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Abstract

The convergence of games and online social platforms is

an exploding phenomena. The continued success of social

games hinges critically on the ability to deliver smooth and

highly-interactive experiences to end-users. However, it is

extremely challenging to satisfy the stringent performance

requirements of online social games.

Motivated by an Xbox Live online social gaming appli-

cation, we address the problem of concurrent messaging,

where the maximum latency of game messages has to be

tightly bounded. Learning from a large-scale measurement

experiment, we conclude that the generic transport proto-

col TCP, currently being used in the game, cannot ensure

concurrent messaging. We develop a new UDP-based trans-

port protocol, named Pangolin. The core of Pangolin is an

adaptive decision making engine derived from the Markov

Decision Process theory. The engine optimally controls the

transmission of redundant Forward Error Correction packets

to combat data loss. Trace-driven emulation demonstrates

that Pangolin reduces the 99.9-percentile latency from more

than 4 seconds to about 1 second with negligible overhead.

Pangolin pre-computes all optimal actions and requires

only simple table look-up during online operation. Pangolin

has been incorporated into the latest Xbox SDK - released in

November, 2010 - and is now powering concurrent messag-

ing for hundreds of thousands of Xbox clients.

1. INTRODUCTION

The convergence of games and online social platforms is

an exploding phenomena, providing game developers with

a new means to rapidly build an enormous user base. The

three-year-old social gaming company Zynga now enjoys
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over 100 million unique players every month to its popular

games [2]. Each of the top 25 Facebook games have more

than 5 million players every month, and the top 15 Facebook

games have more than 10 million monthly players [3]. The

rapid growth of social games is propelled by their unique

characteristics: 1) social networks enable serendipitous dis-

covery of the games, enabling viral growth without requiring

hefty marketing budgets; 2) cloud services make the distri-

bution and update of the games effortless; and 3) an entirely

new business model, which gives away the games for free

but earns revenue by advertising and selling virtual goods

[20].

The continued success of social games, however, hinges

critically on the ability to deliver smooth and highly-interactive

experiences to end-users. As with many other cloud-based

services, the users’ perceived performance is greatly affected

by latency, delay variation, and packet loss in the Internet.

But due to their highly interactive nature, the performance

requirements of social games are much more demanding.

Additional challenges arise as many social gaming sce-

nario require concurrent messaging, which dictates that ev-

ery piece of message be delivered (to a specified group of

clients) at exactly the same time. We will elaborate using a

Xbox Live game in the next section, but one can easily con-

ceive some examples, such as a triggering message to turn

signal light from red to green for distributed car racers.

Concurrent messaging is typically implemented in the fol-

lowing way: 1) synchronize all the clients’ clock to a virtual

clock in the cloud; 2) deliver a message specifying a future

virtual clock time stamp; 3) each client processes the mes-

sage according to the specified virtual clock time stamp and

triggers a corresponding event. Clearly, the gap between the

current time stamp and the future virtual clock time stamp

needs to be large enough, so as to accommodate remote

clients with poor network conditions, which might experi-

ence timeouts and retransmissions. Hence, the gist of the

concurrent messaging problem is to tightly bound the maxi-

mum latency for game messages. Unfortunately, as will be-

come clear later, in order to accommodate most clients in the

wild, the virtual clock time stamp has to be set to more than

4 seconds into the future. This leads to significant latency in-

flation and greatly affects the interactive gaming experience.



In this paper, we conduct a large-scale measurement study

to gain deep understanding of the concurrent messaging prob-

lem. In particular, we design an in-game measurement ex-

periment, develop a measurement engine and release the en-

gine together with the Xbox Live 1vs100 game to hundreds

of thousands of Xbox client consoles. Our measurement

platform collects detailed packet-level traces from the game

clients in the wild. Analysis of these traces shows that the la-

tency, latency variation and packet loss are quite severe for a

small but significant percentage of players, which highlights

the difficulty of ensuring concurrent messaging, especially

for tail clients.

Next, we explore whether the problem can be solved by

making tweaks to the existing mechanisms in the generic

transport protocol TCP. We develop an emulation platform

which replays the collected measurement traces through the

TCP stack of real operating system. The experiment allows

us to quantitatively evaluate the actual performance of TCP

for game clients in the wild. By dissecting the replay results,

we also identify a number of factors that make TCP ineffec-

tive for concurrent messaging.

It becomes clear that fixing TCP is insufficient to solve the

problem. To that end, we develop a new transport protocol,

named Pangolin, which is based on UDP and uses Forward

Error Correction (FEC) to speed up concurrent messaging.

To keep the overhead low, Pangolin employs an adaptive

FEC scheme which dynamically tunes redundancy overhead

based on network latency and packet loss rate. While adap-

tive FEC has been well-explored by many studies (see rep-

resentative work [9, 14] and their references), we have to

address two unique challenges: 1) instead of minimizing la-

tency in most existing schemes, our goal is to minimize the

maximum latency for tail clients; 2) optimization techniques

in the existing schemes are computationally intensive, which

prohibits them from being implemented in already heavily

loaded gaming servers.

The core contribution of Pangolin lies in addressing the

above challenges by modeling and analyzing the concur-

rent messaging problem using the Markov Decision Process

(MDP) theory. The MDP framework allows us to obtain an

optimal adaptive scheme that can tightly bound the maxi-

mum message latency, while keeping overhead at minimum.

