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ABSTRACT

This paperaddressealgorithmsfor dynamicallyvarying (scaling)
CPUspeedandvoltagein orderto save enegy. Suchscalingis use-
ful andeffective whenit is immaterialwhena taskcompletesas

long asit meetssomedeadline.We shov how to modify ary scal-
ing algorithmto keepperformane the samebut minimizeexpeded

enegy consumption We referto our approachas PACE (Proces-
sor Accelerationto Consere Enegy) sincethe resultingschedile

increasespeedasthetaskprogressesSincePACE depandson the

probability distribution of the task's work requiremeh we present
methoddor estimatinghis distribution andevaluae thesemethods
on a variety of realworkloads. We alsoshov how to appro¥mate
theoptimalschedulewith onethatchangs speedalimited number
of times. Using PACE causesvery little additionaloverhead.and

yields substantiafreductionsin CPU enegy consumpion. Simu-

lationsusingrealworkloads show it reduceshe CPU enegy con-

sumptionof previously publishedalgorithmsby up to 49.5%,with

anaverageof 20.6%,withoutary effect on performance.

1. INTRODUCTION

The growing popularity of mobile compuing deviceshasmade
enegy managemenimportantfor modernsystemshecawseusers
of thesedevices want long batterylifetimes. A relatively recent
enepgy-saving technologyis dynamicvoltage scaling(DVS), which
allows softwareto dynamicallyvary the voltageof the processar
Variouschip malers,including TransmetaAMD, and Intel, have
recentlyannourtedandsold processorsvith this feature.

ReducingCPU voltage can reduce CPU enegy consumpion
substantially Performancesufers, however: over the range of
allowed voltages,the highestfrequeng at which the CPU will
run correctly drops approximatelyproportiondly to the voltage
(f o« V). Sincethe main comporent of power consumption is
propationalto V2 f, andenegy percycle is power divided by fre-
guercty, enegy consumpion is proportionalto frequeny squared
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(E  f?). SoaCPUcansave substantiabnegy by runningmore
slowly; e.qg.,it canrun athalf speedandtherebyusel/4 theenegy
to run for the samenumbe of cycles.

Two factorslimit the utility of trading performane for enegy
sarings. First, a userwantsthe performancefor which he paid.
Second,other componets, such as the disk and backligh, also
consune power [12]. If they stayon longerbecawsethe CPUruns
more slowly, the overall effect canbe worse performanceandin-
creasedenegy consumption. Thus,oneshouldreducethe voltage
only whenit will notnoticealty affectperformarce.

A naturalway to expressthis goalis to assigna soft deadlineto
eachof the compuer’s tasks.(We call a deadlinesoftwhenatask
should,but doesnot have to, completeby this time.) For example,
userinterface studieshave shovn that responsdimes under50—
100msdo not affect userthink time [21]; we canthusmake 50 ms
the deadlinefor handlinga userinterfaceevent. Also, multimedia
operationsvith limited buffering, e.g. onreal-timestreamsneedto
completeprocessig a framein time equalto oneover the display
rate,andthereis no needfor ary earliercompletion. Whengoals
canbe codifiedthis way, the job of a DVS algorithmis to run the
CPUjustfastenoughto meetthe deadlinewith high probability.

Our soft deadlines key propertyis thatif the taskcompletesy
then,its actualcompletiontime doesnotmatter Thus,if werunthe
taskmoreslowly, but it still completesy its deadline performance
is thesame.Our primarygoalis to improve DVS algorithmssothat
performanceemainghe samebut enegy consumpion goesdown.

CurrentDVS algorithmsincorrectlyassumehataconstanspeed
consunes minimal enegy even whentaskwork requiremets are
unknown. But, we will shawv thatin this comma caseexpected
enegy consumption is in fact minimized by increasingspeedas
thetaskprogresss. We thereforecall our approachor improving
algorithmsPACE: ProcessoAccelerationto Consere Enegy.

We will give aformulafor aspeedschedile thatminimizesex-
pectedenegy consumption without changng performane. But,
thereare two problemswith usingthis formulain practice. First,
it depend on the probalility distribution of a task’s work require-
ment. Secondtheschedulegivesspeedasa continuots functionof
time but real CPU’s cannotchangespeedcontinuotsly.

To solwe the first problem,we mustestimatethe distribution of
taskwork from therequirement®f previous, similar tasks.We de-
scribeandcomparevariousmethodsor this andfind somegeneral
and practical methodsthat work well on a variety of real work-
loads. For the secondproblem,we presentandtestheuristicsfor
approdmatingthe schedulewith a piecavise constanbne.

Using trace-drven simulationsof realworkloads we shav that
our improvemers significantly reducethe enegy consumption
of previously publishedalgorithmswithout changingtheir perfor
mance We alsoshav thatour approachs practicalandefficient.



Note thatPACE is not a completeDVS algorithmby itself; it is
a methodfor improving suchan algorithm. For example, it does
notchangecharacteristicsf thealgorithmthataffect performance.
So, we comparecertainalgorithmsto shav which oneswork best
whenmodifiedby PACE. For reasonsve discussyve do somesuch
compaisonsempiricallyratherthananalytically

This paperis organizedasfollows. Section2 discusseselated
work, including DVS algorithmsothershave proposed Section3
presentour modelof the DVS problemandintroducesusefulter
minology. Section4 describeshow to improve algorithmswith
PACE. Section5 discussesvhatalgorithmswork bestwhenmodi-
fiedby PACE. Section6 describesheworkloadswe usefor analyz-
ing algorithms’enegy consumptionand performance Section7
presentsheseanalysesand discussesesults. Section8 suggests
possibilitiesfor futurework. Finally, section9 concluces.

Although we explain terms when we first presentthem, the
reademayfind Table 1, which summarizesheseterms,helpful.

2. RELATED WORK

Researcherbave studiedCPU schedulingor decadesOneim-
portantresultis thatif asetof taskshasfeasibledeadlinesschedul-
ing theminincreasingleadlineorderwill alwaysmale all thedead-
lines[11]. Anotherusefulresult,describecby Btazewicz etal. [2,
pp. 346-30], is that whenthe rate of consumgion of somere-
sourceis a corvex function of CPU speed,anideal schedie will
run eachtaskat a constanspeed.Yaoetal. [24] obsene thatwith
DVS, power consumpion is acorvex functionof CPUspeed They
shav how to compue anoptimalspeed-settingolicy by construct-
ing anearliest-deadline-firggichedle, andthenchoosingthe mini-
mal possiblespeedor eachtaskthatwill still make thedeadlines.

However, one canonly compue suchoptimal schedulesf the
tasks’CPU requiremets areknown in adwance,andtaskrequire-
mentsin most systemsare unpredictate randan variables;see,
e.g.,[20]. For this reasonmostresearchon schedling for DVS
hasfocusedon heuristicsfor estimatingCPUrequiremets andat-
temptingto keepCPUspeedasconstamaspossible.

Weiseret al. [23] recommendednterval-basedalgorithmsfor
DVS. Thesedivide time into fixed-lengthintervalsandseteachin-
tenal’s speedsothatmostwork is completedby theintenal’s end.
Chanetal. [4] refinedtheseideashy separatingput analgorithm’s
two parts: predction and speed-settingWhenan intenval begins,
the predictionpart predictshow busy the CPU will be during the
interval (i.e., hov muchwork therewill beto do), andthe speed-
settingpart usesthis informationto setthe speed. They measure
how busythe CPUis via the utilization, the fraction of theinterval
the CPUspend non-idle.

Several authors,including Peringet al. [17] and Grunwald et
al. [7], have shawvn that Weiseret al. and Chanet al.’s algorithms
areimpracticalbecawsethey requireknowledge of thefuture. How-
ever, they have proposel practical versionsof thesealgorithms.
Predictionmethodsthey suggestinclude:

e Past. Predictthe upcaming interval’s utilization will bethe
sameasthelastinterval’s utilization.

e Aged-a. Predictthe upcaming utilization will be the aver-
ageof all pastones.More recentonesaremorerelevant, so
weightthe kth mostrecentby o*, wherea < 1 isaconstant.

e LongShort. Predictthe upcomingutilization will bethe av-
erageof the 12 mostrecentones. Weightthe threemostre-
centof thesethreetimesmorethantheothernine.

e Flat-u. Alwayspredictthe upcoming utilization will be u,
whereu < 1 is aconstan

Speed-settingnethods they suggesinclude:

o Weiserstyle. If theutilization predictionz is high (> 70%),
increasethe speedby 20% of the maximumspeed. If the
utilization predictionis low (< 50%), decreas¢he speecby
60 — 2% of themaximumspeed.

e Peg If the utilization predictionis high (> 98%), setthe
speedto its maximum. If the utilization predictionis low
(< 93%),decreas¢he speedo its minimum positive value.

e Chan-style. Setthespeedor theupcominginterval justhigh
enoud to completethepredictedwork. In otherwords,mul-
tiply themaximumspeedby the utilizationto getthe speed.

