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ABSTRACT
Prior work has identified set based comparisons as a useful primi-
tive for supporting a wide variety of similarity functions in record
matching. Accordingly, various techniques have been proposed to
improve the performance of set similarity lookups. However, this
body of work focuses almost exclusively on symmetric notions of
set similarity. In this paper, we study the indexing problem for
the asymmetric Jaccard containment similarity function that is an
error-tolerant variation of set containment. We enhance this simi-
larity function to also account for string transformations that reflect
synonyms such as “Bob” and “Robert” referring to the same first
name. We propose an index structure that builds inverted lists on
carefully chosen token-sets and a lookup algorithm using our index
that is sensitive to the output size of the query. Our experiments
over real life data sets show the benefits of our techniques. To our
knowledge, this is the first paper that studies the indexing problem
for Jaccard containment in the presence of string transformations.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Algorithms, Performance

Keywords
Data Cleaning, Indexing, Jaccard Containment, Transformations

1. INTRODUCTION
Data cleaning is an essential ingredient in the use of data ware-

houses for accurate data analysis. For example, owing to various er-
rors in data, the customer name in a sales record may not match ex-
actly with the name of the same customer as registered in the ware-
house, motivating the need for record matching [20, 22]. A critical
component of record matching involves determining whether two
strings are similar or not. String similarity is typically captured via
a similarity function that measures textual similarity.
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ID Organization Name
1 Madison Garden
2 Olive Garden Italian Restaurant,

Madison WI 53701
3 Pizza Hut, Milwaukee WI
... ...

Figure 1: Organization Table

Prior work has identified various measures of textual similarity
— edit distance, Jaccard similarity, Jaro-Winkler distance, Ham-
ming distance, each of which is applicable for different scenar-
ios [20, 22]. In order to apply a string similarity function f for
record matching, we need to perform efficient similarity lookups
where given an input string s, the goal is to find all strings r in a
reference relation R such that f(r, s) > θ for a given threshold
0 ≤ θ ≤ 1. Accordingly, specific indexing methods have been
proposed for the above similarity functions [14, 20, 22]. However,
a data cleaning platform is faced with the impractical option of im-
plementing and maintaining a large suite of indexing techniques in
order to support a variety of similarity functions.

Prior work has identified set similarity lookups as a primitive
operation that can be used for supporting lookups based on several
similarity functions. The idea is to model a string as a set of tokens.
For example, edit distance can be indexed by building an index
over the set of q-grams of a string [17]. This observation has led
to the body of work on efficient techniques to perform lookups and
joins based on set similarity [6, 10, 15, 19, 29, 31]. Most of these
techniques focus on one specific form of set similarity, namely the
Jaccard coefficient which measures the ratio of the size of the inter-
section to the size of the union. For example, the Jaccard coefficient
between the sets {Olive, Garden} and {Olive, Tree} is 1/3.

However, the Jaccard coefficient is only one in a class of set-
based similarity functions. In particular, it is a symmetric function.
There are scenarios where an asymmetric notion of set-based sim-
ilarity is more appropriate. Consider for instance, the reference re-
lation shown in Figure 1 containing restaurant names. Assume that
the strings are converted into sets by treating each space-delimited
word as a token. Suppose that we wish to lookup the string
Olive Garden in this relation. The record with id 1, Madison
Garden has Jaccard coefficient 1/3 whereas the record with
id 2, Olive Garden Italian Restaurant, Madison
WI 53701 which intuitively constitutes a better match has Jac-
card coefficient 2/7 < 1/3. The main issue in this example is that
the Jaccard coefficient penalizes record 2 for its longer length even
though it contains all the tokens in the query string. While assign-
ing token weights that vary inversely with frequency (such as idf)
mitigates the problem described here with Jaccard coefficient, it
does not eliminate it.
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Motivated by the above limitation, asymmetric notions of set-
based similarity have been proposed in prior work [8, 10]. Specif-
ically, the Jaccard containment of a query set in a reference set is
the ratio of the (weighted) size of the intersection of the two sets
to the (weighted) size of the query set. In the above example, the
Jaccard containment of Olive Garden with respect to record 1
is 1/2 whereas the containment in record 2 is 1. We note that Jac-
card containment is a generalization of exact set containment which
has been studied extensively in prior work [11, 24, 25, 28].

Besides being a useful similarity function for record match-
ing, Jaccard containment has other applications. For example,
error-tolerant lookups are gaining increasing importance online for
matching user queries against addresses (map services) and prod-
ucts (products search). Since regular keyword search is based on
set containment, Jaccard containment offers a natural error-tolerant
alternative. Further, it is also applicable in performing fuzzy au-
tocompletion [21, 23] where we have to identify matches from an
underlying reference relation as the query string is being typed. In
this paper, we study the problem of indexing lookups based on Jac-
card containment.