Trace-driven emulation shows that Pangolin reduces the 99.9-

percentile latency from more than 4 seconds to about 1 sec-

ond with negligible overhead. Moreover, optimal actions can

be pre-computed and Pangolin simply consults a look-up ta-

ble of less than 4MB memory during online operation. The

small memory footprint and low computation complexity

makes it feasible to adopt Pangolin even by gaming servers

with already high processing load. As a matter of fact, Pan-

golin has been incorporated into the latest Xbox SDK - re-

leased in November, 2010 - and is now powering concurrent

messaging for hundreds of thousands of Xbox clients.
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Figure 1: Illustration of Concurrent Messaging

(question-reveal delay = t1 − t0; submit-announce delay

= t3 − t2).

2. MOTIVATING SCENARIO

The Xbox Live 1vs100 game is a massive multiplayer live

social game [1]. Being a live game, it shares many similari-

ties with live television shows. For instance, each game ses-

sion occurs only at scheduled time slots (say 8pm on week-

ends), so all players must participate at the same time. The

scale of the game is massive since 1) participants are not di-

vided into small groups, rather there is just one single group

for all the participants; 2) the number of concurrent partici-

pants is huge, with each session accommodating tens to hun-

dreds of thousands of simultaneous players. Social elements

make the game especially appealing, as friends often try to

play together to boost their chances of being selected into

the Mob [1].

The game session advances in synchronized steps. At the

beginning of each step, the game sends a multiple-choice

question to all the players at the same time. Due to the

network latency, latency variation and packet loss, different

players might receive the question at different times.

To ensure that the game is fair to all the players, the ques-

tion is revealed to all the participants at the same time, based

on a single time stamp from a global virtual clock (all the

game consoles are synchronized with the host on the same

virtual clock). This way, the players closer to the host will

not see the question earlier and thus have an unfair advan-

tage. Therefore, at the moment that the question is created,

the server needs to determine how far into the future the

question should be revealed to the players. Intuitively, the

question-reveal delay (t1 − t0, as shown in Figure 1) should

be large enough so that almost all the players receive the

question by the reveal time.

After the question is revealed, each player needs to select

an answer and submit to the server after a certain deadline.

The server must collect nearly all of the answers from the



hundreds of thousands of users before it aggregates all the

results and announces the winners. To keep the game excit-

ing and engaging, it is critical that winners be announced

shortly after the answer deadline. At the same time, the

submit-announce delay (t3− t2, as shown in Figure 1) needs

to be long enough so that almost all the participants can get

their results in.

In both phases (revealing the question and announcing the

result), if the delay is too small, due to network latency and

loss, then many players will not see the questions on time, or

will not be able to get their answers to the server before the

deadline, thus making the game unfair. On the other hand, if

the latency tolerance is too large, the progress of the game is

slowed and the interactivity is severely impaired.

3. MEASUREMENTS AND OBSERVATIONS

3.1 In-Game Measurement Experiment

Detailed packet level traces are very valuable to under-

stand the performance of the existing transport protocol, as

well as to assist the design and evaluation of new protocols.

One approach to obtain packet level traces is to capture the

TCP packets entering and leaving game servers inside the

Xbox Live data center. However, traffic dumps cannot reveal

one-way packet latency and loss. In addition, accurate infer-

ence from traffic dumps can become difficult sometimes [19,

4].

To obtain detailed and truly representative packet level

traces, we design an in-game measurement experiment. In

particular, we have developed and integrated with the 1vs100

game (running in Xbox consoles) a measurement engine.

Once activated, the measurement engine replicates real game

messages and sends them in UDP packets to a dedicated

measurement server in the Xbox Live data center. Note that

a Xbox console sends these UDP-encapsulated measurement

messages in parallel with the TCP-encapsulated operational

messages. Each measurement packet is immediately acknowl-

edged by the measurement server, so that there is no latency

inflation due to delayed acknowledgments. Each game mes-

sage is about 2KB, which is sent in two 1KB UDP packets.

To collect more measurement samples, the measurement en-

gine in the console sends three additional UDP packets of the

same size, so that a total of five packets per message are sent.

Any lost packet (or acknowledgment) is retransmitted after

a timeout (up to 5 times). For each transmission, the console

records the detailed round trip time and loss information and

reports the trace to the measurement server.

The measurement engine has been released together with

the 1vs100 game to hundreds of thousands of end-users. The

activation of the engine is controlled by the game service,

which can turn off the experiment completely. To limit the

impact of the measurement experiment to the game itself,

only one in every 10 game messages are replicated. The

game generates about one message per second, thus the en-

gine generates about one measurement every 10 seconds.

3.2 Trace Collection

During each game session within the two-week period be-

tween 2 Feb 2010 and 15 Feb 2010, the measurement engine

is activated for a small subset of random clients. Over this

period, a total of 10304 end hosts have ever been enrolled in

our measurement. Using Quova GeoLocation database, we

find that there are 70% unique clients from North America

and 30% from Europe, which are the two regions where the

game has been released so far. Please refer to [29] for more

characteristics about the traces.

3.3 Observation – Delay

For each client we calculate the average and variation of

its RTTs. The distributions of the average RTT for the clients

from North America and Europe are plotted in Figure 2(a).

Since the game service data center is located in the US,

it is not surprising that the average RTT is about 100ms

from North America and 200ms from Europe at the 50 per-

centile. Importantly, at high percentiles, even clients from

North America have large RTTs. For example, 2.5% of the

clients from North America show an average RTT of more

than 200ms, larger than most clients from Europe. This sug-

gests that having the game service data center on the same

coninent as the users can only help to a certain extent, since

game performance is largely determined by the delays of the

high-percentile users.

