
An Analysis of Affine Coordinates

for Pairing Computation

Kristin Lauter, Peter L. Montgomery, and Michael Naehrig

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{klauter,petmon,mnaehrig}@microsoft.com

Abstract. In this paper we analyze the use of affine coordinates for
pairing computation. We observe that in many practical settings, e. g.
when implementing optimal ate pairings in high security levels, affine
coordinates are faster than using the best currently known formulas for
projective coordinates. This observation relies on two known techniques
for speeding up field inversions which we analyze in the context of pairing
computation. We give detailed performance numbers for a pairing imple-
mentation based on these ideas, including timings for base field and ex-
tension field arithmetic with relative ratios for inversion-to-multiplication
costs, timings for pairings in both affine and projective coordinates, and
average timings for multiple pairings and products of pairings.

Keywords: Pairing computation, affine coordinates, optimal ate pairing,
finite field inversions, pairing cost, multiple pairings, pairing products.

1 Introduction

Cryptographic pairing computations are required for a wide variety of new cryp-
tographic protocols and applications. All cryptographic pairings currently used
in practice are based on pairings on elliptic curves, requiring both elliptic curve
operations and function computation and evaluation to compute the pairing of
two points on an elliptic curve [36]. For a given security level, it is important to
optimize efficiency of the pairing computation, and much work has been done
on this topic (see for example [6,7,5,30,35,44,42]).

Elliptic curve operations can be implemented using various coordinate sys-
tems, such as affine or different variants of projective coordinates (for an overview
see [10]). It has long been the case that many implementers have found affine
coordinates slow for elliptic curve operations because of the relatively high costs
of inversions and the relatively fast modular multiplication that can be achieved
for special moduli such as generalized Mersenne primes. Thus projective coordi-
nates were also suggested for pairing implementations [33,41], and very efficient
explicit formulas were found for various parameter choices [1,16]. So recently
there has been a bias in the literature towards the use of projective coordi-
nates for pairings as well. Nevertheless, researchers had previously concluded
that affine coordinates can be superior in many situations (see [22, Section 5]
and [21, Section IX.14]).

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 K. Lauter, P.L. Montgomery, and M. Naehrig

In this paper we analyze the use of affine coordinates for pairing computation
in different settings. We propose the use of two known techniques for speeding up
field inversions and analyze them in the context of pairing computation. Based
on these, we find that in many practical settings, for example when implementing
one of the optimal pairings [44] based on the ate pairing [30] in high security
levels, affine coordinates will be much faster than projective coordinates.

The first technique we investigate is computing inverses in extension fields by
using towers of extension fields and successively reducing inverse computation to
subfield computations via the norm map. We show that this technique drastically
reduces the ratio of the costs of inversions to multiplications in extension fields.
Thus when computing the ate pairing, where most computations take place in
a potentially large extension field, the advantage of projective coordinates is
eventually erased as the degree of the extension gets large. This happens for
example when implementing pairings on curves for higher security levels such as
256 bits, or when special high-degree twists can not be used to reduce the size
of the extension field.

The second technique we investigate is the use of inversion-sharing for pairing
computations. Inversion-sharing is a standard trick whenever several inversions
are computed at once. As the number of elements to be inverted grows, the
average ratio of inversion-to-multiplication costs approaches 3. Inversion-sharing
can be used in a single pairing computation if the binary expansion is read from
right-to-left instead of left-to-right. This approach also has the advantage that it
can be easily parallelized to take advantage of multi-core processors. Inversion-
sharing for pairing computation can also be advantageous for computing multiple
pairings or for computing products of pairings, as was suggested by Scott [41]
and analyzed by Granger and Smart [25].

Ironically, although the two techniques we investigate can be used simultane-
ously, it is often not necessary to do so, since either technique alone can reduce
the inversion to multiplication ratio. Either technique alone makes affine coor-
dinates faster than projective coordinates in some settings.

To illustrate these techniques, we give detailed performance numbers for a
pairing implementation based on these ideas. This includes timings for base field
and extension field arithmetic with relative ratios for inversion-to-multiplication
costs and timings for pairings in both affine and projective coordinates, as well
as average timings for multiple pairings and products of pairings. In our im-
plementation, affine coordinates are faster than projective coordinates even for
Barreto-Naehrig curves [8] with a high-degree twist at the lowest security levels.
However, we expect that for other implementations, the benefits of affine coor-
dinates would only be realized for higher security levels or for curves without
high-degree twists.

The paper is organized as follows: Section 2 provides the necessary back-
ground on the ate pairing and discusses the costs of doubling and addition steps
in Miller’s algorithm. In Section 3, we show how variants of the ate pairing
can benefit from using affine coordinates due to the fact that the inversion-to-
multiplication ratio in an extension field is much smaller than in the base field.

An Analysis of Affine Coordinates for Pairing Computation 3

Section 4 is dedicated to revisiting the well-known inversion-sharing trick and
its application in pairing computation. Finally, Section 5 gives benchmarking
results for our pairing implementation based on the Microsoft Research bignum
library.

2 Pairing Computation

Let p > 3 be a prime and Fq be a finite field of characteristic p. Let E be an
elliptic curve defined over Fq, given by E : y2 = x3 +ax+ b, where a, b ∈ Fq and
4a3 + 27b2 �= 0. We denote by O the point at infinity on E. Let n = #E(Fq) =
q + 1 − t, where t is the trace of Frobenius, which fulfills |t| ≤ 2

√
q. We fix a

prime r with r | n. Let k be the embedding degree of E with respect to r, i. e.
k is the smallest positive integer with r | qk − 1. This means that F

∗
qk contains

the group μr of r-th roots of unity. The embedding degree of E is an important
parameter, since it determines the field extensions over which the groups that
are involved in pairing computation are defined.

For m ∈ Z, let [m] be the multiplication-by-m map. The kernel of [m] is the
set of m-torsion points on E; it is denoted by E[m] and we write E(Fq�)[m] for
the set of Fq� -rational m-torsion points (� > 0). If k > 1, which we assume from
now on, we have E[r] ⊆ E(Fqk), i.e. all r-torsion points are defined over Fqk .

Most pairings that are suitable for use in practical cryptographic applications
are derived from the Tate pairing, which is a map E(Fqk)[r]×E(Fqk)/rE(Fqk) →
F
∗
qk/(F∗

qk)r (for details see [18,19]). In this paper, we focus on the ate pairing
[30], variants of which are often the most efficient choices for implementation.

