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ABSTRACT
This paperaddressesalgorithmsfor dynamicallyvarying(scaling)
CPUspeedandvoltagein orderto saveenergy. Suchscalingis use-
ful andeffective whenit is immaterialwhena taskcompletes,as
long asit meetssomedeadline.We show how to modify any scal-
ing algorithmto keepperformancethesamebut minimizeexpected
energy consumption. We refer to our approachasPACE (Proces-
sorAccelerationto Conserve Energy) sincetheresultingschedule
increasesspeedasthetaskprogresses.SincePACEdependson the
probability distribution of thetask’s work requirement, we present
methodsfor estimatingthisdistributionandevaluatethesemethods
on a varietyof realworkloads. We alsoshow how to approximate
theoptimalschedulewith onethatchangesspeedalimited number
of times. Using PACE causesvery little additionaloverhead,and
yields substantialreductionsin CPU energy consumption. Simu-
lationsusingrealworkloads show it reducestheCPUenergy con-
sumptionof previously publishedalgorithmsby up to 49.5%,with
anaverageof 20.6%,without any effect on performance.

1. INTRODUCTION
Thegrowing popularityof mobilecomputing deviceshasmade

energy management importantfor modernsystems,becauseusers
of thesedevices want long batterylifetimes. A relatively recent
energy-saving technologyis dynamicvoltagescaling(DVS),which
allows softwareto dynamicallyvary the voltageof the processor.
Variouschip makers,including Transmeta,AMD, andIntel, have
recentlyannouncedandsoldprocessorswith this feature.

ReducingCPU voltage can reduceCPU energy consumption
substantially. Performancesuffers, however: over the rangeof
allowed voltages,the highest frequency at which the CPU will
run correctly drops approximatelyproportionally to the voltage
( ����� ). Sincethe main component of power consumption is
proportional to �	�
� , andenergy percycle is power dividedby fre-
quency, energy consumption is proportionalto frequency squared�
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( �
����� ). Soa CPUcansave substantialenergy by runningmore
slowly; e.g.,it canrun at half speedandtherebyuse1/4 theenergy
to run for thesamenumber of cycles.

Two factorslimit the utility of tradingperformance for energy
savings. First, a userwantsthe performancefor which he paid.
Second,other components, such as the disk and backlight, also
consume power [12]. If they stayon longerbecausetheCPUruns
moreslowly, the overall effect canbe worseperformanceand in-
creasedenergy consumption. Thus,oneshouldreducethevoltage
only whenit will not noticeably affect performance.

A naturalway to expressthis goal is to assigna soft deadlineto
eachof thecomputer’s tasks.(We call a deadlinesoftwhena task
should,but doesnot have to, completeby this time.) For example,
userinterfacestudieshave shown that responsetimes under50–
100msdo not affect userthink time [21]; we canthusmake 50 ms
thedeadlinefor handlinga userinterfaceevent. Also, multimedia
operationswith limited buffering,e.g.onreal-timestreams,needto
completeprocessing a framein time equalto oneover thedisplay
rate,andthereis no needfor any earliercompletion.Whengoals
canbe codifiedthis way, the job of a DVS algorithmis to run the
CPUjust fastenoughto meetthedeadlinewith high probability.

Our soft deadline’s key propertyis that if the taskcompletesby
then,its actualcompletiontimedoesnotmatter. Thus,if werunthe
taskmoreslowly, but it still completesby its deadline,performance
is thesame.Ourprimarygoalis to improveDVS algorithmssothat
performanceremainsthesamebut energy consumption goesdown.

CurrentDVSalgorithmsincorrectlyassumethataconstantspeed
consumesminimal energy even whentaskwork requirements are
unknown. But, we will show that in this common caseexpected
energy consumption is in fact minimized by increasingspeedas
the taskprogresses. We thereforecall our approachfor improving
algorithmsPACE:ProcessorAccelerationto Conserve Energy.

We will give a formula for a speedschedule thatminimizesex-
pectedenergy consumption without changing performance. But,
therearetwo problemswith usingthis formula in practice. First,
it depends on theprobability distribution of a task’s work require-
ment.Second,theschedulegivesspeedasacontinuousfunctionof
time but realCPU’scannotchangespeedcontinuously.

To solve the first problem,we mustestimatethe distribution of
taskwork from therequirementsof previous,similar tasks.Wede-
scribeandcomparevariousmethodsfor thisandfind somegeneral
and practicalmethodsthat work well on a variety of real work-
loads. For the secondproblem,we presentandtestheuristicsfor
approximatingtheschedulewith a piecewiseconstantone.

Using trace-driven simulationsof realworkloads, we show that
our improvements significantly reducethe energy consumption
of previously publishedalgorithmswithout changingtheir perfor-
mance.Wealsoshow thatour approachis practicalandefficient.



NotethatPACE is not a completeDVS algorithmby itself; it is
a method� for improving suchan algorithm. For example,it does
notchangecharacteristicsof thealgorithmthataffectperformance.
So,we comparecertainalgorithmsto show which oneswork best
whenmodifiedby PACE.For reasonswediscuss,wedosomesuch
comparisonsempiricallyratherthananalytically.

This paperis organizedasfollows. Section2 discussesrelated
work, including DVS algorithmsothershave proposed. Section3
presentsour modelof theDVS problemandintroducesusefulter-
minology. Section4 describeshow to improve algorithmswith
PACE.Section5 discusseswhatalgorithmswork bestwhenmodi-
fiedby PACE.Section6 describestheworkloadsweusefor analyz-
ing algorithms’energy consumptionandperformance. Section7
presentstheseanalysesanddiscussesresults. Section8 suggests
possibilitiesfor futurework. Finally, section9 concludes.

Although we explain terms when we first presentthem, the
readermayfind Table1, which summarizestheseterms,helpful.

2. RELATED WORK
Researchershave studiedCPUschedulingfor decades.Oneim-

portantresultis thatif asetof taskshasfeasibledeadlines,schedul-
ing themin increasingdeadlineorderwill alwaysmakeall thedead-
lines[11]. Anotherusefulresult,describedby Błażewicz et al. [2,
pp. 346–350], is that when the rateof consumption of somere-
sourceis a convex function of CPU speed,an ideal schedule will
run eachtaskat a constantspeed.Yaoet al. [24] observe thatwith
DVS,powerconsumption is aconvex functionof CPUspeed. They
show how to computeanoptimalspeed-settingpolicy by construct-
ing anearliest-deadline-firstschedule, andthenchoosingthemini-
mal possiblespeedfor eachtaskthatwill still make thedeadlines.

However, onecanonly compute suchoptimal schedulesif the
tasks’CPUrequirements areknown in advance,andtaskrequire-
mentsin most systemsare unpredictable random variables;see,
e.g., [20]. For this reason,most researchon scheduling for DVS
hasfocusedon heuristicsfor estimatingCPUrequirements andat-
temptingto keepCPUspeedasconstant aspossible.

Weiseret al. [23] recommendedinterval-basedalgorithmsfor
DVS. Thesedivide time into fixed-lengthintervalsandseteachin-
terval’sspeedsothatmostwork is completedby theinterval’send.
Chanet al. [4] refinedtheseideasby separatingout analgorithm’s
two parts:prediction andspeed-setting. Whenan interval begins,
the predictionpart predictshow busy the CPU will be during the
interval (i.e., how muchwork therewill be to do), andthe speed-
settingpart usesthis informationto set the speed.They measure
how busytheCPUis via theutilization, thefractionof theinterval
theCPUspendsnon-idle.

Several authors,including Peringet al. [17] and Grunwald et
al. [7], have shown that Weiseret al. andChanet al.’s algorithms
areimpracticalbecausethey requireknowledgeof thefuture.How-
ever, they have proposed practical versionsof thesealgorithms.
Predictionmethodsthey suggest include:� Past. Predicttheupcoming interval’s utilization will be the

sameasthelastinterval’s utilization.� Aged-� . Predictthe upcoming utilization will be the aver-
ageof all pastones.More recentonesaremorerelevant,so
weightthe � th mostrecentby ��� , where����� is aconstant.� LongShort. Predicttheupcomingutilization will betheav-
erageof the12 mostrecentones.Weight the threemostre-
centof thesethreetimesmorethantheothernine.� Flat- � . Alwayspredict the upcoming utilization will be � ,
where����� is aconstant.

Speed-settingmethods they suggestinclude:

� Weiser-style. If theutilizationprediction� is high ( � 70%),
increasethe speedby 20% of the maximumspeed. If the
utilization predictionis low ( � 50%),decreasethespeedby�! #" � % of themaximumspeed.� Peg. If the utilization prediction is high ( � 98%), set the
speedto its maximum. If the utilization prediction is low
( � 93%),decreasethespeedto its minimumpositive value.� Chan-style.Setthespeedfor theupcominginterval justhigh
enough to completethepredictedwork. In otherwords,mul-
tiply themaximumspeedby theutilization to getthespeed.