Next, we examine the RTT variation of each client. As

we will later see, RTT variation is an important factor af-

fecting message delivery latency. For each client, we use

the difference between the 90-percentile and 10-percentile

of its RTT samples to calculate the client’s RTT variation.

As shown in Figure 2(b), clients from both North America

and Europe can experience variations of more than 100ms,

which is quite significant. Providing another perspective,

Figure 2(c) shows a scatter plot of average RTT and RTT

variation. Clearly, large RTT variation occurs predominately

with clients with large RTT values. This suggests that the

clients with large RTTs, which already have difficulty meet-

ing the basic latency requirements, are also subject to harsh

RTT variations.

3.4 Observation – Packet Loss

Now, we examine the packet loss rate experienced by the

clients. Figure 3 compares the distributions between North

America and Europe. Clearly, a higher fraction of the Eu-

rope clients experience loss than North America clients. In

addition, the packet loss rate experienced by the clients from

Europe is also higher than from North America.

The differences might be due to late-mile connectivity in

North America and Europe. Alternatively, it is also possi-

ble that packet loss is not solely determined by last-mile,

but also affected by middle-miles. Despite of the causes, it

is important to note that even in well-developed markets in

North America and Europe, where broadband infrastructures

are advanced, delay, delay variation and packet loss are still
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Figure 3: Packet Loss Rate.

severe problems affecting gaming experience.

4. INEFFECTIVENESS OF TCP

4.1 Methodology

In this section, we investigate how TCP performs in the

wild for gaming scenarios, for which there are infrequent in-

teractions with small messages between the game consoles

and the data center. We explore whether TCP can satisfy the

latency requirement of the game and what aspects of TCP

may cause poor performance. To answer these questions,

one evaluation option is to drive a computer simulation with

packet-capture traces, such as done in [5]. However, due

to the complexity of TCP implementations, simulation pro-

grams unavoidably simplify the workings of TCP and omit

important details. To overcome such limitations and evaluate

the TCP as it would perform in the real systems, we instead

replay our measurement traces through a real TCP stack.

To this end, we borrow the idea of Monarch [18] and de-

velop an emulation platform, which intercepts TCP or UDP

packets in kernel and manipulates them in user space based

on our measurement traces. Specifically, we create a data

sender and a data receiver on the same physical host. Both

the sender and the receiver communicate with each other us-

ing the regular TCP or UDP stack in the host OS and are

unaware of the emulation. Nevertheless, packets are cap-

tured by a traffic emulator, which manipulates each packet

based on a measurement trace: if the trace indicates a loss,

then the packet will be dropped; otherwise, the packet will

be delayed and forwarded according to the specific latency

given in the trace.

4.2 Message Latency with TCP

Using the emulator, we replay all the measurement traces

through TCP by sending 2KB messages at one second inter-

vals. We observe that some clients stay longer and contribute

more message latency samples than others. To avoid bias to-

wards these clients, we randomly select 10 messages from

each client. Table 1 summarizes the quantile results aggre-

gated over all the clients (aggregated separately for North

America and Europe). We observe that the message latency

is quite small for more than 95% of the messages. However,

at high percentiles, the latency becomes very large. Espe-

cially, at the 99.9-percentile, which is the performance tar-

get of the game, the latency reaches 3 or 4 seconds. In other

words, if the game is designed to ensure 99.9% of the mes-

sages are delivered on time, the latency tolerance would have

to be set to 3 or 4 seconds, resulting in highly degraded in-

teractivity.

95% 99% 99.5% 99.9%

North America 156 500 765 3284

Europe 264 864 1429 4141

Table 1: Message Delivery Time (ms).

4.3 Analysis

TCP is an all-purpose transport protocol. Being general

makes it ineffective in our gaming scenario. We dissect the

emulation results to understand each of the factors that in-

flate message latency and makes TCP unsuitable for many
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interactive game services. We study this with an eye on de-

signing a new transport protocol for applications with infre-

quent short messages with stringent delay requirements. The

conclusions are briefly summarized here (please refer to [29]

for details).

• TCP keeps only one timer for all outstanding packets.

As a result, different loss patterns can incur vastly dif-

ferent message delivery time.

• When the retransmission timer expires, TCP enters into

the slow start phase and reduces its congestion window

to one. As a result, it takes a very long time to recover

two lost packets in the same message.

• Exponential backoff greatly inflates the message deliv-

ery time, especially for clients with large RTT.

• The retransmission timeout value (RTO) is calculated

quite conservatively.

• Loss is never recovered via fast-retransmit due to the

small size and infrequency of the game messages. Fur-

thermore, the minimum RTO limits the opportunity to

recover loss upon timeout.

• Delayed ACK causes the last packet of many messages

not to be acknowledged promptly.

• Due to TCP streaming in-order delivery, the delay of

an early message can postpone the delivery of later

messages.

The combination of all the above factors collectively causes

the occasional (at the 99.9 percentile) large message deliv-

ery time, as reported in Table 1. To highlight the impact of

these factors, we extract all the messages that are affected by

packet loss. We plot the distribution and compare it to those

messages not affected by loss at all. As shown in Figure 4,

we can observe that more than 10% of the loss-affected mes-

sages have final delivery time larger than 1000ms, and packet

loss is indeed the dominating factor in inflating the latency.

Fixing all of the above issues calls for a major re-work

of the transport protocol. We are therefore compelled to de-

velop an entirely new transport protocol from scratch. The

following changes are adopted: (i) there is one timer asso-

ciated with each message. When the timer expires, all the

unacknowledged packets within the message can be retrans-

mitted together [16]. (ii) Exponential backoff and minimum

RTO are removed [22, 28]. (iii) ACKs are never delayed be-

yond message boundaries. (iv) Streaming in-order delivery

is no longer a useful semantic and thus removed. (Please

refer to [29] for details.)