Recent work [4, 14, 26] has recognized that textual similarity
alone is inadequate in matching strings that are syntactically far
apart but still represent the same real-world object. For exam-
ple, the first name Robert can be written as Bob, or United
States of America can be abbreviated to USA. The notion
of string transformations has been identified in recent work [4,
14, 26] as a way of overcoming this inadequacy. Combining
explicitly provided string transformations of the form USA →
United States of America along with a core similarity
function like Jaccard containment forms a new programmable sim-
ilarity function that is influenced by the input set of transforma-
tions. Briefly, string transformations are used to generate “de-
rived” strings from a single (query or data) string. For exam-
ple, the string Olive Garden Madison WI USA can derive
the string Olive Garden Madison Wisconsin USA un-
der the transformation WI → Wisconsin. Queries are logically
executed as though each of the derived queries is run over all strings
derived from the reference relation. We study the indexing problem
for Jaccard containment in the presence of an explicitly provided
set of string transformations.

While the indexing problem for the special case of exact set con-
tainment has been studied extensively [11, 24, 25, 28], there has
been little work on its error-tolerant variants. To our knowledge,
this is the first paper that addresses indexing for Jaccard contain-
ment while also accounting for string transformations.

1.1 Challenges and Contributions
The point of departure for describing the solution proposed in

this paper is the standard inverted index which is used to answer
exact set containment queries by performing an intersection of the
relevant lists [7]. This solution does not naively generalize for the
case of Jaccard containment since a record can be in the output
even if it does not occur in all lists. The presence of string transfor-
mations creates additional challenges since the number of derived
strings generated by a given string can be large.

Our challenge is to design an indexing technique that can handle
not only the Jaccard containment aspect (in contrast with exact con-
tainment) but also this potential explosion in the number of derived
strings due to the presence of transformations.

We begin our contributions by identifying the main limitation
of a standard token-level inverted index, namely that long lists ad-
versely affect the query performance even in the special case of
exact containment lookups. For instance, consider an exact con-

tainment query This is it posed over a table of movie names.
Each of the tokens This, is and it is common so that their lists
are expected to be long even though the output of query is likely
to be small. This problem with a standard inverted index is exac-
erbated in the case of Jaccard containment since we cannot simply
intersect all the lists.

Accordingly, we propose a parameterized index structure (Sec-
tion 3) that, in addition to token-level lists, explicitly stores inverted
lists for token-sets that are minimal-infrequent: the frequency is
less than a given parameter (infrequent) whereas the frequency of
any subset is larger than this parameter (frequent). (Only token-sets
with non-empty intersections are considered.) The idea is that by
building these additional lists, long lists are scanned only when the
output of a query is large, hence making the performance sensitive
to the output size. This index generalizes token-level inverted lists
— when the value of the parameter is equal to the cardinality of
the indexed relation, then the only minimal-infrequent sets are the
singleton tokens.

We formally show that for the special case of exact containment
queries, our index yields an output sensitive guarantee. We then
discuss how the case of Jaccard containment with transformations
can be addressed by running a collection of exact set containment
queries (Section 4). However, the number of such “variant” queries
can be large in the presence of transformations, and cause us to do
redundant work. We then present algorithms that significantly re-
duce the amount of redundant work. In the presence of transforma-
tions, even computing the containment score between two strings
becomes challenging. We propose an efficient algorithm for the
same by reducing the problem to weighted bipartite matching.

Theoretically, the index size is in the worst case exponential in
the record size. We note that the notion of minimal-infrequent sets
is closely related to the classic data mining notion of maximal fre-
quent item sets [2]. Extensive prior work [18, 27] has shown both
analytically and empirically that the number of maximal frequent
item sets in a database is unlikely to be exponential in the data
string size in practice. Indeed, several algorithms to compute max-
imal frequent item sets are widely accepted as practical [16]. We
argue formally that a similar intuition also applies to the size of the
index we propose (Section 5).

We then conduct an empirical evaluation over various real-life
data sets (Section 6) that show that our algorithms yield significant
performance benefits without incurring an excessive space over-
head. We also show that the index size in practice is far from
the exponential worst case which is consistent with our theoreti-
cal analysis of the index size. We discuss related work in Section 7
and conclude in Section 8.

2. PRELIMINARIES
In this section, we formally define the Jaccard containment sim-

ilarity function, the notion of string transformations and how they
can be incorporated into Jaccard containment to define a new pro-
grammable similarity function. We also outline the challenges in-
volved in indexing this function.