2.1 The Ate Pairing

Given m ∈ Z and P ∈ E[r], let fm,P be a rational function on E with divisor
(fm,P) = m(P)−([m]P)−(m−1)(O). Let φq be the q-power Frobenius endomor-
phism on E. Define two groups of prime order r by G1 = E[r] ∩ ker(φq − [1]) =
E(Fq)[r] and G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk)[r]. The ate pairing is defined
as

aT : G2 ×G1 → μr, (Q,P) 	→ fT,Q(P)(q
k−1)/r, (1)

where T = t − 1. The group G2 has a nice representation by an isomorphic
group of points on a twist E′ of E, which is a curve that is isomorphic to E.
Here, we are interested in those twists which are defined over a subfield of Fqk

such that the twisting isomorphism is defined over Fqk . Such a twist E′ of E is
given by an equation E′ : y2 = x3 + (a/α4)x + (b/α6) for some α ∈ Fqk with
isomorphism ψ : E′ → E, (x, y) 	→ (α2x, α3y). If ψ is minimally defined over
Fqk and E′ is minimally defined over Fqk/d for a d | k, then we say that E′ is
a twist of degree d. If a = 0, let d0 = 4; if b = 0, let d0 = 6, and let d0 = 2
otherwise. For d = gcd(k, d0) there exists exactly one twist E′ of E of degree d
for which r | #E′(Fqk/d) (see [30]). Define G′

2 = E′(Fqk/d)[r]. Then the map ψ is

4 K. Lauter, P.L. Montgomery, and M. Naehrig

a group isomorphism G′
2 → G2 and we can represent all elements in G2 by the

corresponding preimages in G′
2. Likewise, all arithmetic that needs to be done

in G2 can be carried out in G′
2. The advantage of this is that points in G′

2 are
defined over a smaller field than those in G2. Using G′

2, we may now view the
ate pairing as a map G′

2 ×G1 → μr, (Q′, P) 	→ fT,ψ(Q′)(P)(q
k−1)/r.

The computation of aT (Q′, P) is done in two parts: first the evaluation of the
function fT,ψ(Q′) at P , and second the so-called final exponentiation to the power
(qk − 1)/r. The first part is done with Miller’s algorithm [36]. We describe it for
even embedding degree in Algorithm 1 which shows how to compute fm,ψ(Q′)(P)
for some integer m > 0. We denote the function given by the line through two
points R1 andR2 on E by lR1,R2 . IfR1 = R2, then the line is given by the tangent
to the curve passing through R1. Throughout this paper, we assume that k is
even so that denominator elimination techniques can be used (see [6,7]).

Algorithm 1. Miller’s algorithm for even k and ate-like pairings
Input: Q′ ∈ G′

2, P ∈ G1, m = (1, ml−2, . . . , m0)2
Output: fm,ψ(Q′)(P) representing a class in F

∗
qk/(F∗

qk)r

1: R′ ← Q′, f ← 1
2: for i from �− 1 downto 0 do
3: f ← f2 · lψ(R′),ψ(R′)(P), R′ ← [2]R′

4: if (mi = 1) then
5: f ← f · lψ(R′),ψ(Q′)(P), R′ ← R′ + Q′

6: end if
7: end for
8: return f

Miller’s algorithm builds up the function value fm,ψ(Q′)(P) in a square-and-
multiply-like fashion from line function values along a scalar multiplication com-
puting [m]Q′ (which is the value of R′ after the Miller loop). Step 3 is called a
doubling step, it consists of squaring the intermediate value f ∈ Fqk , multiplying
it with the function value given by the tangent to E in R = ψ(R′), and doubling
the point R′. Similarly, an addition step is computed in Step 5 of Algorithm 1.

The final exponentiation in (1) maps classes in F
∗
qk/(F∗

qk)r to unique represen-
tatives in μr. Given the fixed special exponent, there are many techniques that
improve its efficiency significantly over a plain exponentiation (see [42,24]).

The most efficient variants of the ate pairing are so-called optimal ate pairings
[44]. They are optimal in the sense that they minimize the size of m and with
that the number of iterations in Miller’s algorithm to log(r)/ϕ(k), where ϕ is
the Euler totient function. For these minimal values of m, the function fm,ψ(Q′)
alone usually does not give a bilinear map. To get a pairing, these functions need
to be adjusted by multiplying with a small number of line function values; for
details we refer to [44].

Secure and efficient implementation of pairings can be done only with a careful
choice of the underlying elliptic curve. The curve needs to be pairing-friendly,
i.e. the embedding degree k needs to be small, while r should be larger than

√
q.

An Analysis of Affine Coordinates for Pairing Computation 5

A survey of methods to construct such curves can be found in [20]. For security
reasons, the parameters need to have certain minimal sizes which lead to optimal
values for the embedding degree k for specific security levels (see for example
the keysize recommendations in [43] and [4]).

Furthermore, it is advantageous to choose curves with twists of degree 4 or 6,
so-called high-degree twists, since this results in higher efficiency due to the more
compact representation of the group G2. To achieve security levels of 128 bits
or higher, embedding degrees of 12 and larger are optimal. Because the degree
of the twist E′ is at most 6, this means that when computing ate-like pairings
at such security levels, all field arithmetic in the doubling and addition steps in
Miller’s algorithm takes place over a proper extension field of Fq.

2.2 Costs for Doubling and Addition Steps

In this section, we take a closer look at the costs of the doubling and addi-
tion steps in Miller’s algorithm. We begin by describing the evaluation of line
functions in affine coordinates, i.e. a point P on E, P �= O, is given by two
affine coordinates as P = (xP , yP). Let R1, R2, S ∈ E with R1 �= −R2 and
R1, R2 �= O. Then the function of the line through R1 and R2 (tangent to E if
R1 = R2) evaluated at S is given by lR1,R2(S) = yS − yR1 − λ(xS − xR1), where
λ = (3x2

R1
+a)/2yR1 if R1 = R2 and λ = (yR2 −yR1)/(xR2 −xR1) otherwise. The

value λ is also used to compute R3 = R1 + R2 on E by xR3 = λ2 − xR1 − xR2

and yR3 = λ(xR1 − xR3) − yR1 . If R1 = −R2, then we have xR1 = xR2 and
lR1,R2(S) = xS − xR1 .

Before analyzing the costs for doubling and addition steps, we introduce no-
tations for field arithmetic costs. Let Fqm be an extension of degree m of Fq for
m ≥ 1. We denote by Mqm , Sqm , Iqm , addqm , subqm , and negqm the costs for
multiplication, squaring, inversion, addition, subtraction, and negation in the
field Fqm . When we omit the indices in all of the above, this indicates that we
are dealing with arithmetic in a fixed field and field extensions do not play a
role. The cost for a multiplication by a constant ω ∈ Fqm is denoted by M(ω).
We assume the same costs for addition of a constant as for a general addition.

Let notations be as described in Section 2.1. Let e = k/d, thenG′
2 = E′(Fqe)[r].

Let P ∈ G1, R′, Q′ ∈ G′
2 and let R = ψ(R′), Q = ψ(Q′). Furthermore, we assume

that Fqk = Fqe(α) where α ∈ Fqk is the same element as the one defining the
twist E′, and we have αd = ω ∈ Fqe . This means that each element in Fqk is
given by a polynomial of degree d−1 in α with coefficients in Fqe and the twisting
isomorphism ψ maps (x′, y′) to (α2x′, α3y′).