However, as we will later see, such fixes alone are insuf-

ficient to satisfy the game requirement and redundant packet

transmission should play a central role in the new protocol.

However, the key challenges are: i) how to determine redun-

dancy overhead so as to tightly bound maximum message la-

tency across a wide range of varying network conditions; ii)
how to obtain a low complexity solution which is feasible to

implement on already heavily loaded gaming servers.

5. PANGOLIN DESIGN

5.1 Rational

The analysis in the earlier sections shows that it is impos-

sible to rely on retransmissions alone to satisfy the delivery

requirement, particularly when the latency between client

and server is comparable to the latency tolerance. A natu-

ral remedy here is to send redundant packets together with

the data packets so that the redundant packets can be used to

recover the original message in the event of packet loss.

To ensure the maximum message latency is tightly bounded,

a straightforward solution is to add a fixed number (say r)

of redundant packets to each message. If r is chosen ag-

gressively large, the delay requirement can typically be met.

However, such a fixed redundancy scheme has a number of

problems: i) even when there is no loss, it incurs a fixed

overhead of r extra packets per message; ii) even for clients

very close to the server, whose latency tolerance is several

orders of magnitude larger than the round trip time, it incurs

the fixed overhead. For those clients, there is enough time

for the clients to wait for timeouts and retransmit lost pack-

ets, which obviously is a more economic solution. There-

fore, it is also desirable to satisfy the latency requirement

with as little overhead as possible.

A dynamic adaptive solution can monitor loss behavior

on network links and determine on-the-fly the number of

redundant packets to transmit. When clients are close, the

solution would simply revert back to pure timeout-based re-

transmission. When clients are far away, on the other hand,

the solution would add just enough redundant packets. For

clients in the middle range, the latency tolerance period can

be divided into stages determined by the round trip time be-



tween the clients and the server. The solution would favor

timeout-based retransmissions in the earlier stages and in-

crease the number of redundant packets in the later ones. To

summarize, the dynamic adaptive solution can be formulated

to solve the following optimization problem – for each indi-

vidual client, it is desirable to minimize the average number

of packets transmitted per message, subject to the constraint

that the fraction of messages exceeding the tolerated latency

is less than a very small target threshold.

In the rest of the section, we describe an optimal solution

to the above problem based on the Markov Decision Process

(MDP) theory. Before diving into the solution, it is instruc-

tive to first walk through a concrete example and illustrate

how the problem is transformed into the MDP framework.

5.2 A Message Transmission Example
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Figure 5: A Message Transmission Example.

Assume a client needs to transmit to the server a mes-

sage consisting of k data packets. Let T denote the toler-

ated latency; thus, only messages arriving within T seconds

are useful. Further assume there is certain RTT between

the client and the server. Suppose that with respect to the

RTT, the latency tolerance T can be divided into 3 stages,

as shown in Figure 5. At the beginning of stage i (i = 1,

2 or 3 here), there are q data packets to be transmitted. We

define the state as (i, q). For instance, if the original mes-

sage consists of k = 4 packets, then there are 4 packets to be

transmitted at the beginning of stage 1, and the initial state is

(1, 4). Given a state (i, q), we need to choose a transmission

action, which is the total number of packets to transmit and

is denoted by π(i, q). One exemplary action shown in Fig-

ure 5 is π(1, 4) = 6, which is to transmit 6 packets at stage

1, marked as “S:6”. This means that 6 packets will be trans-

mitted in stage 1, including 4 data packets and 2 redundant

packets.

Continuing with this example, when packet loss occurs,

the server will receive less than 6 packets. If it receives 4 or

more packets, the server can recover the original message.

In such cases, the message is successfully delivered in stage

1 and there is no need to transmit more packets in the next

stages. This is marked in Figure 5 as a special ending state

“0” at the end of stage 1. Otherwise, assuming the server

only receives 2 packets (no matter data or redundant pack-

ets, marked as “R:2” in Figure 5), then there are still 2 more

data packets that need to be transmitted in the second stage.

Therefore, the current state becomes (2, 2). Again, another

transmission action is to be chosen for the new state. De-

pending on the loss events in the network, the action will

lead to another state at the end of stage 2, and so on. By the

end of stage 3, the message still may not be delivered com-

pletely, i.e., the state at the end of stage 3 is non-zero. In this

case, this message fails to satisfy the latency tolerance.

5.3 Problem Formulation in MDP Framework

The choice of the action at each given state, combined

with the probabilistic nature of packet loss, creates a stochas-

tic process. As illustrated by the trellis in Figure 5, the action

and packet loss determines the evolution of the process. In

the terms of the Markov Decision Process theory, a map-

ping from states to actions is called a policy, denoted as

π = {π(i, q)}. For a given policy π, the action at each state

(i, q) is deterministic (defined by the policy itself). In illus-

trations similar to Figure 5, each deterministic action cor-

responds to a single link leaving a state. Packet losses are,

however, probabilistic and different loss patterns result in

different states, corresponding to different branches ending

up at different states.

For a given message, let p denote the current estimate of

the packet loss probability. Also, let I denote the number of

stages. The probability of each path can be calculated as the

compound probability of all the loss patterns along the path.

Aggregating all the paths ending at non-zero states in the fi-

nal stage I (or stage 3 in the above example), we can obtain

the probability that the message cannot be delivered by T .

