
Verifying computations with state
Benjamin Braun, Ariel J. Feldman⋆, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael Walfish

The University of Texas at Austin ⋆University of Pennsylvania

Abstract

When a client outsources a job to a third party (e.g., the
cloud), how can the client check the result, without re-
executing the computation? Recent work in proof-based
verifiable computation has made significant progress on
this problem by incorporating deep results from complex-
ity theory and cryptography into built systems. However,
these systems work within a stateless model: they exclude
computations that interact with RAM or a disk, or for
which the client does not have the full input.

This paper describes Pantry, a built system that over-
comes these limitations. Pantry composes proof-based
verifiable computation with untrusted storage: the client
expresses its computation in terms of digests that attest to
state, and verifiably outsources that computation. Using
Pantry, we extend verifiability to MapReduce jobs, sim-
ple database queries, and interactions with private state.
Thus, Pantry takes another step toward practical proof-
based verifiable computation for realistic applications.

1 Introduction
This paper addresses a fundamental problem in systems
security: how can a local computer verify the correctness
of a remote execution? (Checking that the given program
was expressed correctly is a complementary concern,
studied by the field of program verification.) Our focus
on execution verification is motivated by large MapRe-
duce jobs, remote database queries, and cloud computing
more generally. In these scenarios, the causes of incorrect
execution include corruption of input data in storage or
transit, hardware faults, platform bugs, and misconfigura-
tion. Unfortunately, the faults, and their effects, may not
be visible as such. Indeed, when a job completes, after
having processed petabytes of data, how can the client be
sure that the output is correct [77]?

The client could audit the output [55], but this tech-
nique fails if a problem happens outside the selected
sample. The client could replicate the computation (using
state machine replication [23], quorums [51], or outsourc-
ing to two clouds [5, 22]), but this technique works only
if replica faults are uncorrelated. The client could trust

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the owner/author.
Copyright is held by the owner/author(s).
SOSP ’13, November 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11
http://dx.doi.org/10.1145/2517349.2522733

the remote hardware and use attestation [60, 63], but
what if the hardware is faulty? The client could use a
tailored solution [8, 13, 18, 28, 39, 58, 70, 73, 75], but
such solutions are not available for all applications.

Perhaps surprisingly, the client can receive a guaran-
tee that covers the entire execution of the computation,
that makes no assumptions about the performing plat-
form (other than cryptographic hardness assumptions),
and that applies generally. In proof-based verifiable com-
putation, the performing computer (or prover) returns the
results along with a proof that the client (or verifier) can
efficiently and probabilistically check. If the entire com-
putation was executed correctly, the client accepts, and if
there is any error, the client rejects with high probability.

These protocols are based on deep theoretical tools:
probabilistically checkable proofs (PCPs) [6, 7], in-
teractive proofs [9, 37, 38, 48, 69], and cryptogra-
phy [15, 19, 31, 32, 42, 45]. This theory provides very
strong guarantees and is usually phrased as defending
against an arbitrarily malicious prover. Note that mali-
ciousness is not an accusation but rather a comprehen-
sive model that includes benign malfunctions with unpre-
dictable effects.

Recent works have aimed to realize proof-based ver-
ifiable computation in built systems [12, 24, 59, 64–
67, 71, 72, 74]. On the one hand, these systems appear to
approach practicality. Some of them come with compil-
ers that allow programmers to express computations in
a high-level language [12, 59, 65, 67, 74]. And the best
of them achieve reasonable client performance, provided
that there are many identical computations (with poten-
tially different inputs) over which to amortize overhead—
a requirement met by typical data-parallel cloud comput-
ing applications.

On the other hand, almost none of these systems admit
a notion of state or storage:1 their compilation target is
constraints, a generalization of circuits (§2). Given this
“assembly language”, the computation cannot feasibly use
memory, and the client must handle all of the input and
output. Besides hindering programmability, these limita-
tions are inconsistent with remotely stored inputs (as in
MapReduce jobs, queries on remote databases, etc.); for
example, verifying a large MapReduce job would require
the client to materialize the entire dataset.

This paper introduces Pantry, the first system to pro-
vide verifiable computation with state. To do so, Pantry
marries machinery for verifying pure computations with

1The exception is concurrent work by Ben-Sasson et al. [12]; see §9.

techniques from untrusted storage [17, 29, 47, 53]. While
this picture is folklore among theorists [11, 15, 32, 41],
the contributions of Pantry are to work out the details and
build a system, specifically:

(1) Pantry enhances state of the art systems (§2) for
verifiable computation (Ginger [67], Zaatar [65], Pinoc-
chio [59]) with a storage abstraction (§3). The program-
mer expresses a computation using a subset of C plus
two new primitives—PutBlock and GetBlock—and the
Pantry compiler produces appropriate constraints. These
primitives name data blocks by a cryptographic digest,
or hash, of their contents. Such blocks are used exten-
sively in systems for untrusted storage [29, 47]; however,
in Pantry, the verifier will not be fetching the blocks to
check them. The key insight here is that there exist hash
functions that are amenable to the constraint formalism.

(2) Using PutBlock and GetBlock, we build a ver-
ifiable MapReduce framework (§4). The programmer
writes Map and Reduce functions, much as in standard
MapReduce frameworks. Here, however, input and output
files are named by the digests of their contents.

(3) We also use PutBlock and GetBlock (together with
well-known techniques [17, 53]) to build higher-level
storage abstractions: a RAM and a searchable tree (§5).
We use the tree to build a database application that sup-
ports verifiable queries in a (small) subset of SQL. The
notable aspects here are the placement of functionality
and the result: the abstractions are exposed to the C pro-
grammer, they need not be built into the compiler, and
operations on these abstractions happen verifiably even
though the client does not have the state.

(4) We compose PutBlock and GetBlock with a zero-
knowledge variant of Pinocchio [32, 59], to build applica-
tions in which the prover’s state is private: face matching,
toll collection, etc. (§6).

The components just described have awkward usage
restrictions (the database is single-writer, iteration con-
structs need static upper bounds, etc.), due in part to
the clumsiness of the constraint formalism. Worse, the
measured cost (§8) of the implementation (§7) is very
high: the prover’s overhead is tremendous, and the ver-
ifier incurs a similarly high per-computation setup cost,
requiring many invocations to justify this expense.

However, compared to prior systems for verifiable com-
putation (§9), Pantry improves performance: by not han-
dling inputs, the verifier saves CPU and network costs.
This effect, together with Pantry’s enhanced expressive-
ness, expands the universe of applications for which ver-
ification makes sense (§10). MapReduce, for example,
works over remote state, and is well-suited to amortizing
the setup costs, since it entails many identical computa-
tions. And the private state applications provide function-
ality that does not exist otherwise or previously required
intricate custom protocols. In summary, Pantry extends

proof-based verifiable computation to real applications of
cloud computing (albeit at much smaller scales for now).

2 Pantry’s base: Zaatar and Pinocchio
We present Zaatar [65] and Pinocchio [59], and the under-
lying theory, in a unified framework. Similar frameworks
appear in prior work [59, 65–67, 74], and aspects of our
presentation are borrowed [65, §2][74, §2].

2.1 Overview of Zaatar and Pinocchio

A client, or verifier V , sends a program Ψ, expressed in a
high-level language, to a server, or prover P . V sends in-
put x and receives output y, which is supposed to be Ψ(x).
V then engages P in a protocol that allows V to check
whether P executed correctly. This protocol assumes a
computational bound on P (e.g., that P cannot break a
cryptographic primitive). However, the protocol makes
no other assumptions about P : its guarantees hold regard-
less of how or why P malfunctions. These guarantees are
probabilistic (over V’s random choices):

• Completeness. If y = Ψ(x), then if P follows the
protocol, Pr{V accepts} = 1.

• Soundness. If y ̸= Ψ(x), then Pr{V rejects} > 1 − ϵ,
where ϵ can be made small.

Given a specific computation Ψ, we call each invoca-
tion of it an instance. The per-instance costs for V are
very low. However, in order to participate in the proto-
col, V incurs a setup cost for each Ψ, which amortizes
over multiple instances, either over a batch [65] or indefi-
nitely [59] (see Section 2.3).

2.2 Zaatar and Pinocchio in more detail

Verifiably outsourcing a computation happens in three
steps, depicted in Figure 1. First, a compiler transforms
the computation Ψ to an algebraic system of constraints.
Next, P produces a solution to these constraints that
implies y = Ψ(x). Finally, P convinces V that it has
produced such a solution, thereby establishing that y =
Ψ(x). We now describe each step in detail; for the time
being, we assume only one instance (§2.3 revisits).

(1) Ψ is represented as constraints. The programmer
begins by expressing a computation, Ψ, in a subset of C
or an equivalent high-level language (described in §2.4)
and invoking a compiler [50, 59, 65, 67]. Here, we focus
on the compilation target: a set of constraints [20, 67].

In our context, a set of constraints C is a system of
equations in variables (X, Y , Z), over a large finite field,
F; we choose F=Fp (the integers mod a prime p), where
p is large (e.g., 128 bits). Each constraint has total degree
2, so each summand in a constraint is either a variable
or a product of two variables. Variables X and Y repre-
sent the input and output variables, respectively; for now,

Ψ , x
y

queries

prover (P) verifier (V)

tests

Ψ Ψ

accept/
reject

1 1
C C

π z

2

3

replies

Figure 1—Verifiable outsourcing in Zaatar and Pinocchio, as-
suming a single instance of a computation Ψ on input x (amor-
tization is depicted in Figure 2). Step ➀: V and P compile
Ψ from a high-level language to constraints C. Step ➁: P
produces a satisfying assignment, z, to C(X=x, Y=y). Step ➂:
P uses complexity-theoretic and cryptographic machinery to
convince V that P holds a satisfying assignment.

we assume one of each. Upper-case letters (X, Y , Z, . . .)
represent constraint variables; their lower-case counter-
parts (x, y, z, . . .) represent concrete values taken by (or
assigned to, or bound to) those variables.

Also, let C(X=x) mean C with X bound to x (V’s
requested input); C(X=x, Y=y) indicates that in addi-
tion Y is bound to y (the purported output). Notice that
C(X=x, Y=y) is a set of constraints over the variables
Z. If for some z, setting Z=z makes all constraints in
C(X=x, Y=y) hold simultaneously, then C(X=x, Y=y) is
said to be satisfiable, and z is a satisfying assignment.