2.1 Strings as Sets
We model strings as sets. In general, our techniques are appli-

cable irrespective of how strings are converted to sets. But in this
paper, we model strings as a set of delimited tokens. The delim-
iters include white spaces and punctuation symbols. For example,
the string Olive Garden represents the set {Olive, Garden}.
We use strings to denote the sets and refer to the elements of the
sets as tokens. Previous work has identified the need to associate
weights with tokens [22]. For instance, the inverse document fre-
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quency (idf) [22] may be used to associate a higher weight with
rarer tokens and a lower weight with frequent tokens such as stop
words. We thus assume that the sets are weighted, where every
token e in the universe has a positive integral weight wt(e). The
weight of a set s, denoted wt(s) is the sum of the weights of its
tokens.

2.2 Jaccard Containment
Given two sets s1 and s2, the Jaccard containment of s1 in s2,

denoted JaccCont(s1, s2) is defined as wt(s1∩s2)
wt(s1)

. Consider for
example the sets s1 = Olive Garden and s2 = Madison
Olive. Suppose that all tokens have unit weight. Then
JaccCont(s1, s2) = 1/2. We note that Jaccard containment
is an asymmetric similarity function that generalizes exact set
containment — if s1 ⊆ s2, then JaccCont(s1, s2) = 1.

2.3 String Transformations
As noted in Section 1, string transformations such as Bob →

Robert are used to boost the similarity between strings that are
textually far apart [4, 14, 26].

In this paper, we focus on transformations that are of the
form lhs → rhs where each of lhs and rhs is a single to-
ken. Examples of such transformations are: IL → Illinois,
Grdn → Garden, St → Street and J → Jeffrey. We
note here that this restriction is merely to simplify presentation.
The techniques presented in this paper can be extended to work for
more general transformations.

We assume that the set of transformations is provided as part
of the input either explicitly in a table (recent work [5, 11] has
studied the problem of discovering transformations), or gener-
ated by a program. For instance, while a transformation like
Bob → Robert may be materialized, transformations that ex-
pand abbreviations such as J → Jeffrey and transformations
that account for token-level edit errors such as Masachusets →
Massachusetts may be generated programmatically.

When we have a transformation e → e′ we say that token e
derives e′. The set of all tokens derived by e is called the set of
derivations of e, denoted ē. A set s derives the set s′, denoted s⇒
s′ when s′ can be obtained by starting with s and replacing some
subset of its tokens e1, . . . , ek respectively with tokens e′1, . . . , e′k
such that ei → e′i. The set of derivations of a set s, denoted s̄ is
the collection of all sets derived by s.

Example 1. Consider the set of transformations Drive → Dr
and IL → Illinois. The collection of sets derived by Main
Drive Chicago IL is {Main Drive Chicago IL, Main
Dr Chicago IL, Main Drive Chicago Illinois,
Main Dr Chicago Illinois}. 2

Notice that the number of derivations of s, |s̄| can be large: if
every token of s derives two other tokens, then |s̄| = 3|s|.

2.4 Jaccard Containment With Transforma-
tions

A set of string transformations together with Jaccard contain-
ment can be used to define a new programmable similarity function
as follows. Given a set of transformations T , the Jaccard contain-
ment of set s1 in set s2 under T, denoted JaccContT (s1, s2) is
defined to be the maximum containment JaccCont(s′1, s2) among
all s′1 derived by s1 using T .

Example 2. Consider the sets s1 = Olive Grdn and s2 =
Olive Garden. As noted above, the containment of s1 in s2
is 1/2. However, in the presence of the transformation Grdn →
Garden, the containment of s1 in s2 becomes 1. 2

We can trivially modify the above definition to allow transforma-
tions to be applied to both s1 and s2 and in general, different sets
of transformations to be applied to s1 and s2. For instance, when
we have a query set being looked up against a reference relation,
we could apply programmatically generated transformations such
as token-edits and expansions of abbreviations only on the query
set while applying transformations that capture synonyms such as
Bob→Robert on both the query and the reference sets. For ease
of exposition, unless otherwise stated, we will assume that the
transformations T are applied only on the query and not on the ref-
erence relation. (Our techniques work with the most general case.)

Finally, we observe that one could consider other ways in which
transformations may be used to program a similarity function. For
instance, we could associate weights with transformations and have
the overall similarity function reflect these weights. We believe
the techniques presented in this paper can be extended to handle
some of these alternate semantics. A detailed discussion of these
alternatives is beyond the scope of this paper.