This probability is equivalent to the fraction of messages ar-

riving after T , which we denote as ǫπ . Here, the subscript π
represents the associated policy. The cost of each path can

similarly be calculated as the total number of packets trans-

mitted along the path. Aggregating the costs on all the paths

weighted by their probabilities, we can obtain the average

cost of delivery a message, which we denote as ρπ .

To ensure that the majority of messages are delivered within

the latency tolerance, we require the percentage of the mes-

sages arriving later than T be less than a very small target

threshold, denoted as ǫ(T ).



Therefore, the original optimization problem can be trans-

formed into the MDP framework to find the optimal policy,

which minimizes the average transmission cost while at the

same time ensuring the probability of the message arriving

later than T is below the threshold. In particular, the opti-

mization problem becomes

min
π

ρπ

s.t. ǫπ ≤ ǫ(T ).

5.4 An MDP-Based Solution

The above constrained MDP problem can be converted to

an unconstrained MDP problem using standard Lagrangian

methods. To this end, we first introduce a Lagrangian multi-

plier λ and define a combined objective function as a weighted

sum of the failure probability and transmission cost, denoted

by

Jπ(i, q) = ǫπ(i, q) + λρπ(i, q). (1)

Thus Jπ(i, q) is the combined cost when beginning in the

sub-trellis rooted in state (i, q). Obviously, the objective

function over the entire trellis is Jπ(1, k). Next, for a given

λ, we solve the modified optimization problem which mini-

mizes Jπ(1, k) and finds the optimal policy π∗, i.e.,

π∗ = argmin
π

Jπ(1, k). (2)

For the optimal policy π∗ determined by a given λ, the mes-

sage failure rate ǫπ(1, k) can be readily evaluated. It might

or might not satisfy the latency requirement constraint (ǫπ ≤
ǫ(T )). Hence, the final step is to vary λ and find the closest

value through bi-section search that just satisfies the con-

straint. This is equivalent to finding a point on the convex-

hull along the trade-off curve between the message failure

rate and the transmission cost [8, 14].

To solve the above modified optimization problem, the

objective function of a particular trellis can be expressed in

terms of its sub-trellises, as

Jπ(i, q) = λπ(i, q) +

q
∑

q′=0

p(q′|q, π(i, q))Jπ(i+ 1, q′),

(3)

where p(q′|q, π(i, q)) represents the transitional probability

from state (i, q) to state (i + 1, q′) by transmitting π(i, q)
number of packets. Given the model of packet loss, the tran-

sition probability can be readily calculated. For example,

assuming the packet loss rate is uniform and denoted by p,

the transition probability is calculated as Equation 4. Also,

the cost at the edge is computed as Jπ(I + 1, q 6= 0) =
ǫπ(I + 1, q) + λρπ(I + 1, q) = 1, since the failure prob-

ability and the transmission cost after the final stage I are

ǫπ(I + 1, q) = 1 and ρπ(I + 1, q) = 0, respectively. Of

course, Jπ(I + 1, q = 0) = 0.

Let J∗(i, q) and π∗(i, q) define the minimum value of the

objective function and the corresponding action, over the

sub-trellis rooted at (i, q). Then

J∗(i, q) = min
a

(

λa+

q
∑

q′=0

p(q′|q, a)J∗(i+ 1, q′)
)

, (5)

π∗(i, q)) = argmin
a

(

λa+

q
∑

q′=0

p(q′|q, a)J∗(i+ 1, q′)
)

.

(6)

By induction, it can be readily shown that J∗(i, q) ≤ Jπ(i, q)
for all (i, q) and all π, with equality achieved when π = π∗.

Therefore, the problem of finding the optimal policy π∗

(i.e., Equation 2) can be solved efficiently using dynamic

programming with the recursive Equation 5 and Equation 6.

We briefly note here that solution procedure just outlined

above will not find the optimal policy in exact, since the

constraint will typically not be met in equality. To achieve

optimality, we need to introduce some randomization into

the selection of actions [8]. However, the deterministic pol-

icy derived above will be nearly optimal and sufficient for

practical purposes.

5.5 Computation Complexity

We remark that the optimal policy is completely deter-

mined given the packet loss probability, the initial state (i.e.,

the number of data packets in a message), as well as the ra-

tio between RTT and the latency tolerance (i.e., the number

of stages I). With these inputs, the dynamic programming

problem outlined above can be solved for any Lagrangian

multiplier λ. Then, through bi-section search, the optimal

policy can be readily found [8, 14].

Based on this observation, to avoid performing expensive

optimization computations online, in practice, all the opti-

mal policies are pre-calculated and stored as look-up tables

for all possible combinations of (quantized) inputs. During

online adaptation, the optimal action can be obtained with a

simple table lookup, given the current state (how many data

packets remain to be transmitted), the stage of transmission,

the packet loss rate, the RTT and the latency tolerance.

It might appear that a large number of policy tables would

have to be stored and thus consume significant amount of

memory. In reality, many tables are trivial and thus don’t

need to be stored – when packet loss rate is relatively low

and/or the number of stages is relatively large, the optimal

action at every single stage is simply to transmit all the re-

maining data packets without any parity packet. These op-

timal action tables, once pre-computed, do not need to be

stored physically. Therefore, the actual memory consump-

tion can be significantly reduced. Assume the packet loss

probability varies between 0 and 50%. With a quantiza-

tion step of 1%, there are P = 50 different packet loss

probabilities. Also, assume the latency tolerance is 1000ms.