Doubling steps in affine coordinates: We need to compute

lR,R(P) = yP − α3yR′ − λ(xP − α2xR′) = yP − αλ′xP + α3(λ′xR′ − yR′)

and R′
3 = [2]R′, where xR′

3
= λ′2−2xR′ and yR′

3
= λ′(xR′ −xR′

3
)−yR′ . We have

λ′ = (3x2
R′ + a/α4)/2yR′ and λ = (3x2

R + a)/2yR = αλ′. Note that [2]R′ �= O in
the pairing computation.

6 K. Lauter, P.L. Montgomery, and M. Naehrig

The slope λ′ can be computed with Iqe +Mqe +Sqe +4addqe , assuming that we
compute 3x2

R′ and 2yR′ by additions. To compute the double of R′ from the slope
λ′, we need at most Mqe +Sqe +4subqe . We obtain the line function value with a
cost of eMq to compute λ′xP and Mqe +subqe +negqe for d ∈ {4, 6}. When d =
2, note that α2 = ω ∈ Fqe and thus we need (k/2)Mq+Mqk/2 +M(ω)+2subqk/2

for the line.
We summarize the operation counts in Table 1. We restrict to even embedding

degree and 4 | k for b = 0 as well as to 6 | k for a = 0 because these cases
allow using the maximal-degree twists and are likely to be used in practice. We
compare the affine counts to costs of the fastest known formulas using projective
coordinates taken from [31] and [16]; see these papers for details. For an overview
of the most efficient explicit formulas known for elliptic-curve operations see the
EFD [10]. We transfer the formulas in [31] to the ate pairing using the trick in
[16] where the ate pairing is computed entirely on the twist. In this setting we
assume field extensions are constructed in a way that favors the representation
of line function values. This means that the twist isomorphism can be different
from the one described in this paper. Still, in the case d = 2, evaluation of the
line function can not be done in kMq; instead 2 multiplications in Fqk/2 need to
be done (see [16]). Furthermore, we assume that all precomputations are done
as described in the above papers and small multiples are computed by additions.

Table 1. Operation counts for the doubling step in the ate-like Miller loop omitting
1Sqk + 1Mqk

DBL d coord. Mq Iqe Mqe Sqe M(·) addqe subqe negqe

ab �= 0
2

affine k/2 1 3 2 1M(ω) 4 6 −
2 | k Jac. [31] − − 3 11 1M(a/ω2) 6 17 −
b = 0

4
affine k/4 1 3 2 − 4 5 1

4 | k W(1,2) [16] k/2 − 2 8 1M(a/ω) 9 10 1

a = 0
6

affine k/6 1 3 2 − 4 5 1
6 | k proj. [16] k/3 − 2 7 1M(b/ω) 11 10 1

Addition steps in affine coordinates: The line function value has the same
shape as for doubling steps. Note that we can replace R′ by Q′ in the line and
compute

lR,Q(P) = yP − α3yQ′ − λ(xP − α2xQ′) = yP − αλ′xP + α3(λ′xQ′ − yQ′)

and R′
3 = R′ +Q′, where xR′

3
= λ′2 − xR′ − xQ′ and yR′

3
= λ′(xR′ − xR′

3
)− yR′ .

The slope λ′ now is different, namely λ′ = (yR′ − yQ′)/(xR′ − xQ′). Note that
R′ = −Q′ does not occur when computing Miller function values of degree less
than r. The cost for doing an addition step is the same as that for a doubling
step, except that the cost to compute the slope λ′ is now Iqe + Mqe + 2subqe .

Table 2 compares the costs for affine addition steps to those in projective coor-
dinates. Again, we take these operation counts from the literature (see [1,16,15]
for the explicit formulas and details on the computation). Concerning the field

An Analysis of Affine Coordinates for Pairing Computation 7

Table 2. Operation counts for the addition step in the ate-like Miller loop omitting
1Mqk

ADD d coord. Mq Iqe Mqe Sqe addqe subqe negqe

ab �= 0
2

affine k/2 1 3 1 − 8 −
2 | k Jacobian [1] − − 8 6 6 17 −
b = 0

4
affine k/4 1 3 1 − 7 1

4 | k W(1,2) [16] k/2 − 9 5 7 8 1

a = 0
6

affine k/6 1 3 1 − 7 1
6 | k projective [15,16] k/3 − 11 2 1 7 −

and twist representations and line function evaluation, similar remarks as for
doubling steps apply here.

The multiplication with ω in the case d = 2 can be done as a precomputation,
since Q′ is fixed throughout the pairing algorithm. Since other formulas do not
have multiplications by constants, we omit this column in Table 2.

Affine versus projective: Doubling and addition steps for computing pairings
in affine coordinates include one inversion in Fqe per step. The various projective
formulas avoid the inversion, but at the cost of doing more of the other opera-
tions. How much higher these costs are exactly, depends on the underlying field
implementation and the ratio of the costs for squaring to multiplication.

A rough estimate of the counts in Table 2 shows that for Sqe = Mqe or
Sqe = 0.8Mqe (commonly used values in the literature, see [10]), the cost traded
for the inversion in the projective addition formulas is at least 9Mqe . For doubling
steps, it is smaller, but larger than 3Mqe in all cases. Since doubling steps are
much more frequent in the pairing computation (especially when a low Hamming
weight for the degree of the used Miller function is chosen), the traded cost in
the doubling case is the most relevant to consider.

Example 1. Let ab �= 0, i.e. d = 2. The cost that has to be weighed against
the inversion cost for a doubling step is 9Sqk/2 − (k/2)Mq + M(a/ω2) − M(ω) +
2addqk/2+11subqk/2 . Clearly, (k/2)Mq < Sqk/2 , and we assume M(ω) ≈ M(a/ω2)

and addqk/2 ≈ subqk/2 . If Sqk/2 ≈ 0.8Mqk/2, we see that if an inversion costs less
than 6.4Mqk/2 + 13addqk/2 , then affine coordinates are better than Jacobian.

Example 2. In the case a = 0, d = 6, and Sqk/6 ≈ 0.8Mqk/6, similar to the
previous example, we deduce that if an inversion in Fqk/6 is less than 3Mqk/6 +
(k/6)Mq+M(b/ω) +12addqk/6 , then affine coordinates beat the projective ones.

To compare affine to projective formulas, we need to look at the relative cost of
an inversion that is used in the affine formulas versus the cost of the additional
operations needed for the projective formulas. Therefore, an important measure
that determines whether the affine formulas are competitive with the projective
formulas is the ratio of the cost of an inversion to the cost of a multiplication.
For a positive integer �, define the inversion-to-multiplication ratio in the field
Fq� by Rq� = Iq�/Mq� .

8 K. Lauter, P.L. Montgomery, and M. Naehrig

In implementations of prime fields, inversions are usually very expensive, i.e.
the ratio Rq is very large. So the costs for inversions are much higher than the
above-mentioned costs to avoid them. Thus it does not make sense to use affine
coordinates. But it is possible to obtain much smaller ratios, e.g. when computing
in extension fields. Since the ate pairing requires inversions only in Fqe this could
be in favor of affine coordinates. Depending on the specific ratio Rq for a given
implementation, affine coordinates might even be faster than projective.