2.5 Indexing Problem
We are now ready to formally state the problem addressed in this

paper. We are given a reference relation R consisting of sets and a
set of transformations T . Given an input query set q, the Jaccard
containment lookup problem seeks all reference sets r ∈ R such
that JaccContT (q, r) ≥ θ for a specified similarity threshold θ.
Our goal is to design an index structure and a query-time algorithm
using said index structure to efficiently solve the lookup problem.

2.6 Inverted Lists, Signatures, Covering
The main data structure we use for indexing in this paper is the

inverted list. However, we build inverted lists not only for single
tokens but token sets. We now introduce some terminology that we
use in the rest of the paper.

If we build an inverted list on a token-set, we say that we index
the token set. A token-set that is indexed is called a signature. The
list corresponding to a signature sig , denoted List(sig) contains
the record identifiers of all records in the reference relation R that
contain the signature. We refer to standard token-level inverted
lists as token lists. Inverted lists store only the record identifiers but
we talk about them as though they contain the records themselves.
Given a query set q, a signature sig is said to cover q if sig ⊆ q.
If we pose q as an exact containment query, then List(sig) is a
superset of the result of q.

Finally, we talk about various kinds of sets in this paper. We
refer to token sets in general as tokensets. Records in the refer-
ence relation which are a special case of tokensets are referred to
as records. The input query and signatures are also tokensets and
we refer to them respectively as query and signature. We also talk
about collections of tokensets, such as the reference relation itself
and sets of signatures. We use the term set when it is clear from the
context which of the above sets we are referring to. We denote the
cardinality of any set s as |s|.

2.7 Review of State of the Art
As noted in Section 1, most of the prior work has focused either

on notions of set similarity that are symmetric (specifically, Jaccard
similarity) or on exact subset containment which corresponds to the
case where the lookup threshold is 1. The state of the art method
for addressing Jaccard containment (without transformations) is a
technique known as prefix filtering [10, 29] which we now review.

Consider a total ordering over all tokens in the universe. Given a
weighted set r and 0 ≤ β ≤ 1, define prefixβ(r) as follows: sort
the elements in r by the global token ordering and find the shortest
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Algorithm 2.1 Prefix Filtering (No Transformations)
1: Create Index

Build token lists over reference relation R.
2: Lookup Algorithm for threshold θ

(1) Given query set q, compute prefix1−θ(q).
(2) For each set r ∈ ∪sig∈prefix1−θ(q)List(sig)

(3) If (JaccCont(q, r) ≥ θ) then output r.

Algorithm 2.2 Basic Prefix Filtering With Transformations
1: Create Index

Build token lists over the sets in R
2: Lookup Algorithm for threshold θ

Given query set q, run Algorithm 2.1 over each of the sets in q̄ and
union the results.

prefix such that the sum of the weights of the tokens in the prefix
exceeds β · wt(r). We have the following result [10, 29].

LEMMA 1. If JaccCont(s1, s2) ≥ θ then prefix1−θ(s1) ∩
s2 6= φ.

For example, suppose all elements have unit weights. If the Jaccard
containment of the set Olive Garden Restaurant in set s is
at least 0.6, then s must contain either Olive or Garden — here
we are using the order in which we listed the set.

This insight can be used to develop an indexing scheme and
lookup algorithm that are explained in Algorithm 2.1. The in-
dex used consists of standard token lists. Given a query set q and
lookup threshold θ, the union of the lists corresponding to tokens in
prefix1−θ(q) is computed. For each record contained in the union,
we check whether JaccCont(q, r) ≥ θ. If the token weights are
obtained from their idf, then ordering them in descending order by
weight to compute the prefix filter tends to access smaller lists.

The main limitation of prefix filtering is that the presence of
long lists can substantially worsen the lookup time. Long lists are
known to adversely affect the performance of even exact contain-
ment lookups where efficient algorithms for performing list inter-
section can be used to potentially skip over long lists. When per-
forming the union of lists, skipping is no longer an option. Thus,
long lists pose a serious challenge in indexing Jaccard containment.

The second issue is that it is not clear how to efficiently adapt
prefix filtering in the presence of string transformations. The se-
mantics of transformations suggests the algorithm described in Al-
gorithm 2.2. The index structure is the same since we are dis-
cussing the case when transformations are applied only on the
query. Given a query set q, we run Algorithm 2.1 for each set de-
rived by q. Since the number of sets derived by q can be large as
seen in Section 2.3, this algorithm can be highly inefficient. We
address the above challenges in the following sections.

3. INDEX
In this section, we describe our index structure. In order to moti-

vate our design, we interleave a discussion of how we use the index
to answer the special case of exact containment queries. We also
describe the index construction algorithm. We defer a discussion
of the index size and its incremental maintenance to Section 5.