For a given computation Ψ, a set of constraints C is said
to be equivalent to Ψ if: for all x, y, we have y = Ψ(x)
if and only if C(X=x, Y=y) is satisfiable. As a simple
example, the constraints C={Z−X = 0, Z+1−Y = 0}
are equivalent to add-1 [20]. Indeed, consider a pair (x, y).
If y = x + 1, then there is a satisfying assignment to
C(X=x, Y=y), namely Z=x. However, if y ̸= x + 1, then
C(X=x, Y=y) is not satisfiable.

(2) P computes and identifies a satisfying assignment.
P “executes” Ψ(x) by identifying a satisfying assignment
to the equivalent constraints C(X=x), and obtaining the
output y in the process. To do so, P runs a constraint-
solving routine that takes as input a compiler-produced
list of annotated constraints. This routine goes constraint-
by-constraint. A common case is that a constraint intro-
duces a variable and can be written as an assignment to
that new variable (e.g., {. . . , Z4 = Z3 · (Z2 + Z1), Z5 =
Z4 · Z2, . . .}); the routine “solves” such constraints by
evaluating their right-hand sides.

Some constraints require additional work of P . An
example is the != test (this will give some intuition for the
techniques in Section 3). Consider the following snippet:

if (Z1 != Z2)
Z3 = 1;

else
Z3 = 0;

This compiles to the following constraints [20]:

C!= =
{

M · (Z1 − Z2)− Z3 = 0
(1 − Z3) · (Z1 − Z2) = 0

}
.

Notice that the first constraint introduces two new vari-
ables (M, Z3), and thus there are multiple ways to satisfy
this constraint. To choose values for these variables that
also satisfy the second constraint, P’s constraint-solving
routine consults the constraints’ annotations. The relevant
annotation tells P that if Z1 ̸=Z2, then P should set M
equal to the multiplicative inverse of Z1 − Z2, which P
computes outside of the constraint formalism. We call
this “computing exogenously” (in theoretical terms, M
and Z3 are “non-deterministic input”), and there is an
analogy between the exogenous computation of M and
supplying values from storage in Section 3.

(3) P argues that it has a satisfying assignment. P
wants to prove to V that it knows a satisfying assignment
to C(X=x, Y=y); this would convince V that the output y
is correct (and moreover that the computation, expressed
in constraints, was executed correctly). Of course, there
is a simple proof that a satisfying assignment exists: the
satisfying assignment itself. However, V could check this
proof only by examining all of it, which would be as
much work as executing the computation.

Instead, Zaatar and Pinocchio apply the theory of
PCPs [6, 7],2 which implies that a classical proof—a
satisfying assignment z, in this case—can be encoded
into a long string π in a way that allows V to detect
the proof’s validity by (a) inspecting a small number of
randomly-chosen locations in π, and (b) applying effi-
cient tests to the contents found at those locations. The
details—what is in the encoding π, how V selects loca-
tions to inspect, what tests V applies, and why all of this
works—are beyond the scope of this paper.

The protocols do not use PCPs alone: the encoded
proof π is far larger than the number of steps in Ψ, so
making V receive π would again defeat our purpose. To
get around this issue, Zaatar and Pinocchio—and their
theoretical progenitors—compose PCPs with cryptogra-
phy, based on assumptions that P cannot break certain
primitives. There are two types of protocols; our compiler
produces V and P binaries for both.

First, Zaatar [65] instantiates an efficient argument [19,
42, 45, 66, 67]: V extracts from P a cryptographic com-
mitment to π, and then V queries P , meaning that V asks
P what values π contains at particular locations. V uses
PCPs to choose the locations and test the replies, and
cryptography to ensure that P’s replies pass V’s tests
only if P’s replies are consistent with a proof π that a sat-

2Our description takes some expositional license: Pinocchio’s explicit
base is GGPR [32], which does not invoke PCPs. However, one can
regard the key in their work as PCP queries, in encrypted form [16].

replies(ß)

Ψ, x(1)

queries

P V

…

y(1)

x(2)

y(2)

x(ß)

y(ß)

tests(1)

π(1)

π(ß)

…

tests(ß)

…

replies(1) …
…

Ψ P V

…

x(1)

y(1)

tests(1)

π(1)

Enc(queries)

x(2)

y(2)

tests(2)

π(2)

replies(1)

replies(2)

(a) Zaatar (b) Pinocchio

Figure 2—Amortization in Zaatar [65] and Pinocchio [59]. Su-
perscripts denote different instances. In Zaatar, V’s work to
formulate queries amortizes over a batch of β instances; in
Pinocchio, analogous work amortizes over all future instances
of the same computation (this is better). In both protocols, the
Ψ → C step happens only once for each Ψ (not depicted).

isfying assignment exists. The protocol details are given
in prior works [65, §2][67, §2][66].

The second variant is instantiated by Pinocchio [59]
and known as a non-interactive argument [32, 33]: V
preencrypts queries and sends them to P . As in the first
variant, the queries are chosen by PCP machinery and de-
scribe locations where V wants to inspect an eventual π.
Here, however, P replies to the queries without knowing
which locations V is querying. This process (hiding the
queries, replying to them, testing the answers) relies on
sophisticated cryptography layered atop the PCP machin-
ery. The details are described elsewhere [16, 32, 59].

2.3 Amortization, guarantees, and costs

V incurs a setup cost (to express which locations in π to
query) for each computation Ψ and each input size. This
cost amortizes differently in Zaatar and Pinocchio.

In Zaatar, amortization happens over a batch: a set of
β instances of the identical computation Ψ, on different
inputs (Figure 2(a)). Thus, Zaatar presumes parallelism:
for j ∈ {1, . . . ,β}, V sends parallel inputs x(j), P returns
parallel outputs y(j), and P formulates parallel proofs
π(j) establishing that y(j)=Ψ(x(j)). The synchronization
requirement is that V extract commitments to all π(j)

before issuing the queries (because queries are reused
across the batch). Note that P is an abstraction and could
represent multiple machines (as in our MapReduce appli-
cation in Section 4). Zaatar meets the completeness and
soundness properties given earlier (§2.1), with ϵ < 1/106

(see [65, Apdx. A.2]), and in addition provides soundness
for the batch: if for any j ∈ {1, . . . ,β}, y(j) ̸= Ψ(x(j)),
then Pr{V rejects the batch} > 1 − ϵ.

In Pinocchio, query formulation by V and installation
on P happen once per Ψ, thereby amortizing over all fu-
ture instances of the identical computation (Figure 2(b)).

naive Zaatar [65], Pinocchio [59]

V , setup 0 c2 · (|Z|+ |C|)
V , runtime β·(T(|x|)+c1|y|) β · (c3 + c4 · (|x|+ |y|))
P , runtime 0 β · (c5 · (|Z|+ |C|)

+ c6 · |C| · log |C|)
T: running time of computation as a function of input length.
x, y: input and output of computation.
β: number of instances over which V’s setup cost amortizes
c1, c2, . . .: model costs of processing input/output,

cryptographic primitives, PCP queries, etc.

Figure 3—CPU costs of step (3) under Zaatar and Pinocchio,
and under the naive approach: reexecute and compare. The
amortization behavior is different for Zaatar and Pinocchio
(see text). Also, the constants (c2, c3, . . .) differ: Pinocchio’s c4
is lower while for the other constants, Zaatar’s values are lower.
Section 8.1 discusses these constants, the magnitudes of |Z| and
|C|, and the costs of step (2).

Pinocchio meets the completeness and soundness prop-
erties, with ϵ < 1/2128. Pinocchio also has versions that
provide zero-knowledge (the prover can keep private the
contents of the satisfying assignment z) and public verifi-
ability [59]; the former provides a crucial foundation for
Pantry’s privacy-preserving applications (§6).

Figure 3 depicts the protocols’ CPU costs for step (3).
A key performance goal is that V should incur lower
(amortized) CPU costs than the naive alternative: reexe-
cuting the computation [31].3 Performance is thus evalu-
ated as follows [59, 65–67, 74]. (1) Are the per-instance
costs for V less than the running time of Ψ, when Ψ is
expressed in C and compiled to machine code? (Other-
wise, the performance goal cannot be met.) (2) What is
the cross-over point, meaning the number of instances
past which V expends less total CPU than the naive veri-
fier? (3) What are the overheads of P , relative to normal
execution?

Rough answers are as follows (see also Section 8). For
question (1), the answer is “sometimes; it depends on
the computation”. For (2), the cross-over points are tens
of thousands or millions [65, §5.2], depending on the
computation. For (3), the overheads are very high: factors
of 104 or 105 are not uncommon.

To briefly compare the performance of Zaatar and
Pinocchio, Pinocchio has superior amortization behavior
(see above) but higher proving and setup costs (and hence
higher cross-over points), by constant factors.

2.4 Expressiveness

As context for Pantry, we now describe the language
features and limitations of prior work [20, 59, 65, 67].

Pre-Pantry, compilers accepted a C subset [59] (or the
equivalent [50, 65, 67]) that includes functions, structs,

3One might think to compare to replicated execution (§1), but a goal
of verifiable computation is to provide very strong guarantees (§2.1);
replication stops working when faults are correlated.

typedefs, preprocessor definitions, if-else statements, ex-
plicit type conversion, and standard integer and bitwise
operations. These compilers partially support pointers
and loops: pointers and array indexes must be compile-
time constants (ruling out a RAM abstraction), and like-
wise with the maximum number of loop iterations.

When compiled, most operations introduce only a few
new variables or constraints [65, §4]. There are four ex-
ceptions. The first two are inequalities and bitwise op-
erations; these constructs separate numbers into their
bits and glue them back together [20, 59, 67], requir-
ing ≈ log2 |F| constraints and variables per operation.
The other two are looping and if-else statements: loops
are unrolled at compile time, and the costs of an if-else
statement combine the costs of the then-block and the
else-block [20].

Apart from the specifics of language constructs and
costs, the pre-Pantry model of computation is severely
limited, even hermetic: computations can interact with
state neither as auxiliary input, nor during execution, nor
as auxiliary output. Therefore, using Zaatar or Pinocchio
requires V to supply all inputs, receive all outputs, and
eschew any notion of RAM, disk, or storage. These are
the limitations addressed by Pantry.

3 Storage model and primitives in Pantry
The core of Pantry is two primitives, verifiable PutBlock
and GetBlock, that extend the model above. This section
describes the primitives; Sections 4–6 describe their use.

To explain Pantry’s approach, we note that the inter-
face to step (3) in Section 2.2 is a set of constraints and a
purported satisfying assignment. Thus, a first cut attempt
at incorporating state into verifiable computation would
be to represent load and store operations with constraints
explicitly. However, doing so naively would incur hor-
rific expense: if memory is an array of variables, then
load(addr) would require a separate constraint for each
possible value of addr (assuming addr is not resolvable
at compile-time). This approach would also require the
input state to be available to the verifier V .