With a RTT quantization step of 10ms, there are up to R =
1000/10 = 100 transmission stages. Finally, each message

can have up to K = 64 packets. Instead of P × R × K =
320K tables, in the end, we only have to store 22,968 tables



p(q′|q, a) =







0 if q < q′ or q > q′ + a
∑

a

r=q

(

a

r

)

(1− p)rp(a−r) if q′ = 0
(

a

q−q′

)

(1− p)(q−q
′)p(a−(q−q

′)) if 0 < q′ ≤ q ≤ q′ + a
(4)

with less than 4MB in total size. Clearly, all the tables can

be pre-loaded by both game consoles and data center servers

easily.

5.6 Network Congestion

The rate of concurrent messaging in Xbox games is typ-

ically quite low, such as one message per second. Network

congestion is less of a concern at such low rate. However, if

Pangolin were to be used to deliver large messages at high

rates, the adaptive scheme needs to properly incorporate net-

work congestion signal. The Pangolin scheme has been ex-

tended to cope with network congestion and we refer inter-

ested readers to [29] for the details.

6. ARCHITECTURE AND IMPLEMENTA-

TION

Based on the above adaptive FEC scheme, we have imple-

mented the Pangolin transport protocol to ensure that mes-

sage latency requirement is satisfied without incurring high

transmission cost. Pangolin is a message-oriented, connec-

tionless, UDP-based protocol. In this section, we describe

its architecture and implementation. (Please refer to [29] for

protocol details.)

The Pangolin protocol is built on top of UDP. It includes

a Pangolin core and a set of APIs. The Pangolin core imple-

ments all the major functions of a full-fledged transport pro-

tocol, such as 1) maintaining per-flow status for each com-

municating end-point; 2) estimating the parameters of com-

munication channels, such as round trip time, packet loss

rate, timeout period, etc.; 3) delivering packets using a com-

bination of FEC and retransmission, as determined by the

adaptive algorithm; and so on. The Pangolin APIs support

both synchronous and asynchronous message transfers.

The core of the Pangolin stack contains about 7000 lines

native C++ and about 500 managed C++ code to support C#

programming1. The majority of the codebase lies in the im-

plementation of the UDP-based transport protocol stack and

performance optimizations for the stack. The MDP-based

adaptive solution only accounts for a tiny fraction of the

codebase because it is as simple as – whenever a message

(re)transmission event arises, performing a table-lookup based

on the number of unacknowledged packets (in the message)

and transmitting specified number of packets based on the ta-

ble entry. It is also worth noting that all the performance op-

timizations for the protocol stack, such as thread pool, com-

pletion port for efficient network I/Os, etc., are applied only

1Xbox consoles use the native APIs, while game servers in the data
center use the C# APIs.

on server side. The protocol stack went into Xbox consoles

is significantly smaller.

7. PERFORMANCE EVALUATION

In this section, Pangolin is first evaluated under simple

exemplary scenarios, such as fixed round trip time and con-

stant packet loss rates. Focusing on such simple scenarios

allows us to fully understand the trade-off between the trans-

mission cost and the probability of satisfying the latency re-

quirement, as well as the advantages of Pangolin over the

TCP and fixed FEC schemes. Pangolin is then evaluated us-

ing the real-world packet-level trace, which further confirms

its benefit for end-users in the wild.

7.1 Transmission Cost

We start with simple exemplary scenarios. Assume the

round trip time between a client and the data center is 250ms

and the target latency is 500ms. Therefore, the client has

500/200 = 2 rounds of transmission opportunity. Further

assume the message is divided into k = 4 data packets and

the packet loss rate is p = 2%. Thus, the optimal trans-

mission policy derived from the MDP solution is π∗(q1 =
k1) = k1 and π∗(q2 = k2) = k2 + 1, i.e., in the first round,

k = 4 packets are transmitted; and in the second round,

k′ + 1 packets are transmitted, given there are k′ remaining

data packets. The expected transmission cost can also be

calculated and is ρ∗ = 4.16. Then, a normalized transmis-

sion overhead (simply overhead hereafter) can be calculate

as (ρ∗−k)/k, which is (4.16−4)/4 = 4% and is very small.
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Figure 6: Transmission Cost of Optimal Policies.



Figure 6 shows the overhead of optimal policies under a

wide range of packet loss rates. We observe that ensuring

99.9%, rather than 99%, of the messages delivered within

the latency constraint is much more difficult, as the corre-

sponding overhead is noticeably higher. In addition, for a

given target success rate, interestingly, the overhead curve

appears to be piece-wise linear. For example, the curve cor-

responding to the target success rate of 99.9% consists of

three linear segments. Further investigation reveals that there

are only three different policies across the entire range of

packet loss rates, and each linear segment is covered by the

same policy. This implies that the optimal policies are in

fact not sensitive to packet loss rate. Therefore, the very

estimation of packet loss rate does not have to be highly ac-

curate. Finally, the minimum overhead curve is also plotted

as a comparison, which is calculated using an oracle scheme

that knows all the losses a priori and adds FEC accordingly.

We can conclude that, even targeting a high success rate of

99.9%, the actual overhead is not much higher than the or-

acle scheme. This further confirms the effectiveness of the

optimal policies.

7.2 Message Latency

In this section, we evaluate the performance of the real

Pangolin stack by emulating similar network conditions. Specif-

ically, the emulated round trip time is 250ms and the packet

loss rate 2% (on the forward connection only). The message

size is 2KB and divided into 4 packets. The target latency is

500ms, or twice the round trip time.
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Figure 7: Latency Performance Comparison.