3.1 Minimal Infrequent Tokensets
We focus on creating signatures for queries whose output size is

small, while the inverted lists for individual terms are all large. The
rationale is that these are the queries for which the benefit of mate-
rialization is high. We formalize this intuition by using the notion
of minimal infrequent tokensets. The index requires a frequency

threshold a as an input parameter. Let R be the reference relation
being indexed.

DEFINITION 1. The frequency of a tokenset s, freq(s) is the
number of records in R that contain s. A tokenset s is said to
be a-frequent if freq(s) > a. If freq(s) ≤ a, then s is called a-
infrequent. Tokenset s is said to be a-minimal infrequent if it is
a-infrequent whereas every proper subset s′ ⊂ s is a-frequent.

We note that when we talk about the frequency of a query set q, we
mean freq(q); not to be confused with the popularity of q. When
the frequency threshold a is clear from the context, we drop the ref-
erence to a. We refer to the collection of all a-minimal infrequent
tokensets as the a-infrequent border of R.

Example 3. Consider the collection R shown on the left in Fig-
ure 2. Suppose that a = 1. Then the tokensets Olive and
Garden are frequent. The tokenset Olive Garden is mini-
mal infrequent whereas Olive Garden Restaurant is infre-
quent but not minimal infrequent. 2

3.2 Exact Lookup For a-Infrequent Queries
Any a-infrequent tokenset must contain an a-minimal infrequent

subset (possibly itself). Suppose that we index all non-empty a-
minimal infrequent tokensets. Any exact containment query q
which is a-infrequent is covered by some a-minimal infrequent sig-
nature sig . In order to answer q, it suffices to verify for each record
r in List(sig) whether q ⊆ r. Since |List(sig)| ≤ a, we obtain
the following result.

PROPERTY 1. If we index all non-empty a-minimal infrequent
tokensets, then any a-infrequent query can be answered by fetching
at most a records.

Property 1 quantifies our goal of having an output-sensitive lookup
performance and motivates our index design.

The question arises how we find the a-minimal infrequent sig-
nature that covers the given a-infrequent query q. We can perform
this in time linear in |q| as follows. We process the tokens of q in a
fixed order. We keep a token e if dropping it makes the resulting to-
kenset a-frequent. Otherwise, we drop e. This process is sketched
in Algorithm 3.1. In order to implement Algorithm 3.1, we main-
tain a frequency oracle that stores the set of all a-frequent tokensets
with their frequencies. The frequency oracle can be used to check
whether a given tokenset is a-frequent. We note that the tokenset
returned by Algorithm 3.1 is a-infrequent and dropping any single
element from the tokenset makes it a-frequent. Thus, we obtain the
following result.

LEMMA 2. Given an a-infrequent query q, Algorithm 3.1 finds
an a-minimal infrequent covering signature in time linear in |q|.

Example 4. Consider the collection R on the left in Figure 2.
Suppose that a = 1 and we are given the query Olive Garden

Algorithm 3.1 Linear Time Algorithm to Find a Covering Signa-
ture
Input: An a-infrequent set q;
Output: An a-minimal infrequent (signature) set contained in q
1: Fix an order of the tokens in q
2: Let sig ← q
3: For each token e ∈ q in the fixed order
4: If sig − e is a-infrequent
5: sig ← sig − e
6: Return sig
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Restaurant. Suppose that we run Algorithm 3.1 processing the
tokens in reverse lexicographical order. We first consider drop-
ping Restaurant. The remaining set Olive Garden is a-
infrequent so we drop Restaurant. Dropping Garden would
result in Olive which is a-frequent so we keep Garden. Sim-
ilarly, we also keep Olive. We thus end up with the minimal-
infrequent tokenset Olive Garden. 2

3.3 Series of Parameters
In general, we need to handle not only a-infrequent queries but

also a-frequent queries. The main observation we use to handle fre-
quent queries is that any a-frequent tokenset is minimal-infrequent
for some frequency threshold a′. We therefore partition the fre-
quency space via a geometrically increasing series of parameters
a, 2a, 4a, . . . , |R| = N .1 In our final index, we index minimal
infrequent sets with respect to each of these parameters. In this in-
dex, any query set q is infrequent with respect to at least some 2i ·a.
We can then use a 2i · a-minimal-infrequent set contained in q to
answer the exact containment query q.