To overcome these problems, we want a model in
which computations do not execute storage but can ef-
ficiently verify it. Given such a model, we could use
constraints to represent computation (as we do now) as
well as efficient checks of storage. But such a model is
actually well-studied, in the context of untrusted storage:
the state is represented by hash trees [17, 53], often ac-
companied by a naming scheme in which data blocks are
referenced by hashes of their contents [29, 47].

If we could efficiently represent the computation of
the hash function as constraints, then we could extend the
computational model in Section 2 with the semantics of
untrusted storage. At that point, a satisfying assignment

to the constraints would imply correct computation and
correct interaction with state—and we could use step (3)
from Section 2.2 to prove to V that P holds such an
assignment. We now describe this approach.

3.1 Verifiable blocks: overview

The lowest level of storage is a block store; it consists of
variable-length blocks of data, in which the blocks are
named by collision-resistant hash functions (CRHFs) of
those blocks. Letting H denote a CRHF, a correct block
store is a map

S : name → block ∪ ⊥,

where if block = S(name), then H(block) = name.
In other words, S implements the relation H−1. This
naming scheme allows clients to use untrusted storage
servers [29, 47]. The technique’s power is that given a
name for data, the client can check that the returned block
is correct, in the sense of being consistent with its name.
Likewise, a client that creates new blocks can compute
their names and use those names as references later in
the computation.

But unlike the scenario in prior work, our V cannot
actually check the contents of the blocks that it “retrieves”
or impose the correct names of the blocks that it “stores”,
as the entire computation is remote. Instead, V represents
its computations with constraints that P can satisfy only
if P uses the right blocks. Another way to understand
this approach is that V uses the verification machinery to
outsource the storage checks to P; in fact, P itself could
be using an untrusted block store!

We will show in later sections how to write general-
purpose computations; for now, we illustrate the model
with a simple example. Imagine that the computation
takes as input the name of a block and returns the asso-
ciated contents as output. The constraints are set up to
be satisfiable if and only if the return value hashes to the
requested name. In effect, P is being asked to identify
a preimage of H, which (by the collision-resistance of
H) P can do only if it returns the actual block previously
stored under the requested name.

3.2 Verifiable blocks: details and costs

Pantry provides two primitives to the programmer:

block = GetBlock(name);
name = PutBlock(block);

These primitives are detailed in Figure 4. Notice that in a
correct execution, H(block)=name. Given this relation,
and given the collision-resistance of H, the programmer
receives from GetBlock and PutBlock a particular storage
model: S functions as write-once memory, where the
addresses are in practice unique, and where an address
certifies the data that it holds.

GetBlock (name n):
block← read block with name n in block store S
assert n == H(block)
return block

PutBlock (block):
n← H(block)
store (n, block) in block store S
return n

Figure 4—Pseudocode for verifiable storage primitives. These
primitives compile to constraints that enforce the required re-
lation between n and block; the constraints do not represent
interactions with S explicitly.

Of course, how S is implemented is unspecified here;
the choice can be different for different kinds of storage
(MapReduce, RAM, etc.). And, per the definition of S,
block length can vary; for example, in the MapReduce
application (§4), an entire file will be one block.

To bootstrap, the client supplies one or more names as
input, and it may receive one or more names as output,
for use in further computations. These names are related
to capabilities [40, 46]: with capabilities, a reference cer-
tifies to the system, by its existence, that the programmer
is entitled to refer to a particular object; here, the refer-
ence itself certifies to the programmer that the system is
providing the programmer with the correct object.

We now describe the constraints that enforce the model.
The code b = GetBlock(n) compiles to constraints
CH−1 , where: the input variable, X, represents the name;
the output variable, Y , represents the block contents; and
CH−1(X=n, Y=b) is satisfiable if and only if b ∈ H−1(n)
(i.e., H(b) = n). The code n = PutBlock(b) compiles
to the same constraints, except that the inputs and out-
puts are switched. Specifically, this line compiles to con-
straints CH , where: X represents the block contents, Y
represents the name, and CH(X=b, Y=n) is satisfiable if
and only if n = H(b).

Of course, CH and CH−1 will usually appear inside a
larger set of constraints, in which case the compiler rela-
bels the inputs and outputs of CH and CH−1 to correspond
to intermediate program variables. As an example, con-
sider the following computation:

add(int x1, name x2) {
block b = GetBlock(x2);
/* assume that b is a field element */
return b + x1;

}

The corresponding constraints are:

C = {Y − B − X1 = 0} ∪ CH−1(X=X2, Y=B),

where the notation X=X2 and Y=B means that, in CH−1

above, the appearances of X are relabeled X2 and the
appearances of Y are relabeled B. Notice that variable

B is unbound in C(X1=x1, X2=x2, Y=y). To assign B=b
in a way that satisfies the constraints, P must identify a
concrete b, presumably from storage, such that H(b)=x2.

Costs. The main cost of GetBlock and PutBlock is the
set of constraints required to represent the hash func-
tion H in CH and CH−1 . Unfortunately, widely-used func-
tions (e.g., SHA-1) make heavy use of bitwise opera-
tions, which do not have compact representations as con-
straints (§2.4). Instead, we use an algebraic hash function,
due to Ajtai [4, 36] and based on the hardness of approxi-
mation problems in lattices. The Ajtai function multiplies
its input, represented as a bit vector, by a large matrix
modulo an integer. This matrix-vector multiplication can
be expressed concisely in constraints because constraints
naturally encode sums of products (§2.2). Indeed, Ajtai
requires approximately ten times fewer constraints than
SHA-1 would. Nevertheless, Ajtai uses some bitwise op-
erations (for modular arithmetic) and hence requires a
substantial number of constraints (§8.1).

3.3 Guarantees and non-guarantees

Notice that the constraints do not capture the actual inter-
action with the block store S; the prover P is separately
responsible for maintaining the map S. What ensures that
P does so honestly? The high-level answer is the checks
in the constraints plus the collision-resistance of H.

As an illustration, consider this code snippet:

n = PutBlock(b);
b’ = GetBlock(n);

In a reasonable (sequential) computational model, a read
of a memory location should return the value written
at that location; since our names act as “locations”, a
correct execution of the code above should have vari-
ables b and b′ equal. But the program is compiled to
constraints that include CH (for PutBlock) and CH−1 (for
GetBlock), and these constraints could in principle be
satisfied with b′ ̸= b, if H(b′) = H(b). However, P is
prevented from supplying a spurious satisfying assign-
ment because collision-resistance implies that identifying
such a b and b′ is computationally infeasible. That is,
practically speaking, P can satisfy the constraints only if
it stores the actual block and then returns it.

However, Pantry does not formally enforce durabil-
ity: a malicious P could discard blocks inside PutBlock
yet still exhibit a satisfying assignment. Such a P might
be caught only when executing a subsequent computa-
tion (when V issues a corresponding GetBlock, P would
be unable to satisfy the constraints), and at that point,
it might be too late to get the data back. For a formal
guarantee of durability, one can in principle use other
machinery [68]. Also, Pantry (like its predecessors) does
not enforce availability: P could refuse to engage, or fail
to supply a satisfying assignment, even if it knows one.

What Pantry enforces is integrity, meaning that pur-
ported memory values (the blocks that are used in the
computation) are consistent with their names, or else the
computation does not verify.

For this reason, if V’s computation executes
GetBlock(foo), and foo is an erroneous name in the sense
that it does not represent the hash of any block previously
stored, then P has no way of providing a satisfying as-
signment. This is as it should be: the computation itself is
erroneous (in this model, correct programs pass the assert
in GetBlock; see Figure 4).

A limitation of this model is that P cannot prove to V
that V made such an error; to the argument step (step (3)
in §2.2), this case looks like the one in which P refuses
to provide a satisfying assignment. While that might be
disconcerting, Pantry’s goal is to establish that a remote
execution is consistent with an expressed computation;
program verification is a complementary concern (§1).

4 Verifiable MapReduce
This section describes how Pantry provides verifiability
for MapReduce jobs. We begin with a brief review of the
standard MapReduce model [26].

A MapReduce job consists of Map and Reduce func-
tions, and input data structured as a list of key-value
pairs; the output is a transformed list of key-value pairs.
The programmer supplies the implementations of Map
and Reduce; Map takes as input a list of key-value pairs
and outputs another list of key-value pairs, and Reduce
takes as input a list of values associated with a single key
and outputs another list of values. The framework runs
multiple instances of Map and Reduce as stand-alone
processes, called mappers and reducers. The framework
gives each mapper a chunk of the input data, shuffles the
mappers’ output, and supplies it to the reducers; each
reducer’s output contributes a chunk to the overall out-
put of the job. A centralized module, which is part of
the framework, drives the job (by assigning processes to
machines, etc.).

Overview of MapReduce in Pantry. The verifier V is
a machine that invokes a MapReduce job (for instance,
the desktop machine of a cloud customer). The goal of
Pantry’s MapReduce is to assure V that its job starts from
the correct input data and executes correctly from there.

The model here will be similar to the standard one
outlined above, except that the input and output files will
be verifiable blocks (§3): a file will be referenced by a
collision-resistant hash, or digest, of its contents (from
now on, we use “digest” and “name” interchangeably).
In this model, invoking a MapReduce job requires V to
supply a list of digests, one for each input file; call this
list x. Likewise, V receives as output a list of digests, y. V
learns of the digests in x either from a bootstrapping step

(creating the data and keeping track of its digest, say) or
as the output of a job; likewise, V can use the digests
in y either to download (and verify the integrity of) the
actual data or to feed another job. That is, these digests
are self-certifying references to the data [29, 47].

Given this model, V will be guaranteed that the output
digests y are correct, meaning that the actual input data
(the key-value pairs whose digests are x), when trans-
formed by V’s desired Map and Reduce functions, results
in output data with digests y. But providing this guaran-
tee requires an application of the verification machinery
(§2–§3), which raises a design question: what exactly
is the computation to be verified, and which machine(s)
implement P?

Pantry’s approach is as follows (we discuss the ra-
tionale later). The verifier regards the MapReduce job
as two separate batch computations (§2.3), one for the
map phase and one for the reduce phase. In these compu-
tations, each mapper and reducer is an instance, with a
prover. In our design, V handles an intermediate digest
for every (mapper, reducer) pair.