For comparison purposes, a fixed FEC scheme is also eval-

uated. This scheme always transmits one FEC packet to-

gether with the four data packets and hence has a constant

overhead of 25%. Figure 7 compares the message latency

performance among TCP, the fixed FEC scheme and Pan-

golin. The results at high percentiles are also summarized in

Table 2.

From the comparison, we can observe that no matter which

Latency (ms) TCP Fixed FEC Pangolin

95% 266 266 500

99% 1234 266 516

99.9% 1359 516 531

Overhead - 25% 4.3%

Table 2: Latency Performance Comparison.

protocol is used, a large percentage of the messages are de-

livered at the minimum latency ∼250ms (the small devia-

tion is introduced by the network emulator). This is intu-

itive since the probability of packet loss is low. However, at

high percentiles, the latency of TCP quickly increases and

reaches more than 1.3 seconds at 99.9%, which is very sig-

nificant compared to the round trip time of 250ms. On the

other hand, both the fixed FEC scheme and Pangolin are able

to satisfy the 500ms latency requirement. In addition, we ob-

serve that the fixed FEC scheme delivers most messages at

the minimum latency, while Pangolin delivers more than 7%
of the messages at the target latency. Clearly, the fixed FEC

scheme is over-aggressive and the adaptive scheme of Pan-

golin is sufficient. This also explains why Pangolin only re-

quires 4.3% overhead, much less than the fixed FEC scheme.

Finally, we comment that the 4.3% overhead as measured in

the Pangolin stack matches nicely with the theoretical value

from Section 7.1.

7.3 Trace-Driven Emulation

7.3.1 Latency

Latency (ms) TCP Retrans. Fixed FEC Pangolin

95% 219 219 204 219

99% 566 469 328 412

99.5% 828 703 469 581

99.9% 2352 1501 984 938

Overhead - 3.9% 150% 6.1%

Table 3: Latency Performance Comparison in the Wild.

In this section, we evaluate the performance of Pangolin in

the wild. We use Pangolin to send 2KB messages and con-

trol individual packets by replaying the collected measure-

ment traces. We compare Pangolin to TCP, a retransmission-

only scheme, and a fixed FEC scheme which always uses the

same number of redundant packets. In Pangolin, each 2KB

message is split into k = 2 packets. In the experiment, the

latency tolerance T is set to be 1000ms.2 The target success

rate is set at 99.9%, i.e., 99.9% of the messages should be

delivered within T . For the fixed FEC scheme, 3 redundant

2We remove all the clients whose average RTT is greater than
1000ms, as they cannot satisfy the latency requirement even in the
absence of packet loss. There are 19 such clients.



packets are added, i.e. 5 packets are sent in total3.

Table 4 shows the comparison results. The most important

performance metric is the latency at the 99.9-percentile. We

observe that the retransmission-only scheme, which fixes all

the issues of TCP as discussed in Section 4, reduces the la-

tency from 2.3 seconds to 1.5 seconds. However, it is also

clear that fixing TCP alone cannot solve the problem, as the

latency still does not satisfy the requirement. In compari-

son, the fixed FEC scheme can achieve the desirable latency,

but at very high overhead (at least 150% in this case). In

contrast, Pangolin is not only able to satisfy the latency re-

quirement, but also uses much less overhead than the fixed

FEC scheme. Furthermore, Figure 8 shows the CDF of the

four schemes, where Figure 8(b) is a zoomed view at high

percentile. From the figures, we can see that Pangolin shows

higher message latency than the fixed FEC scheme most of

the time. This is due to the design of Pangolin’s adaptive

scheme, which does not seek to minimize delivery time, but

rather to meet the target latency with minimum overhead.

Finally, at the target percentile, Pangolin is able to satisfy

the required latency while the retransmission-only scheme

cannot.

7.3.2 Cost

Latency (ms) Retrans. k=2 k=3 k=4 k=5

95% 219 219 234 234 235

99% 469 412 438 457 469

99.5% 703 581 610 623 631

99.9% 1501 938 985 1000 1015

Overhead 3.9% 6.1% 7.9% 9.8% 12.0%

Table 4: Latency and Cost Comparison in the Wild.

Next, we evaluate the overhead introduced by Pangolin

and its relationship with packet size. Each 2KB message is

divided into k data packets. Intuitively, when k is small, each

FEC packet, of the same size as the data packet, is larger and

thus more costly. On the other hand, when k is large, the

same level of redundancy requires more FEC packets and

thus more protocol overhead. Therefore, it is not clear what

is the best choice of k. Here, we conduct a simple empirical

evaluation by comparing all reasonable k values, from 2 to

5. The protocol header of Pangolin is 12 bytes, so for every

packet, the total protocol overhead is 40 bytes, including IP

and UDP headers. The overhead of Pangolin is calculated

as the ratio between the total number of bytes transmitted

(including all protocol headers) and the total number of bytes

of all the messages (without protocol header). The results

are shown in Table 4. Interestingly, we observe that as the

k increases, the overhead of Pangolin also increases. Also,

k = 2 yields the minimum overhead, which is not much

3One or two redundant packets are also tried, but neither satisfies
the latency requirement. Hence, the fixed FEC scheme works only
in retrofitting and is hardly practical.
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Figure 8: Latency Performance Comparison in the Wild.

higher than the minimum overhead of the retransmission-

only scheme.

8. RELATED WORK

8.1 Replacing TCP

Being a generic transport protocol, TCP cannot be opti-

mized for every specific scenario. Based on unique applica-

tion characteristics and requirements, there have been many

efforts to replace TCP with customized UDP-based transport

protocols. The most significant ones are perhaps [25, 27].