ID Org. Name
1 Madison Olive

Oil
2 Olive Garden

Italian
Restaurant

3 Pizza Hut
4 Bamboo Garden

a a-Minimal Inverted List
Infrequent Set
(Signature)

1 Madison {1}
1 Oil {1}
1 Italian {2}
1 Restaurant {2}
1 Pizza {3}
1 Hut {3}
1 Bamboo {4}
1 Olive Garden {2}
2 Olive {1, 2}
2 Garden {2, 4}

Figure 2: Organization Table and Signatures

Figure 2 shows an example relation and its corresponding index
for the series with a = 1. In general, a signature can be minimal-
infrequent for more than one value in the parameter series. In this
case, we store its list just once. Thus, in Figure 2, there are no
signatures corresponding to parameter value 4 since they are sub-
sumed by the smaller parameter values.

Observe that when we set a = N = |R|, the minimal infrequent
sets are exactly the single tokens. Thus, the index described above
generalizes a standard token-level inverted index.

3.4 Exact Lookup For a-Frequent Queries
Given the index defined in Section 3.3, we can apply Algo-

rithm 3.1 also to answer exact containment queries q that are a-
frequent. The only additional step is to find the smallest i such that
q is (2i · a)-infrequent. We use the frequency oracle to check for a
given tokenset and a given value of j whether it is (2j ·a)-frequent.
We then run Algorithm 3.1 to find a (2i · a)-minimal infrequent
signature sig . We note that time taken to compute sig is linear in
|q|. We then verify for each record in List(sig) whether it contains
q. We thus obtain the following result:

THEOREM 1. A exact containment query q with output size o
can be answered by processing at most max(a, 2 · o) reference
records.

Thus, our index yields an output-sensitive guarantee for exact con-
tainment queries. This guarantee illustrates the benefits of indexing
1The multiplicative factor 2 could in general be another input pa-
rameter c. We use c = 2 in the rest of the paper.

minimal-infrequent tokensets. Of course, our goal is to handle the
problem of Jaccard containment lookups in the presence of trans-
formations. We will discuss this problem in Section 4.

3.5 Index Construction
The notion of minimal infrequent sets is closely related to the

notion of maximal frequent item sets [2]. Efficient algorithms to
compute frequent item sets have been extensively studied [18]. We
can adapt any of these algorithms to efficiently compute both the
frequency oracle as well as our index. We can piggy-back the com-
putation of the minimal infrequent sets with respect to the param-
eter settings 2a, 4a, . . . over the computation of the a-minimal-
infrequent sets. We omit these details from this paper since they
are straightforward adaptations of prior work. We discuss the in-
dex size and its incremental maintenance in Section 5.

4. JACCARD CONTAINMENT LOOKUP
In this section, we discuss the lookup algorithm for Jaccard con-

tainment with transformations. We formulate an optimization prob-
lem for which we present two algorithms.

4.1 Query Variants
An error-tolerant set containment query can be thought of as rep-

resenting a collection of exact containment queries. For example,
suppose that we are performing a Jaccard containment lookup with-
out transformations where the query set is q and the lookup thresh-
old is θ. Define the collection of minimal subsets of q whose weight
is greater than or equal to θ.wt(q) as the Jaccard variants of q,
denoted JaccardV ariantsθ(q). The lookup can be executed by
finding all Jaccard variants of q, issuing an exact containment query
corresponding to each of these variants and taking the union of the
results.

Example 5. Consider the query q = Olive Garden
Restaurant. Suppose that the weights of the elements are 7, 2
and 1 respectively. If the query threshold is θ = 0.8, then an-
swering q is equivalent to answering the exact containment queries
Olive Garden and Olive Restaurant and taking the
union of their results. 2

This observation generalizes even in the presence of transforma-
tions.

Example 6. Consider the query q = Olive Grdn
Restaurant where the weights of the elements are 7, 2 and 1
respectively. Suppose that we have a transformation Grdn →
Garden and the weight of Garden is also 2. If the query
threshold is θ = 0.8, then q is equivalent to the union of the
exact containment queries Olive Grdn, Olive Garden and
Olive Restaurant. 2

We formalize the above intuition by introducing the notion of the
variants of a query.

DEFINITION 2. Given a query set q and a lookup threshold θ,
we define Variantsθ(q) =

⋃
q⇒q′ JaccardV ariantsθ(q

′). (Re-
call that we use q ⇒ q′ to denote that q′ can be derived from q by
applying transformations.)

We observe that when the threshold θ = 1, then the variants of q
are exactly the sets derived from q via transformations.

PROPERTY 2. JaccContT (q, r) ≥ θ if and only if there is
some qvar ∈ Variantsθ(q) such that qvar ⊆ r. Therefore, q
can be answered by issuing an exact containment query for each
qvar ∈ Variantsθ(q) and taking a union of the results.
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Algorithm 4.1 Covering Based Lookup Framework
Input: Query set q and lookup threshold θ.
Output: All records r ∈ R such that JaccContT (q, r) ≥ θ
1: Find the matching transformations for q
2: Find C ⊆ Signatures(q̄) that is a variant-covering of q
3: For each record r ∈ ∪sig∈CList(sig)
4: If (JaccContT (q, r) ≥ θ)
5: Output r

The main issue with issuing a separate (exact containment) query
per qvar ∈ Variantsθ(q) as suggested by Property 2 is that it fails
to account for the fact that a single signature can cover multiple
variants, and hence potentially accesses many lists redundantly.