Mechanics. Pantry’s MapReduce framework wraps Map
and Reduce into functions Mapper and Reducer, which
are depicted in Figure 5; the job is executed by mul-
tiple instances of each. For verification, Pantry’s C-to-
constraint compiler transforms these functions into con-
straints, and then each instance—playing the role of the
prover—convinces V that it knows a satisfying assign-
ment to the corresponding constraints (§2.2, step (3)).
Execution and verification can be decoupled, but under
Zaatar, the complete execution of a phase (map or reduce)
must happen before verification of that phase.

We now give more detail, beginning with some nota-
tion. Let M and R be the number of mappers and reducers,
and CMapper and CReducer the constraint representations of
Mapper and Reducer. Also, recall that superscripts denote
instances in a batch (§2.3).

When the mappers execute, each instance j ∈
{1, . . . , M} gets as its input, x(j), the digest of some data.
The output of an instance, map_out(j), is a vector of R
digests, one for each reducer that this mapper is “feed-
ing”; the framework receives this output and forwards it
to V . Verification convinces V that each mapper j knows a
satisfying assignment to CMapper(X=x(j), Y=map_out(j)),
which establishes for V that the mapper worked over
the correct data, applied Map correctly, partitioned the
transformed data over the reducers correctly, and—in
outputting map_out(j)—named the transformed data cor-
rectly. Note that {map_out(j)}j={1,...,M} are the M · R
intermediate digests mentioned above.

The framework then supplies the inputs to the second
phase, by shuffling the digests {map_out(j)}j={1,...,M}

and regrouping them as {reduce_in(j)}j={1,...,R}, where

DigestArray Mapper(Digest X) {

Block list_in = GetBlock(X);
Block list_out[NUM_REDUCERS];
Digest Y[NUM_REDUCERS];

// invoke programmer-supplied Map
Map(list_in, &list_out);

for (i = 0; i < NUM_REDUCERS; i++)
Y[i] = PutBlock(list_out[i]);

return Y;
}

Digest Reducer(DigestArray X) {

Block list_in[NUM_MAPPERS];
Block list_out;

for (i = 0; i < NUM_MAPPERS; i++)
list_in[i] = GetBlock(X[i]);

// invoke programmer-supplied Reduce
Reduce(list_in, &list_out);

Y = PutBlock(list_out);

return Y;
}

Figure 5—For verifiable MapReduce, Pantry regards the depicted functions, Mapper and Reducer, as separate computations. The
two functions compile to separate constraints, and V verifies in two batches: one for the mappers and one for the reducers.

each reduce_in(j) is a vector of M digests, one for each
mapper. (V does this regrouping too, in order to know the
reducers’ inputs.)

The framework then invokes the reducers, and the out-
put of each reducer j ∈ {1, . . . , R} is a single digest y(j).
Verification convinces V that each reducer j knows a sat-
isfying assignment to CReducer(X=reduce_in(j), Y=y(j)).
This establishes for V that each reducer worked over the
correct M blocks, applied Reduce to them correctly, and
produced the correct output digests.

Analysis. Figure 6 compares the costs of the map phase
under Pantry’s MapReduce and the naive approach of ver-
ifying a job by downloading the inputs (perhaps checking
them against digests) and locally executing the computa-
tion. A similar analysis applies to the reduce phase.

Both pre-Pantry and under Pantry, the verifier can save
CPU cycles compared to the naive verifier provided that
the per-instance verification cost is less than the cost
to execute the instance. Pre-Pantry, this condition holds
only if c3 + c4 · (|x|+ |y|) < T(|x|)+ c1|y|, implying that
using the verification machinery makes sense only if the
computation is superlinear in its input size (see Figure 3).
Under Pantry, however, the analogous condition holds
when c3 + c4 · |d| · (R + 1) < Tmapper(|ch|), which can
hold even when the computation is linear in its input. If
this condition holds, then the CPU cross-over point (§2.3)
occurs when M ≥ c2·(|Zmapper|+|CMapper|)

Tmapper(|ch|)−c3−c4·|d|·(R+1) , per Figure 6.
Pantry also saves the verifier network costs. This hap-

pens when M ≥ c7·(|Zmapper|+|CMapper|)
|ch|−c8−R·|d| . Notice that the floor

on M is proportional to the setup costs: the higher the
setup costs, the more instances are needed to beat naive
verification. Also, the floor moves inversely with |ch|: the
larger the chunk size, the greater the expense incurred by
the naive verifier in downloading the inputs.

We emphasize that this analysis is predicated on a
baseline that is favorable to Pantry. If the baseline were
instead local execution and local storage (no remote party
at all), then Pantry would never save network costs. How-

naive (local) Pantry

CPU costs
V , setup 0 c2 · (|Zmapper|+ |CMapper|)
V , runtime M · Tmapper(|ch|) M · (c3 + c4 · |d| · (R + 1))

network costs
setup 0 c7 · (|Zmapper|+ |CMapper|)
runtime M · |ch| M · (c8 + |d| · (R + 1))

Tmapper: running time of a map instance M: # of mappers
|ch|: length of a mapper’s input |d|: length of a digest

Figure 6—Verification costs in Pantry’s MapReduce and
naive (local) verification, for the map phase; the reduce phase
is similar. The CPU costs largely follow Figure 3; the main dif-
ference is that V now handles only a digest of the inputs. P’s
costs are omitted, but the substitutions are similar.

ever, the analyzed baseline corresponds to common uses
of the cloud today: MapReduce jobs execute remotely
because their inputs are remote, so downloading and up-
loading ought to be recognized as a cost. Another basis
for comparison is Zaatar and Pinocchio: their verifiers
handle all inputs and outputs, and thus cannot ever save
network costs.

Summarizing the analysis, a MapReduce application
calls for Pantry if (a) verifiability is needed and (b) the
computational cost of the job is high (so there is a CPU
cross-over point), there is a lot of data (so there is a
network cross-over point), or both.

Rationale and limitations. Our design reflects awk-
ward aspects of the framework. For example, because
of the existence of setup costs (§2.3), we chose to have
V handle intermediate digests. In more detail, V could
avoid handling intermediate digests—it could verify the
job’s output digests {y(j)} directly from the input digests
{x(j)}—by verifying a single batch. But each instance
would have to encompass constraints for one reducer
and M mappers, causing setup costs to be, undesirably,
proportional to the aggregate mappers’ (instead of a sin-
gle mapper’s) work. To further explain our choice, we

note that quadratic intermediate state is not inherently
disastrous: in standard MapReduce, the framework keeps
O(M · R) state [26].

Other limitations stem from the constraint model. For
example, we eschew a general-purpose partitioning mod-
ule in the mapper, as it would compile to a large number
of constraints, increasing costs. Instead, the program-
mer must partition the output of Map into R chunks, and
must similarly read from M inputs in Reduce—tasks that
are hidden in standard MapReduce. Moreover, Map and
Reduce face the expressiveness restrictions described ear-
lier (§2.4); one consequence is that each mapper’s chunk
size must be identical and fixed at compile time, and
likewise with the reducers.

5 Verifiable data structures
This section describes Pantry’s higher-level storage ab-
stractions: RAM, a searchable tree, and a simple database.
As with MapReduce, we want to implement the abstrac-
tions as data structures in a subset of C, augmented with
PutBlock and GetBlock (§3). To do so, we apply the
technique of embedding in data blocks the names (or
references or hashes—these concepts are equivalent here)
of other blocks [17, 29, 47, 49, 53] (see also §9). In the
resulting structure, the hashes are links—or pointers that
authenticate what they point to. The starting hash (for
instance, of the root of a tree) can authenticate any value
in the structure; we review how this is done below. We
can then incorporate the resulting abstractions into some
larger C program, compile that program to constraints,
and apply the argument step (§2.2) to those constraints.

5.1 Verifiable RAM

Pantry’s verifiable RAM abstraction enables random
access to contiguously-addressable, fixed-size memory
cells. It exposes the following interface:

value = Load(address, digest);
new_digest = Store(address, value, digest);

Pseudocode for the implementation is in Figure 7.
The high-level idea behind this pseudocode is that the

digest commits to the full state of memory [17, 53], in
a way that we explain shortly. Then, a Load guarantees
that the claim “address contains value” is consistent with
digest. For Store, the guarantee is that new_digest cap-
tures the same memory state that digest does with the
exception that address now holds value.

To explain how a digest d can commit to memory,
we briefly review Merkle trees [17, 53]. Every node is
named by a collision-resistant hash (denoted H) of its
contents. An interior node’s contents are the names (or
hashes) of the node’s left and right children. Each leaf
node corresponds to a memory address, and contains the
value currently held at the memory address. Then, the

Load(address a, digest d):
ℓ← ⌈log N⌉
h← d
for i = 1 to ℓ:

node← GetBlock(h)
x← ith bit of a
if x = 0:

h← node.left
else:

h← node.right
node← GetBlock(h)
return node.value

Store(address a, value v, digest d):
path← LoadPath(a, d)
ℓ← ⌈log N⌉
node← path[ℓ]
node.value← v
d′ ← PutBlock(node)
for i = ℓ to 1:

node← path[i− 1]
x← ith bit of a
if x = 0:

node.left← d′

else:
node.right← d′

d′ ← PutBlock(node)
return d′

Figure 7—RAM operations use verifiable blocks in a Merkle
tree [17, 53]. N is the number of addresses in the memory.

digest d is the hash of the root node’s contents. Indeed, if
entity A holds a digest d, and entity B claims “the value
at address a is v”, then B could argue that claim to A
by exhibiting a witness-path: the purported name of a’s
sibling, the purported name of their parent, and so on, to
the root. A could then check that the hash relationships
hold and match d. For B to succeed in a spurious claim,
it would have to identify a collision in H.

The pseudocode in Figure 7 is simply applying
this idea: the verifiable blocks in Section 3 provide
the required names-are-hashes referencing scheme, and
the GetBlock invocations compile to constraints that
force P to exhibit a witness-path. Thus, using CLoad
to denote the constraints to which Load compiles,
CLoad(X=(a, d), Y=v) can be satisfied only if the digest
d is consistent with address a holding value v, which is
the guarantee that Load is supposed to be providing.

How does P identify a path through the tree? In prin-
ciple, it could recompute the internal nodes on demand
from the leaves. But for efficiency, our implementation
caches the internal nodes to avoid recomputation.

To invoke Load or Store, the program must begin with
a digest; in Pantry, V supplies this digest as part of the
input to the computation. One way to bootstrap this is
for V to first create a small amount of state locally, then
compute the digest directly, then send the data to P , and
then use the verification machinery to track the changes
in the digest. Of course, this requires that a computation’s
output include the new digest.