We refer to previously publishedalgorithmsby concatenating
the namesof their methods. For example,the Flat/Chan-styleal-
gorithmusestheFlat predictionmethodandtheChan-stylespeed-
settingmethod.

Notethatdividing timeinto intervalsandusingthoseboundaries
asdeadlinesis somewhat arbitrary. For example,if a taskarrives
nearthe endof an interval, it doesnot really have to completeby
theendof thatinterval. Furthermore,withoutdeadlines,thereis no
particularreasonto completeany giventaskby a certaintime; it is
bestto simply measuretheaveragenumberof non-idlecyclesper
secondandrun the CPU at that speed.(Transmeta’s LongRunTM

systemdoessomethinglike this [10].) Peringet al., recognizing
this, suggestedconsidering deadlineswhenevaluatingDVS algo-
rithms [17]. To do so, they suggestconsidering a task that com-
pletesbeforeits deadlineto effectively completeat its deadline.

Grunwald et al. [7] considereddeadlineswhen they compared
several of the algorithmsdescribedabove (as well as othersnot
listedhere)by implementingthemon a realsystem.They decided
that althoughnoneof themarevery good,Past/Peg is the best: it
never missesany deadlinesfor the workloadthey considered, yet
still savesa smallbut significantamountof energy.

3. MODEL
In our modelof theCPU,voltagecanchange continuously over

somerange. Over this range,CPU speedincreasescontinuously
betweensomeminimum andmaximumspeeds. We assumeCPU
energy consumptionpercycle is proportional to thespeedsquared.

A DVSalgorithm is onethat decideshow quickly to run a task
asthattaskprogresses.This taskhassomework requirement( $ ),
thenumber of CPUcyclesit takesto complete.Wewill sometimes
referto this simply asthetask’s work. Thetaskhassomedeadline
( % ): the numberof seconds in which the algorithmshouldtry to
completethetask. Thenumberof seconds the taskactuallytakes,
given the algorithm’s CPU speedchoices,is its completiontime.
Its effectivecompletiontimeis themaximumof its completiontime
andits deadline;this reflectsthefact that if a taskcompletesby its
deadline,it mayaswell have completedat its deadline.Its delayis
thenumberof secondsit takesbeyond its deadline,i.e.,its effective
completiontime minus its deadline. Its excessis the number of
cyclesit still hasleft to do afterreachingits deadline.

Whenataskarrives,analgorithmmustdecideontheCPUspeed
to usein completingit. In general,the algorithmmay chooseto
vary the CPU speedasthe taskprogresses;for instance,it might
chooseto use300 MHz for the first 10 ms then400 MHz for any
remainingtime. Thus,thealgorithmis actuallychoosingthespeed
asa functionof time. Wecall this functionthespeedschedule, and
denoteit by � : �'&)(+* is the speed,in cycles per second, that the
algorithmwill run theCPUafterthetaskhasrun for ( seconds.

We canthink of a speedschedule asconsistingof two parts,the
pre-deadline part and the post-deadline part. The former is the
part of � that describeswhat happens beforethe task reachesits
deadline(when (,�-% ), andthelatterdescribeswhathappensafter



Term (and abbreviation) Definition
Work requirement/ work ( . ) Thenumberof CPUcyclesa taskrequires.
Completiontime Thenumberof secondsa tasktakesto complete.
Deadline( / ) The numberof secondsa taskhasto complete.Generally, a deadlinewill be soft, meaningsometasksmay misstheir deadlines.The key

propertyof a deadlineis thataslong asa taskcompletesby its deadline,its actualcompletiontime doesnot matter.
Effectivecompletiontime The completiontime of a task,or its deadline,whichever is greater. This measurereflectsthe fact that as long asa taskcompletesby its

deadline,its actualcompletiontimedoesnot matter.
Delay Thenumberof secondsa tasktakesbeyondits deadline.
Excess Thenumberof cyclesof work a taskstill hasleft to do afterits deadlinehaspassed.
Cumulative distribution func-
tion (CDF or 0 )

A functiondescribingtheprobabilitya taskwill requirevariousamountsof work. 0,13254 is theprobability that thetaskwill requireno more
than 2 cycles.

Tail distributionfunction( 056 ) Oneminusthecumulative distribution function. 056
13254 is theprobability thatthetaskwill requiremorethan 2 cycles.
Megacycle (Mc) 1,000,000CPUcycles.
Speedschedule( 7 or 8 ) A functionthatdescribeshow CPUspeedwill varyasataskruns. 791;:<4 is thespeedafterthetaskhasrun for : seconds.8=13254 is thespeedafter

thetaskhascompleted2 cyclesof work.
Transitionpoint A point at whicha practicalspeedschedulechangesfrom onespeedto another.
Pre-deadlinecycles( >@?BA ) Thenumberof cyclestheCPUcancompleteby thedeadlineaccordingto somespeedschedule.For example,if thespeedschedulecalls for

thespeedto alwaysbe300MHz, andthedeadlineis 50 ms,then >@?BA = 15 Mc. Note: evenif the taskonly requires8 Mc of work, >@?BA is
still 15Mc, sincetheschedulecouldhavecompleted15Mc by thedeadline.

Performanceequivalent Guaranteedto yield thesameeffectivecompletiontime,nomatterwhatthetask’swork requirement.
Parametricmethod A way to estimatea probabilitydistribution from a sampleby assumingthedistribution belongsto somefamily of distributions(e.g.,normal)

andestimatingtheparametersof thatdistribution (e.g.,themean).
Nonparametricmethod A way to estimateaprobabilitydistribution from a samplewithout assumingany distribution type.It thusletsthedata“speakfor themselves.”
Kerneldensityestimation A nonparametricmethodthatbuilds upa probabilitydistribution by addingup little distributions,eachcenteredon oneof thesamplepoints.
Bandwidth( C ) Thewidth of eachlittle distribution in kerneldensityestimation.

Table 1: Terms usedin this paper, along with their abbreviations and definitions
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Figure 1: This graph shows two performanceequivalent speed
scheduleswith deadline 50 ms. Their pre-deadline cyclesare
equal (15 Mc) and their post-deadlineparts are identical.

thetaskmissesits deadline (when (D�-% ). A speedschedulehasa
certainnumberof pre-deadlinecycles( EGFIH ), thenumberof cycles
it canperformbeforethedeadline.Notethat E'F,HKJMLONP �'&)(Q*SR@( .

We saythat two speedschedulesareperformanceequivalent if,
no matterwhat a task’s work requirement, it will have the same
effective completiontime underboth schedules.We call two al-
gorithmsperformanceequivalentif they alwayshave performance
equivalent speedschedules.We make thefollowing importantob-
servation: If two speed schedules have equal pre-deadline cy-
cles and identical post-deadline parts, then they are performance
equivalent. Figure1 illustratestwo suchschedules.

The above observationis true for the following reasons.First,
if a task’s work is no greaterthan the E'F,H the schedulesshare,
then both schedulescompletethe taskby the deadline,and both
yield aneffectivecompletiontimeof % . Second,if a task’swork is
greaterthanthe EGFIH , thenbothschedulesleave thetaskthesame
excessto do after the deadline: $ " EGFIH . Sincethe schedules
have identicalpost-deadline parts,andboth have the sameexcess
to do in thatpart,bothwill completethetaskat thesametime.

Thisis thekey to thePACEapproach. PACEmodifiesalgorithms
without changing their pre-deadlinecycles or their post-deadline
parts,so it keeps performancethesame.However, by strategically
choosingthespeedschedule for thepre-deadline part, it canmake
theexpectedenergy consumptionlowerthantheoriginalalgorithm.

It is oftenusefulto consider thespeedschedule to bea function
of work completedinsteadof a functionof time. So,wewill some-
timesdescribethe schedule with a function T , where T@&VU#* is the

speedto useafterthetaskhascompletedU cyclesof work. � and T
arejust differentexpressionsof thesamefunction;it is straightfor-
wardto convert a schedulefrom onefunctional form to theother.

4. IMPROVING DVS ALGORITHMS

4.1 Theoretical optimal formula
In thissection,wepresentaformulafor theoptimal(energy min-

imizing) speedschedule that is performanceequivalentto thatof a
previously known algorithm.

Aspreviouslynoted,whenweknow thetask’swork requirement,
theoptimalalgorithmusesa constantspeed.Whenwe know only
thedistribution of this work, however, theoptimalschedule usesa
variablespeed.An intuitive explanationis that if the taskwork is
unknown, it maybehigh or low. It is bestto run slowly at first, be-
causethetaskmayrequirelittle work andthusendbeforewemust
increasethespeedandthusthepower consumption. For example,
supposea taskwith a deadline of 50 msneeds5 megacycles(Mc)
75%of thetime and10 Mc 25%of thetime. Supposefurther that
CPU power is W  nW X���Y when the speedis � MHz. The ideal
constantspeedis 200 MHz, the slowestthat will alwaysmeetthe
deadline;thisconsumes12.5mJonaverage.1 An alternate,variable
speedscheduleis 163MHz for thefirst 30.675ms,then259MHz
for any remainingtime; this consumes10.84mJ on average,2 an
energy savingsof 13.3%.