3 Inversions in Extension Fields for the Ate Pairing

In this section, we describe and analyze a way to compute inversions in finite
field extensions. It is based on a given, fixed implementation of arithmetic in the
underlying prime field and explains that the inversion-to-multiplication ratio
R = I/M decreases when moving up in a tower of field extensions.

3.1 Inverses in Field Extensions

The method we suggest for computing the inverse of an element in an extension
of some finite field Fq was originally described by Itoh and Tsujii [32] for binary
fields using normal bases. Kobayashi et al. [34] generalize the technique to large-
characteristic fields in polynomial basis and use it for elliptic-curve arithmetic.
It is a standard way to compute inverses in optimal extension fields (see [2,27]
and [17, Sections 11.3.4 and 11.3.6]).

We require Fq� = Fq(α) where α has minimal polynomial X� − ω for some
ω ∈ F

∗
q and assume gcd(�, q) = 1. Then, the inverse of β ∈ F

∗
q� can be computed

as
β−1 = βv−1 · β−v,

where v = (q� − 1)/(q − 1) = q�−1 + · · · + q + 1. Note that βv is the norm of β
and thus lies in the base field Fq. So the cost for computing the inverse of β is
the cost for computing βv−1 and βv, one inversion in the base field Fq to obtain
β−v, and the multiplication of βv−1 with β−v. The powers of β are obtained by
using the q-power Frobenius automorphism on F

�
q.

We give a brief estimate of the cost of the above. A Frobenius computation
using a look-up table of �−1 pre-computed values in Fq consisting of powers of ω
costs at most �−1 multiplications in Fq (see [34, Section 2.3], note gcd(�, q) = 1).
According to [29, Section 2.4.3] the computation of βv−1 via an addition chain
approach, using a look-up table for each needed power of the Frobenius, costs at
most �log(�−1)
+h(�−1) Frobenius computations and fewer multiplications in
Fq� . Here h(m) denotes the Hamming weight of an integer m. Knowing that βv ∈
Fq, its computation from βv−1 and β costs at most � base field multiplications,
one multiplication with ω, and �−1 base field additions. The final multiplication
of β−v with βv−1 can be done in � base field multiplications. This leads to an
upper bound for the cost of an inversion in Fq� as follows:

Iq� ≤ Iq + (�log(�− 1)
 + h(�− 1))(Mq� + (�− 1)Mq)
+2�Mq + M(ω) + (�− 1)addq. (2)

An Analysis of Affine Coordinates for Pairing Computation 9

Let M(�) be the minimal number of multiplications in Fq needed to multiply
two different, non-trivial elements in Fq� not lying in a proper subfield of Fq� .
Then the following lemma bounds the ratio of inversion to multiplication costs
in Fq� from above by 1/M(�) times the ratio in Fq plus an explicit constant.
Thus the ratio in the extension improves by roughly a factor of M(�).

Lemma 1. Let Fq be a finite field, � > 1, Fq� = Fq(α) with α� = ω ∈ F
∗
q. Then

using the above inversion algorithm in Fq� leads to

Rq� ≤ Rq/M(�) + C(�),

where C(�) = �log(�−1)
+h(�−1)+ 1
M(�)

(
3�+(�−1)(�log(�−1)
+h(�−1))

)
.

Proof. Since M(�) is the minimal number of multiplications in Fq needed for
multiplying two elements in Fq� , we can assume that the actual cost for the
latter is Mq� ≥M(�)Mq. Using inequality (2), we deduce

Rq� = Iq�/Mq� ≤ Iq/(M(�)Mq) + C̃(�) = Rq/M(�) + C̃(�),

where C̃(�) = �log(�−1)
+h(�−1)+(2�+(�−1)(�log(�−1)
+h(�−1)))/M(�)+
(Mω + (� − 1)addq)/(M(�)Mq). Since M(ω) ≤ Mq and addq ≤ Mq, we get
Mω + (�− 1)addq ≤ �Mq and thus C̃(�) ≤ C(�). ��
In Table 3 we give values for the factor 1/M(�) and the additive constant C(�)
that determine the improvements of Rq� over Rq for several small extension
degrees �. We take the numbers for M(�) from the formulas given in [38].

Table 3. Constants that determine the improvement of Rq� over Rq

� 2 3 4 5 6 7

1/M(�) 1/3 1/6 1/9 1/13 1/17 1/22

C(�) 3.33 4.17 5.33 5.08 6.24 6.05

For small-degree extensions, the inversion method can be easily made explicit.
We state and analyze it for quadratic and cubic extensions.

Quadratic extensions: Let Fq2 = Fq(α) with α2 = ω ∈ Fq. An element
β = b0 + b1α �= 0 can be inverted as

1
b0 + b1α

=
b0 − b1α

b20 − b21ω
=

b0
b20 − b21ω

− b1
b20 − b21ω

α.

In this case the norm of β is given explicitly by b20 − b21ω ∈ Fq. The inverse of β
thus can be computed in Iq2 = Iq + 2Mq + 2Sq + M(ω) + subq + negq.

We assume that we multiply Fq2 -elements with Karatsuba multiplication,
which costs Mq2 = 3Mq +M(ω) +2addq +2subq. As in the general case above,
we assume that the cost for a full multiplication in the quadratic extension is at

10 K. Lauter, P.L. Montgomery, and M. Naehrig

least Mq2 ≥ 3Mq, i.e. we restrict to the average case where both elements have
both of their coefficients different from 0. Thus

Rq2 = Iq2/Mq2 ≤ (Iq/3Mq) + 2 = Rq/3 + 2,

where we roughly assume that Iq2 ≤ Iq+6Mq. This bound shows that for Rq > 3
the ratio becomes smaller in Fq2 . For large ratios in Fq it becomes roughly Rq/3.

Cubic extensions: Let Fq3 = Fq(α) with α3 = ω ∈ Fq. Similar to the quadratic
case we can invert β = b0 + b1α+ b2α

2 ∈ F
∗
q3 by

1
b0 + b1α+ b2α2

=
b20 − ωb1b2
N(β)

+
ωb22 − b0b1
N(β)

α+
b21 − b0b2
N(β)

α2

with N(β) = b30 + b31ω + b32ω
2 − 3ωb0b1b2. We start by computing ωb1 and ωb2

as well as b20 and b21. The terms in the numerators are obtained by a 2-term
Karatsuba multiplication and additions and subtractions via 3Mq computing
b0b2, ωb1b2 and (ωb2 + b0)(b2 + b1). The norm can be computed by 3 more
multiplications and 2 additions. Thus the cost for the inversion is Iq3 = Iq +
9Mq + 2Sq + 2M(ω) + 4addq + 4subq. A Karatsuba multiplication can be done
in Mq3 = 6Mq + 2M(ω) + 9addq + 6subq. We use Mq3 ≥ 6Mq, assume Iq3 ≤
Iq + 18Mq and obtain Rq3=Iq3/Mq3 ≤ (Iq/6Mq) + 3 = Rq/6 + 3.