This brings us to the implementation of Store, which
takes as input one digest and returns a digest of the new
state. Store begins by placing in local variables the con-
tents of the nodes along the required path (LoadPath
in Figure 7 is similar to Load and involves calls to
GetBlock); this ensures continuity between the old state
and the new digest. Store then updates this path by cre-
ating new verifiable blocks, starting with the block for

address a (which is a new verifiable block that contains
a new value), to that block’s parent, and so on, up to the
root. Let CStore denote the constraints that Store compiles
to. To satisfy CStore(X=(a, v, d), Y=d′), P must (1) ex-
hibit a path through the tree, to a, that is consistent with
d, and (2) compute a new digest that is consistent with
the old path and with the memory update. Thus, the con-
straints enforce the guarantee that Store promises.

Costs. We briefly describe the blowup from the con-
straint representation; Sections 2.2 and 4 show how this
blowup feeds into the costs of V and P . Letting N de-
note the number of memory addresses, a Load or Store
compiles to O(log N) constraints and variables, with the
constant mostly determined by the constraint representa-
tion of H inside GetBlock and PutBlock (§3.2).

5.2 Search tree

We now consider a searchable tree; we wish to support
efficient range searches over any keys for which the less-
than comparison is defined. Specifically, we wish to sup-
port the following API:

values = FindEquals(key, digest)
values = FindRange(key_start, key_end, digest)
new_digest = Insert(key, value, digest)
new_digest = Remove(key, digest)

To implement this interface, a first cut approach would
be to use the general-purpose RAM abstraction (§5.1)
to build a binary tree or B-tree out of pointers (memory
addresses). Unfortunately, this approach is more expen-
sive than we would like: since every pointer access in
RAM costs O(log N), a search in a balanced tree of m
elements would cost O((log N) ·(log m)). Instead, we use
an alternative construction, which illustrates a strategy
applicable to a wide class of data structures.

To get the per-operation cost down to O(log m), we
build a searchable Merkle tree (this is different from the
tree in §5.1). Each node in the tree contains a key, one
or more values corresponding to that key, and pointers to
(that is, hashes of) its children. The nodes are in sorted
order, and the tree is a balanced (AVL) tree, so operations
take time that is logarithmic in the number of keys stored.

A search operation (FindEquals, FindRange) descends
the tree, via a series of GetBlock calls. An update oper-
ation (Insert, Remove) first descends the tree to identify
the node where the operation will be performed; then
modifies that node (via PutBlock, thereby giving it a new
name); and then updates the nodes along the path to the
root (again via PutBlock), resulting in a new digest. As
with RAM, these operations are expressed in C and com-
pile to constraints; if P satisfies the resulting constraints
then, unless it has identified a collision in H, it is return-
ing the correct state (in the case of searches) and the
correct digests (in the case of updates).

5.3 Verifiable database queries

The data structures described above enable us to imple-
ment a simple database that supports verifiable queries.

V specifies queries in a primitive SQL-like language,
which supports the following non-transactional queries
on single tables: SELECT (the WHERE predicates must
refer to a single column), INSERT, UPDATE, DELETE,
CREATE, and DROP. V and P convert each query into C
code that invokes the APIs from Sections 3.2 and 5.2, and
is then compiled into constraints.

The database itself has a simple design. Each row of ev-
ery table is stored as a verifiable block, accessed through
GetBlock/PutBlock (§3). These blocks are pointed to by
one or more indexes, and there is a separate index for
each column that the author of the computation wants
to be searchable. Indexes are implemented as verifiable
search trees (§5.2), and database queries are converted
into a series of calls to the trees’ FindEquals, FindRange,
Insert, and Remove operations.

Because this database uses verifiable data structures
and the code is compiled into constraints, we get strong
integrity guarantees—with little programmer effort be-
yond implementing the data structures and queries.

5.4 Compromises and limitations

A key compromise is that efficiency sometimes requires
not using RAM and instead constructing data structures
directly from verifiable pointers (§5.2, §5.3). One conse-
quence is that the implementer of these data structures
is directly exposed to the clumsiness of the constraint
model (§2.4); for example, if the data structure imple-
mentation indexes into a small array at a variable offset,
the code must loop through the set of possible indexes.

The constraint model imposes several other limitations.
First, because traversal loops have fixed bounds, data
structures have a static size (a fixed depth for trees, etc.),
regardless of the number of elements that they logically
contain. (However, empty cells and nodes need not con-
sume memory or disk.) For similar reasons, the number of
results returned by the search API must be fixed at com-
pile time. Third, as every operation on a data structure is
compiled into a fixed number of constraints, P’s running
time to perform the operation is largely determined by
the data structure’s static size.

6 Private prover state
Pantry enables applications where the prover’s state is
private. For example, the prover holds photographs (e.g.,
of suspects), the verifier (e.g., a surveillance camera)
submits a photograph, and the prover indicates if there
is a match. Using Pantry, the client is assured that the
response is correct, but no information about the prover’s
database leaks (beyond what the output implies).

Pinocchio’s zero-knowledge (ZK) variant [32, 59] pro-
vides most of the solution. Here, step (3) of Section 2.2
persuades V that P has a satisfying assignment to a set
of constraints (as usual), but P cryptographically hides
the actual satisfying assignment. Since the contents of
P’s state appear in the satisfying assignment (§3), the ZK
variant effectively hides P’s state—almost. The wrinkle
is that, under Pantry as so far described, V would begin
with a cryptographic digest of P’s state (§5), and this di-
gest itself leaks information (V could conceivably guess
P’s state and use a digest to check the guess).

Thus, we assume that V begins with a cryptographic
commitment [35, §4.4.1] to the prover’s state. A commit-
ment binds the prover to its state in a way that permits
verifiable queries against that state (as with the previously
described digests) but also hides the state. Then, the com-
putation to be verified takes as input a commitment (not
a digest), begins by querying for values and checking
that they are consistent with the commitment (as with
digests), and then uses those values in the rest of the
computation. To summarize, the commitment hides the
prover’s beginning state from V , and the ZK machinery
hides the prover’s execution.

To realize this approach, we want a commitment prim-
itive that has a reasonably efficient representation in con-
straints. As a compromise, we instantiate a simple scheme
using HMAC-SHA2564 [10] (see Appendix C [21] for
details). Relative to the protocol of Pedersen [61], our
scheme makes a stronger cryptographic assumption but
saves an order of magnitude in constraint size.

Applications. We build (§7) and evaluate (§8) several
applications of the machinery described above. The first
is face matching, which implements the example at the
start of this section. This example is inspired by previous
work [57], but that work provides privacy to both parties
and verifiability to neither. The second is tolling; the
prover is a car, the verifier is a toll collector, and the
verifier checks the prover’s claim about what it owes
for the billing period. This example is inspired by [62],
which requires a custom protocol, while we require only a
simple C program (§7). The third application is regression
analysis (again inspired by prior work that requires a
custom protocol [56]); the prover holds a set of patient
files, the verifier is an analyst seeking to fit a model to this
data, and the computation returns the best-fit parameters.
The details of our applications are in Appendix D [21].

7 Implementation details
The Pantry implementation modifies the Ginger-Zaatar
compiler [20, 65, 67]. The base compiler first transforms
programs written in a high-level language (§2.4) into
a list of assignment statements, producing a constraint
4Ajtai is unsuitable because it is not a pseudorandom function (PRF).

or pseudoconstraint for each statement. The pseudocon-
straints abstract operations that require multiple con-
straints (inequality comparisons, bitwise operations, etc.).
Next, the compiler expands the pseudoconstraints and
annotates the results (§2.2). The verifier and prover each
consist of computation-independent routines that take a
list of annotated constraints as input. P’s routines solve
the constraints and use the resulting satisfying assignment
to respond to queries; V’s routine selects queries accord-
ing to the argument protocol and tests the replies (§2.2).

Pantry adds several conveniences to the base compiler.
Following Pinocchio [59], the Pantry compiler accepts
a subset of C (§2.4). More significantly, the compiler
targets the Pinocchio and the Zaatar encodings, with a
unified code base. The main work here was implementing
Pinocchio’s pairing-based cryptography, for which we
use a public library [2, 14].

To implement GetBlock and PutBlock (§3), Pantry in-
cludes new pseudoconstraints, which expand to CH−1 and
CH , respectively. The associated annotations tell P how
to interact with storage S (see Figure 4); we implement S
using the LevelDB key-value store [3].

The CH−1 and CH constraints implement H as (a
variable-length version of) the Ajtai [4, 36] hash function.
Using the notation in [36], this function hashes m bits into
n · log q bits. Based on the analysis in [54], we set these
parameters as m=7296, n=64, and q=219—resulting in
a digest of 1216 bits—to achieve at least 180 bits of secu-
rity. To support variable-length input, we use a prefix-free
variant of the Merkle-Damgård transform [44, Ch. 4.6.4]
that prepends the input with its length [25].

To implement GetBlock and PutBlock, we added to the
compiler pipeline 2200 lines of Java (for parsing Pantry’s
subset-of-C), 2100 lines of Go and 360 lines of Python
(for expanding pseudoconstraints into constraints), and
300 lines of C++ (in the prover’s constraint solving mod-
ule). The MapReduce framework (§4) requires 1500 lines
of C++. The verifiable data structures (§5.1–§5.2) require
400 lines in Pantry’s subset-of-C. The main component in
the database application (§5.3) is a query-to-C translator,
which we implement with 2000 lines of Java, on top of
Cassandra’s CQL parser [1]. Our private state applica-
tions (§6) are 60 lines for face matching, 80 lines for
tolling, and 143 lines for regression analysis.

8 Evaluation
Our evaluation answers two questions: (1) What are the
overheads for the prover and verifier? and (2) What does
the verifier gain from Pantry, versus alternatives? Given
Pantry’s goals (§1–§2), these alternatives must be general-
purpose and not make restrictive hypotheses about fail-
ure classes. This often means comparing to naive ver-
ifiers (§2.3). However, we would be the first to admit

computation (Ψ) type O(·)

dot product of two length-m vectors MapReduce (Z) m
search m nucleotides for length-d substring MapReduce (Z) m · d
nearest neigh. search of m length-d vectors MapReduce (Z) m · d
covariance matrix for m samples of dim. d MapReduce (Z) m · d2

SELECT rows from a table with m rows Database (P) log m
INSERT a row into a table with m rows Database (P) log m
UPDATE a row in a table with m rows Database (P) log m

match against m 900-bit face fingerprints Private state (P) m
compute toll bill for a maximum of m tolls Private state (P) m
fit a linear model to m-many d-dim. records Private state (P) m·d2+d3

Figure 8—Sample applications in our experiments. The
MapReduce applications uses Zaatar (Z); the other two cat-
egories use Pinocchio (P). In the MapReduce applications (§4),
Map and Reduce are roughly 60 lines, combined. The DB
queries are expressed in Pantry’s query framework (§5.3, §7).
The private state applications (details and code size) are de-
scribed in §6 and §7.

that tailored protocols (of the kind cited in the introduc-
tion; an example is [70]) or replication are likely to far
outperform Pantry.