In a data center environment, when hundreds of machines

start TCP transfers in parallel, the so-called network incast

problem can happen as the sudden burst incurs significant

packet loss. The loss in turn leads to a large silent period

because of large TCP timeout value, which greatly inflates

transfer latency. To address this problem, Facebook built a



custom congestion-aware UDP-based transport protocol to

manage congestion across multiple flows and avoid the de-

fault 200ms TCP timeout [25]. In peer-to-peer data sharing,

in order to be friendly to interactive applications and tame

the queuing delay in bottlenecks, BitTorrent has developed a

custom transport protocol and moved significant amount of

peer-to-peer traffic over the Internet to UDP. The new pro-

tocol allows BitTorrent to deploy a novel congestion control

algorithm, which can fully utilize the available capacity at

the presence of competing TCP flows and yield into back-

ground when their presence is detected [27]. Pangolin is

similar in its design philosophy. We recognize that a ma-

jor re-work of TCP is warranted, but that alone cannot solve

the problem. Hence, Pangolin is designed as a new UDP-

based protocol. Of course, Pangolin targets the concurrent

messaging problem, which is completely different from the

above settings and thus bears a totally different solution.

8.2 FEC as an End-to-end Technology

Besides being widely used in physical-layer communica-

tions, Forward Error Correction codes are also explored as

an end-to-end technology to protect data and combat application-

layer packet loss. Based on the level of protection require-

ment, the applications using FEC can be broadly classified

into three categories.

8.2.1 Real-time Communications

For this application, data loss is tolerable, as it only de-

grades perceived performance, but doesn’t cause complete

disruption. In interactive video conferencing, Rhee et al. [24]

proposed to recover from error propagation using continuous

updates, which allow FEC packets to be transmitted even af-

ter the playback of their associated frames. For VoIP traffic,

Bolot et al. [10] used measurements over the Internet and

showed that most loss periods involve only a small number

of packets. Therefore, an open loop FEC-based scheme was

adequate to significantly improve quality. For live stream-

ing broadcast, Chou et al. [14] developed a combined FEC

and pseudo-ARQ scheme, which splits video signal into lay-

ers and each layer into FEC-coded sub channels. A receiver

subscribes to the layers and channels that optimize quality

based on its bandwidth and packet loss rate. Similarly, Zat-

too [13] uses FEC substreams to protect data substreams in

peer-to-peer live streaming.

8.2.2 Bulk Data Transfer

In this application, large data objects of non-degradable

nature are to be transferred. Data loss is intolerable and the

objects have to be received in their entirety. High transfer

throughput is the first order objective and FEC codes provide

a very efficient way to deal with packet loss when broadcast-

ing to a large number of receivers [23, 26] or retrieving from

multiple sources [12]. Efficient codes are also developed

to reduce computation complexity, such as digital fountain

and online codes [11, 21]. Finally, network coding approach

based on random linear codes also provides an alternative to

improve bulk transfer throughput [15, 17].

8.2.3 Short Transfers

These applications require transferring non-degradable short

messages within very short latencies. Balakrishnan et al. [6,

7] developed schemes to deal with such transfers within data

centers and across data centers. Pangolin belongs to this type

of application. Different from the above work, where the pri-

mary focuses are the design of special FEC codes based on

the characteristics of the applications, Pangolin uses stan-

dard FEC codes. The focus of Pangolin is an adaptive de-

cision scheme to minimize overhead while satisfying the la-

tency tolerance requirement.

8.3 Adaptive Schemes

Since FEC incurs extra overhead, it is clear that a redun-

dancy scheme involving FEC should be adaptive. When

there is no packet loss, no redundancy should be added. On

the other hand, when packet loss rate is high, the level of

redundancy should be high. Bolot et al. [9] studied the adap-

tion problem in the context of VoIP. In particular, they for-

mulated a constraint optimization problem and answered the

following questions: 1) when should FEC packets be sent?

and 2) what source rate should each packet include? Pan-

golin differs from their work in two important ways: 1) in-

stead of assuming an open loop control, Pangolin relies heav-

ily on feedback. Pangolin uses retransmission whenever pos-

sible, which is why it can significantly reduce overhead; 2)

instead of solving complex optimization problems online,

Pangolin pre-computes all the optimal policies and the on-

line adaptation only requires simple table lookup. This makes

it possible for Pangolin to be adopted even by gaming servers

with high processing load.

The work of Chou et al. [14] developed a rate-distortion

optimized framework to deliver packetized media. The Ra-

DiO framework schedules which packets to send in order

to meet a deadline constraint while minimizing the end-to-

end distortion. The adaptive scheme in Pangolin is largely

inspired by this work. However, the important differences

are: 1) instead of relying on ARQ and retransmission, Pan-

golin combines retransmission with FEC codes and unifies

the scheduling of both types of packet; 2) Pangolin focuses

on minimizing overhead, which is a totally different perfor-

mance metric from the distortion.

9. CONCLUSION

In this paper, we address the problem of concurrent mes-

saging for cloud-based social gaming. Learning from a large-

scale measurement experiment, we conclude that the generic

transport protocol TCP, currently being used in Xbox Live

online games, cannot provide concurrent messaging to the

game players. We develop Pangolin, a new UDP-based trans-

port protocol, which uses an adaptive decision making en-

gine to combat loss with redundant FEC packets. Both theo-



retical analysis and trace-driven emulation demonstrate that

Pangolin minimizes the 99.9-percentile while keeping the

overhead negligible. Pangolin has been incorporated into

the latest Xbox SDK – released in November, 2010 – and is

now powering concurrent messaging for hundreds of thou-

sands of Xbox clients.
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