Towers of field extensions: Baktir and Sunar [3] introduce optimal tower
fields as an alternative for optimal extension fields, where they build a large
field extension as a tower of small extensions instead of one big extension. They
describe how to use the above inversion technique recursively by passing down
the inversion in the tower, finally arriving at the base field. They show that this
method is more efficient than computing the inversion in the corresponding large
extension with the Itoh-Tsujii inversion directly.

In pairing-based cryptography it is common to use towers of fields to represent
the extension Fqk , where k is the embedding degree. Benger and Scott [9] discuss
how to best choose such towers, but do not address inversions.

3.2 Extension-Field Inversions for the Ate Pairing

We have seen in Section 2 that for the ate pairing, the inversions in the doubling
and addition steps are inversions in a proper extension field of Fq. We now take
a closer look at specific high-security levels to see which degrees these extension
fields have. For a pairing-friendly elliptic curve E over Fq with embedding degree
k with respect to a prime divisor r | #E(Fq), we define the ρ-value of E as
ρ = log(q)/ log(r). This value is a measure of the base field size relative to the
size of the prime-order subgroup on the curve.

Table 4 gives the recommendations by NIST [4] and ECRYPT II [43] for
equivalent levels of security for the discrete logarithm problems in the elliptic
curve subgroup of order r and in a subgroup of F

∗
qk . For efficiency reasons, it is

An Analysis of Affine Coordinates for Pairing Computation 11

Table 4. NIST [4] and ECRYPT II [43] recommendations for bitsizes of r and qk

providing equivalent levels of security on elliptic-curve point groups and in finite fields

security NIST [4] ECRYPT II [43]
(bits) r (bits) qk (bits) ρk qk (bits) ρk

128 256 3072 12 3248 12.69
192 384 7680 20 7936 20.67
256 512 15360 30 15424 30.13

Table 5. Extension fields for which inversions are needed when computing ate-like
pairings for different examples of pairing-friendly curve families suitable for the given
security levels

security construction in [20] curve k ρ ρk d extension

128

Ex. 6.8 a = 0 12 1.00 12.00 6 Fp2

Ex. 6.10 b = 0 8 1.50 12.00 4 Fp2

Section 5.3 a, b �= 0 10 1.00 10.00 2 Fp5

Constr. 6.7+ a, b �= 0 12 1.75 21.00 2 Fp6

192
Ex. 6.12 a = 0 18 1.33 24.00 6 Fp3

Ex. 6.11 b = 0 16 1.25 20.00 4 Fp4

Constr. 6.3+ a, b �= 0 14 1.50 21.00 2 Fp7

256
Constr. 6.6 a = 0 24 1.25 30.00 6 Fp4

Constr. 6.4 b = 0 28 1.33 37.24 4 Fp7

Constr. 6.24+ a, b �= 0 26 1.17 30.34 2 Fp13

desirable to balance the security in both groups. The group sizes are linked by
the embedding degree k, which leads to desired values for ρk as given in Table 4.

To implement pairings at a given security level, one needs to find a pairing-
friendly elliptic curve with parameters of at least the sizes given in Table 4; for
efficiency it is even desirable to obtain ρk as close to the desired value as possible.
An overview of construction methods for pairing-friendly elliptic curves is given
in [20]. In Table 5, we list suggestions for curve families by their construction
in [20] for high-security levels of 128, 192, and 256 bits. The last column in
Table 5 shows the field extensions in which inversions are done to compute the
line function slopes. We not only give families of curves with twists of degree
4 and 6, but also more generic families such that the curves only have a twist
of degree 2. Of course, in the latter case the extension field, in which inversions
for the affine ate pairing need to be computed, is larger than when dealing with
higher-degree twists. Because curves with twists of degree 4 and 6 are special
(they have j-invariants 1728 and 0), there might be reasons to choose the more
generic curves. Note that curves from the given constructions are all defined over
prime fields. Therefore we use the notation Fp in Table 5.

Remark 1. The conclusion to underline from the discussion in this section, is
that, using the improved inversions in towers of extension fields described here,

12 K. Lauter, P.L. Montgomery, and M. Naehrig

there are at least two scenarios where most implementations of the ate pairing
would be more efficient using affine coordinates:

When higher security levels are required, so that k is large. For example 256-
bit security with k = 28, so that most of the computations for the ate pairing
take place in the field extension of degree 7, even using a degree-4 twist (second-
to-last line of Table 5). In that case, the I/M ratio in the degree-7 extension
field would be roughly 22 times less (plus 6) than the ratio in the base field
(see the last entry in Table 3). The costs for doubling and addition steps given
in the second lines of Tables 1 and 2 for degree-4 twists show that the cost of
the inversion avoided in a projective implementation should be compared with
roughly 6Sq7 + 5addq7 + 5subq7 extra for a doubling (and an extra 6Mq7 +
4Sq7 + 7addq7 + subq7 for an addition step). In most implementations of the
base field arithmetic, the cost of these 16 or 17 operations in the extension field
would outweigh the cost of one improved inversion in the extension field. See for
example our sample timings for degree-6 extension fields in Table 6 in Section 5.
Note there that even the cost for additions and subtractions is not negligible as
is usually assumed.

When special high-degree twists are not being used. In this scenario there are
two reasons why affine coordinates will be better under most circumstances:

First, the costs for doubling and addition steps given in the first lines of
Tables 1 and 2 for degree-2 twists are not nearly as favorable towards projective
coordinates as the formulas in the case of higher degree twists. For degree-2
twists, both the doubling and addition steps require roughly at least 9 extra
squarings and 13 or 15 extra field extension additions or subtractions for the
projective formulas.

Second, the degree of the extension field where the operations take place is
larger. See the bottom row for each security level in Table 5, so we have extension
degree 6 for 128-bit security up to extension degree 13 for 256-bit security.

4 Sharing Inversions for Pairing Computation

In this section, we revisit a well-known trick for efficiently computing several
inverses at once, asymptotically achieving an I/M-ratio of 3. We point out and
recall possibilities to improve pairing computation in affine coordinates by using
this trick.

4.1 Simultaneous Inversions

The inverses of s field elements a1, . . . , as can be computed simultaneously with
Montgomery’s well-known sharing-inversions trick [37, Section 10.3.1.] at the
cost of 1 inversion and 3(s− 1) multiplications. It is based on the following idea:
to compute the inverse of two elements a and b, one computes their product ab
and its inverse (ab)−1. The inverses of a and b are then found by a−1 = b · (ab)−1

and b−1 = a · (ab)−1.
In general, for s elements one first computes the products ci = a1 · · · · ·

ai for 2 ≤ i ≤ s with s − 1 multiplications and inverts cs. Then we have

An Analysis of Affine Coordinates for Pairing Computation 13

a−1
s = cs−1c

−1
s . We get a−1

s−1 by c−1
s−1 = c−1

s as and a−1
s−1 = cs−2c

−1
s−1 and so

forth (see [17, Algorithm 11.15]), where we need 2(s − 1) more multiplications
to get the inverses of all elements.