Applications and setup. We experiment with a set of
sample applications, listed in Figure 8. Additional pa-
rameters (for the cryptographic primitives in Zaatar and
Pinocchio, etc.) are described in Appendix D [21].

Our experiments use a local cluster of machines, each
running Linux on an Intel Xeon processor E5 2680 2.7
GHz with 32GB of RAM and a 250GB 7.5K RPM SATA
disk; they are connected by a 56 Gb/s InfiniBand network.
Additionally, each machine has an access to a 14PB Lus-
tre 2.1.3 parallel file system.

8.1 Overhead and its sources

Pantry’s costs boil down to three sources of overhead:
T1 The techniques of untrusted storage;
T2 The constraint representation of computations; and
T3 The argument step.
Below, we investigate each of these overheads.

We assess the cost of T1 in terms of the number of
constraints and variables to which Pantry’s primitives
compile. (We will focus on the number of constraints, |C|,
as the number of variables, |Z|, scales linearly in |C|.) We
use this metric because constraints are the computational
model (and later, we will express actual running times in
terms of constraint set size). Each constraint corresponds
to a “register operation” (arithmetic, assignment, etc.),
which provides an interpretation of our metric.

Figure 9 shows the number of constraints to which
GetBlock and PutBlock (§3) compile, varying the size
of the block. The cost is ≈12 constraints per byte, or 50
constraints per 32-bit word; thus, in this model, reading
a number is 50 times more expensive than adding—a
ratio superior to the analogous comparison between hard

operation number of constraints (|C|)

GetBlock or PutBlock; 1KB blocks 13,000
GetBlock or PutBlock; 4KB blocks 47,000
GetBlock or PutBlock; 16KB blocks 180,000
Load (Store); 220 memory cells 93,000 (190,000)
Load (Store); 230 memory cells 140,000 (280,000)

Figure 9—Cost of Pantry’s storage primitives, in constraints
(to the nearest 1000), for varying block size or memory size;
the number of variables (|Z|) is similar (not shown). PutBlock
is the same as GetBlock (§3.2). Store is shown in the same row
as Load, and is twice as expensive (§5.1); the memory cell size
here is 64 bits, and the intermediate Merkle nodes are 2432
bits. The costs scale linearly (in the block size) for GetBlock
and logarithmically (in the memory size) for Load and Store.

disks and a CPU’s register operations.5 On the other
hand, disks benefit from sequential access whereas the
costs of GetBlock and PutBlock scale linearly. Moreover,
constraints will translate into active CPU costs (as we
will cover below), whereas real disks leverage DMA.

The preceding discussion presumes that each data item
has its own name, or hash. If instead we want to give
the programmer contiguously addressable random access
memory (e.g., for a program’s heap), we must use the
RAM abstraction (§5.1). Unfortunately, as shown in Fig-
ure 9, a verifiable Load costs 93,000 constraints to read
64 bits of memory; the ratio here is not close to the anal-
ogous memory-vs-register comparison. Thus, GetBlock
and PutBlock are best used to implement data structures
built directly from verifiable blocks (§5.2–§5.3); as indi-
cated above, the costs are manageable if the programmer
interacts with them as if they lived on disk.

Even so, storage constraints contribute heavily to the
total constraint set size in our applications; the weight
is clear from the two columns labeled |C| in Figure 10,
which displays many of Pantry’s costs for our sample
experiments.

This brings us to the next source of overhead: the fact
that there are constraints (T2). Indeed, the costs of step
(2) are due to the constraint representation. The final
source of overhead is the argument step (T3), which—
together with T2—determines the cost of step (3). We
consider steps (2) and (3) in turn.

Constraint solving (step (2), §2.2) is a cost for P . We
compute the ratio of solving time (Figure 10, the “solve”
column) to |C| for each of our sample applications. This
ratio ranges from 20 to 160 µs per constraint,6 where
tolling has the smallest ratio and UPDATE query has the
largest. The computations with the largest ratios are those
with the highest proportion of GetBlock and PutBlock
calls: “solving” these requires computing the Ajtai func-
tion (§3.2), which invokes many large integer arithmetic

5Of course, P (not V) also has to pay for actual execution (in step (2)).
6These costs are higher than necessary. Our implementation of P’s
constraint-solving routine is decidedly unoptimized.

|C| (millions) prover (P) ➂ verifier (V)

computation (Ψ) input size baseline storage total ➁ solve ➂ argue total setup per-instance

dot product m=20k 10 ms 1.7 1.8 4.5 min 8.2 min 13 min 5.4 min 380 µs
nucleotide substr. search m=600k, d=4 13 ms 1.6 4.0 4.4 min 18 min 23 min 9.9 min 390 µs
nearest neigh. search m=20k, d=10 5.6 ms 0.9 1.1 2.5 min 7 min 9.5 min 4 min 380 µs
covariance matrix m=2.5k, d=10 3.8 ms 0.6 0.8 1.4 min 4 min 5.4 min 2.3 min 380 µs

SELECT query m=227 rows 90 µs 1.0 1.3 2.5 min 17 min 20 min 18 min 6.9 ms
INSERT query m=220 rows 89 µs 2.0 2.4 6.3 min 31 min 37 min 34 min 13 ms
UPDATE query m=220 rows 64 µs 2.0 2.4 6.4 min 31 min 37 min 34 min 14 ms

face matching m=128 100 µs 0.2 0.7⋆ 27 s 7.8 min 8.2 min 6.5 min 7.2 ms
tolling m=512 6.7 µs 0.1 0.5⋆ 9.8 s 7.1 min 7.3 min 5.2 min 6.2 ms
regression analysis m=1024, d=8 30 µs 0.4 0.7⋆ 50 s 8.2 min 9.1 min 7.7 min 6.2 ms

⋆Includes 250k constraints for commitment (§6)

Figure 10—Overheads in our sample applications at sample input sizes; for the four MapReduce applications, only the map phase
is included. The input size represents a single instance. The baseline column represents the execution of a normally compiled C
program. For MapReduce, the baseline is the naive verifier (§4), including a SHA-256 digest check for data integrity (§4); for the
database queries, the baseline is a MySQL query; and for the private state apps, the baseline is normal execution (no verifiability).
The quantity |Z| is not depicted but is roughly the same as |C| for each sample application. The remaining columns depict the
running times (for a single instance; no amortization) of steps (2) and (3), as defined in §2.2; circled numbers refer to these steps.

operations. (Another source of overhead here is that Get-
Block / PutBlock operations incur I/O costs associated
with accessing the block store.)

Arguing (step (3), §2.2) induces costs for P and V ,
which are depicted for our measured applications in Fig-
ure 10 (the columns labeled ➂). These costs are largely
determined by |C| and |Z|, as indicated by the models
given earlier (Figures 3 and 6). In these models, the
largest constants are c2, c3, c5 (representing cryptographic
operations), and are on the order of 100µs. Note that these
models are chosen for simplicity; their predictions are
within a factor of two of empirical results. The primary
sources of variation are the structure of the constraints
(treated in prior work [65, §4]) and the relative number
of bitwise constraints (small values reduce the costs of
some of the cryptographic steps). A model that is more
faithful (but more involved) is in Appendix E [21], which
also quantifies the constants {ci}.

The aforementioned costs can be understood by com-
paring to the cost of simply executing the computation
(Figure 10, the “baseline” column). Both V’s setup work
and P’s runtime work are orders of magnitude more than
this baseline, in our sample applications. On top of these
costs, the largest experiments (e.g., nucleotide substring
search with m=600k, d=4) use roughly 75% of the avail-
able RAM in our machines (in the setup phase for V and
per-instance for P).

8.2 All is not lost

Amidst the many appalling overheads in Figure 10, there
is actually some encouraging news: the per-instance CPU
costs for V are sometimes less than local execution (com-
pare the “per-instance” and “baseline” columns). And
though it is not depicted, an analogous thing happens for
network costs. Given enough instances, then, the Pantry

verifier could save resources relative to the naive veri-
fier (§2.3). We investigate these and other benefits by
taking a closer look at some of our sample applications.

MapReduce. For the MapReduce examples, we want to
determine the cross-over points (§2.3, §4) for CPU and
network. We will focus on the nucleotide substring search
example; results for the other applications are similar.

We experiment within the limits of our testbed, and use
the resulting data to extrapolate. A work unit will be 10
mappers (each with a chunk size of 600k nucleotides, per
Figure 10) and one reducer; let N denote the total job size,
in number of input nucleotides. We experiment with N=6
million (one work unit, 10 machines), N=60 million (ten
work units, 100 machines), and N=1.2 billion (200 work
units, 250 machines, each machine executing multiple
workers sequentially). Across these (and smaller-scale)
experiments, we observe little variation (std. deviations
are within 10% of means, scaling is linear, etc.).

Figure 11 reports the extrapolated resource costs for
V; the CPU (resp., network) cross-over point is 29 bil-
lion nucleotides, or 48,340 mappers (resp., 24 billion
nucleotides, or 40,000 mappers). While the chunk size is
tiny—reflecting overheads (§8.1)—the results are never-
theless encouraging. First, the baseline is stiff competi-
tion: it is linear-time, it runs as optimized machine code,
and it uses SHA-256 (not Ajtai) for data integrity. Second,
Pantry’s V beats this baseline at a job size that is plausi-
ble: the human genome is roughly 3 billion nucleotides,
so the cross-over point is ≈10 such genomes.