We refer to previously publishedalgorithmsby concatenating
the namesof their method. For example,the Flat/Chan-styleal-
gorithmusesthe Flat predictionmethodandthe Chan-stylespeed-
settingmethod.

Notethatdividing timeinto intervalsandusingthoseboundaries
asdeadlineds somavhat arbitrary For example,if a taskarrives
nearthe endof anintenal, it doesnot really have to completeby
theendof thatinterval. Furthermorewithout deadlinesthereis no
particularreasorto completeary giventaskby a certaintime; it is
bestto simply measurdhe averagenumberof non-idle cyclesper
secondand run the CPU at that speed. (Transmetas LongRur™
systemdoessomethinglike this [10].) Peringet al., recognizing
this, suggestedconsideing deadlinesvhen evaluatingDVS algo-
rithms[17]. To do so, they suggestconsideing a task that com-
pletesbeforeits deadlineto effectively completeatits deadline

Grunwald et al. [7] considereddeadlineswhenthey compared
several of the algorithmsdescribedabore (aswell as othersnot
listedhere)by implementingthemon areal system.They decided
that althoughnoneof themarevery good, Past/Ry is the best: it
never missesary deadlinesfor the workloadthey consideed, yet
still savesa smallbut significantamountof enegy.

3. MODEL

In our modelof the CPU,voltagecanchang continuotsly over
somerange. Over this range,CPU speedincreasesontinuously
betweensomeminimum and maximumspeed. We assumeCPU
enepgy consunption percycle is propational to the speedsquared.

A DVSalgorithmis onethat decideshow quickly to run a task
asthattaskprogressesThis taskhassomework requirement(1V),
thenumbe of CPUcyclesit takesto complete We will sometimes
referto this simply asthetask’s work. Thetaskhassomedeadine
(D): the numberof second in which the algorithm shouldtry to
completethetask. The numberof second the taskactuallytakes,
given the algorithms CPU speedchoices,is its completiontime.
Its effectivecompletiortimeis themaximumof its completiontime
andits deadlinethisreflectsthe factthatif ataskcompletesuy its
deadlinejt mayaswell have completedatits deadline.lts delayis
thenumberof second it takesbeyond its deadlinej.e., its effective
completiontime minusits deadline. Its excessis the numbe of
cyclesit still hasleft to do afterreachingits deadline.

Whenataskarrives,analgorithmmustdecideonthe CPUspeed
to usein completingit. In general,the algorithm may chocseto
vary the CPU speedasthe task progressesfor instance,it might
chooseto use300 MHz for thefirst 10 msthen400 MHz for ary
remainingtime. Thus,thealgorithmis actuallychoosingthe speed
asafunctionof time. We call this functionthe speedscedue, and
denoteit by f: f(t) is the speed,in cycles per second that the
algorithmwill runthe CPUafterthetaskhasrun for ¢ seconds

We canthink of a speedschedle asconsistingof two parts,the
pre-dealline part and the post-dealline part. The former is the
part of f that describesvhat happas beforethe task reachests
deadling(whent < D), andthelatterdescribesvhathappensfter



Term (and abbreviation)

Definition

Work requirement work (W)

Thenumberof CPUcyclesataskrequires.

Completiontime

Thenumberof seconds tasktakesto complete.

Deadline(D)

The numberof secondsa taskhasto complete. Generally a deadlinewill be soft meaningsometasksmay misstheir deadlines.The key
propertyof a deadlineis thataslong asa taskcompletedy its deadlinejts actualcompletiontime doesnot matter

Effective completiontime

The completiontime of a task, or its deadline,whichever is greater This measureeflectsthe fact that aslong asa task completesby its
deadlinejts actualcompletiontime doesnot matter

Delay Thenumberof seconds tasktakesbeyondits deadline.

Excess Thenumberof cyclesof work ataskstill hasleft to do afterits deadlinehaspassed.

Cumulative distribution func- | A functiondescribingthe probability a taskwill requirevariousamountsof work. F'(w) is the probability thatthe taskwill requireno more
tion (CDFor F) thanw cycles.

Tail distributionfunction(¥¢) | Oneminusthecumulatie distribution function. F(w) is the probability thatthetaskwill requiremorethanw cycles.

Megag/cle (Mc) 1,000,000CPUcycles.

Speedscheduld f or s)

A functionthatdescribedhiow CPUspeedwill varyasataskruns. f () is thespeedafterthetaskhasrunfor ¢t secondss(w) is thespeedafter
thetaskhascompletedw cyclesof work.

Transitionpoint

A pointatwhich a practicalspeedschedulehangedrom onespeedo another

Pre-deadlineycles(PDC)

The numberof cyclesthe CPU cancompleteby the deadlineaccordingto somespeedschedule For example,if the speedschedulecallsfor
the speedo alwaysbe 300 MHz, andthe deadlineis 50 ms,thenPDC = 15 Mc. Note: evenif the taskonly requires8 Mc of work, PDC is
still 15Mc, sincethescheduleouldhavecompletedl5 Mc by thedeadline.

Performanceequvalent Guaranteedb yield the sameeffective completiontime, no matterwhatthetask’s work requirement.
Parametricnethod A way to estimatea probability distribution from a sampleby assuminghe distribution belongsto somefamily of distributions(e.g.,normal)
andestimatingthe parametersf thatdistribution (e.g.,themean).
Nonparametrienethod A way to estimatea probability distribution from a samplewithout assumingary distribution type. It thusletsthe data“speakfor themseles”
Kerneldensityestimation A nonparametrienethodthatbuilds up a probability distribution by addinguplittle distributions,eachcenteredn oneof the samplepoints.
Bandwidth(h) Thewidth of eachlittle distributionin kerneldensityestimation.
Table 1: Terms usedin this paper, along with their abbreviations and definitions
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Figure 1: This graph shaws two performance equivalent speed
scheduleswith deadline 50 ms. Their pre-deadlne cyclesare
equal (15 Mc) and their post-deadlineparts are identical.

thetaskmissedts deadine (whent > D). A speedscheduléhasa
certainnumberof pre-dealline cycles(PDC), thenumberof cycles
it canperformbeforethe deadline NotethatPDC = fOD f(t)dt.

We saythattwo speedschedilesareperformancesquivaler if,
no matterwhat a task’s work requiremen it will have the same
effective completiontime underboth schedules.We call two al-
gorithmsperformancesquivalentif they alwayshave performane
equivalent speedschedulesWe male the following importantob-
senation: If two speed schedules have equal pre-deadline cy-
cles and identical post-deadline parts, then they are performance
equivalent. Figurel illustratestwo suchschedules.

The above observationis true for the following reasons.First,
if a task’s work is no greaterthanthe PDC the schedulesshare,
then both schedulescompletethe task by the deadline,and both
yield aneffective completiontime of D. Secondijf ataskswork is
greaterthanthe PDC, thenboth scheduledeave the taskthe same
excessto do afterthe deadline:W — PDC. Sincethe schedles
have identical post-deatine parts,andboth have the sameexcess
to doin thatpart,bothwill completethetaskatthe sametime.

Thisis thekey to the PACE approzh. PACE modifiesalgorithms
without changng their pre-deadlinecycles or their post-deatine
parts,soit keegs performancehe same.However, by stratgically
choasing the speedschedlile for the pre-deatine part,it canmalke
theexpededenegy consumptiodowerthantheoriginal algorithm.

It is oftenusefulto conside the speedschedle to be afunction
of work completednsteadof afunctionof time. So,we will some-
times describethe schedie with a function s, wheres(w) is the

4.1 Theoretical optimal formula

In this sectionwe presentaformulafor theoptimal(enegy min-
imizing) speedschedlile thatis performarte equivalentto thatof a
previoudy known algorithm.