The cost for s inversions is replaced by I + 3(s− 1)M. Let Ravg,s denote the
ratio of the cost of s inversions to the cost of s multiplications. It is bounded
above by Ravg,s = I/(sM) + 3(s − 1)/s ≤ R/s + 3, i.e. when the number s of
elements to be inverted grows, the ratio Ravg,s gets closer to 3. Note that most
of the time, this method improves the efficiency of an implementation whenever
applicable. However, as discussed in Section 3, in large field extensions, the I/M-
ratio might already be less than 3 due to the inversion method from Section 3.1,
in which case the sharing trick would make the average ratio worse.

4.2 Sharing Inversions in a Single Pairing Computation

Schroeppel and Beaver [40] demonstrate the use of the inversion-sharing trick to
speed up a single scalar multiplication on an elliptic curve in affine coordinates.
They suggest postponing addition steps in the double-and-add algorithm to ex-
ploit the inversion sharing. In order to do that, the double-and-add algorithm
must be carried out by going through the binary representation of the scalar
from right to left. First, all doublings are carried out and the points that will
be used to add up to the final result are stored. When all these points have
been collected, several additions can be done at once, sharing the computation
of inversions among them.

Miller’s algorithm can also be done from right to left. The doubling steps
are computed without doing the addition steps. The required field elements and
points are stored in lists and addition steps are done in the end. The algorithm
is summarized in Algorithm 2. Unfortunately, addition steps cost much more
than in the conventional left-to-right algorithm as it is given in Algorithm 1.
In the right-to-left version, each addition step in Line 10 needs a general Fqk -
multiplication and a multiplication with a line function value. The conventional
algorithm only needs a multiplication with a line. These huge costs can not be
compensated by using affine coordinates with the inversion-sharing trick.

Parallelizing a single pairing. However, the right-to-left algorithm can be
parallelized, and this could lead to more efficient implementations taking ad-
vantage of the recent advent of many-core machines. Grabher, Großschädl, and
Page [23, Algorithm 2] use a version of Algorithm 2 to compute a single pairing
by doing addition steps in parallel on two different cores. They divide the lists
with the saved function values and points into two halves and compute two in-
termediate values which are in the end combined in a single addition step. For
their specific implementation, they conclude that this is not faster than the con-
ventional non-parallel algorithm. Still, this idea might be useful for two or more
cores, once multiple cores can be used with less overhead. It is straightforward
to extend this algorithm to more cores.

So we suggest that the parallelized algorithm can be combined with the shared
inversion trick when doing the addition steps in the end. The improvements

14 K. Lauter, P.L. Montgomery, and M. Naehrig

Algorithm 2. Right-to-left version of Miller’s algorithm with postponed addi-
tion steps for even k and ate-like pairings
Input: Q′ ∈ G′

2, P ∈ G1, m = (1 = ml−1, ml−2, . . . , m0)2
Output: fm,ψ(Q′)(P) representing a class in F

∗
qk/(F∗

qk)r

1: R′ ← Q′, f ← 1, j ← 0
2: for i from 0 to �− 1 do
3: if (mi = 1) then
4: AR′ [j]← R′, Af [j]← f , j ← j + 1
5: end if
6: f ← f2 · lψ(R′),ψ(R′)(P), R′ ← [2]R′

7: end for
8: R′ ← AR′ [0], f ← Af [0]
9: for (j ← 1; j ≤ h(m)− 1; j + +) do

10: f ← f ·Af [j] · lψ(R′),ψ(AR′ [j])(P), R′ ← R′ + AR′ [j]
11: end for
12: return f

achieved by this approach strongly depend on the Hamming weight of the value
m in Miller’s algorithm. If it is large, then savings are large, while for very sparse
m there is almost no improvement. Therefore, when it is not possible to choosem
with low Hamming weight, combining the parallelized right-to-left algorithm for
pairings with the shared inversion trick can speed-up the computation. Grabher
et al. [23] note that when multiple pairings are computed, it is better to parallelize
by performing one pairing on each core.

4.3 Multiple Pairings and Products of Pairings

Many protocols involve the computation of multiple pairings or products of
pairings. For example, multiple pairings need to be computed in the searchable
encryption scheme of Boneh et al. [13]; and the non-interactive proof systems pro-
posed by Groth and Sahai [26] need to check pairing product equations. In these
scenarios, we propose sharing inversions when computing pairings with affine co-
ordinates. In the case of products of pairings, this has already been proposed and
investigated by Scott [41, Section 4.3] and Granger and Smart [25].

Multiple pairings. Assume we want to compute s pairings on pointsQ′
i and Pi,

i.e. a priori we have s Miller loops to compute fm,ψ(Q′
i)

(Pi). We carry out these
loops simultaneously, doing all steps up to the first inversion computation for a
line function slope for all of them. Only after that, all slope denominators are
inverted simultaneously, and we continue with the computation for all pairings
until the next inversion occurs. The s Miller loops are not computed sequentially,
but rather sliced at the slope denominator inversions. The costs stay the same,
except that now the average inversion-to-multiplication cost ratio is 3 + Rqe/s,
where e = k/d and d is the twist degree.

So when computing enough pairings such that the average cost of an inver-
sion is small enough, using the sliced-Miller approach with inversion sharing in

An Analysis of Affine Coordinates for Pairing Computation 15

affine coordinates is faster than using the projective coordinates explicit formulas
described in Section 2.2.

Products of pairings. For computing a product of pairings, more optimiza-
tions can be applied, including the above inversion-sharing. Scott [41, Section 4.3]
suggests using affine coordinates and sharing the inversions for computing the
line function slopes as described above for multiple pairings. Furthermore, since
the Miller function of the pairing product is the product of the Miller functions
of the single pairings, in each doubling and addition step the line functions can
already be multiplied together. In this way, we only need one intermediate vari-
able f and only one squaring per iteration of the product Miller loop. Of course
in the end, there is only one final exponentiation on the product of the Miller
function values. Granger and Smart [25] show that by using these optimizations
the cost for introducing an additional ate pairing to the product can be as low
as 13% of the cost of a single ate pairing.

5 Example Implementation

The implementation described in this section is an implementation of the optimal
ate pairing on a Barreto-Naehrig (BN) curve [8] over a 256-bit prime field, i.e.
the curve has a 256-bit prime number n of Fp-rational points and embedding
degree k = 12 with respect to n.

