError, AngelicVerifier first tries the MONOMIAL option
and falls back to ProjectAtoms when the former returns false.

We empirically evaluate AngelicVerifier against two industrial tools: the Static
Driver Verifier (SDV) [3] and PREfix [9]. Each of these tools come packaged with
models of the environment (both harness and stubs) of the programs they target. These
models have been designed over several years of testing and tuning by a product team.
We ran AngelicVerifier with none of these models and compared the number of code
defects found as well as the benefit of treating the missing environment as angelic over
treating it as demonic.

3 At corral.codeplex.com, project AddOns\AngelicVerifierNull.

corral.codeplex.com


5.1 Comparison with SDV

Benchmarks Procedures KLOC CPU(Ks)
Correct (5) 71-235 2.0-19.1 1.1
Buggy (13) 23-139 1.5-6.7 1.7

Fig. 5: SDV Benchmarks

SDV is a tool offered by Microsoft to third-
party driver developers. It checks for type-state
properties (e.g., locks are acquired and released
in strict alternation) on Windows device drivers.
SDV checks these properties by introducing mon-
itors in the program in the form of global vari-
ables, and instrumenting the property as asser-

tions in the program. We chose a subset of benchmarks and properties from SDV’s ver-
ification suite that correspond to drivers distributed in the Windows Driver Kit (WDK);
their characteristics are mentioned in Figure 5. We picked a total of 18 driver-property
pairs, in which SDV reports a defect on 13 of them. Figure 5 shows the range for the
number of procedures, lines of code (contained in C files) and the total time taken by
SDV (in 1000s of seconds) on all of the buggy or correct instances.

We ran various instantiations of AngelicVerifier on the SDV benchmarks:

– DEFAULT: The vocabulary includes aliasing constraints (e1 6= e2) as well as arbi-
trary expressions over monitor variables.

– NOTS: The vocabulary only includes aliasing constraints.
– NOALIAS: The vocabulary only includes expressions over the monitor variables.
– NOEE: The vocabulary is empty. In this case, all traces returned by Corral are

treated as bugs without running ExplainError. This option simulates a demonic en-
vironment.

– DEFAULT+HARNESS: This is the same as DEFAULT, but the input program includes
a stripped version of the harness used by SDV. This harness initializes the monitor
variables and calls specific procedures in the driver. (The actual harness used by
SDV is several times bigger and includes initializations of various data structures
and flags as well.)

Example: Figure 6 contains code snippets inspired from real code in our bench-
marks. We use it to highlight the differences between the various configurations of
AngelicVerifier described above.

– The assertion in Figure 6(a) will be reported as a bug by NOTS but not DEFAULT
because LockDepth > 1 is not a valid atom for NOTS.

– The assertion in Figure 6(c) will be reported as a bug by NOALIAS but not DE-
FAULT because it requires a specifiction that constrains aliasing in the environment.
For instance, DEFAULT constrains the environment by imposing (x 6= irp ∧ y 6=
irp) ∨ (z 6= irp ∧ y 6= irp), where x is devobj→ DeviceExtension→ FlushIrp,
y is devobj→ DeviceExtension→ LockIrp and z is
devobj→ DeviceExtension→ BlockIrp.

– The procedures called Harness in Figure 6 are only available under the setting DE-
FAULT+HARNESS. The assertion in Figure 6(a) will not be reported by DEFAULT
as it is always possible (irrespective of the number of calls to KeAcquireSpinLock
and KeReleaseSpinLock) to construct an initial value of LockDepth that suppresses
the assertion. When the (stripped) harness is present, this assertion will be reported.



// monitor variable
int LockDepth;

// This procedure is only
// available under the option
// default +harness
void Harness() {

LockDepth = 0;
IoCancelSpinLock();
}

void IoCancelSpinLock() {
KeReleaseSpinLock();
...

KeReleaseSpinLock();
...

KeAcquireSpinLock();
...