As previously noted whenweknow thetask’swork requirement,
the optimal algorithmusesa constantspeed.Whenwe know only
the distribution of this work, however, the optimalschedile usesa
variablespeed.An intuitive explanationis thatif the taskwork is
unknown, it may be high or low. It is bestto run slowly atfirst, be-
causehetaskmayrequirelittle work andthusendbeforewe must
increasethe speedandthusthe power consumpion. For example,
suppaeataskwith a deadine of 50 msneedss megagy/cles(Mc)
75% of thetime and 10 Mc 25% of thetime. Supposdurtherthat
CPU power is 50 nW - z> whenthe speedis z MHz. Theideal
constantspeeds 200 MHz, the slowvestthatwill alwaysmeetthe
deadlinethisconsumesl12.5mJonaveragée. An alternateyariable
speedschedulds 163 MHz for thefirst 30.675ms, then259 MHz
for ary remainingtime; this consunes 10.84 mJ on averagée an
enepgy savingsof 13.3%.

Wethusseethattheoptimalspeedschedulelepenisontheprob-
ability distribution of the task’s work requiremen We denotethe
cumulatve distribution function (CDF) of this work by F: F(w)
is the probability the taskrequiresno morethanw cyclesof work.
Thetail distribution functionis denotedf*: F°(w) =1 — F(w).

We are trying to minimize the expectedenegy consumption
of the pre-deadlinepart of the algorithm® subjectto the con-

L (25ms)(200)3 (50nW) + (25%)(25ms) (200)3 (50nW) = 12.5md.
2(30.675ms) (163) 3 (50nW) + (25%)(19.325ms)(259)%(50nW) = 10.84mJ.

The expectedenegy consumptioris k [P F°(w)[s(w)]? dw, wherek is the
constaniof proportionalitybetweenenegy andspeedsquaredby the following rea-
soning. Considerthe dw cyclesof work after the first w; if dw is small, the speed
over this period is approximatelyconstantat s(w). The enegy consumptionper
cycle is k[s(w)]?, andthe numberof cyclesis dw, so the enegy consumptionis
k[s(w)]? dw. Theprobabilitythatthis work actuallyever getsdoneis F(w).



straintthat the pre-deadlinecycles mustbe the sameasthe PDC
of the original algorithm. In otherwords, we want to minimize

o ¢ F°(w)[s(w)]? dw subjectto the constraintfy ° L~ dw =
D. Algebraically thisis equivalert to minimizing

PDC s
L (e sw) )

subjectto

PDC
[ ()™ stw) - 1) dw = .

In other words, we are given the weighted sum of the values
[Fe(w)]~*/3/s(w) and we want to minimize the weightedsum
of their-2nd powers. By Jensers inequality sincethe-2nd power
functionis concae up, this minimizationoccurswhenall the val-
uesarethe same. In otherwords, we want [F°(w)] ™3 /s(w) to
be as constantas possible. We achieve this by making s(w) be
the valid speedclosestto C[F°(w)]~'/3, where C' is a constant
chosento satisfythe deadlineconstraint.For a full proof thatthis
works,see[14]. SinceF*°(w) decreaseasw increasesthis sched-
ule speedaip the CPUasthetaskprogressesasnotedearlier
Given ary schedulingalgorithm, it is worthwhile to replaceits
pre-deatine partwith this optimalformula. In thisway, we reduce

the expectedenegy consumption without affecting performance.

We call thisthe PACE approach

4.2 Piecewise-constanspeedschedues

The optimal schedulds a continuousfunction,whichis imprac-
tical to implementpreciselysincesoftware mustissuea command
eachtime it wantsto chang the speed. In practice,we want a
schedle with a limited numberof transition points pointswhere
the speedmay change We specifytransitionpointsby valuesof w
wheres(w) changes,not pointsin time where f(¢) changes.The
latteris morenatural but theformermakesoptimizationeasier

Givenfixedtransitionpoints,we canconstructa speedschedile
that minimizesexpectedenegy consumpion, asfollows. In the
interval betweenary two transitionpoints,we usethe valid speed
closesto C(Fgq) ™'/, whereFg, is theaveragevalueof F*© over
thatinterval. As before,C is constanver theentireschedile; we
chocsea valuefor it thatmeetsthe deadlineconstraint. The ratio-
naleis similar to that for the continuaus optimal speedschedule;
for afull proofthatthis works, see[14].

We also needto choosea “good” sequege of N transition
points. We want the optimal scheduleto vary little betweenary
two consective transitionpoints, so that keepingthe speedcon-
stantbetweerthosepointsapproximateshe optimalschedile. We
proceedasfollows. For eachinteger j, defineq; = 1 — ¢~ for
someconstanic. Then, F° atthe g;th quartile of F' equalse™%.
If we usethesequantilesas transitionpoints, then [F* (w)] /2,
andthusthe optimal speednever variesby morethana factorof ¢
betweenrary two conseutive transitionpoints.

A problemwith this is thatasthe sequencegg; } increasesthe
g; valuesget closetogether and this may resultin an excessve
numker of speedchanges Thus, we terminatethis sequene near
g; = 0.95 and pick further valuesof ¢; so that they uniformly
partition the remainingrange. More precisely we pick some J
nearN andsome(@ near0.95. (We will addresdaterwhatactual
valueswork well.) We setqg; = @, thencomputec by solvingthe
equation) = 1—¢~37. Foreachl < j < J,wesetg; = 1—¢~¥;
for eachj > J, wesetg; = Q + (j — J)225-2.

To implementa piecavise-corstant speedschedle, software
must interrupt the task at predeterminedntenals to chang the
CPU speed. A CPU cycle courter or clock timer could generate

suchinterrupts.Alternately software could usesoft timers,anop-

erating systemfacility suggestedy Aron et al. [1] that lets one
schedle eventsfor the next time one can be performedcheayy,

suchaswhena systemcall begins or a hardwareinterruptoccurs.
This could only work if theseeventsoccursuficiently frequently

A betterway to implementspeedschedulesvould beto implement
themin hardware. For instance the CPU could acceptcommand

not just to changespeedmmediatelybut alsoto establisha speed
schedle for the next few milliseconds.Alternately the CPUitself

could implementthe DVS algorithm, so software would not have

to spencdtime communicatingschedie informationto hardware.

4.3 Sampling methods

To implementPACE, we mustestimatethe probability distribu-
tion of thecurrenttaskswork requirementlt is rareto have thisin-
formationa priori; usually we mustestimatethe distribution from
asampleof work requirement®f similarrecentasks.We consicer
thefollowing samplingmethods.

e Future. Useasthesampleheentiresetof tasksin thework-
load,includingfutureones.Naturally, thismethodis imprac-
tical, asit usesfutureinformation.

e All. Useasthesampleall pasttasks.

e Recent%. Useasthesamplethe & mostrecenttasks.

e LongShort-k. Use asthe samplethe k£ mostrecenttasks,
with themostrecentk /4 of themweightedthreetimesmore
thanthe others.This methodis inspiredby Chanetal. [4].

e Aged-a. Useasthe sampleall pasttasks,with the kth most
recenthaving weighta®, wherea < 1 is someconstant.

Eachof thesemethodsproduesa weightedsamplethatwe use
to estimatethe distribution. (Thefirst threemethodsgproducesam-
plesin whichall weightsarel.) We dendethevaluesin thissample
by X1, Xs,..., Xy, anddende their weightsby w1, ws, ..., wn.
Definew = -7, w;. Then,thesamplemeanandvarianceare

N .2 n 1« 2 a2
HZJZ;MXi and & :<n—1> [Z;MX;'—M .

Fortunately all we needto computethesetwo numbersaren, w,
the weightedsum, and the weightedsum of squares.For eachof
our samplingmethod, thereexists a simple algorithm to update
thesefour quantities,and thus the samplemeanand variance,in
O(1) time whenerer anew samplevaluearrives.

If taskscanbe classifiedinto typesin sucha way that tasksof
the sametype have similar work requiremets, thenwe cankeep
separatesampledor eachtype. Whenataskarrives,we canbetter
estimateits distribution by using only the sampleof tasksof the
sametype. Oneway to classifytasksinto typesis by whatapplica-
tion they belongto andby whatuserinterfaceeventtriggeredthem.
For instancewe cankeeponesampleof Microsoft Word taskstrig-
geredby letterkeypressesanothersampleof Microsoft Exceltasks
triggeredby releasingheleft mousebutton, etc.

4.4 Distrib ution estimation methods

The next stepin implementingPACE is to derive the taskwork
distribution from a sample. We may expressthis distribution asa
CDFor asasetof quantiles.Therearetwo geneal waysto estimate
adistribution from a sample:parametricandnonparametric.Para-
metricmethodsassumehedistribution belonggo agivenfamily of
distributions(e.g.,normaldistributions)andestimateshe parame-
tersthatfully specifya memberof thatfamily (e.g.,the meanand
standarddeviation of a normaldistribution). Nonparanetric meth-
odsmale no suchassumptionletting the sample‘speakfor itself”
in describingthe entiredistribution.