The implementation is part of the Microsoft Research pairing library. It is
specialized to the BN curve family but is not specialized for a specific BN curve.
It is based on Microsoft Research’s general purpose library for big number arith-
metic, which can be compiled under 32-bit or 64-bit Windows. On top of that,
we use the tower of field extensions Fp12/Fp6/Fp2/Fp to realize field arithmetic
in Fp12 . In Table 6 we give timings for the required field arithmetic in the fields
Fp, Fp2 , Fp6 , and Fp12 for the 32-bit and 64-bit versions, respectively. The 32-
bit timings are for a pure software C-implementation, while the 64-bit software
makes use of assembly code for base field multiplications, i.e. special code for
Montgomery multiplication with a prime modulus of 256 bits, only using the
fixed size of the modulus. Note that the timings in cycles and miliseconds stem
from two different measurements and thus do not exactly translate.

The last column in Table 6 gives the I/M-ratios for the corresponding exten-
sion field and demonstrates the effect of using the inversion method for extension
field towers described in Section 3.1. The ratios are even smaller than predicted
by the theoretical upper bounds in Lemma 1 and Table 3. This is explained by
the fact that actual multiplication costs for elements in Fq� are higher than the
estimates given there that take into account only multiplications from the base
field and neglect all other base field operations.

The pairing implementation uses the usual optimizations. First of all, a twist
E′/Fp2 provides the group G′

2 to represent elements in G2 as described in Sec-
tion 2.1. The affine doubling and addition steps in Miller’s algorithm are com-
puted as shown in Section 2.2. The projective steps use the explicit formulas

16 K. Lauter, P.L. Montgomery, and M. Naehrig

Table 6. Field arithmetic timings in a 256-bit prime field, on an Intel Core 2 Duo
E8500 @ 3.16 GHz under 32-bit/64-bit Windows 7. Average over 1000 operations in
cpucycles (cyc) and microseconds (μs).

add sub M S I R = I/M
cyc μs cyc μs cyc μs cyc μs cyc μs

32-bit

Fp 327 0.11 309 0.10 988 0.32 945 0.32 13285 4.18 13.45
Fp2 588 0.19 585 0.18 4531 1.44 2949 0.91 18687 5.65 4.13
Fp6 1746 0.54 1641 0.52 38938 12.09 26364 8.44 78847 24.98 2.03
Fp12 3300 1.06 3233 1.03 123386 38.97 88249 27.94 210907 66.90 1.71

64-bit

Fp 189 0.06 163 0.05 414 0.13 414 0.13 9469 2.98 22.87
Fp2 329 0.10 300 0.10 2122 0.67 1328 0.42 11426 3.65 5.38
Fp6 931 0.29 834 0.26 18544 5.81 12929 4.05 40201 12.66 2.17
Fp12 1855 0.57 1673 0.51 60967 19.17 43081 13.57 103659 32.88 1.70

from the recent paper of Costello et al. [16]. The final exponentiation is done as
described in [42], and uses the special squaring formulas given by Granger and
Scott [24].

Table 7 gives benchmarking results for several pairing functions in the library,
compiled under 32-bit and 64-bit Windows 7, respectively. All functions com-
pute the optimal ate pairing for BN curves as described for example in [39]. The
line entitled “20 at once (per pairing)” gives the average timing for one pairing
out of 20 that have been computed at the same time. This function uses the
inversion-sharing trick as described in Section 4.3. The function corresponding
to the line “product of 20” computes the product of 20 pairings using the opti-
mizations described in Section 4.3. The lines with the attribute “1st arg. fixed”
mean functions that compute multiple pairings or a product of pairings, where
the first input point is fixed for all pairings, and only the second point varies.
In this case, the operations depending only on the first argument are done only
once. We list separately the final exponentiation timings. They are included in
the pairing timings of the other lines.

Table 7. Optimal ate pairing timings on a 256-bit BN curve, measured on an Intel Core
2 Duo E8500 @ 3.16 GHz under 32-bit/64-bit Windows 7. Average over 20 pairings in
cpucycles (cyc) and milliseconds (ms).

optimal ate pairings 32-bit 64-bit
cyc ms cyc ms

projective 32,288,630 10.06 15,426,503 4.88

single pairing 30,091,044 9.49 14,837,947 4.64
20 at once (per pairing) 29,681,288 9.39 14,442,433 4.53

affine 20 at once, 1st arg. fixed (per pairing) 27,084,852 8.53 13,124,802 4.12
product of 20 (per pairing) 10,029,724 3.16 4,832,725 1.52
product of 20, 1st arg. fixed (per pairing) 7,316,501 2.32 3,563,108 1.12

single final exponentiation 15,043,435 4.75 7,266,020 2.28

An Analysis of Affine Coordinates for Pairing Computation 17

Implementation Notes

1. For both the 32-bit and 64-bit versions of the library, a single pairing is com-
puted faster with affine coordinates than with projective coordinates. This is
due to the relatively low I/M-ratios in the base field Fp (13.45 and 22.87 re-
spectively) and in the quadratic extension (ratios 4.13 and 5.38 respectively).
These low ratios are due to a relatively efficient inversion implementation in
the base field combined with the improved inversion for quadratic extensions
given in Section 3.1.

2. At this security level (128-bits) and using the special high-degree-6 twist, the
projective implementation is almost on par with the affine implementation,
so that even a small improvement in the base field multiplication would tip
the balance in favor of a projective implementation.

3. However, as was explained in Remark 1 in Section 3.2, either for higher secu-
rity levels or for curves without special high degree twists, affine coordinates
will be much faster than projective coordinates given our base field and ex-
tension field arithmetic. Indeed, our I/M-ratio in a degree 6 extension is
already roughly 2, for both our 32-bit and 64-bit versions. With a ratio of 2,
projective coordinates are not a good choice.

4. Because our I/M-ratios in the quadratic field extension are already so close
to 3, there is little improvement expected or observed from using the shared
inversion tricks discussed in Section 4.

5. Note that field addition and subtraction costs are not negligible, as one might
think from the fact that they are not often included in the operation counts
when comparing various methods for elliptic curve operations and pairing
implementations. In our base field arithmetic, 1 multiplication costs roughly
the same as 3 field additions or subtractions, but the relative cost of additions
and subtractions in extension fields is significantly less.

6. Note that the ratio of squarings to multiplications changes in the extension
fields as well. A squaring in the quadratic extension is done with only 2
multiplications using the fact that the extension is generated by

√−1. This
improvement carries through to squarings in the higher field extensions.

Comparison to related work. We compare our work with the best results
for optimal ate pairing implementations on BN curves that we are aware of.

The software described in [28] needs about 10, 000, 000 cycles on an Intel
Core 2 for the R-ate pairing. Modular multiplication takes 310 cycles which is
about 25% faster than ours and seems to mostly account for the difference in
performance with our implementation for a pairing in projective coordinates.

Recently, there has been significant improvement on pairing implementations
for BN curves. The paper [39] presents an implementation that computes the
optimal ate pairing on a 256-bit BN curve using one core of an Intel Core 2 Quad
in about 4, 380, 000 cycles. The implementation described in [11] computes the
same pairing on a 254-bit BN curve in 2, 490, 000 cycles on an Intel Core i7.