KeCheckSpinLock();
}

void KeAcquireSpinLock()
{ LockDepth ++; }

void KeReleaseSpinLock()
{ LockDepth−−; }

void KeCheckSpinLock()
{ assert LockDepth> 0; }

const int PASSIVE = 0;
const int DISPATCH = 2;
// monitor variable
int irqlVal ;

// This procedure is only
// available under the option
// default +harness
void Harness() {

irqlVal = PASSIVE;
KeRaiseIrql ();
}

void KeRaiseIrql () {
...
irqlVal = DISPATCH;
...
KeReleaseIrql ();
}

void KeReleaseIrql () {
assert irqlVal == PASSIVE;
irqlVal = DISPATCH;
}

int completed;
IRP ∗ global irp ;

void DispatchRoutine(DO ∗devobj,
IRP ∗irp) {

completed = 0;
global irp = irp ;

DE ∗de = devobj→DeviceExtension;
...

IoCompleteRequest(de→FlushIrp);
...

IoCompleteRequest(de→BlockIrp);
...

IoCompleteRequest(de→LockIrp);
}

void IoCompleteRequest(IRP ∗p) {
if (p == global irp ) {

assert completed ! = 1;
completed = 1;
}
}

(a) (b) (c)

Fig. 6: Code snippets, in C, illustrating the various settings of AngelicVerifier

Note that the assertion failure in Figure 6(b) will be caught by both DEFAULT and
DEFAULT+HARNESS.

The results on SDV benchmarks are summarized in Table 1. For each
AngelicVerifier configuration, we report the cumulative running time in thousands of
seconds (CPU), the numbers of bugs reported (B), and the number of false positives
(FP) and false negatives (FN). The experiments were run (sequentially, single-threaded)
on a server class machine with two Intel(R) Xeon(R) processors (16 logical cores) exe-
cuting at 2.4 GHz with 32 GB RAM.

NOEE reports a large number of false positives, confirming that a demonic environ-
ment leads to spurious warnings. The DEFAULT configuration, on the other hand, reports
no false positives! It is overly-optimistic in some cases resulting in missed defects. It
is clear that the out-of-the-box experience, i.e., before environment models have been
written, of AngelicVerifier (low false positives, few false negatives) is far superior to a
demonic verifier (very high false positives, few false negatives).

The DEFAULT+HARNESS configuration shows that once the tool could use the
(stripped) harness, it found all bugs reported by SDV. The configurations NOTS and
NOALIAS show that the individual components of the vocabulary were necessary for
inferring the right environment specifiction in the DEFAULT configuration. We also note
that the running time of our tool is several times higher than that of SDV; instead of the
tedious manual environment modeling effort, the cost shifts to higher running time of
the automated verifier.



DEFAULT DEFAULT+HARNESS NOEE NOTS NOALIAS
Bench CPU(Ks) B FP FN CPU(Ks) B FP FN CPU(Ks) B FP FN CPU(Ks) B FP FN CPU(Ks) B FP FN
Correct 9.97 0 0 0 16.8 0 0 0 0.28 12 12 0 4.20 2 2 0 15.1 0 0 0
Buggy 3.19 9 0 4 3.52 13 0 0 0.47 21 13 5 2.58 14 3 2 1.42 10 3 6

Table 1: Results on SDV benchmarks

stats PREfix DEFAULT DEFAULT-AA
Bench Procs KLOC B CPU(Ks) B PM FP FN PRE-FP PRE-FN CPU(Ks) B
Mod 1 453 37.2 14 2.7 26 14 4 0 0 1 1.8 26
Mod 2 64 6.5 3 0.2 0 0 0 3 0 0 0.2 0
Mod 3 479 56.6 5 5.8 11 3 4 2 0 1 1.7 6
Mod 4 382 37.8 4 1.8 3 0 0 0 4 3 1.1 2
Mod 5 284 30.9 6 0.8 12 6 1 0 0 0 0.4 11
Mod 6 37 8.4 7 0.1 10 7 0 0 0 0 0.1 10
Mod 7 184 20.9 10 0.6 11 10 0 0 0 1 0.4 11
Mod 8 400 43.8 5 2.9 15 5 1 0 0 1 1.0 15
Mod 9 40 3.2 7 0.1 8 7 0 0 0 0 0.1 8
Mod 10 998 76.5 7 24.9 8 3 1 4 0 4 16.0 4
total – 321 68 39.9 104 54 11 9 4 11 22.8 93