Note that the criterion for the desirability of an estimation
methodis not the goodressof fit, but ratherthe extent to which
the useof thatmethodleadsto lower enegy consumption. In par
ticular, taskrun timesarewell known to be highly skewed, but we
are more interestedn modelingthe portion of the taskrun time
prior to thedeadlinethanthe portion afterit.

Gamma. Thefirst methodwe considelis the parametrianethod
assuminga gammadistribution. This distribution is commorty
usedto model servicetimes[8, p. 490], andwe will shov later
thatit workswell. Thegammadistribution hasrangez > 0. It has
two parametersthe shapex andthe scaleB. The probabllity den-
sity functionis p(z) = z*~*e~*/# / 3°T'(a). Reasonale estima-
torsfor themodelparametersrea = ji*/62 andf = %/ [8].
Maximum lik elihoodestimatorslsoexist, but we do not usethem,
since(a) we cannotcompute them preciselyor easily and (b) we

have foundthatthey generallydo notwork aswell for our purposes.

We can apprximate quantiles of the gamma distribution
using the Wilson-Hilferty approxmation, describedby John-
son and Kotz [9, p. 176]. It estimatesa quantile using

3
af (;\J/‘% +1-— i) whereU, is therelevart quartile of thenor-
mal distribution. Whenneededwe cancomputeCDF valuesusing
methodsin [18], but we avoid thosemethodswhenpossiblesince

they arecompuationally expensve.

Normal. The secondmethodwe consideris the parametric
methodassuminganormaldistribution. Thisassumptiomayseem
unwarrarted, especiallysincework cannd be negative but the nor
mal distribution can. However, for our limited purposs, the nor-
mal distribution may be a reasonale approxmation, sincenormal
distributions are shapedsimilarly to gammadistributionsin some
casesandarefar easierto model. The normaldistribution hasonly
two parametersthe meany andthe standarddeviation o, whose
unbiasel estimatorsare ; andé. (The maximumlikelihood esti-
matorfor & leavesoutthen/(n — 1), but we have found it does
slightly worsefor our purposes.) Furthermore sincethe normal
distribution N (u, o) is a simple linear transformationof the unit
normaldistribution N (0, 1), onecaneasilycompue quartiles and
CDF valuesusinglookuptables.

Pareto. A methodwe consideed andrejectedis the parametric
methodassuminga Paretodistribution. Thismodelis appealing be-
causdt is heary-tailedandotherresearcherbave foundtasktimes
to be heary-tailed (highly skewed); see,e.g.,[20]. However, we
foundthis modelto fit our distributionsvery poorly, sowe consider
it nofurtherin this paper In ary event,modding tails accuratelyis
not a high priority, sincethetail of the distribution only affectsthe
speedusednearor afterthe deadine, andmosttaskswill complete
beforethen.

Kernel density estimation. The nonparametric method we
conside is kernel density estimation, a popular nonparametric
method[22]. This methodbuilds up a distribution by addingup
several little distributions, each centeredon one of the sample
points. The kernelfunction K, determineghe shapeof theselit-
tle distributions. The bandwidth h, determineghe width of each
little distribution. The resultis to estimatethe probability den-
sity function (PDP) atz to be p(z) = L 37 @i K (2=X).
Silverman[22, pp. 42-43 points out that mostkernelsperform
compaably, so one shouldchoosea kernelbasedprimarily on its
easeof implementationWe have thuschoserthetriangularkernel:
K(t) = max{1—|¢t|, 0}, whichis simplerto implementthanmost.

We can computethe theoreticaloptimal bandwidth from p”,
the second dervative of the true probablity density using

(f 2K () dt) "% ([ K(t)? dt)® ([p" ()2 dz) Fn%.  For
the triangularkernel, [ *K(t) dt = ¢ and [ K(t)* dt = 2.
However, [p"(z)® dz is impossibleto computesince the true
probablity densityis obviously unknown. Fortunately our esti-
mateof it doesnot have to be exact,sinceit will only influencethe
degreeof smoothingin thedistribution. Assuminga normaldistri-
bution with parameterg andé makesthe estimates%&‘? As-
suminga gammadistribution makes the estimationfar morecom-
plex, andwe have found this comple&ity notto beworthwhile.

Notethattherangeof thekernd densityestimatemayextendbe-
low 0. We usereflection[22, pp. 29-31]to avoid this. Thismethod
addsto the samplethe setof values{—X;}, eachweightedws,
makingthe samplesize2n. It thencomputeghe probability den-
sityﬁadj(:c) usingthis adjustedsample andsetsp(z) = 213adj(:c)
forz > 0, p(x) = 0 otherwise.

5. CHOOSING A BASE ALGORITHM

WhenPACE modifiesanalgorithm, it leavestwo aspectof that
basealgorithmintact: what PDC it usesfor eachtask,andwhat
post-deatine schedle it usesfor eachtask. Thus, differentbase
algorithmswill still have differentperformancesvenafterbothare
improved with PACE. In this section,we discusshow to choose
amongbasealgorithms.

5.1 Choosinga post-deadine part

First we considerwhat the base algorithm for post-deatine
schedling shouldbe. To comparesuchalgorithms,we needa
performancemetric that takesinto accountthe users “impatience
function”, i.e., how undesirable he finds missingthe deadlineby
variousamounts We chocseto usePeringetal.’s suggestedhetric,
the clippeddelay, which is the sumof all tasks’effective comple-
tion times[17]. Our goalis to find analgorithmthatconsume the
leastpossibleenegy for agivenclippeddelay

Let TotalExcess be the total excess(the amountof task work
left afterthe deadline)of all tasksin the workload Note thatthe
pre-deadlingartdetermineghis; we cannotchangeit in the post-
deadlinepart. A clipped delay value correspads to sometotal
amountof delayT pastall deadlinessoto achieve agivenclipped
delayall we mustdois performthetotal excessin somegiventime
T. The minimal-enegy solutionto this single constraintis to use
the constantspeedTotalExcess/T'. Anotherway to look at this is
thatif we usea fixed, constantspeedafterthe deadline we assure
thatthe enegy consunption we achiere is the minimum possible
for the clipped delaywe achieve. Therefore ,we propcse picking
a fixed speedto usefor all post-deadlingarts. Many previously
publishedalgorithmsalreadydo this, either becausethey always
usea fixed speedor becausehey increasespeedasaveragerecent
utilizationincreaseandthusachieze the maximumCPU speecdby
thetime ataskreachests deadine.

We mustnow determinewhatfixed speedto useafterthe dead-
line. Usually, othercompaentslik e the backlightwill be running
andconsumingpower, anddelay pastthe deadlinecancausethese
comporentsto consumemoreenegy. Usinga CPU frequeny f
makesCPU enegy consunption propational to 2 but makesen-
ergy consumption of thoseothercompamentspropational to 1/ f
asthey may stayon longer We thereforechooseto alwaysusethe
maximum speedonce a task missesits deadline,as mary previ-
ously publishedalgorithmsgenerallydo anyway. This minimizes
delay generallyat someenegy cost, but not necessarilyat sub-
stantialenegy costconsiceringthatothercomporents’power con-
sumptionwould mitigatethe effect of lower speeds.

Anotherapprachis to chocseatamgetaveragedelay predictthe



averageexcessandusetheratio of theseasthespeed However, we
have foundthisto beimpractical sincetwo factorsmake predicting
averageexcessdifficult. First, excessis nonzeroonly rarely, since
mosttasksmeettheir deadlines Therefore samplesof excesswill
tendto besmalluntil mary taskshave occurred andeventhenmost
samplevalueswill be quite old. Secondthe distribution of excess
depemisstronglyon thetail of thetaskwork distribution, andsuch
tails tendto be hardto model.

5.2 Choosingprbc for eachtask

We have shavn how to improve a DVS algorithmby changing
its pre-deadlineand post-deatine parts. Thus, the only remain-
ing influencethe baseDVS algorithmhason the final schedules
its choiceof pre-deadlinecycles(PDC). We now consicer how to
choase PDC for eachtaskin orderto minimize enegy consunp-
tion for a given fraction of deadlinesmade. This constraintis in-
terestingbecaus it is only one constrainton all tasksratherthan
oneconstrainipertask. Thatis, we needto meeta givenfractionof
all deadlinesbut notnecessdly meeteachdeadlinewith thesame
probalility. Thus,evenif the taskwork distribution were known
and stationary the optimal solution might not be to usethe same
PDC for all tasks.(This is a propertyof the Flat/Chan-stylealgo-
rithm, which usesa fixed speedandthushasthe samePDC for all
tasks:the speedimesthedeadline.)