Example 7. Consider the query q = Olive Grdn
Restaurant of Example 6. The signature Olive covers
all the variants Olive Grdn, Olive Garden and Olive
Restaurant. 2

4.2 Covering Framework
In general, what we seek is a collection of signatures that cover

all variants. This observation suggests an optimization problem
which we introduce next.

DEFINITION 3. Given a set q, define Signatures(q) to be the
collection of subsets of q that are indexed. (Exactly those subsets of
q that are minimal infrequent for some index parameter a.2i are in-
cluded.) We also define Signatures(q̄) =

⋃
q⇒q′ Signatures(q′).

We note that Signatures(q̄) can be computed using the frequency
oracle by using algorithms to compute minimal infrequent item
sets, similar to the index build algorithm described in Section 3.5.

DEFINITION 4. A subset of C ⊆ Signatures(q̄) is a variant-
covering if each variant in Variantsθ(q) is covered by some sig-
nature in C.

For instance, in Example 7, the signature Olive is a variant-
covering.

We outline a lookup framework based on the notion of variant-
covering in Algorithm 4.1. The idea is to first find a variant-
covering of the query, access the corresponding lists and verify for
each of the retrieved records whether the similarity threshold is sat-
isfied. In general, there are multiple variant coverings. For a given
covering C, the number of record identifiers retrieved in Step 3 is
the size of the union of the inverted lists corresponding to the sig-
natures in C. Our goal is to find a covering such that this number is
minimized. We use the sum of the list sizes as a proxy for the size
of the union.

DEFINITION 5. The cost of a covering C is the sum of the sizes
of the lists corresponding to signatures in C.

Covering Optimization: Among all variant-coverings of q, find
the one with least cost.

We model this optimization problem as a bipartite graph where
we have the signatures of the query on the one side and the query
variants on the other. An edge connects a signature to a variant if
the signature covers the variant. A variant-covering is a subset of
signatures such that all variants are incident to them. Our goal is
to find a minimum cost variant-covering. Figure 3 illustrates the
bipartite graph for Example 5. The numbers in the parentheses
of the signature sets indicate the lengths of their lists. We now
describe two solutions to this optimization problem.

Olive
(2)

Garden 
(2)

Olive
Garden 

(1)

Olive 
Garden

Olive 
Restaurant

Signatures Variants

Figure 3: Illustrating Covering Optimization Problem.

Algorithm 4.2 Greedy Algorithm to Solve Covering Optimization
Input: Query set q and lookup threshold θ.
Output: C ⊆ Signatures(q̄) that is a variant-covering of q
1: C ← φ
2: While (there is an variant uncovered by C)
3: Pick the signature with maximum benefit-cost ratio

(Benefit of signature sig = number of variants uncovered by C
but covered by sig) (Cost of sig = |List(sig)|)

4: C ← C ∪ sig

4.3 Set Cover Approach
It is easy to see that the covering optimization problem is closely

related to the set cover problem: we need to cover variants us-
ing signatures with the minimum cost. We can thus invoke the
well-known greedy approximation algorithm to set cover to solve
our covering problem. We sketch this algorithm in Algorithm 4.2.
Here, we compute all variants Variantsθ(q) and all signatures
Signatures(q̄) explicitly and then add signatures in the order of
their benefit-to-cost ratio. The benefit of a signature is the number
of variants covered by it while the cost is the length of its corre-
sponding list.

4.3.1 Analysis
Algorithm 4.1 coupled with the method sketched in Algo-

rithm 4.2 to find the covering has formal guarantees for the index
we proposed in Section 3 that we now discuss. Consider the “ideal”
index that indexes all tokensets. Let us denote the cost of the op-
timal covering over this hypothetical index as CostTrueMin . This
cost represents the minimum cost required to answer the query un-
der our covering framework. Suppose that the cost of the solution
returned by the greedy algorithm is CostGreedy . We have the fol-
lowing result:

LEMMA 3. For a query q and lookup threshold θ:

CostGreedy ≤ CostTrueMin ×max(a, 2)×O(lg |Variantsθ(q)|

The factor max(a, 2) arises since we don’t materialize all to-
kensets, while O(lg |Variantsθ(q)| arises due to the greedy ap-
proximation to set cover that is used. We note that the upper bound
yielded by the above result is a function of a. Even though this
guarantee is weak for typical values of a like a = 100, it is a
worst-case guarantee. The actual gap from CostTrueMin is likely
to be smaller in practice.