Software as described in [39] and [11] is much faster than our implementa-
tion for the following reason. The above implementations gain their efficiency by

18 K. Lauter, P.L. Montgomery, and M. Naehrig

special curve parameter choices combined with a careful instruction scheduling
specific to the parameters and certain computer architectures or even proces-
sors, in particular resulting in highly efficient multiplications in the base field
and the quadratic extension field. Instead, our implementation is based on a
general-purpose library for the base field arithmetic which can be compiled on
many platforms and works for all BN curves. Thus our implementation is not
competitive with specially tailored ones as in [39] and [11]. Nevertheless, the
effects implied by the use of affine coordinates that we demonstrated with the
help of our implementation also apply to implementations with faster field mul-
tiplications. Affine coordinates will then be better only when working with larger
extension degrees that occur for higher security levels.

Acknowledgements. We would like to thank Dan Shumow and Tolga Acar for
their help with the development environment for our implementation. We thank
Steven Galbraith, Diego F. Aranha, and the anonymous referees for their helpful
comments to improve the paper.

References

1. Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the
Tate pairing. Journal of Number Theory (2010), doi:10.1016/j.jnt.2010.05.013

2. Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application
in elliptic curve cryptography. Journal of Cryptology 14(3), 153–176 (2001)

3. Baktir, S., Sunar, B.: Optimal tower fields. IEEE Transactions on Comput-
ers 53(10), 1231–1243 (2004)

4. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management - part 1: General (revised). Technical report, NIST National Insti-
tute of Standards and Technology. Published as NIST Special Publication 800-57
(2007), http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_

3-8-07.pdf

5. Barreto, P.S.L.M., Galbraith, S.D., Ó’ hÉigeartaigh, C., Scott, M.: Efficient pair-
ing computation on supersingular abelian varieties. Designs, Codes and Cryptog-
raphy 42(3), 239–271 (2007)

6. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing-based
cryptosystems. Journal of Cryptology 17(4), 321–334 (2004)

8. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

9. Benger, N., Scott, M.: Constructing tower extensions of finite fields for implemen-
tation of pairing-based cryptography. In: Anwar Hasan, M., Helleseth, T. (eds.)
WAIFI 2010. LNCS, vol. 6087, pp. 180–195. Springer, Heidelberg (2010)

10. Bernstein, D.J., Lange, T.: Explicit-formulas database,
http://www.hyperelliptic.org/EFD

http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://www.hyperelliptic.org/EFD

An Analysis of Affine Coordinates for Pairing Computation 19

11. Beuchat, J.-L., González Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over Barreto-Naehrig curves. IACR ePrint Archive, report 2010/354 (2010),
http://eprint.iacr.org/2010/354

12. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve Cryptog-
raphy. Cambridge University Press, Cambridge (2005)

13. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

14. Cohen, H., Frey, G., Doche, C. (eds.): Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman and Hall/CRC, Boca Raton (2005)

15. Costello, C., Hisil, H., Boyd, C., Nieto, J.M.G., Wong, K.K.-H.: Faster pairings on
special Weierstrass curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 89–101. Springer, Heidelberg (2009)

16. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

17. Doche, C.: Finite Field Arithmetic. In: [14], ch. 11, pp. 201–237. CRC Press, Boca
Raton (2005)

18. Duquesne, S., Frey, G.: Background on Pairings. In: [14], ch. 6, pp. 115–124. CRC
Press, Boca Raton (2005)

19. Duquesne, S., Frey, G.: Implementation of Pairings. In: [14], ch. 16, pp. 389–404.
CRC Press, Boca Raton (2005)

20. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23(2), 224–280 (2010)

21. Galbraith, S.D.: Pairings. In: [12], ch. IX, pp. 183–213. Cambridge University Press,
Cambridge (2005)

22. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

23. Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of cryp-
tographic pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS,
vol. 5381, pp. 35–50. Springer, Heidelberg (2009)

24. Granger, R., Scott, M.: Faster squaring in the cyclotomic group of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

25. Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint
Archive, Report 2006/172 (2006), http://eprint.iacr.org/2006/172/

26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

27. Guajardo, J., Paar, C.: Itoh-Tsujii inversion in standard basis and its application
in cryptography and codes. Designs, Codes and Cryptography 25, 207–216 (2001)

28. Hankerson, D., Menezes, A.J., Scott, M.: Software implementation of pairings. In:
Joye, M., Neven, G. (eds.) Identity-Based Cryptography. Cryptology and Informa-
tion Security Series, vol. 2. IOS Press, Amsterdam (2008)

29. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2003)

30. Heß, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Transactions
on Information Theory 52, 4595–4602 (2006)

http://eprint.iacr.org/2010/354
http://eprint.iacr.org/2006/172/

20 K. Lauter, P.L. Montgomery, and M. Naehrig

31. Ionica, S., Joux, A.: Another approach to pairing computation in Edwards coordi-
nates. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 400–413. Springer, Heidelberg (2008)

32. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2ˆm) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

33. Izu, T., Takagi, T.: Efficient computations of the Tate pairing for the large MOV
degrees. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 283–297.
Springer, Heidelberg (2003)

34. Kobayashi, T., Morita, H., Kobayashi, K., Hoshino, F.: Fast elliptic curve algorithm
combining Frobenius map and table reference to adapt to higher characteristic.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 176–189. Springer,
Heidelberg (1999)

35. Lee, E., Lee, H.S., Park, C.-M.: Efficient and generalized pairing computation on
Abelian varieties. IEEE Trans. on Information Theory 55(4), 1793–1803 (2009)

36. Miller, V.S.: The Weil pairing and its efficient calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

37. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

38. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE Trans-
actions on Computers 54(3), 362–369 (2005)

39. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for crypto-
graphic pairings. In: Abdalla, M. (ed.) LATINCRYPT 2010. LNCS, vol. 6212, pp.
109–123. Springer, Heidelberg (2010), corrected version:
http://www.cryptojedi.org/papers/dclxvi-20100714.pdf

40. Schroeppel, R., Beaver, C.: Accelerating elliptic curve calculations with the recip-
rocal sharing trick. In: Mathematics of Public-Key Cryptography (MPKC), Uni-
versity of Illinois at Chicago (2003)

41. Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

42. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

43. Smart, N. (ed.): ECRYPT II yearly report on algorithms and keysizes (2009-2010).
Technical report, ECRYPT II – European Network of Excellence in Cryptology,
EU FP7, ICT-2007-216676. Published as deliverable D.SPA.13 (2010),
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf

44. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information The-
ory 56(1), 455–461 (2010)

http://www.cryptojedi.org/papers/dclxvi-20100714.pdf
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf

	An Analysis of Affine Coordinates for Pairing Computation
	Introduction
	Pairing Computation
	The Ate Pairing
	Costs for Doubling and Addition Steps

	Inversions in Extension Fields for the Ate Pairing
	Inverses in Field Extensions
	Extension-Field Inversions for the Ate Pairing

	Sharing Inversions for Pairing Computation
	Simultaneous Inversions
	Sharing Inversions in a Single Pairing Computation
	Multiple Pairings and Products of Pairings

	Example Implementation
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