Unfortunately we cannd solve this optimization problem for
two reasons First, the complex depemlenceof the speedsched-
ule onthe PDC we choosemalkeschoosinganoptimal setof PDC
valuesintractable. Secondeven if therewere an analyticalsolu-
tion, it would dependon all of the work distributions. Therefore,
we would needa modelof the distribution of distributions,andwe
know noreasonablevay to modelthis.

Dependig on the distribution of distributions, different ap-
proactesto choasing PDC will work betteror worsethanothers.
Thereforewe mustrely on empiricalratherthananalyticmethods
to decidewhich algorithmswork bestwhenmodifiedby PACE.We
presensuchresultsin §7.7.

OneinterestingdistinctionbetweerbaseDVS algorithmsis that
for some,suchasLongShort/Chan-styldRDC is depen@nton the
currenttaskwork distribution, while for others suchasFlat/Chan-
style, it is not. (LongShort/Chan-styleisesa speedpropational
to recentutilization, soits PDC is higherwhenrecenttaskshave
beenlong; Flat/Chan-styléhasa constantPDC for all tasks.) The
former type will tendto missthe deadlinesof taskswhosework
requiremets arelocal maxima,so we call theselocal algorithms.
The lattertype will tendto missthe deadlinesof the longesttasks
in thewholeworkload sowe call themglobal. Whenthe distribu-
tion is nonstationsy, asis usual,local approachswill tendto miss
adifferentsetof tasks’deadlinegshanglobal ones.We cannd an-
alytically determinewhetherlocal approackes have lower enegy
consunption for a given fraction of deadlinesmadethan global
ones,or even whetherone local approachis betterthan another
Thereforewe rely on empiricaldatato comparethem.

6. WORKLOADS

We evaluatethesealgorithmsusing six workloads. We derived
mostworkloads from tracesof usersperformingtheir normalbusi-
nesson desktopmachinesunningWindows NT or Windows 2000.
VTrace, a tracerdescribedin [13], generatedhesetraces. The
tracescontain timestampedrecordsdescribingevents related to
processs, threadsmessagedjisk operationsnetwork operations,
the keyboard, and the mouse. We dedu@® whatwork is donedue
to a userinterface event as follows: we assumethat a threadis
working on suchan event from the time it receves the message

describingthat event until the time it either performsa wait for a
new eventor requestandrecevesamessagelescribinga different
event. Furthermorejf the threadsendsa messager signalto an-
otherthreadwhile working on suchanevent,we assumehatwork
donedueto thatmessager signalis donedueto theoriginal event.

To reducethe amoun of dataVTracecollects,it only collects
thefull setof eventsit canfor sessiongasting90 minutesatatime,
afterwhich it pausedor two hours.In our analysesere,ary trace
longerthan90 minutesonly representthe 40%of thetime VTrace
actuallytracedits full setof events.

We defineeachworkloadby a classof events,suchasletterkey-
pressesn Microsoft Word. The workload consistsof the set of
taskstriggeredby all suchevents.In otherwords,eachtaskof each
workloadis roughly of the sametype; by separatinglifferenttask
typesinto differentworkloads we modelthe effect of keepingsep-
aratesampledfor differenttasktypes,asdescribedn section4.3.
A full machineworkloadwould consistof mary of thesekinds of
workloads, interleaved. Sinceour appro@h operatesndepemently
on eachdifferenttasktype,we cancorrectlysimulateit by consid-
eringeachtasktypein isolation.

We discardary taskthat blocked on ary 1/0O, e.g.,to a disk or
network device. We do this becausavhenataskblocksfor 1/O, it
shouldusea differentalgorithmthattakes /O time into account,
andsuchalgorithmsarebeyond thescopeof this paper Section8.2
discusseshis avenuefor future work. Furthermore)/O generally
occursin only a small fraction of the tasks,so leaving them out
shouldnot significantlyinfluencetheresults.

For our simulationswe assuméheminimumspeeds 100MHz,
the maximumspeedis 500 MHz, and the peak CPU power con-
sumptionis 3 W. Most currently shippingmachinesarefaster but
500 MHz is representatk of thetracedmachines.

6.1 Word processottyping

Oneof themostcommonactiities for laptopuserss typingin a
word processqg andMicrosoftWordis themostcommonword pro-
cessor Thereforeour first workload usessimple letter keystrokes
in Microsoft Word asits classof events.We derived this workload
from 3.4 monthsof tracesVTracecollectedon a 450 MHz Pen-
tium Ill compuer with 128 MB of memoryrunningWindows NT
4.0. Thefirstauthor acompuer sciencegraduatestudentusedthis
computer Thisworkloadis interactive, sowe usea 50 msdeadine
for eachtask.

6.2 Groupware

Softwarethatenablesandenharescommunicgion with others,
i.e., groupware, is importanton the desktop,andwill be moreim-
portantin portablecomputersasthey becomemoreconneted. So
we includeaworkload usinga commongroupware product,Nov-
ell's GroupWse. This workload usesleft mousebuttonreleasess
its classof events. We derived this workload from 6.5 monthsof
tracesVTracecollectedon a 350 MHz Pentiumll computerwith
64 MB of memoryrunning Windows NT 4.0. A crime labora-
tory directorin the Michigan StatePoliceusedthis compuer. This
workloadis interactive, sowe usea 50 msdeadlinefor eachtask.

6.3 Spreadsheet

Spreadsheetare also commonon portablecomputers,so our
next workload usesa commonspreadsbetapplication,Microsoft
Excel. The workload usesrelease®f the left mousebutton asits
classof events. We derived this workloadfrom 3 monthsof traces
VTracecollectedon a500MHz Pentiumlll computewith 96 MB
of memoryrunningWindows NT 4.0. Thechieftechnicalofficer of
a compuing-relatedcompaly usedthis computer This workload



[ Title Description Frames |
Genoa Demoof Genoaproducts 2,592
Jet Flying in varyingterrain 1,085
Earth RotatingEarthmodel 720
Reds Nightmare Bicycle’s nightmare 1,210
DinneGitter lllustrationsof integration 2,753
IICM Flying in Mandelbrotset 810
Gromit Gromitwakes up 331

Table 2: Animations usedin the MPEG workloads

is interactve, sowe usea 50 msdeadlinefor eachtask.

6.4 Videoplayback

Multimedia applications are becomirg more common on
portablecomputerg6]. Therefore,we include a movie playeras
oneof our workloads.We usethe MPEG playerincludedwith the
Berkeley MPEG Tools developedby the Berkeley Multimedia Re-
searchCenter(BMRC) [16]. Sincethey provide full sourcecode
for their tool, we were easilyableto instrumentit to measureand
outpu the CPU time taken for eachframe. Thus,eachtaskof the
workloadrepresets the processingf oneframe.

We obtainedanimationgo usefrom thesameBMRC FTPsiteas
the MPEGdecockr. Table2 givesnamesanddescriptiongor these
videos. One workload, which we call MPEG-One,consistsonly
of the Red’s Nightmareanimation. The otherworkload,which we
call MPEG-Mary, consistof all sevenvideoclips, oneplayedafter
the other We madethe measurementsf CPUtime ona 450 MHz
Pentiumlll compuer with 128 MB of memoryrunning RedHat
Linux 6.1. Assuminga typical rate of 25 framesper second we
assigna deadlineof 40 msto eachframe.

6.5 Low-level workload

Somesystemdesignersnay wantto implementa schedling al-
gorithm without instrumentingthe operatingsystem,relying only
oninformationhardwarecanobsere. Oneof ourworkloadsrepre-
sentssucha scenario.

We derive this workloadfrom VTracetracesasfollows. A task
begins whenthe keyboarddevice generates keypres signal,and
endsthe next time eitherthe CPUbecomesdle or thereis another
keypress.To determinewhenthe CPUis idle, we usethetime that
the idle threadis running. (In battery-pavered systemsthe idle
threadtypically haltsthe CPU, so hardware candeducewhenthis
threadis running.) If a disk operationis ongang whenthe CPU
goesidle, we throw out ary keypressbeing worked on, for two
reasons.First, we cannd know if the I/O is part of this task, so
we cannd know whetherthetaskis over or simply waiting for 1/0.
Second,as statedbefore,we are ignoring tasksthat perform1/0
sincewe areonly consideringalgorithmsfor taskswith no I/O.