Table 2: Comparison against PREfix on checking for null-pointer dereferences

5.2 Comparison against PREfix

PREfix is a production tool used internally within Microsoft. It checks for several kinds
of programming errors, including checking for null-pointer dereferences, on the Win-
dows code base. We targeted AngelicVerifier to find null-pointer exceptions and com-
pared against PREfix on 10 modules selected randomly, such that PREfix reported at
least one defect in the module. Table 2 reports the sizes of these modules. (The names
are hidden for proprietary reasons.)

We used two AngelicVerifier configurations: DEFAULT-AA uses a vocabulary of
only aliasing constraints. DEFAULT uses the same vocabulary along with angelic asser-
tions: an assert false is injected after any statement of the form assume e == null. This
enforces that if the programmer anticipated an expression being null at some point in
the program, then AngelicVerifier should not impose an environment specification that
makes this check redundant.

Scalability. This set of benchmarks were several times harder than the SDV bench-
marks for our tool chain. This is because of the larger codebase, but also because check-
ing null-ness requires tracking of pointers in the heap, whereas SDV’s type-state proper-
ties are mostly control-flow based and require minimal tracking of pointers. To address
the scale, we use two standard tricks. First, we use a cheap alias analysis to prove many
of the dereferences safe and only focus AngelicVerifier on the rest. Second, AngelicVeri-
fier explores different entrypoints of the program in parallel. We used the same machine
as for the previous experiment, and limited parallelism to 16 threads (one per available
core). Further, we optimized ExplainError to avoid looking at assume statements along
the trace, i.e., it can only block the failing assertion. This can result in ExplainError
returning a stronger-than-necessary condition but improves the convergence time of
AngelicVerifier. This is a limitation that we are planning to address in future work.

Table 2 shows the comparison between PREfix and AngelicVerifier. In each case,
the number of bug reports is indicated as B and the running time as CPU (in
thousands of seconds). We found AngelicVerifier to be more verbose than PREfix,
producing a higher number of reports (104 to 68). However, this was mostly be-
cause AngelicVerifier reported multiple failures with the same cause. For instance,



x = null; if(...){∗x = ...}else{∗x = ...} would be flagged as two buggy traces by An-
gelicVerifier but only one by PREfix. Thus, there is potential for post-processing An-
gelicVerifier’s output, but this is orthogonal to the goals of this paper.

We report the number of PREfix traces matched by some trace of AngelicVerifier as
PM. To save effort, we consider all such traces as true positives. We manually examined
the rest of the traces. We classified traces reported by AngelicVerifier but not by PREfix
as either false positives of AngelicVerifier (FP) or as false negatives of PREfix (PRE-
FN). The columns FN and PRE-FP are the duals, for traces reported by PREfix but not
by AngelicVerifier.

PREfix is not a desktop application; one can only invoke it as a background service
that runs on a dedicated cluster. Consequently, we do not have the running times of
PREfix. AngelicVerifier takes 11 hours to consume all benchmarks, totaling 321 KLOC,
which is very reasonable (for, say, overnight testing on a single machine).

Most importantly, AngelicVerifier is able to find most (80%) of the bugs caught by
PREfix, without any environment modeling! We verified that under a demonic environ-
ment, the Corral verifier reports 396 traces, most of which are false positives.