DB queries. This class of applications has an additional
overhead: storage at the prover, for the hash trees (§5.2).
Below, we assess that cost, and ask about Pantry’s ability
to save resources for V . What should the baseline be?
In Figure 10, we present the running time of MySQL,
which helps us gauge the prover’s overhead. However, for

 0

 12

 24

 0 12 24 36 48 60C
P

U
 t

im
e

(m
in

u
te

s)

number of nucleotides (billions)

Pantry

baseline

 0

 5

 10

 15

 0 12 24 36 48 60

n
et

w
o

rk
 c

o
st

 (
G

B
)

number of nucleotides (billions)

Pantry

baseline

Figure 11—The verifier’s CPU and network costs (extrapolated) as a function of job size for the nucleotide substring application
in Figures 8 and 10 (each mapper gets a chunk of 600k nucleotides; one reducer is allocated per ten mappers). All y-intercepts
(fixed costs) and slopes (per-instance costs) are empirically determined, based on experiments that exhibit the depicted scaling with
hundreds of machines. In the CPU (resp., network) graph, Pantry’s y-intercept is roughly ten minutes (resp., 2.3 GB); meanwhile,
the baseline’s slope is tens of milliseconds per chunk (resp., 146.5 KB per chunk). Thus, 40,000–50,000 chunks are required for V
to break even, corresponding to 24–30 billion nucleotides.

Pantry block store (est.)

network costs
setup, kept as storage (argue step) 430 MB 0 MB
per-instance (argue step) 288 bytes 8.3 KB
per-instance (input, output) 624 bytes 620 bytes

storage costs
data 11.5 GB 11.5 GB
metadata (for hash tree) 262 GB ≥53.5 GB

Figure 12—Resource costs of a SELECT query, under Pantry
and estimates for an alternative based on an untrusted block
store. The table has 227 rows, each holding 92 bytes in 12
columns; the query allows 5 matching rows (§5.3, §5.4).

a naive verifier to benefit from MySQL’s optimized query
execution while achieving verifiability, it would have to
download the entire database and execute the query itself.

Instead, our baseline will be reasonably network-
efficient and avoid two sources of overhead in Pantry:
constraints and the argument step. We assume a server
that implements a hash-based block store [29, 47] (akin
to the map S in §3.1) and a verifier that runs the compu-
tation natively; where the program calls GetBlock and
PutBlock, the verifier issues an RPC to the server. Since
the computation is run natively rather than in constraints,
H is SHA-256 (§3.2). We have not yet built this alter-
native, so we estimate its network costs; we can do this
since queries are highly constrained (§2.4, §5.4).

Figure 12 depicts the comparison, for a SELECT query.
This table indicates, first, that our implementation needs
some work: the metadata is far larger than the data (for
both Pantry and the alternative) due in part to unoptimized
parameter choices (number of indexes, branching factor,
etc.). Second, the effect of the size of Ajtai digests (versus
SHA-256) is apparent in the metadata row. Nevertheless,
despite these limitations, the Pantry verifier can amortize
its network costs in the setup phase (because it does not
incur the network cost of handling the verifiable blocks
themselves); for this computation, the network cross-over
point is 55,000 instances.

Private state. For these applications, we do not ask
about cross-over points because V cannot naively re-

execute the computation. Instead, we just report the costs,
for our sample application of tolling; costs for the others
are similar. The CPU costs are in Figure 10; the storage
and network resources are given below:

private state 5 KB
network (setup) and storage (ongoing) 170 MB
network (per-instance), for inputs/outputs 1 KB
network (per-instance), for argument step 288 bytes

The storage overhead here is proportional to the size
of the private state; the reason is as follows. The stor-
age overhead reflects setup costs (see above), setup costs
are proportional to |C| and |Z| (see Figures 3 and 6), |C|
and |Z| include terms for GetBlock’s input (§3.2), and
GetBlock’s input is all of the state because there is no
hash tree structure (§5). Although the constant of propor-
tionality is high (due to the argument step), the absolute
quantities are not necessarily alarming: the tolling appli-
cation does not involve much state, and an overhead of
several hundred megabytes could fit comfortably on a mo-
bile phone. Moreover, the per-instance network costs are
very low, owing to Pinocchio’s machinery (§2.2–§2.3).

9 Related work
Although verifiable computation has a decades-long his-
tory (see [59, 66, 74] for surveys), only recently have
systems emerged that are both (a) general-purpose (i.e.,
not targeted to a class of functionality) and (b) rooted in
powerful complexity theory and cryptography.

One line of work [24, 71, 72] refines the Muggles in-
teractive proof protocol [37], which is purely complexity-
theoretic (no cryptography). As a consequence, the result-
ing systems are very efficient for the verifier and prover.
However, they are restricted to straight-line computations
(though this limitation has been partially relaxed [74]).

Another line of work [64–67, 74] refines an efficient
argument protocol (§2) due to Ishai et al. [42]. Zaatar [65]
is the best-performing entry in this line; it leverages the
remarkable encoding of GGPR [32] and handles general
side-effect free computations [67].

Pinocchio [59] applies both GGPR’s encoding and its
cryptographic constructions [32], and is the first imple-
mentation of a general-purpose non-interactive argument
(it is a SNARG [33] and a SNARK [15]). It uses essen-
tially the same computational model as Zaatar [65, 67],
and for systems working within this model, Pinocchio
and Zaatar have the best performance in the literature (on
different axes). The two are compared in §2.2 and §2.3.

None of these three efforts handles computations over
state. Pantry’s principal contribution is to extend the com-
putational model of Pinocchio and Zaatar to do so, us-
ing ideas from untrusted storage. First, Pantry relies on
Merkle trees [53] to authenticate a large untrusted mem-
ory, an idea used in theory [17] and in practice (for smart-
cards [30], databases [27, 49, 52], file systems [34, 43],
etc.). Second, Pantry names data blocks by their digests,
and treats the digests as references for the purposes of
building data structures (including Merkle trees); this
idiom is due to the SFSRO [29] file system and used
elsewhere (e.g., SUNDR [47]). One (rough) way to un-
derstand Pantry is that it verifiably outsources an SFSRO
or SUNDR client. Of course, Pantry’s general approach
is known [11, 15, 32, 41]. However, Pantry is the first
realization of this strategy.

A fourth project, appearing in parallel with Pantry,
offers a different approach to state. BCGTV [12] use a
promising circuit representation from [11] (a different
instantiation of steps (1) and (2) in §2.2).7 Using insights
from [16, 32, 65], BCGTV combine their representation
with a step (3) that is much like Pinocchio’s (like Pinoc-
chio, BCGTV is a “SNARK with pre-preprocessing”).
On the one hand, BCGTV achieve expressivity relative
to Pantry, specifically data-dependent loops. On the other
hand, they do not (at present) work with remote state (§4–
§6). Furthermore, although a complete evaluation has
not been done, their preliminary reported results indicate
that performance is often orders of magnitude worse than
Pantry. A detailed comparison is future work.

10 Discussion, limitations, and conclusion
Pantry has many limitations. A number of these stem
from the clumsiness of the constraint model (§2.4), which
led to various compromises described earlier (§4, §5.4,
§6). A further compromise is the assumption throughout
that the verifier knows the digest of the remote state; this
holds when the state is read-only or when there is one
client. Future work is to handle multiple writers, perhaps
by outsourcing signature (not just hash) checks.

But the biggest limitation by far is costs—which are
currently so high for the prover and the verifier’s setup

7Recent work takes a different approach to efficient circuit representa-
tions of various standard data structures [76]. Incorporating into our
system and comparing to Pantry and BCGTV is work in progress.

phase (§8.1) that they limit our experiments (§8.2) to
scales smaller than those of real applications (to put it
mildly). This issue afflicts the entire research area (§9).
Indeed, key challenges are to reduce the overhead of the
argument protocol (which seems possible, as the costs
stem from high constants, not unfavorable asymptotics);
reduce the overhead of memory operations within the con-
straint model (evidence exists that this can be done [11]);
and go beyond, or around, the constraint model.

Nevertheless, Pantry dramatically expands the set of
scenarios where verifiable computation makes sense.
First, Pantry extends verifiability to computations that
make indirect memory accesses (to RAM, disk, etc.).
Second, because the verifier can supply digests of inputs,
the per-instance CPU cost of verification can drop be-
low the time cost to handle the actual inputs, thereby
allowing the verifier to beat naive verification even when
outsourcing linear-time computations (§4, §8.2). Third,
Pantry can save network costs for the verifier versus the
naive alternative (§4, §8.2). Thus, Pantry may be ben-
eficial even if verification costs more CPU cycles than
local execution—a case that defeats the goals (§2.3) of
prior work [59, 65–67, 74]. Fourth, Pantry (with a major
assist from Pinocchio) extends verifiability to a class of
computations involving private remote state (§6).

The preceding paragraph describes when Pantry could
be applicable, but we must also consider when it actually
is. The answer depends on computation-specific factors:
the cross-over points, one’s tolerance for prover overhead,
and the details of the scenario. But data-parallel cloud
computing (e.g., MapReduce) seems to fit the require-
ments: many instances of the same computation and an
abundance of server CPU cycles. Moreover, a high price
for the private state applications might be acceptable,
since there is no naive alternative (§8.2).

In conclusion, there is a great deal of work remaining
to bring verifiable computation to practice, but Pantry is
a significant step toward that goal.

Acknowledgments
We first learned of the folklore approach to verifying compu-
tations with state from motivating comments by Yuval Ishai
and an anonymous NDSS 2012 reviewer. Suggestions by Dan
Boneh, Bryan Parno, Chris Peikert, and Shabsi Walfish substan-
tially strengthened this work. We thank Chris and Shabsi for
patient explanations. Feedback and comments from Sebastian
Angel, Allen Clement, Josh Leners, David Mazières, Bryan
Parno, Riad Wahby, Brent Waters, Edmond L. Wong, George
Candea (our shepherd), and the anonymous reviewers improved
this draft. The Texas Advanced Computing Center (TACC) at
UT supplied computing resources. This work was supported
by AFOSR grant FA9550-10-1-0073; NSF grants 1040672,
1055057, and 1040083; a Sloan Fellowship; and an Intel Early
Career Faculty Award.

For Pantry’s source code: http://cs.utexas.edu/pepper

http://cs.utexas.edu/pepper

References
[1] Cassandra CQL.

http://cassandra.apache.org/doc/cql/CQL.html.
[2] High-speed software implementation of the optimal Ate

pairing over Barreto-Naehrig curves.
https://github.com/herumi/ate-pairing.

[3] leveldb – a fast and lightweight key/value database library by
Google. https://code.google.com/p/leveldb/.

[4] M. Ajtai. Generating hard instances of lattice problems. In
ACM Symposium on the Theory of Computing (STOC), pages
99–108, May 1996.

[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: An experiment in public-resource
computing. Communications of the ACM (CACM),
45(11):56–61, Nov. 2002.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and the hardness of approximation problems.
Journal of the ACM, 45(3):501–555, May 1998.