Wethusseethattheoptimalspeedscheduledependsontheprob-
ability distribution of the task’s work requirement. We denotethe
cumulative distribution function (CDF) of this work by Z : Z[&VU\*
is theprobability thetaskrequiresno morethan U cyclesof work.
Thetail distribution functionis denotedZ^] : Z_]`&VU\*aJb� " Z[&VU#* .

We are trying to minimize the expectedenergy consumption
of the pre-deadlinepart of the algorithm,3 subject to the con-c 1edgf ms4h1edji=i=4lkm1efji nW4SnK13d=f=o,4h1edgf ms4h1edji=i=4lkp1efji nW4�qsrQd`t f mJt�m1eujivt wgx=f ms4h1)rjw=ug4lkm13fgi nW4�ny13d=f
o,4h1)rjzmt u=dgf ms4h1edgf=zg4lkp1efji nW4�qsr+ivt {j| mJ.Y The expectedenergy consumptionis }G~����j�� 0a6
13254h� 8=13254)���B�
2 , where } is the
constantof proportionalitybetweenenergy andspeedsquared,by the following rea-
soning. Considerthe �
2 cyclesof work after the first 2 ; if �
2 is small, the speed
over this period is approximatelyconstantat 8=13254 . The energy consumptionper
cycle is }!� 8=13254)�;� , and the numberof cycles is �
2 , so the energy consumptionis}!� 8=13254V�����
2 . Theprobabilitythatthiswork actuallyevergetsdoneis 0a6p13254 .



straint that the pre-deadlinecyclesmustbe the sameasthe EGFIH
of the� original algorithm. In other words, we want to minimizeL��
�m�P Z ] &VU\*=� T�&VU\*�� � R�U subjectto theconstraintL��
�`�P c�j����� R�UbJ% . Algebraically, this is equivalent to minimizing� �
�m�P � � Z ] &VU#*��<� c�� Ym� T�&VU\*�� � � X�� Z ] &VU#*�� c�� Y R�U
subjectto� �
�`�P � � Z ] &VU\*g� c�� Ym� T@&VU\* � X!� Z ] &VU\*�� c�� Y R�U�J�% �
In other words, we are given the weighted sum of the values� Z ] &VU#*�� � c�� Y � T�&VU\* and we want to minimize the weightedsum
of their -2ndpowers.By Jensen’s inequality, sincethe-2ndpower
function is concave up, this minimizationoccurswhenall theval-
uesarethe same.In otherwords,we want � Z ] &VU#*�� � c�� Y � T�&VU\* to
be as constantas possible. We achieve this by making T@&VU\* be
the valid speedclosestto ¡¢� Z ] &VU#*�� � c�� Y , where ¡ is a constant
chosento satisfythedeadlineconstraint.For a full proof that this
works,see[14]. SinceZ ] &VU\* decreasesas U increases,thissched-
ule speedsup theCPUasthetaskprogresses,asnotedearlier.

Given any schedulingalgorithm,it is worthwhile to replaceits
pre-deadline partwith thisoptimalformula. In thisway, wereduce
the expectedenergy consumption without affecting performance.
We call this thePACEapproach.

4.2 Piecewise-constantspeedschedules
Theoptimalscheduleis a continuousfunction,which is imprac-

tical to implementpreciselysincesoftwaremustissuea command
eachtime it wantsto change the speed. In practice,we want a
schedule with a limited numberof transitionpoints, pointswhere
thespeedmaychange.We specifytransitionpointsby valuesof U
where T@&VU#* changes,not pointsin time where �'&)(Q* changes.The
latteris morenatural,but theformermakesoptimizationeasier.

Givenfixedtransitionpoints,we canconstructa speedschedule
that minimizesexpectedenergy consumption, as follows. In the
interval betweenany two transitionpoints,we usethevalid speed
closestto ¡¢&<Z ]avg * � c�� Y , where Z ]avg is theaveragevalueof Z ] over
that interval. As before,¡ is constantover theentireschedule; we
choosea valuefor it thatmeetsthedeadlineconstraint.Theratio-
nale is similar to that for the continuous optimal speedschedule;
for a full proof thatthisworks,see[14].

We also need to choosea “good” sequence of £ transition
points. We want the optimal scheduleto vary little betweenany
two consecutive transitionpoints,so that keepingthe speedcon-
stantbetweenthosepointsapproximatestheoptimalschedule. We
proceedasfollows. For eachinteger ¤ , define ¥�¦§J¨� "ª© � Y ¦ for
someconstant

©
. Then, Z ] at the ¥ ¦ th quantile of Z equals

© � Y ¦ .
If we usethesequantilesas transitionpoints, then � Z ] &VU\*�� � c�� Y ,
andthustheoptimalspeed,never variesby morethana factorof

©
betweenany two consecutive transitionpoints.

A problemwith this is that asthe sequence
� ¥�¦ � increases,the¥ ¦ valuesget closetogether, and this may result in an excessive

number of speedchanges. Thus,we terminatethis sequence near¥ ¦ J  � «!W and pick further valuesof ¥ ¦ so that they uniformly
partition the remainingrange. More precisely, we pick some ¬
near £ andsome ­ near0.95. (We will addresslaterwhatactual
valueswork well.) We set ¥p®�Jb­ , thencompute

©
by solving the

equation­�Jb� "¯© � Y ® . Foreach�_�°¤[��¬ , weset¥+¦#Jb� "¯© � Y ¦ ;
for each¤±��¬ , weset ¥ ¦ J�­�²�&;¤ " ¬'* P=³ ´+´Qµ ��¶· � ® .

To implement a piecewise-constant speedschedule, software
must interrupt the task at predeterminedintervals to change the
CPU speed.A CPU cycle counter or clock timer could generate

suchinterrupts.Alternately, softwarecouldusesoft timers,anop-
eratingsystemfacility suggestedby Aron et al. [1] that lets one
schedule eventsfor the next time one canbe performedcheaply,
suchaswhena systemcall begins or a hardwareinterruptoccurs.
This could only work if theseeventsoccursufficiently frequently.
A betterwayto implementspeedscheduleswouldbeto implement
themin hardware. For instance,theCPUcouldacceptcommands
not just to changespeedimmediatelybut alsoto establisha speed
schedule for thenext few milliseconds.Alternately, theCPUitself
could implementthe DVS algorithm,so softwarewould not have
to spendtimecommunicatingschedule informationto hardware.

4.3 Sampling methods
To implementPACE,we mustestimatetheprobabilitydistribu-

tion of thecurrenttask’swork requirement.It is rareto havethis in-
formationa priori; usually, we mustestimatethedistribution from
asampleof work requirementsof similarrecenttasks.Weconsider
thefollowing samplingmethods.� Futur e. Useasthesampletheentiresetof tasksin thework-

load,includingfutureones.Naturally, thismethodis imprac-
tical, asit usesfutureinformation.� All. Useasthesampleall pasttasks.� Recent-� . Useasthesamplethe � mostrecenttasks.� LongShort- � . Use as the samplethe � most recenttasks,
with themostrecent� �`¸ of themweightedthreetimesmore
thantheothers.Thismethodis inspiredby Chanetal. [4].� Aged-� . Useasthesampleall pasttasks,with the � th most
recenthaving weight � � , where�§��� is someconstant.

Eachof thesemethodsproducesa weightedsamplethatwe use
to estimatethedistribution. (Thefirst threemethodsproducesam-
plesin whichall weightsare1.) Wedenotethevaluesin thissample
by ¹ cpº ¹ � º �
�
� º ¹¢» , anddenote their weightsby ¼ cpº ¼ � º �
�
� º ¼5» .
Define ¼½J�¾ »¿eÀ c ¼ ¿ . Then,thesamplemeanandvarianceareÁÂ J �¼ »Ã ¿3À c ¼ ¿ ¹ ¿ and

ÁÄ � JÆÅÈÇÇ " �BÉ�Ê �¼ »Ã ¿eÀ c ¼ ¿ ¹ �¿ " ÁÂ �jË �
Fortunately, all we needto computethesetwo numbersare Ç , ¼ ,
the weightedsum,andthe weightedsumof squares.For eachof
our samplingmethods, thereexists a simple algorithm to update
thesefour quantities,and thus the samplemeanand variance,inÌ &h�m* time whenevera new samplevaluearrives.

If taskscanbe classifiedinto typesin sucha way that tasksof
the sametype have similar work requirements, thenwe cankeep
separatesamplesfor eachtype. Whena taskarrives,we canbetter
estimateits distribution by usingonly the sampleof tasksof the
sametype.Oneway to classifytasksinto typesis by whatapplica-
tion they belongto andby whatuserinterfaceeventtriggeredthem.
For instance,wecankeeponesampleof MicrosoftWordtaskstrig-
geredby letterkeypresses,anothersampleof MicrosoftExceltasks
triggeredby releasingtheleft mousebutton,etc.