AngelicVerifier has 11 false positives; 5 of these are due to missing stubs (e.g., a
call to the KeBugCheck routine does not return, but AngelicVerifier, in the absence of
its implementation, does not consider this to be a valid specification). All of these 5
were suppressed when we added a model of the missing stubs. The other 6 reports turn
out to be a bug in our compiler front-end, where it produced the wrong IR for certain
features of C. (Thus, they are not issues with AngelicVerifier.) AngelicVerifier has 9
false negatives. Out of these, 1 is due to a missing stub (where it was valid for it to
return a null pointer), 4 due to Corral timing out, and 5 due to our front-end issues.

Interestingly, PREfix misses 11 valid defects that AngelicVerifier reports. Out of
these, 6 are reported by AngelicVerifier because it finds an inconsistency with an an-
gelic assertion; we believe PREfix does not look for inconsistencies. We are unsure of
the reason why PREfix misses the other 5. We have reported these new defects to the
product teams and are awaiting a reply. We also found 4 false positives in PREfix’s
results (due to infeasible path conditions).

A comparison between DEFAULT and DEFAULT-AA reveals that 11 traces were
found because of an inconsistency with an angelic assertion. We have already men-
tioned that 6 of these are valid defects. The other 5 are again due to front-end issues.

In summary, AngelicVerifier matched 80% of PREfix’s reports, found new defects,
and reported very few false positives.

6 Related work

Our work is closely related to previous work on abductive reasoning [20,7,10,11] in
program verification. Dillig et al. [20] perform abductive reasoning based on quanti-
fier elimination of variables in wlp that do not appear in the minimum satisfying as-
signment of ¬wlp. The method requires quantifier elimination that is difficult in the
presence of richer theories such as quantifiers and uninterpreted functions. Our method
ProjectAtoms can be seen as a (lightweight) method for performing Boolean quantifier



elimination (without interpreting the theory predicates) that we have found to be effec-
tive in practice. It can be shown that the specifications obtained by the two methods can
be incomparable, even for arithemtic programs. Calcagno et al. use bi-abductive reason-
ing to perform bottom-up shape analysis [10] of programs, but performed only in the
context of intraprocedural reasoning. In comparison of this work, we provide config-
urability by being able to control parts of vocabulary and the check for permissiveness
using Â. The work on almost-correct specifications [7] provides a method for minimally
weakening the wlp over a set of predicates to construct specifications that disallow dead
code. However, the method is expensive and can be only applied intraprocedurally.

Several program verification techniques have been proposed to detect semantic in-
consistency bugs [21] in recent years [19,23,36]. Our work can be instantiated to detect
this class of bugs (even interprocedurally); however, it may not be the most scalable
approach to perform the checks. The work on angelic non-determinism [8] allows for
checking if the non-deterministic operations can be replaced with deterministic code to
succeed the assertions. Although similar in principle, our end goal is bug finding with
high confidence, as opposed to program synthesis. The work on angelic debugging [12]
and BugAssist [26] similarly look for relevant expressions to relax to fix a failing test
case. The difference is that the focus is more on debugging failing test cases and repair-
ing a program.

The work on ranking static analysis warnings using statistical measures is orthog-
onal and perhaps complementary to our technique [28]. Since these techniques do not
exploit program semantics, such techniques can only be used as a post-processing step
(thus offering little control to users of a tool). Finally, work on differential static analy-
sis [2] can be leveraged to suppress a class of warnings with respect to another program
that can serve as a specification [29,32]. Our work does not require any additional pro-
gram as a specification and therefore can be more readily applied to standard verifica-
tion tasks. The work on CBUGS [27] leverages sequential interleavings as a specifica-
tion while checking concurrent programs.

7 Conclusions

We presented the angelic verification framework that constrains a verifier to search for
warnings that cannot be precluded with acceptable specifications over unknowns from
the environment. Our framework is parameterized to allow a user to choose different
instantiations to fit the precision-recall tradeoff. Preliminary experiments indicate that
such a tool can indeed be competitive with industrial tools, even without any modeling
effort. With subsequent modeling (e.g. adding a harness), the same tool can find more
interesting warnings.
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