Theworkloadcomesfrom atraceof one90-minutesessioncho-
senbecausét hadmary keystrokeswith reasonablyhigh average
processig time. VTracecollectedthis traceon a 400 MHz Pen-
tium Il computerwith 128 MB of memoryrunningWindows NT
4.0. A Michigan StatePolice captainusedthis compuer primar
ily for groupware and office suite applications. This workload is
interactive, sowe usea 50 msdeadlinefor eachtask.

7. RESULTS

7.1 Modeling task work distrib utions
In this sectionwe determinehow bestto practicallyestimatehe
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Figure 2: A comparison of the effect of various sample sizes
k on energy consumptionwhen PACE usesthe Recent% sam-
pling method
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Figure 3: A comparison of the effect of various sample sizes
k on enemgy consumption when PACE usesthe LongShort-k
sampling method

probablity distribution of tasks’work requiremets. We want to

know which methodsare generalenowgh to work well for a vari-
ety of workloads,so we evaluatethemall using simulationswith

our six differentworkloads. To determinehow effective a method
is at describingthe distribution of tasks’work requirementswe
usea pragmaticapproachwe usethe methodto implementPACE
andsimulatehov muchenegy consumption results. We consider
amethodbetterif it produeslower pre-deadlineenegy consump
tion. No othermetricis relevant, sincePACE by definitioncannd

chang performarce.

Throughaut this section, for our simulations,we assumethe
PDC is fixed at the value that ensuresat least98% of tasksthat
canmake their deadlinesdo so. (For the Low-Level workload we
use99%,becase98% of thetasksaresoshortthatwe canachiese
their deadlineswith justthe minimumspeed.)

7.2 Which samplingmethodto use

We now comparethe samplingmethodsto determinethe best
onesto usewith PACE. For thesecomparisos, we assumehatwe
estimatedistributionsusingkerneldensityestimation.

First,we considemwhatsamplesizeto usefor thesamplingmeth-
odsthatuseonly recentdata,Recentk andLongShortk. Figures2
and3 shav the outcomeof usingdifferentsamplesizesfor differ-
entworkloads. It is difficult to pick anideal samplesize,because
someworkloads do bestwith high samplesizes,while othersdo
bestwith low samplesizes. Presumablythe onesthat do better
with high samplesizesarethe oneswith more stationarydistribu-
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tions, i.e., the oneswhosedistributionschangethe leastwith time.
Sincehighersamplesizesrequiremorememoryand,for somedis-
tribution estimationmethods,more processingime, we feel that
a reasonablecompromiseis a samplesize of 28. For all work-
loadsexceptExcel, this samplesize producesnegy consumpion
within 0.8%of theidealfor Recentk andwithin 1.6%of theideal
for LongShortk. Excel, presumablybecaus it is very stationary
cantake advantag of highersamplesizes,but thesesamplesizes
prodwce worseresultsin mostof the other lessstationarywork-
loads.

We now considemwhatagingfactora to usefor the Ageda sam-
pling method. Figure 4 shavs the outcomeof usingdifferentag-
ing factorsfor differentworkloads.Justaswith samplesizes,some
workloads do bestwith high agingfactorswhile othersdo bestwith
low agingfactors.Not surprisingly theworkloadsthatdo bestwith
high agingfactorsarethe sameonesthatdo bestwith high sample
sizes. This is expected,becaus a high aging factor makes sam-
ple valuesage more slowly, so that PACE effectively usesmore
old values.Basedon the grapts, we feel areasonale agingfactor
is 0.95. With this value,eachworkload besidesExcel hasenegy
within 1.3%of whatit would beusingthe bestagingfactorfor that
workload andExcelhasenepgy within 2.8%of the bestpossible.

Next, we determinewhich samplingmethodworks best. Fig-
ure 5 compaesthe Future,Recent-28 LongShort-28 and Aged-
0.95 samplingmethodsfor the six workloads. We do not evalu-
atethe All samplingmethod,sinceit is equivalert to Recentec,
and we have alreadyshavn that the Recentmethodworks quite
badly for someworkloadswith large samplesizes. The first thing
we obsene is that the Futuremethodsometimesuseslessenegy
thanthe othermethod, but sometimesisesmuchmore. This in-
dicatesthatevenif completeinformationaboutthefull distribution
of taskwork is available,it is oftenbetterto userecentinformation
to predictthe distribution of the next taskwork. Presumablythis
is becausehesedistributionsarenonstatiomry, sorecentinforma-
tion is a betterpredictorthanglobalinformation. The next thing to
obsenre is that the remainingthreemethodshave virtually identi-
calenepgy consunption. In geneal, Recent-2&onsunesthemost,
LongShort-2&henext most,andAged-0.95theleast;however, the
differencebetweerary two is never morethan2.2%. We concluce
thatAged-0.95generallyproduce the bestresults but othermeth-
odswork reasonaly andmaybe goodchoicesif they areeasierto
implement.

7.3 Which distrib ution estimator to use
Thekerneldensityestimatiormethodcanmodelary kind of dis-
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Figure5: A comparisonof the effectof various PACE sampling
methodson energy consumption

tribution, but it is complex to implement. So, we now investigate
how effectively we canmodeltaskwork distribution with simpler
parametrianodels the normalandthe gammadistribution.

To testwhethera modeltruly fits a setof data,one canusethat
modelto estimatethe CDF at eachdatapoint, andtestwhetherthe
setof CDF’sis distributeduniformly over the interval (0, 1). For
this uniformity test, Raynerand Best[19] recommed Neyman's
U2 test. Applying thistestto ary of ourworkloads,usingary of our
samplingmethodsthe testrevealsan extremely small probability
thatthe datafit eitherthenormalor gammamodel. Fortunatelythe
key issueis not the accurag with which we canapproximatethe
distribution of thetaskwork. Thekey issueis the extentto which
a statisticallyunaccetable model of this distribution prodwcesa
subopimal solutionto theenegy minimizationproblem.

Therefore the moreimportantquestionto askis how effectively
PACE canuseeachmodel (kerneldensity normal, or gamma)to
approdmate the optimal schedule. We thus simulateusing each
modelalongwith the Aged-0.95samplingmethodfor eachwork-
load. We usethe samePDC valuesthat we did in the last sec-
tion. Figure 6 shaws the resultsof thesesimulations. For almost
all workloads, the kernd densitymodelis best, followed by the
gammamodel, followed by the normalmodel. In all casesthe
gammamodelconsunesno morethan2.3% moreenegy thanthe
kernel densitymodel. We concluc that, all things being equal,
oneshouldusethe kerneldensityestimationmethod. However, if
this methodis too complex to implement,the gammamodel can
achieve reasonaly closeresults.

7.4 Choosingtransition points

In section4.2,we discussedhov PACE canapproximateheop-
timal, continuows schedle usinga piecavise-constanscheduleln
this section we determineempirically the bestwaysto choos the
speedransitionpointsfor the schedle.

Figure 7 shavs the effect of using different numbersof tran-
sitions. We seethat the principle of diminishing returnsapplies;
increasingthe numberof transitionsbecomedessandlessworth-
while asthe numberof transitionsincreasesUsing 10 transitions
yields enegy consumption always within 1.2% of the minimum.
Using 20 transitionsreduceghe maximumpenaltyto 0.27%,and
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using30 transitionsreducest to 0.1%. All theresultsin this paper
usea maximumnumberof transitionsof 30. However, evenif a
practicalimplementationrequiresno more than 10 transitionsbhe
usedfor eachtask,this shouldnot be a problemfor PACE; sucha
practicalconsideratiorwould increaseenegy consumption by no
morethan1.2%.

We alsodiscussedow to choo® N transitionpoints. Thefirst
stepis to chocsesomeJ nearN andsome(@ near0.95. Simula-
tions shawv thatenegy consunptionis generallyinsensitve to the
choicesof J and@. As long asonepicksreasonaly, i.e.,aslong
as(@ is somavherebetween0.85and0.99andaslongasN — J
is betweer3 and9, the differencebetweenthe bestandworstout-
comesfor ary workload is alwayslessthan0.6%. For this paper
we alwaysuseJ = N — 3 and@ = 0.95.