4.4 Distrib ution estimationmethods
Thenext stepin implementingPACE is to derive the taskwork

distribution from a sample.We may expressthis distribution asa
CDFor asasetof quantiles.Therearetwo generalwaysto estimate
a distribution from a sample:parametricandnonparametric.Para-
metricmethodsassumethedistributionbelongsto agivenfamily of
distributions(e.g.,normaldistributions)andestimatestheparame-
tersthat fully specifya memberof that family (e.g.,themeanand
standarddeviation of a normaldistribution). Nonparametric meth-
odsmake no suchassumption,letting thesample“speakfor itself”
in describingtheentiredistribution.



Note that the criterion for the desirability of an estimation
methodÍ is not the goodnessof fit, but ratherthe extent to which
theuseof thatmethodleadsto lower energy consumption. In par-
ticular, taskrun timesarewell known to behighly skewed, but we
are more interestedin modelingthe portion of the task run time
prior to thedeadlinethantheportionafterit.

Gamma. Thefirst methodweconsideris theparametricmethod
assuminga gammadistribution. This distribution is commonly
usedto model servicetimes [8, p. 490], and we will show later
thatit workswell. Thegammadistribution hasrange�KÎ  . It has
two parameters:theshapeÏ andthescaleÐ . Theprobability den-
sity functionis ÑG&V��*aJ��ÓÒ � cQÔ ��Õ �+Ö � Ð'ÒB×�&VÏO* . Reasonable estima-
tors for themodelparametersare

ÁÏ-J ÁÂ � � ÁÄ � and
ÁÐØJ ÁÄ � � ÁÂ [8].

Maximum likelihoodestimatorsalsoexist, but wedonotusethem,
since(a) we cannotcompute thempreciselyor easily, and(b) we
havefoundthatthey generallydonotwork aswell for ourpurposes.

We can approximate quantiles of the gamma distribution
using the Wilson-Hilferty approximation, describedby John-
son and Kotz [9, p. 176]. It estimatesa quantile usingÏÙÐ ��Ú�ÛYQÜ Ò ²�� " c´ Ò � Y whereÝGÞ is therelevant quantile of thenor-

maldistribution. Whenneeded, wecancomputeCDFvaluesusing
methodsin [18], but we avoid thosemethodswhenpossiblesince
they arecomputationallyexpensive.

Normal. The secondmethodwe consideris the parametric
methodassuminganormaldistribution. Thisassumptionmayseem
unwarranted,especiallysincework cannot benegative but thenor-
mal distribution can. However, for our limited purposes, the nor-
mal distribution maybea reasonable approximation,sincenormal
distributionsareshapedsimilarly to gammadistributionsin some
casesandarefar easierto model.Thenormaldistribution hasonly
two parameters:the mean Â andthe standarddeviation Ä , whose
unbiased estimatorsare

ÁÂ and
ÁÄ . (The maximumlikelihoodesti-

mator for
ÁÄ leavesout the Ç � & Ç " �m* , but we have found it does

slightly worsefor our purposes.)Furthermore,sincethe normal
distribution £°& Â º Ä * is a simple linear transformationof the unit
normaldistribution £°&  º �m* , onecaneasilycompute quantiles and
CDFvaluesusinglookuptables.

Pareto. A methodwe consideredandrejectedis theparametric
methodassumingaParetodistribution. Thismodelis appealingbe-
causeit is heavy-tailedandotherresearchershave foundtasktimes
to be heavy-tailed (highly skewed); see,e.g.,[20]. However, we
foundthismodelto fit ourdistributionsverypoorly, soweconsider
it no furtherin thispaper. In any event,modeling tailsaccuratelyis
not a high priority, sincethetail of thedistribution only affectsthe
speedusednearor afterthedeadline, andmosttaskswill complete
beforethen.

Kernel density estimation. The nonparametricmethod we
consider is kernel density estimation, a popular nonparametric
method[22]. This methodbuilds up a distribution by addingup
several little distributions, eachcenteredon one of the sample
points. The kernel function, ß , determinesthe shapeof theselit-
tle distributions. The bandwidth, à , determinesthe width of each
little distribution. The result is to estimatethe probability den-
sity function (PDF) at � to be

ÁÑÙ&V��*KJ cá ¾ »¿3À c á�âã ß¨ä Õ!�Óå âãçæ .
Silverman[22, pp. 42–43] points out that most kernelsperform
comparably, so oneshouldchoosea kernelbasedprimarily on its
easeof implementation.Wehavethuschosenthetriangularkernel:ßè&)(+*OJ�é§êmë � � " ì ( ì º  � , which is simplerto implementthanmost.

We can computethe theoreticaloptimal bandwidth from Ñ@í í ,
the second derivative of the true probability density, using

ä�Lî( � ßè&)(Q*GR@( æ � �ï ä�L¢ßè&)(Q* � R@( æñðï ähL¯ÑBí íl&V��* � R�� æ � ðï Ç � ðï . For
the triangularkernel, Lî(+�
ßè&)(Q*yR@(�J cò and L¢ßè&)(+*+�°R@(�J �Y .However, LóÑÓí íl&V��* � R�� is impossibleto computesince the true
probability density is obviously unknown. Fortunately, our esti-
mateof it doesnot have to beexact,sinceit will only influencethe
degreeof smoothingin thedistribution. Assuminga normaldistri-
bution with parameters

ÁÂ and
ÁÄ makestheestimate Yô Ü õ ÁÄ � µ . As-

suminga gammadistribution makes theestimationfar morecom-
plex, andwehave foundthiscomplexity not to beworthwhile.

Notethattherangeof thekernel densityestimatemayextendbe-
low 0. Weusereflection[22, pp. 29–31]to avoid this. Thismethod
addsto the samplethe set of values

� " ¹ ¿ � , eachweighted ¼ ¿ ,
makingthe samplesize ö Ç . It thencomputesthe probabilityden-
sity

ÁÑ adj &V��* usingthis adjustedsample,andsets
ÁÑG&V��*aJ÷ö ÁÑ adj &V��*

for �KÎ  , ÁÑ'&V��*OJ  otherwise.

5. CHOOSING A BASE ALGORITHM
WhenPACEmodifiesanalgorithm,it leavestwo aspectsof that

basealgorithmintact: what E'F,H it usesfor eachtask,andwhat
post-deadline schedule it usesfor eachtask. Thus,differentbase
algorithmswill still have differentperformanceevenafterbothare
improved with PACE. In this section,we discusshow to choose
amongbasealgorithms.

5.1 Choosinga post-deadline part
First we considerwhat the basealgorithm for post-deadline

scheduling should be. To comparesuchalgorithms,we needa
performancemetric that takesinto accountthe user’s “impatience
function”, i.e., how undesirablehe finds missingthe deadlineby
variousamounts.Wechooseto usePeringetal.’ssuggestedmetric,
theclippeddelay, which is thesumof all tasks’effective comple-
tion times[17]. Our goal is to find analgorithmthatconsumes the
leastpossibleenergy for a givenclippeddelay.

Let ø�ùvúhûSü�ý@þvÿ������ be the total excess(the amountof task work
left after the deadline)of all tasksin the workload. Note that the
pre-deadlinepartdeterminesthis; we cannotchangeit in thepost-
deadlinepart. A clipped delay value corresponds to sometotal
amountof delay

�
pastall deadlines, soto achieve a givenclipped

delayall wemustdo is performthetotalexcessin somegiventime�
. The minimal-energy solutionto this singleconstraintis to use

theconstantspeedø�ùvúhûSü ý�þvÿ������ � � . Anotherway to look at this is
that if we usea fixed,constantspeedafter thedeadline,we assure
that the energy consumption we achieve is the minimum possible
for the clippeddelaywe achieve. Therefore,we proposepicking
a fixed speedto usefor all post-deadlineparts. Many previously
publishedalgorithmsalreadydo this, either becausethey always
usea fixedspeedor becausethey increasespeedasaveragerecent
utilization increasesandthusachieve themaximumCPUspeedby
thetime a taskreachesits deadline.

We mustnow determinewhatfixedspeedto useafter thedead-
line. Usually, othercomponentslike thebacklightwill be running
andconsumingpower, anddelaypastthedeadlinecancausethese
componentsto consumemoreenergy. Using a CPU frequency �
makesCPUenergy consumptionproportional to �@� but makesen-
ergy consumption of thoseothercomponentsproportional to � � �
asthey maystayon longer. We thereforechooseto alwaysusethe
maximumspeedoncea task missesits deadline,asmany previ-
ously publishedalgorithmsgenerallydo anyway. This minimizes
delay, generallyat someenergy cost, but not necessarilyat sub-
stantialenergy costconsideringthatothercomponents’powercon-
sumptionwould mitigatetheeffect of lower speeds.