[7] S. Arora and S. Safra. Probabilistic checking of proofs: a new
characterization of NP. Journal of the ACM, 45(1):70–122, Jan.
1998.

[8] M. J. Atallah and K. B. Frikken. Securely outsourcing linear
algebra computations. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS), pages
48–59, Apr. 2010.

[9] L. Babai. Trading group theory for randomness. In ACM
Symposium on the Theory of Computing (STOC), pages
421–429, May 1985.

[10] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
functions for message authentication. In IACR International
Cryptology Conference (CRYPTO), pages 1–15, 1996.

[11] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast
reductions from RAMs to delegatable succinct constraint
satisfaction problems. In Innovations in Theoretical Computer
Science (ITCS), pages 401–414, Jan. 2013.

[12] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza.
SNARKs for C: Verifying program executions succinctly and
in zero knowledge. In IACR International Cryptology
Conference (CRYPTO), pages 90–108, Aug. 2013.

[13] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation
of computation over large datasets. In IACR International
Cryptology Conference (CRYPTO), pages 111–131, Aug. 2011.

[14] J.-L. Beuchat, J. E. G. Diaz, S. Mitsunari, E. Okamoto,
F. Rodriguez-Henriquez, and T. Teruya. High-speed software
implementation of the optimal Ate pairing over
Barreto-Naehrig curves. Cryptology ePrint Archive, Report
2010/354, June 2010. http://eprint.iacr.org/.

[15] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From
extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again. In Innovations in
Theoretical Computer Science (ITCS), pages 326–349, Jan.
2012.

[16] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth.
Succinct non-interactive arguments via linear interactive proofs.
In IACR Theory of Cryptography Conference (TCC), pages
315–333, Mar. 2013.

[17] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the correctness of memories. In Symposium on
Foundations of Computer Science (FOCS), pages 90–99, Oct.
1991.

[18] D. Boneh and D. M. Freeman. Homomorphic signatures for
polynomial functions. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 149–168, May 2011.

[19] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System
Sciences, 37(2):156–189, Oct. 1988.

[20] B. Braun. Compiling computations to constraints for verified
computation. UT Austin Honors thesis HR-12-10, Dec. 2012.

[21] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. Cryptology
ePrint Archive, Report 2013/356, 2013.

[22] R. Canetti, B. Riva, and G. Rothblum. Practical delegation of
computation using multiple servers. In ACM Conference on
Computer and Communications Security (CCS), pages
445–454, Oct. 2011.

[23] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398–461, Nov. 2002.

[24] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical
verified computation with streaming interactive proofs. In
Innovations in Theoretical Computer Science (ITCS), pages
90–112, Jan. 2012.

[25] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya.
Merkle-damgård revisited: how to construct a hash function. In
IACR International Cryptology Conference (CRYPTO), pages
430–448, Aug. 2005.

[26] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Symposium on Operating
Systems Design and Implementation (OSDI), pages 107–113,
Dec. 2004.

[27] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine.
Authentic third-party data publication. In Data and
Application Security: Development and Directions, pages
101–112. Springer, 2002.

[28] D. Fiore and R. Gennaro. Publicly verifiable delegation of
large polynomials and matrix computations, with applications.
In ACM Conference on Computer and Communications
Security (CCS), pages 501–512, May 2012.

[29] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. In Symposium on Operating
Systems Design and Implementation (OSDI), pages 1–24, Oct.
2000.

[30] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas.
Caches and hash trees for efficient memory integrity
verification. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 295–306,
Feb. 2003.

[31] R. Gennaro, C. Gentry, and B. Parno. Non-interactive
verifiable computing: Outsourcing computation to untrusted
workers. In IACR International Cryptology Conference
(CRYPTO), pages 465–482, Aug. 2010.

[32] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 626–645,
May 2013.

[33] C. Gentry and D. Wichs. Separating succinct non-interactive
arguments from all falsifiable assumptions. In ACM
Symposium on the Theory of Computing (STOC), pages
99–108, June 2011.

[34] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS:
securing remote untrusted storage. In Network and Distributed
System Security Symposium (NDSS), pages 131–145, Feb.
2003.

[35] O. Goldreich. Foundations of Cryptography: II Basic
Applications. Cambridge University Press, 2004.

[36] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free

http://cassandra.apache.org/doc/cql/CQL.html
https://github.com/herumi/ate-pairing
https://code.google.com/p/leveldb/
http://eprint.iacr.org/

hashing from lattice problems. Electronic Colloquium on
Computational Complexity (ECCC), TR96-042:236–241, 1996.

[37] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: Interactive proofs for muggles. In ACM
Symposium on the Theory of Computing (STOC), pages
113–122, May 2008.

[38] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on
Computing, 18(1):186–208, 1989.

[39] P. Golle and I. Mironov. Uncheatable distributed computations.
In RSA Conference, pages 425–440, Apr. 2001.

[40] N. Hardy. The Confused Deputy: (or why capabilities might
have been invented). ACM SIGOPS Operating Systems Review,
22(4):36–38, Oct. 1988.

[41] Y. Ishai. Personal communication, June 2012.
[42] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments

without short PCPs. In IEEE Conference on Computational
Complexity (CCC), pages 278–291, June 2007.

[43] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu.
Plutus: scalable secure file sharing on untrusted storage. In
Conference on File and Storage Technologies (FAST), pages
29–42, Mar. 2003.

[44] J. Katz and Y. Lindell. Introduction to Modern Cryptography.
Chapman & Hall / CRC Press, 2007.

[45] J. Kilian. A note on efficient zero-knowledge proofs and
arguments (extended abstract). In ACM Symposium on the
Theory of Computing (STOC), pages 723–732, May 1992.

[46] H. M. Levy. Capability-Based Computer Systems. Digital
Press, 1984.

[47] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Symposium on
Operating Systems Design and Implementation (OSDI), pages
121–136, Dec. 2004.

[48] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic
methods for interactive proof systems. Journal of the ACM,
39(4):859–868, 1992.

[49] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a
trusted database system on untrusted storage. In Symposium on
Operating Systems Design and Implementation (OSDI), pages
135–150, Oct. 2000.

[50] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a
secure two-party computation system. In USENIX Security,
pages 287–302, Aug. 2004.

[51] D. Malkhi and M. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, Oct. 1998.

[52] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and
S. G. Stubblebine. A general model for authenticated data
structures. Algorithmica, 39(1):21–41, Jan. 2004.

[53] R. C. Merkle. A digital signature based on a conventional
encryption function. In IACR International Cryptology
Conference (CRYPTO), pages 369–378, Aug. 1987.

[54] D. Micciancio and O. Regev. Lattice-based cryptography. In
D. J. Bernstein and J. Buchmann, editors, Post-quantum
Cryptography, pages 147–191. Springer, 2008.

[55] F. Monrose, P. Wycko, and A. D. Rubin. Distributed execution
with remote audit. In Network and Distributed System Security
Symposium (NDSS), pages 103–113, Feb. 1999.

[56] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh,
and N. Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In IEEE Symposium on Security and
Privacy, pages 334–348, May 2013.

[57] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI –
a system for secure face identification. In IEEE Symposium on
Security and Privacy, pages 239–254, May 2010.

[58] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of
correct computation. In IACR Theory of Cryptography
Conference (TCC), pages 222–242, Mar. 2013.

[59] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE Symposium
on Security and Privacy, pages 238–252, May 2013.

[60] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in
Modern Computers. Springer, 2011.

[61] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In IACR International
Cryptology Conference (CRYPTO), pages 129–140, Aug. 1991.

[62] R. A. Popa, H. Balakrishnan, and A. Blumberg. VPriv:
Protecting privacy in location-based vehicular services. In
USENIX Security, pages 335–350, Aug. 2009.

[63] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing
execution of code on legacy platforms. In ACM Symposium on
Operating Systems Principles (SOSP), pages 1–16, Oct. 2005.

[64] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and
unconditional verification of remote computations. In
Workshop on Hot Topics in Operating Systems (HotOS), May
2011.

[65] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality and
plausibility in verified computation. In European Conference
on Computer Systems (EuroSys), pages 71–84, Apr. 2013.

[66] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish.
Making argument systems for outsourced computation
practical (sometimes). In Network and Distributed System
Security Symposium (NDSS), Feb. 2012.

[67] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few
steps closer to practicality. In USENIX Security, pages
253–268, Aug. 2012.

[68] H. Shacham and B. Waters. Compact proofs of retrievability.
In ASIACRYPT, pages 90–107, Dec. 2008.

[69] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877,
Oct. 1992.

[70] R. Sion. Query execution assurance for outsourced databases.
In International Conference on Very Large Databases (VLDB),
pages 601–612, Aug. 2005.

[71] J. Thaler. Time-optimal interactive proofs for circuit evaluation.
In IACR International Cryptology Conference (CRYPTO),
pages 71–89, Aug. 2013.

[72] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister.
Verifiable computation with massively parallel interactive
proofs. In USENIX HotCloud Workshop, June 2012.

[73] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao.
Privacy-preserving computation and verification of aggregate
queries on outsourced databases. In Privacy Enhancing
Technologies Symposium, pages 185–201, Aug. 2009.

[74] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE
Symposium on Security and Privacy, pages 223–237, May
2013.

[75] C. Wang, K. Ren, and J. Wang. Secure and practical
outsourcing of linear programming in cloud computing. In
IEEE International Conference on Computer Communications
(INFOCOM), pages 820–828, Apr. 2011.

[76] S. Zahur and D. Evans. Circuit structures for improved
efficiency of security and privacy tools. In IEEE Symposium on
Security and Privacy, pages 493–507, May 2013.

[77] L. Zhou. Personal communication, Oct. 2012.

	1 Introduction
	2 Pantry's base: Zaatar and Pinocchio
	2.1 Overview of Zaatar and Pinocchio
	2.2 Zaatar and Pinocchio in more detail
	2.3 Amortization, guarantees, and costs
	2.4 Expressiveness

	3 Storage model and primitives in Pantry
	3.1 Verifiable blocks: overview
	3.2 Verifiable blocks: details and costs
	3.3 Guarantees and non-guarantees

	4 Verifiable MapReduce
	5 Verifiable data structures
	5.1 Verifiable RAM
	5.2 Search tree
	5.3 Verifiable database queries
	5.4 Compromises and limitations

	6 Private prover state
	7 Implementation details
	8 Evaluation
	8.1 Overhead and its sources
	8.2 All is not lost

	9 Related work
	10 Discussion, limitations, and conclusion