7.5 Effect of approximations

To evaluatethe effect of our approximatiois to the theoretically
optimal formula for PACE, we mustknow what that optimal for-
mulais. For real workloads,this is impossible,sincewe cannot
know the underlying distribution of eachtasks work. (We can
know the overall distribution of taskwork, but asworkloads can
be nonstatiomry we cannotknow the distribution for ary given
task.) Thus,in this section,we usea syntheticworkload gener
atedfrom aknown probability distribution, the gammadistribution

with o = 25 andg = 0.2 Mc.

For the optimal realizable algorithm, the average task pre-
deadlineenepy is 2.1016mJ. Whenthe algorithmmustprodue a
piecavise-corstantspeedschedulevith only 30 transitionsenegy
goesup 0.025%to 2.1022mJ. Whenthe algorithmdoesnot know
themodd parametera priori andmustinfer themfrom pasttasks,
enegy goesup 0.026%to 2.1027mJ. When the algorithm must
infer modelparametersnainly from recenttasks,usingthe Aged-
0.95samplingmethod enegy goesup anothe0.72%t0 2.1179mJ.
Altogether the practicalrequirement®f usingpiecavise-congant
speedschedles andinferring distributionsfrom limited recentin-
formationraisesenegy consumpion by just0.77%.

7.6 Improving algorithms with PACE

In section4, we describedhowv PACE can replacethe pre-
deadlinepart of a standardschedling algorithmwith a schedle
that haslower expeded enegy consunption. Here,we simulate
this asfollows. First, we simulatea previously publishedalgo-
rithm. Then,we modify the algorithmso thatit usesPACE to re-
computethe pre-deatine part of its schedule. Sincethe two al-
gorithmsare performancesquivalent,we comparethemsolely on
thebasisof pre-deadlineenegy consumpion; all othermetricsare
alwaysidentical.

For thesesimulationswe usefour previously publishel interval-
basedalgorithms,eachwith aninterval lengthof 10 ms. The four
methodswe useare:

e Past/Weiserstyle. This is a practicalversionof Weiseret
al.’salgorithm[23].

e LongShort/Chan-style. Thisis apracticalversionof oneof
thebestalgorithmsChanetal. proposed4].

e Flat/Chan-style. This is a practicalversionof anotherof
the bestalgorithmsChanet al. propcsed[4]. It usesa fixed
speedsoit is similar to Transmeta LongRurd™ in steady
state[10]. We chocsethe speedso that at least98% (99%
for the Low-Level workload)of all tasksthatcanmake their
deadlinegdlo so.

e Past/Peg Grunwald etal. [7] favoredthis algorithm.

Figure 8 shaws the effect of using PACE to modify thesealgo-
rithms. We evaluatethe effect of two versionsof PACE, both us-
ing the Aged-0.95samplingmethod: one usesthe gammamodel,
which is easierto implement,and one usesthe kerneldensityes-
timation method,which produesbetterresults. Both versionsof
PACE reducethe CPU enegy consunption of every workloadand
every algorithm.PACE usingagammamodelreducegshe CPUen-
ergy consumpion of algorithmsby 2.4-490%; the averagereduc-
tion over all workloads andall algorithmsis 20.3%. PACE using
thekerneldensityestimationrmethodreducegshe CPUenegy con-
sumptionof algorithmshy 1.4-8.5%with anaveragereductionof
20.6%.Thel.4%valueis lowerthanthe2.4%valuebecauséxcel,
the workloadthatgainsthe leastbenefitfrom PACE, happenslso
to be the only workload for which the gammamodel sometimes
outperformghekerné densityestimatiormethod.Excelgainsless
benefitfrom PACE thanotherworkloadsbecausét consumes lot
of post-deadlineenegy, and PACE hasno effect on post-deatine
schedles. Interestingly the algorithm mostimproved with PACE
is Past/Ryg, the onefavoredby the mostrecentcomparisorof DVS
algorithmg[7]. Past/Rg wasfavoredin thatwork becausét misses
fewer deadlineghanotheralgorithms;unforturately, this requires
higherenegy consumption,asFigure8 shavs.

Another way to examine the resultsis to considerthem rela-
tive to how much enegy would be consuned in the absenceof
DVS. Without PACE, previoudy publishel algorithmsuseDVS to
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Figure 8: Thesegraphs show the effect of modifying algorithms with PACE to get performance equivalent, but lower-energy, al-
gorithms. Horizontal lines show the post-deadlire energy, which none of our modifications change. The lookaheadoptimal results
useknowledgeof the current task’'s work requirementand thus cannot be practically implemented; however, they seve asa lower
bound on what can be attained by a performance equivalent algorithm.

reduceCPU enegy consunption by 10.7-941% with an average
of 54.3%.With PACE usingagammamodel,the CPUenepgy sa/-
ingsincreasdo 35.9—-955%with anaverageof 65.2%.With PACE
usingthekernd densitymethod,the CPU enegy savingsincrease
to 35.6-95.5%with an averageof 65.4%. Thus,on average,if a
CPU consumed.00J without DVS, previously publishedDVS al-
gorithmsallow it to consumeonly 46 J; PACE reduceghatfigure
evenfurtherto 35 J. Giventhesefigures,if the CPUaccountedor
33% of total enegy consumptionin a portablecomptter without
DVS [12], previously published DVS algorithmswould increase
its batterylifetime by about22%; with PACE, the batterylifetime
improvemen would be about28%.

In conclusion PACE s notjusttheoreticallyuseful butis aprac-
tical meango achieve substantiabnegy savings without affecting
performarte. It works on a variety of workloads,andcanimprove
a variety of algorithms. The high enegy savingsis especiallyex-
citing becaus PACE by definitionhasno effect on performance.

7.7 Which basealgorithm to use

As discussd in section5.2, differentalgorithmscompue PDC
in differentways,sothey still differ evenwhenmodifiedby PACE.
Lacking a model of this effect, we mustrely on empiricalresults
to find which algorithm performsbestwhen we modify its pre-
deadlinepartwith PACE andits post-deatine partto alwaysuse
the maximumspeed.For spacereasonsye leave out plots show-
ing the averagetask enegy consunption asa function of fraction
of possibledeadlinesmadefor eachof the workloads andeachof
the basealgorithms;interestedeadersanfind theseplotsin [14].
They shav thatFlat/Chan-stylethe only globalalgorithmwe con-
sideredmostoftengivesthelowestenegy consunptionfor agiven
numter of deadlinesmade. This suggestghat global algorithms
tend to do betterthan local ones. Among the local algorithms,
LongShort/Chan-stg doesbest,achie/ing reasonablenegy sav-
ingsfor agivennumberof deadlinesmade.

7.8 Overheadanalysis
Although PACE reducesan algorithm’s enegy consumptionit

| Workload [ Aged-0.95/Gamma] Recent-28/kernel |
Word 31lus (0.05%) | 68 us (0.11%)
Excel 27 us (0.08%) | 70us  (0.20%)
GroupWse 30us (0.10%) | 77 us (0.25%)
Low-Level 35us (0.25%) | 73 us (0.51%)
MPEG-Mary | 29 us (0.06%) | 63us  (0.14%)
MPEG-One | 28 pus (0.04%) | 62us  (0.08%)

Table 3: This table shows the average time per task for a
450 MHz Pentium 1l to executevariants of the PACE algo-
rithm. Energy overhead valuesare in parenthesesthey show
how much enemgy the simulated CPU would consumeto com-
pute the PACE speedscheduks,as a percentageof the energy
it would consumejust to executethe workload tasks.

alsoincreasests compleity. Thus,it makesthe CPU spendmore
time, andthus more enegy, computing speedschedles. We can
evaluatethis overheadby simulatinghow muchtime and enegy
PACE-modifiedalgorithmswould consumeo computeschedules.

The two PACE methodswe simulate this way are Aged-
0.95/Gammaand Recent-2&ernel. The former pairs the com-
putationallyefficient gammamodelwith the preferredAged-0.95
samplingmethod.The latter usesthe more effective but lesscom-
putationallyefficientkerneldensityestimatiormethod.To mitigate
the computationakcompleity, we useit with the Recent-28sam-
pling method which producesinweighedsamplesWe useafixed
PDC of 0.6 M D, aswould Flat-0.6/Chan-style We codedthese
algorithmsin C in a coupleof hours,makinguseof someohvious
optimizationsbut by no meansusing every optimizationpossible.
We usea maximumof 20 transitiongperschedule.