Anotherapproachis to choosea targetaveragedelay, predictthe



averageexcess,andusetheratioof theseasthespeed.However, we
havefoundthisto beimpractical,sincetwo factorsmakepredicting
averageexcessdifficult. First, excessis nonzeroonly rarely, since
mosttasksmeettheir deadlines.Therefore,samplesof excesswill
tendto besmalluntil many taskshaveoccurred, andeventhenmost
samplevalueswill bequiteold. Second,thedistribution of excess
dependsstronglyon thetail of thetaskwork distribution,andsuch
tails tendto behardto model.

5.2 Choosing EGFIH for eachtask
We have shown how to improve a DVS algorithmby changing

its pre-deadlineand post-deadline parts. Thus, the only remain-
ing influencethe baseDVS algorithmhason the final scheduleis
its choiceof pre-deadlinecycles( EGFIH ). We now consider how to
choose E'F,H for eachtaskin order to minimize energy consump-
tion for a given fraction of deadlinesmade. This constraintis in-
terestingbecause it is only oneconstrainton all tasksratherthan
oneconstraintpertask.Thatis, weneedto meetagivenfractionof
all deadlines,but notnecessarily meeteachdeadlinewith thesame
probability . Thus,even if the taskwork distribution wereknown
andstationary, the optimal solutionmight not be to usethe sameE'F,H for all tasks.(This is a propertyof theFlat/Chan-stylealgo-
rithm, which usesa fixedspeedandthushasthesameEGFIH for all
tasks:thespeedtimesthedeadline.)

Unfortunately, we cannot solve this optimization problem for
two reasons. First, the complex dependenceof the speedsched-
ule on the EGFIH we choosemakeschoosinganoptimalsetof E'F,H
valuesintractable. Second,even if therewerean analyticalsolu-
tion, it would dependon all of the work distributions. Therefore,
we would needa modelof thedistribution of distributions,andwe
know no reasonableway to modelthis.

Depending on the distribution of distributions, different ap-
proachesto choosing EGFIH will work betteror worsethanothers.
Thereforewe mustrely on empiricalratherthananalyticmethods
to decidewhichalgorithmswork bestwhenmodifiedby PACE.We
presentsuchresultsin � 7.7.

OneinterestingdistinctionbetweenbaseDVS algorithmsis that
for some,suchasLongShort/Chan-style,EGFIH is dependenton the
currenttaskwork distribution,while for others,suchasFlat/Chan-
style, it is not. (LongShort/Chan-styleusesa speedproportional
to recentutilization, so its E'F,H is higherwhenrecenttaskshave
beenlong; Flat/Chan-stylehasa constantE'F,H for all tasks.)The
former type will tend to miss the deadlinesof taskswhosework
requirements arelocal maxima,so we call theselocal algorithms.
The latter typewill tendto missthe deadlinesof the longesttasks
in thewholeworkload, sowe call themglobal. Whenthedistribu-
tion is nonstationary, asis usual,localapproacheswill tendto miss
a differentsetof tasks’deadlinesthanglobalones.We cannot an-
alytically determinewhetherlocal approacheshave lower energy
consumption for a given fraction of deadlinesmadethan global
ones,or even whetherone local approachis betterthan another.
Therefore,we rely on empiricaldatato comparethem.

6. WORKLOADS
We evaluatethesealgorithmsusingsix workloads. We derived

mostworkloads from tracesof usersperformingtheirnormalbusi-
nessondesktopmachinesrunningWindowsNT or Windows2000.
VTrace, a tracerdescribedin [13], generatedthesetraces. The
tracescontain timestampedrecordsdescribingevents related to
processes, threads,messages,disk operations,network operations,
the keyboard,andthe mouse.We deduce what work is donedue
to a user interfaceevent as follows: we assumethat a threadis
working on suchan event from the time it receives the message

describingthat event until the time it eitherperformsa wait for a
new eventor requestsandreceivesamessagedescribingadifferent
event. Furthermore,if the threadsendsa messageor signalto an-
otherthreadwhile working on suchanevent,we assumethatwork
donedueto thatmessageor signalis donedueto theoriginalevent.

To reducethe amount of dataVTracecollects,it only collects
thefull setof eventsit canfor sessionslasting90minutesata time,
afterwhich it pausesfor two hours.In our analyseshere,any trace
longerthan90minutesonly representsthe40%of thetimeVTrace
actuallytracedits full setof events.

Wedefineeachworkloadby aclassof events,suchasletterkey-
pressesin Microsoft Word. The workload consistsof the set of
taskstriggeredby all suchevents.In otherwords,eachtaskof each
workloadis roughly of thesametype; by separatingdifferenttask
typesinto differentworkloads,wemodeltheeffectof keepingsep-
aratesamplesfor differenttasktypes,asdescribedin section4.3.
A full machineworkloadwould consistof many of thesekindsof
workloads,interleaved.Sinceourapproachoperatesindependently
on eachdifferenttasktype,we cancorrectlysimulateit by consid-
eringeachtasktypein isolation.

We discardany taskthat blocked on any I/O, e.g., to a disk or
network device. We do this becausewhena taskblocksfor I/O, it
shouldusea differentalgorithmthat takes I/O time into account,
andsuchalgorithmsarebeyond thescopeof thispaper. Section8.2
discussesthis avenuefor futurework. Furthermore,I/O generally
occursin only a small fraction of the tasks,so leaving themout
shouldnot significantlyinfluencetheresults.

For oursimulations,weassumetheminimumspeedis 100MHz,
the maximumspeedis 500 MHz, and the peakCPU power con-
sumptionis 3 W. Most currentlyshippingmachinesarefaster, but
500MHz is representative of thetracedmachines.

6.1 Word processortyping
Oneof themostcommonactivities for laptopusersis typing in a

wordprocessor, andMicrosoftWordis themostcommonwordpro-
cessor. Thereforeour first workloadusessimpleletter keystrokes
in Microsoft Word asits classof events.We derivedthis workload
from 3.4 monthsof tracesVTracecollectedon a 450 MHz Pen-
tium III computer with 128MB of memoryrunningWindows NT
4.0. Thefirst author, acomputersciencegraduatestudent,usedthis
computer. Thisworkloadis interactive,soweusea50 msdeadline
for eachtask.

6.2 Groupware
Softwarethatenablesandenhancescommunication with others,

i.e., groupware, is importanton thedesktop,andwill bemoreim-
portantin portablecomputersasthey becomemoreconnected.So
we includea workload usinga commongroupwareproduct,Nov-
ell’s GroupWise. This workload usesleft mousebuttonreleasesas
its classof events. We derived this workload from 6.5 monthsof
tracesVTracecollectedon a 350 MHz PentiumII computerwith
64 MB of memory running Windows NT 4.0. A crime labora-
tory directorin theMichiganStatePoliceusedthis computer. This
workloadis interactive,soweusea 50 msdeadlinefor eachtask.

6.3 Spreadsheet
Spreadsheetsare also commonon portablecomputers,so our

next workloadusesa commonspreadsheetapplication,Microsoft
Excel. The workloadusesreleasesof the left mousebutton asits
classof events.We derivedthis workloadfrom 3 monthsof traces
VTracecollectedon a500MHz PentiumIII computerwith 96MB
of memoryrunningWindowsNT 4.0. Thechief technicalofficerof
a computing-relatedcompany usedthis computer. This workload



Title Description Frames
Genoa
�

Demoof Genoaproducts 2,592
Jet Flying in varyingterrain 1,085
Earth RotatingEarthmodel 720
Red’s Nightmare Bicycle’s nightmare 1,210
DünneGitter Illustrationsof integration 2,753
IICM Flying in Mandelbrotset 810
Gromit Gromitwakesup 331

Table2: Animations usedin the MPEG workloads

is interactive,sowe usea 50 msdeadlinefor eachtask.

6.4 Video playback
Multimedia applications are becoming more common on

portablecomputers[6]. Therefore,we includea movie playeras
oneof our workloads.We usetheMPEGplayerincludedwith the
Berkeley MPEGToolsdevelopedby theBerkeley MultimediaRe-
searchCenter(BMRC) [16]. Sincethey provide full sourcecode
for their tool, we wereeasilyableto instrumentit to measureand
output theCPUtime taken for eachframe. Thus,eachtaskof the
workloadrepresents theprocessingof oneframe.

Weobtainedanimationsto usefrom thesameBMRC FTPsiteas
theMPEGdecoder. Table2 givesnamesanddescriptionsfor these
videos. Oneworkload,which we call MPEG-One,consistsonly
of theRed’s Nightmareanimation.Theotherworkload,which we
call MPEG-Many, consistsof all sevenvideoclips,oneplayedafter
theother. We madethemeasurementsof CPUtime on a 450MHz
PentiumIII computer with 128 MB of memoryrunning RedHat
Linux 6.1. Assuminga typical rateof 25 framesper second, we
assigna deadlineof 40 msto eachframe.

6.5 Low-level workload
Somesystemdesignersmaywantto implementa scheduling al-

gorithm without instrumentingthe operatingsystem,relying only
on informationhardwarecanobserve. Oneof ourworkloadsrepre-
sentssucha scenario.

We derive this workloadfrom VTracetracesasfollows. A task
begins whenthekeyboarddevice generatesa keypress signal,and
endsthenext time eithertheCPUbecomesidle or thereis another
keypress.To determinewhentheCPUis idle, we usethetime that
the idle threadis running. (In battery-poweredsystems,the idle
threadtypically haltsthe CPU,sohardwarecandeducewhenthis
threadis running.) If a disk operationis ongoing whenthe CPU
goesidle, we throw out any keypressbeing worked on, for two
reasons.First, we cannot know if the I/O is part of this task,so
wecannot knowwhetherthetaskis over or simplywaiting for I/O.
Second,asstatedbefore,we are ignoring tasksthat perform I/O
sinceweareonly consideringalgorithmsfor taskswith no I/O.

Theworkloadcomesfrom atraceof one90-minutesession,cho-
senbecauseit hadmany keystrokeswith reasonablyhigh average
processing time. VTracecollectedthis traceon a 400 MHz Pen-
tium II computerwith 128 MB of memoryrunningWindows NT
4.0. A Michigan StatePolicecaptainusedthis computer primar-
ily for groupware andoffice suiteapplications.This workload is
interactive,sowe usea 50 msdeadlinefor eachtask.

7. RESULTS

7.1 Modeling task work distrib utions
In thissection,wedeterminehow bestto practicallyestimatethe
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Figure 2: A comparison of the effect of various samplesizes� on energy consumptionwhen PACE usesthe Recent-� sam-
pling method
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Figure 3: A comparison of the effect of various samplesizes� on energy consumption when PACE usesthe LongShort- �
samplingmethod

probability distribution of tasks’work requirements. We want to
know which methodsaregeneralenough to work well for a vari-
ety of workloads,so we evaluatethemall usingsimulationswith
our six differentworkloads. To determinehow effective a method
is at describingthe distribution of tasks’ work requirements,we
usea pragmaticapproach:we usethemethodto implementPACE
andsimulatehow muchenergy consumption results.We consider
a methodbetterif it produceslower pre-deadlineenergy consump-
tion. No othermetric is relevant,sincePACE by definitioncannot
changeperformance.

Throughout this section, for our simulations,we assumetheEGFIH is fixed at the value that ensuresat least98% of tasksthat
canmake their deadlinesdo so. (For theLow-Level workload, we
use99%,because98%of thetasksaresoshortthatwecanachieve
their deadlineswith just theminimumspeed.)

7.2 Which samplingmethod to use
We now comparethe samplingmethodsto determinethe best

onesto usewith PACE.For thesecomparisons,we assumethatwe
estimatedistributionsusingkerneldensityestimation.

First,weconsiderwhatsamplesizeto usefor thesamplingmeth-
odsthatuseonly recentdata,Recent-� andLongShort-� . Figures2
and3 show theoutcomeof usingdifferentsamplesizesfor differ-
ent workloads.It is difficult to pick an idealsamplesize,because
someworkloads do bestwith high samplesizes,while othersdo
bestwith low samplesizes. Presumably, the onesthat do better
with high samplesizesaretheoneswith morestationarydistribu-
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Figure 4: A comparisonof the effect of various aging factors �
on energy consumptionwhen PACE usesthe Aged-� sampling
method

tions,i.e., theoneswhosedistributionschangetheleastwith time.
Sincehighersamplesizesrequiremorememoryand,for somedis-
tribution estimationmethods,moreprocessingtime, we feel that
a reasonablecompromiseis a samplesize of 28. For all work-
loadsexceptExcel,this samplesizeproducesenergy consumption
within 0.8%of theidealfor Recent-� andwithin 1.6%of theideal
for LongShort-� . Excel,presumablybecause it is very stationary,
cantake advantage of highersamplesizes,but thesesamplesizes
produce worseresultsin most of the other, lessstationarywork-
loads.

Wenow considerwhatagingfactor � to usefor theAged-� sam-
pling method. Figure4 shows the outcomeof usingdifferentag-
ing factorsfor differentworkloads.Justaswith samplesizes,some
workloadsdobestwith highagingfactorswhile othersdobestwith
low agingfactors.Not surprisingly, theworkloadsthatdobestwith
high agingfactorsarethesameonesthatdo bestwith high sample
sizes. This is expected,because a high aging factormakes sam-
ple valuesagemore slowly, so that PACE effectively usesmore
old values.Basedon thegraphs,we feel a reasonable agingfactor
is 0.95. With this value,eachworkloadbesidesExcel hasenergy
within 1.3%of whatit wouldbeusingthebestagingfactorfor that
workload, andExcelhasenergy within 2.8%of thebestpossible.

Next, we determinewhich samplingmethodworks best. Fig-
ure 5 comparesthe Future,Recent-28,LongShort-28, andAged-
0.95 samplingmethodsfor the six workloads. We do not evalu-
ate the All samplingmethod,sinceit is equivalent to Recent-� ,
and we have alreadyshown that the Recentmethodworks quite
badly for someworkloadswith largesamplesizes.Thefirst thing
we observe is that the Futuremethodsometimesuseslessenergy
thanthe othermethods, but sometimesusesmuchmore. This in-
dicatesthatevenif completeinformationaboutthefull distribution
of taskwork is available,it is oftenbetterto userecentinformation
to predictthe distribution of the next taskwork. Presumably, this
is becausethesedistributionsarenonstationary, sorecentinforma-
tion is a betterpredictorthanglobalinformation.Thenext thing to
observe is that the remainingthreemethodshave virtually identi-
calenergy consumption. In general,Recent-28consumesthemost,
LongShort-28thenext most,andAged-0.95theleast;however, the
differencebetweenany two is never morethan2.2%.Weconclude
thatAged-0.95generallyproduces thebestresults,but othermeth-
odswork reasonably andmaybegoodchoicesif they areeasierto
implement.

7.3 Which distrib ution estimator to use
Thekerneldensityestimationmethodcanmodelany kind of dis-
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Figure5: A comparisonof the effectof various PACE sampling
methodson energy consumption

tribution, but it is complex to implement. So,we now investigate
how effectively we canmodeltaskwork distribution with simpler
parametricmodels,thenormalandthegammadistribution.

To testwhethera modeltruly fits a setof data,onecanusethat
modelto estimatetheCDF at eachdatapoint,andtestwhetherthe
setof CDF’s is distributeduniformly over the interval &  º �p* . For
this uniformity test,RaynerandBest [19] recommend Neyman’s
 �� test.Applying thistestto any of ourworkloads,usingany of our
samplingmethods,the testrevealsan extremelysmall probability
thatthedatafit eitherthenormalor gammamodel.Fortunately, the
key issueis not the accuracy with which we canapproximatethe
distribution of thetaskwork. Thekey issueis theextent to which
a statisticallyunacceptablemodel of this distribution producesa
suboptimal solutionto theenergy minimizationproblem.

Therefore,themoreimportantquestionto askis how effectively
PACE canuseeachmodel (kerneldensity, normal,or gamma)to
approximate the optimal schedule. We thus simulateusing each
modelalongwith theAged-0.95samplingmethodfor eachwork-
load. We usethe same EGFIH valuesthat we did in the last sec-
tion. Figure6 shows the resultsof thesesimulations.For almost
all workloads, the kernel densitymodel is best, followed by the
gammamodel, followed by the normal model. In all cases,the
gammamodelconsumesno morethan2.3%moreenergy thanthe
kernel densitymodel. We conclude that, all things being equal,
oneshouldusethe kerneldensityestimationmethod.However, if
this methodis too complex to implement,the gammamodel can
achieve reasonably closeresults.

7.4 Choosingtransition points
In section4.2,wediscussedhow PACEcanapproximatetheop-

timal, continuousschedule usingapiecewise-constant schedule.In
this section,we determineempirically thebestwaysto choose the
speedtransitionpointsfor theschedule.

Figure 7 shows the effect of using different numbersof tran-
sitions. We seethat the principle of diminishing returnsapplies;
increasingthe numberof transitionsbecomeslessandlessworth-
while asthe numberof transitionsincreases.Using 10 transitions
yields energy consumption alwayswithin 1.2% of the minimum.
Using 20 transitionsreducesthe maximumpenaltyto 0.27%,and
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Figure 7: A comparison of the effect on energy consumption
of usingdiffer ent numbers of speedtransitions to approximate
the continuousschedule

using30 transitionsreducesit to 0.1%.All theresultsin this paper
usea maximumnumberof transitionsof 30. However, even if a
practicalimplementationrequiresno more than10 transitionsbe
usedfor eachtask,this shouldnot bea problemfor PACE; sucha
practicalconsiderationwould increaseenergy consumption by no
morethan1.2%.