Table 3 shaws, for eachworkloadandeachalgorithm,the aver-
agetime pertaskto computea speedscheduleon a 450 MHz Pen-
tium [l with 128 MB of memoryrunningRedHatLinux 6.2. The
tablealsoshawvs the enegy the simulatedCPU would consumeto
performthis compuation,asa percentag of the enegy consumed



to performthetasksof theworkload. We seethatwe canimplement
thesealgorithmswith minimal overhead The Aged-0.93Gamma
algorithmis more efficient than the Recent-28/krnd algorithm,
but even the Recent-28/krnel algorithm imposesoverheadof at
most77 us pertaskandat most0.51%enegy consumption The
time overheadis small compaed to the deadlinein all casesand
consideing thatthecomputatiorcanbedoneattheendof eachtask
in anticipationof the next task,it shouldonly delaythe completion
of ataskwhenthereis noidle time beforethe next taskstarts.

8. FUTURE WORK

8.1 Nonlinear speed-wltagerelationship

We stateckarlierthatthemaximumspeecdermissibleatacertain
voltageis roughy propational to thatvoltage(s « V). A more
accuratdformulais s = k(V — V;1,)?/V wherek is someconstant
of proportiondity andV;;, is thethresholdvoltage[5]. So,instead
of E « f?, aswe wereassumingn our proof of optimality, we

LT (£)°

have E (Vth+§%+ i

This formulais complicated but we cangenerallyapproxmate
it with a simpleroneof theform E = as® + b. In this case the
optimal solutionis the same sincethe extra b termdoesnot affect
it. However, often a formulaof theform E = as + b is aneven
betterapproxmation. Using this approaimation changesthe opti-
mization problem: we mustthenminimize fOPDC F¢(w)s(w) dw.
This changeghe optimal schedile in a simpleway: it makesthe
power of F°(w) chargefrom —1/3 to —1/2. In future work we
planto determingheeffectof usingthis powerwhentheenepgy vs.
speedcune is betterapproXmatedby a linear curve. We believe
thatmostof our resultswill still hold.

Memory effectscanalsoprodue a nonlinearspeed-vltagere-
lationship,asobsened by Martin et al. [15]. Whenmemoryspeed
doesnot scalepreciselywith CPUspeedthework completionrate
may be nonlinearlyrelatedto voltagefor somevoltageranges.In
future work, we shouldexplore the effect of this nonlinearity on
solutionsto the enegy optimizationproblem.

8.2 1/0

If a task performssynctronousl/O, a speedschedulingalgo-
rithm mustattemptto have thetaskcompleteits CPUwork and its
synchronousl/O within thedeadline Oneway to do thisis to con-
siderthe deadlinefor the CPU partto be reducedby thetime spent
performingl/O while the CPUwaits. In future work, we will test
appro&zhesthat take suchdynamic deadlinesinto accoun. Such
appro@zhesmustanticipateandconsiderthe probabhlity thatatask
will performl/O in thefutureandthatthedeadlinewill bereduced
accordirgly. It mustalsoincorporateanalgorithmfor recompuing
the schedulefor a taskwhenever it completesa wait for 1/O and
thushasshortenedts deadline.

8.3 Overlapping tasks

In future work, we shoud addressschedling multiple tasksat
once. If only oneof thesetaskshasa deadline,it may be reason-
ableto conside it the “main task” andto modelall othertasksas
contributing to its work requirement. In other words, we might
conside all work donewhile the main taskis active to be part of
thattask,eventhoughsomeof thiswork is unrelated Thisway, the
maintaskwork distribution will automaticallytake into account all
work the CPUwill do beforethe maintaskcompletes.

If multiple taskshave deadlinesthe optimal schedle depend
on the joint probability function of the two tasks’ work require-
ments,whichis likely too complicatedo usein practice.We must

thereforein futurework develop heuristicsfor properlyscheduling
two or moretaskssimultaneously Note, however, that mostmo-
bile computershave limited resourcesindonly oneuser sowe feel
they will not oftenhave two simultaneousaskswith deadlines.

8.4 Limited setof valid speeds

Some processorgnay offer only a fixed, limited set of valid
speedsCurrently we have noway to adjustthe optimalformulato
take suchlimitationsinto accoun. Intuitively, roundng to thenear
estavailablespeedshouldwork reasonablywell. However, it will
not necessaly give the optimal solution. Investigatingthe effect
of differentroundng methodsandperhapsapproacksotherthan
roundirg, is futurework.

8.5 Overheadof changingspeedand voltage

In this paper we have assumedhatCPUspeedandvoltagetran-
sitionsconsumeno time or enegy. However, in reality, thisis not
the case.Accordingto Burd et al. [3], changirg betweentwo lev-
els takestime roughly propational to the voltagedifferentialand
enepgy roughly proportiona to the differencebetweenthe squares
of thevoltages.So,if ascheduleonly increasespeedastime pro-
gressesthetotal transitiontime andenegy depencbnly ontheini-
tial andfinal voltages,andnot on the numberof transitions.How-
ever, theseare only appraimations,andthey do not completely
accoun for pertransitioncosts. For example,theremay be a de-
lay every time the speecchangein orderto stabilizethe clock and
synchranizethe CPUandbus clocks. Suchpertransitioncostsare
especiallynoticeableon modernarchitecturessinceDVS is arel-
atively young technoloy anddesignes have not spentgreateffort
to keepsuchtransitioncostslow. In future work, we will address
theissueof how PACE shouldtake into accownt suchactualtransi-
tion costs. We exped that PACE will work well evenunderthese
conditions,especiallyfor future architectureghat will have very
low transitiontime andenepy.

8.6 Tasktype groupings

We mentionedthe desirability of groupingtasksby type, and
keepirg separatesampledor eachtype. This way, we only usea
task’s work requiremento modelthework requiremets of similar
tasks.In future work, we planto investigatewhat groupings work
best,andhow effective differentgroupirg methodsare.

9. CONCLUSIONS

The main focus of this paperhasbeenPACE, an approa&h to
reducingthe enegy consunption of DVS algorithmswithout af-
fectingtheir performanceWe shavedthatonecanchangehow an
algorithm schedulegasksso that performancestaysthe samebut
expectedenegy consunption decreasesFurthermorewe devel-
opedanoptimalformulafor schedling taskswith minimal enegy
consunption. Although one cannd implementthis formula pre-
cisely, we describedrariousmethodgo approXmateit effectively.

An importantprerequisitdor usingtheformulais estimatinghe
distribution of atask’s work requiremenfrom recentdataon simi-
lar tasks.We presentedeveralmethodshatwork well for avariety
of workloads. The bestwe found is to usean agedsampleasin-
putto anonparametridkerneldistribution estimationmethod.Esti-
matingthedistribution with agammamodelworks almostaswell,
andis probablyeasierandfaster PracticallyimplementingPACE
alsoinvolveschoasing a limited numker of speedtransitions. We
found heuristicsfor this thatyield reasonabl@pproximdions and
arepracticalandquick to implement.

Simulationsusing real workloadsshaved that PACE can sub-
stantially reduceCPU enegy consumptionwithout affecting per



formance. Without PACE, previously publishedalgorithmsuse
DVS to reduceCPU enegy consumptiorby 11-94% with anav-
erageof 54.3%. With the bestversionof PACE, the savings in-
creaseto 36—-96% with an averageof 65.4%. The overall effect
is that PACE reducesthe CPU enegy consumpion of previously
publishal algorithmsby 1.4-495% with anaverageof 20.6%.

BesidesPACE, we madeother suggestiongor chandng DVS
algorithms. We recommended using a constantspeed,probably
the maximum CPU speedpossible for all tasksthat have missed
theirdeadlinesFurthermoreamongthealgorithmswe consicered,
we found that using Flat/Chan-stylg(i.e., using a fixed PDC for
all tasks)with our recommendeé changegyave the lowestenegy
consunptionfor agivennumber of deadlinesnade.

We thereforerecommend constructinga DVS algorithmasfol-
lows. For eachtasktype, pick a reasonale deadline(e.g.,50 ms
for interactve tasks) areasonableumberof cyclesto alwayscom-
pleteby thedeadlingprobablybetwee0-60%of thenumberthat
themaximumspeedwvould accomplish)andareasonhble speedo
always useafter the deadlinehaspassedprobablythe maximum
CPUspeed) Wheneer ataskcompletesdeterminehowv mary cy-
clesit used,add this value to the sampleof similar tasks’ work
requiremets, thenestimatethedistribution of the next similartask
usingthenew sample For thesamplegitheronly userecentvalues,
or weight valuesasthey age. Estimatethe distribution using the
kernd densityestimationmethod,or the gammamodelif the ker
nel densityestimationmethodis impractical. Whenataskarrives,
run it accordingto a PACE schedulethat reflectsthe probability
distribution for thattype of task.
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