We alsodiscussedhow to choose £ transitionpoints. The first
stepis to choosesome ¬ near £ andsome ­ near0.95. Simula-
tions show thatenergy consumption is generallyinsensitive to the
choicesof ¬ and ­ . As long asonepicks reasonably, i.e., aslong
as ­ is somewherebetween0.85and0.99andaslong as £ " ¬
is between3 and9, thedifferencebetweenthebestandworstout-
comesfor any workload is alwayslessthan0.6%. For this paper,
we alwaysuse ¬�J�£ "��

and ­�J  � «@W .
7.5 Effect of approximations

To evaluatetheeffect of our approximations to thetheoretically
optimal formula for PACE, we mustknow what that optimal for-
mula is. For real workloads,this is impossible,sincewe cannot
know the underlying distribution of eachtask’s work. (We can
know the overall distribution of taskwork, but asworkloads can
be nonstationary we cannotknow the distribution for any given
task.) Thus, in this section,we usea syntheticworkload gener-
atedfrom aknown probabilitydistribution, thegammadistribution

with ÏsJ�ö!W and ÐsJ  � ö Mc.
For the optimal realizable algorithm, the average task pre-

deadlineenergy is 2.1016mJ.Whenthealgorithmmustproduce a
piecewise-constantspeedschedulewith only 30 transitions,energy
goesup 0.025%to 2.1022mJ.Whenthealgorithmdoesnot know
themodel parametersa priori andmustinfer themfrom pasttasks,
energy goesup 0.026%to 2.1027mJ. When the algorithm must
infer modelparametersmainly from recenttasks,usingtheAged-
0.95samplingmethod,energy goesupanother0.72%to 2.1179mJ.
Altogether, thepracticalrequirementsof usingpiecewise-constant
speedschedulesandinferring distributionsfrom limited recentin-
formationraisesenergy consumption by just 0.77%.

7.6 Impr oving algorithms with PACE
In section 4, we describedhow PACE can replacethe pre-

deadlinepart of a standardscheduling algorithmwith a schedule
that haslower expected energy consumption. Here,we simulate
this as follows. First, we simulatea previously publishedalgo-
rithm. Then,we modify the algorithmso that it usesPACE to re-
computethe pre-deadline part of its schedule.Sincethe two al-
gorithmsareperformanceequivalent,we comparethemsolely on
thebasisof pre-deadlineenergy consumption; all othermetricsare
alwaysidentical.

For thesesimulations,weusefour previously published interval-
basedalgorithms,eachwith an interval lengthof 10 ms. The four
methodswe useare:� Past/Weiser-style. This is a practicalversionof Weiseret

al.’salgorithm[23].� LongShort/Chan-style. This is a practicalversionof oneof
thebestalgorithmsChanetal. proposed[4].� Flat/Chan-style. This is a practicalversionof anotherof
thebestalgorithmsChanet al. proposed[4]. It usesa fixed
speed,so it is similar to Transmeta’s LongRunTM in steady
state[10]. We choosethe speedso that at least98% (99%
for theLow-Level workload)of all tasksthatcanmake their
deadlinesdo so.� Past/Peg. Grunwald et al. [7] favoredthis algorithm.

Figure8 shows the effect of usingPACE to modify thesealgo-
rithms. We evaluatethe effect of two versionsof PACE, both us-
ing the Aged-0.95samplingmethod:oneusesthe gammamodel,
which is easierto implement,andoneusesthe kerneldensityes-
timation method,which producesbetterresults. Both versionsof
PACEreducetheCPUenergy consumption of every workloadand
everyalgorithm.PACEusingagammamodelreducestheCPUen-
ergy consumption of algorithmsby 2.4–49.0%; theaveragereduc-
tion over all workloads andall algorithmsis 20.3%. PACE using
thekerneldensityestimationmethodreducestheCPUenergy con-
sumptionof algorithmsby 1.4–49.5%with anaveragereductionof
20.6%.The1.4%valueis lowerthanthe2.4%valuebecauseExcel,
theworkloadthatgainsthe leastbenefitfrom PACE,happensalso
to be the only workload for which the gammamodel sometimes
outperformsthekernel densityestimationmethod.Excelgainsless
benefitfrom PACEthanotherworkloadsbecauseit consumesa lot
of post-deadlineenergy, andPACE hasno effect on post-deadline
schedules. Interestingly, thealgorithmmostimproved with PACE
is Past/Peg, theonefavoredby themostrecentcomparisonof DVS
algorithms[7]. Past/Peg wasfavoredin thatwork becauseit misses
fewer deadlinesthanotheralgorithms;unfortunately, this requires
higherenergy consumption,asFigure8 shows.

Another way to examine the resultsis to considerthem rela-
tive to how much energy would be consumed in the absenceof
DVS. Without PACE,previously published algorithmsuseDVS to
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Figure 8: Thesegraphs show the effect of modifying algorithms with PACE to get performance equivalent, but lower-energy, al-
gorithms. Horizontal lines show the post-deadline energy, which noneof our modifications change.The lookaheadoptimal results
useknowledgeof the curr ent task’s work requirementand thus cannot be practically implemented; however, they serve asa lower
bound on what canbe attained by a performanceequivalent algorithm.

reduceCPU energy consumption by 10.7–94.1% with an average
of 54.3%.With PACEusinga gammamodel,theCPUenergy sav-
ingsincreaseto 35.9–95.5%with anaverageof 65.2%.With PACE
usingthekernel densitymethod,theCPUenergy savings increase
to 35.6–95.5%with an averageof 65.4%. Thus,on average,if a
CPUconsumes100J without DVS, previously publishedDVS al-
gorithmsallow it to consumeonly 46 J; PACE reducesthat figure
even furtherto 35 J.Giventhesefigures,if theCPUaccountedfor
33% of total energy consumptionin a portablecomputer without
DVS [12], previously published DVS algorithmswould increase
its batterylifetime by about22%; with PACE, thebatterylifetime
improvement would beabout28%.

In conclusion, PACEis not just theoreticallyuseful,but is aprac-
tical meansto achieve substantialenergy savingswithout affecting
performance. It workson a varietyof workloads,andcanimprove
a variety of algorithms.Thehigh energy savings is especiallyex-
citing becausePACEby definitionhasno effect on performance.

7.7 Which basealgorithm to use
As discussed in section5.2, differentalgorithmscompute EGFIH

in differentways,sothey still differ evenwhenmodifiedby PACE.
Lacking a modelof this effect, we mustrely on empirical results
to find which algorithm performsbestwhen we modify its pre-
deadlinepart with PACE and its post-deadline part to alwaysuse
the maximumspeed.For spacereasons,we leave out plotsshow-
ing the averagetaskenergy consumption asa function of fraction
of possibledeadlinesmadefor eachof the workloads andeachof
thebasealgorithms;interestedreaderscanfind theseplots in [14].
They show thatFlat/Chan-style,theonly globalalgorithmwe con-
sidered,mostoftengivesthelowestenergy consumptionfor agiven
number of deadlinesmade. This suggeststhat global algorithms
tend to do better than local ones. Among the local algorithms,
LongShort/Chan-style doesbest,achieving reasonableenergy sav-
ingsfor a givennumberof deadlinesmade.

7.8 Overheadanalysis
Although PACE reducesan algorithm’s energy consumption, it

Workload Aged-0.95/Gamma Recent-28/Kernel
Word 31 Â s (0.05%) 68 Â s (0.11%)
Excel 27 Â s (0.08%) 70 Â s (0.20%)
GroupWise 30 Â s (0.10%) 77 Â s (0.25%)
Low-Level 35 Â s (0.25%) 73 Â s (0.51%)
MPEG-Many 29 Â s (0.06%) 63 Â s (0.14%)
MPEG-One 28 Â s (0.04%) 62 Â s (0.08%)

Table 3: This table shows the average time per task for a
450 MHz Pentium III to executevariants of the PACE algo-
rithm. Energy overhead valuesare in parentheses;they show
how much energy the simulated CPU would consumeto com-
pute the PACE speedschedules,as a percentageof the energy
it would consumejust to executethe workload tasks.

alsoincreasesits complexity. Thus,it makestheCPUspendmore
time, andthusmoreenergy, computing speedschedules. We can
evaluatethis overheadby simulatinghow much time and energy
PACE-modifiedalgorithmswould consumeto computeschedules.

The two PACE methods we simulate this way are Aged-
0.95/Gammaand Recent-28/Kernel. The former pairs the com-
putationallyefficient gammamodelwith the preferredAged-0.95
samplingmethod.Thelatterusesthemoreeffective but lesscom-
putationallyefficientkerneldensityestimationmethod.To mitigate
the computationalcomplexity, we useit with the Recent-28sam-
pling method, whichproducesunweightedsamples.WeuseafixedEGFIH of

 � ��� % , aswould Flat-0.6/Chan-style.We codedthese
algorithmsin C in a coupleof hours,makinguseof someobvious
optimizationsbut by no meansusingevery optimizationpossible.
We usea maximumof 20 transitionsperschedule.

Table3 shows, for eachworkloadandeachalgorithm,theaver-
agetime pertaskto computea speedscheduleon a 450MHz Pen-
tium III with 128MB of memoryrunningRedHatLinux 6.2. The
tablealsoshows theenergy thesimulatedCPUwould consumeto
performthis computation,asa percentage of theenergy consumed



to performthetasksof theworkload.Weseethatwecanimplement
thesealgorithmswith minimal overhead. The Aged-0.95/Gamma
algorithm is more efficient than the Recent-28/Kernel algorithm,
but even the Recent-28/Kernel algorithm imposesoverheadof at
most77 Â s per taskandat most0.51%energy consumption. The
time overheadis small compared to the deadlinein all cases,and
considering thatthecomputationcanbedoneattheendof eachtask
in anticipationof thenext task,it shouldonly delaythecompletion
of a taskwhenthereis no idle time beforethenext taskstarts.

8. FUTURE WORK

8.1 Nonlinear speed-voltagerelationship
Westatedearlierthatthemaximumspeedpermissibleatacertain

voltageis roughly proportional to that voltage( T �¨� ). A more
accurateformulais T¯J���&l� " ��� ã * � � � where � is someconstant
of proportionality and ��� ã is thethresholdvoltage[5]. So,instead
of � �Æ��� , aswe wereassumingin our proof of optimality, we

have � � ÅÓ��� ã ²��� � ² � ���! 
�� ²bä"�� � æ � É � .

This formula is complicated,but we cangenerallyapproximate
it with a simpleroneof the form �¨J �ÓT
�D²$# . In this case,the
optimalsolutionis thesame,sincetheextra # termdoesnot affect
it. However, often a formula of the form � J �ÓT^²%# is an even
betterapproximation. Using this approximation changesthe opti-
mizationproblem:we mustthenminimize L �
�m�P Z#]`&VU\*+T@&VU#*DR�U .
This changesthe optimal schedule in a simpleway: it makes the
power of Zó]v&VU\* change from

" � � � to
" � � ö . In future work we

planto determinetheeffectof usingthispowerwhentheenergy vs.
speedcurve is betterapproximatedby a linear curve. We believe
thatmostof our resultswill still hold.

Memory effectscanalsoproduce a nonlinearspeed-voltagere-
lationship,asobservedby Martin et al. [15]. Whenmemoryspeed
doesnot scalepreciselywith CPUspeed,thework completionrate
may be nonlinearlyrelatedto voltagefor somevoltageranges.In
future work, we shouldexplore the effect of this nonlinearity on
solutionsto theenergy optimizationproblem.

8.2 I/O
If a task performssynchronousI/O, a speedschedulingalgo-

rithm mustattemptto have thetaskcompleteits CPUwork and its
synchronousI/O within thedeadline. Oneway to do this is to con-
siderthedeadlinefor theCPUpartto bereducedby thetimespent
performingI/O while the CPUwaits. In futurework, we will test
approachesthat take suchdynamic deadlinesinto account. Such
approachesmustanticipateandconsidertheprobability thata task
will performI/O in thefutureandthatthedeadlinewill bereduced
accordingly. It mustalsoincorporateanalgorithmfor recomputing
the schedulefor a taskwhenever it completesa wait for I/O and
thushasshortenedits deadline.

8.3 Overlapping tasks
In future work, we should addressscheduling multiple tasksat

once. If only oneof thesetaskshasa deadline,it may be reason-
ableto consider it the “main task” andto modelall othertasksas
contributing to its work requirement. In other words, we might
consider all work donewhile the main taskis active to be part of
thattask,eventhoughsomeof thiswork is unrelated.Thisway, the
maintaskwork distributionwill automaticallytake into account all
work theCPUwill do beforethemaintaskcompletes.

If multiple taskshave deadlines,the optimal schedule depends
on the joint probability function of the two tasks’ work require-
ments,which is likely too complicatedto usein practice.We must

thereforein futurework developheuristicsfor properlyscheduling
two or moretaskssimultaneously. Note, however, that mostmo-
bile computershave limited resourcesandonly oneuser, sowefeel
they will not oftenhave two simultaneoustaskswith deadlines.

8.4 Limited setof valid speeds
Someprocessorsmay offer only a fixed, limited set of valid

speeds.Currently, wehavenoway to adjusttheoptimalformulato
takesuchlimitationsinto account. Intuitively, rounding to thenear-
estavailablespeedshouldwork reasonablywell. However, it will
not necessarily give the optimal solution. Investigatingthe effect
of differentrounding methods,andperhapsapproachesotherthan
rounding, is futurework.

8.5 Overheadof changingspeedand voltage
In thispaper, wehaveassumedthatCPUspeedandvoltagetran-

sitionsconsumeno time or energy. However, in reality, this is not
thecase.Accordingto Burd et al. [3], changing betweentwo lev-
els takestime roughly proportional to the voltagedifferentialand
energy roughly proportional to thedifferencebetweenthe squares
of thevoltages.So,if a scheduleonly increasesspeedastime pro-
gresses,thetotal transitiontimeandenergy dependonly on theini-
tial andfinal voltages,andnot on thenumberof transitions.How-
ever, theseare only approximations,and they do not completely
account for per-transitioncosts. For example,theremay be a de-
lay every time thespeedchanges in orderto stabilizetheclock and
synchronizetheCPUandbusclocks.Suchper-transitioncostsare
especiallynoticeableon modernarchitectures,sinceDVS is a rel-
atively young technology anddesigners have not spentgreateffort
to keepsuchtransitioncostslow. In futurework, we will address
theissueof how PACEshouldtake into account suchactualtransi-
tion costs.We expect that PACE will work well even underthese
conditions,especiallyfor future architecturesthat will have very
low transitiontimeandenergy.

8.6 Task type groupings
We mentionedthe desirability of grouping tasksby type, and

keeping separatesamplesfor eachtype. This way, we only usea
task’swork requirementto modelthework requirementsof similar
tasks.In futurework, we planto investigatewhatgroupings work
best,andhow effective differentgrouping methodsare.

9. CONCLUSIONS
The main focus of this paperhasbeenPACE, an approach to

reducingthe energy consumption of DVS algorithmswithout af-
fectingtheir performance.We showedthatonecanchangehow an
algorithmschedulestasksso that performancestaysthe samebut
expectedenergy consumption decreases.Furthermore,we devel-
opedanoptimalformulafor scheduling taskswith minimal energy
consumption. Although one cannot implementthis formula pre-
cisely, we describedvariousmethodsto approximateit effectively.

An importantprerequisitefor usingtheformulais estimatingthe
distribution of a task’s work requirement from recentdataon simi-
lar tasks.Wepresentedseveralmethodsthatwork well for avariety
of workloads. The bestwe found is to usean agedsampleas in-
put to anonparametrickerneldistributionestimationmethod.Esti-
matingthedistribution with a gammamodelworksalmostaswell,
andis probablyeasierandfaster. PracticallyimplementingPACE
alsoinvolveschoosing a limited number of speedtransitions.We
found heuristicsfor this that yield reasonableapproximations and
arepracticalandquick to implement.

Simulationsusing real workloadsshowed that PACE can sub-
stantially reduceCPU energy consumptionwithout affecting per-



formance. Without PACE, previously publishedalgorithmsuse
DVS to reduceCPU energy consumptionby 11–94% with an av-
erageof 54.3%. With the bestversionof PACE, the savings in-
creaseto 36–96% with an averageof 65.4%. The overall effect
is that PACE reducesthe CPU energy consumption of previously
published algorithmsby 1.4–49.5%with anaverageof 20.6%.

BesidesPACE, we madeother suggestionsfor changing DVS
algorithms. We recommended using a constantspeed,probably
the maximumCPU speedpossible,for all tasksthat have missed
theirdeadlines.Furthermore,amongthealgorithmsweconsidered,
we found that using Flat/Chan-style(i.e., using a fixed EGFIH for
all tasks)with our recommended changesgave the lowestenergy
consumptionfor a givennumberof deadlinesmade.

We thereforerecommend constructinga DVS algorithmasfol-
lows. For eachtasktype, pick a reasonable deadline(e.g.,50 ms
for interactivetasks),areasonablenumberof cyclesto alwayscom-
pleteby thedeadline(probablybetween40–60%of thenumberthat
themaximumspeedwould accomplish),andareasonable speedto
alwaysuseafter the deadlinehaspassed(probablythe maximum
CPUspeed).Whenever a taskcompletes,determinehow many cy-
cles it used,add this value to the sampleof similar tasks’ work
requirements,thenestimatethedistribution of thenext similar task
usingthenew sample.For thesample,eitheronly userecentvalues,
or weight valuesas they age. Estimatethe distribution using the
kernel densityestimationmethod,or thegammamodelif the ker-
nel densityestimationmethodis impractical.Whena taskarrives,
run it accordingto a PACE schedulethat reflectsthe probability
distribution for thattypeof task.
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