4.3.2 Limitations
The main limitation of Algorithm 4.2 is that it computes the cov-

ering by explicitly enumerating all signatures and all variants. As
observed in Section 2.3, a query may have a large number of vari-
ants and signatures if a lot of transformations match the query. In
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Algorithm 4.3 Hitting Set Algorithm for Covering Optimization
Input: Query set q and lookup threshold θ.
Output: C ⊆ Signatures(q̄) that is a variant-covering of q
1: Let C denote the current covering. C ← φ.
2: Let Hit(C) denote the minimal hitting sets of C.

Hit(C)← {φ}
3: H̃it(C)← complements of sets in Hit(C)

4: If no h̃ ∈ H̃it(C) contains a variant, stop and return C
5: Else find an uncovered variant and a signature sig that covers it
6: Add sig to C
7: Compute Hit(C) and go to step 3

such cases, computing the covering using Algorithm 4.2 becomes
prohibitively expensive. Thus, even though the cover returned by
the set cover approach may contain few signatures and have a low
cost, the cost paid in computing it may be significant. We encounter
this situation in our experimental study in Section 6. We thus pro-
pose an alternate algorithm that generates a covering without re-
quiring an enumeration of all variants of q.

4.4 Hitting Set Approach
Before we describe the alternate lookup algorithm, we discuss

some preliminaries. In the context of a query q, we have a universe
of tokens namely the set of all tokens in q̄ (that is, all tokens in q
and all tokens on the right hand side of transformations that match
q). We can use this universe to define the complement of a vari-
ant which includes all tokens from the universe that are not in the
variant. We refer to the complement of variant qvar as q̃var .

It follows that if a signature does not cover a variant, then the
complement of the variant intersects (hits) the signature; in other
words it is a hitting set of the signature. We can generalize this
argument to show the following property:

PROPERTY 3. A variant qvar ∈ Variantsθ(q) is not covered
by a collection of signatures if and only if its complement q̃var hits
each signature in the collection.

Example 8. Consider the query Olive Garden Italian
Restaurant 53701. Suppose that (1) all tokens have weight 1,
(2) we have no transformations and (3) the containment threshold
is 0.5. The variant Italian Restaurant 53701 is not cov-
ered by the collection of signatures {Olive Italian, Garden
Restaurant}. The complement of the above variant is Olive
Garden which hits both the signatures in the collection. 2

Suppose that we have a collection of signatures. Based on Prop-
erty 3, we can check if all variants of q are covered by (1) enumer-
ating all minimal hitting sets of the signature collection, (2) for each
minimal hitting set, checking if its complement contains a variant.

Example 9. Continuing Example 8, we note that Olive
Garden is a hitting set for the signature collection {Olive
Italian, Garden Restaurant}. Its complement contains
Italian Restaurant 53701, a variant of the query. 2

If the complement of some hitting set contains a variant, we add
a signature that covers this variant to our collection (using Algo-
rithm 3.1) and proceed.

Example 10. In Example 9, we may add a signature,
say Italian 53701 that covers the variant Italian
Restaurant 53701. 2

The lookup algorithm based on this intuition is outlined in Algo-
rithm 4.3. Step 4 is straightforward and we omit its details owing
to lack of space. Step 5 can be implemented using the linear time
algorithm presented in Algorithm 3.1.

4.4.1 Analysis
We note that Algorithm 4.3 does not need to compute all variants

and signatures for the query like the set cover algorithm. Instead,
the time required in computing the variant-covering is dependent on
the number of signatures in the covering. Hence, in cases where the
number of signatures in the variant-covering is small relative to the
total number of signatures and variants for the query, the hitting set
algorithm is likely to outperform the set cover algorithm in terms
of the time required to compute the covering. Our experiments
in Section 6 demonstrate this phenomenon. We do note however
that hitting set is known to be a hard problem, and hence the worst
case bound for this algorithm is not polynomial (a superpolynomial
bound may be shown in a manner similar to [18]).

Although Algorithm 4.3 is heuristic in terms of the cost of the
covering that it computes, it it can be adapted to reflect the benefit-
cost ratio order in which the greedy set-cover based algorithm pro-
ceeds. In order to provide a higher preference to signatures that
cover more variants, we order the tokens in increasing order of their
weight in Step 5 before running the linear algorithm. In Section 6,
we will study how the hitting set covering algorithm compares with
the set cover algorithm both in terms of signature generation time
as well as in terms of the cost of the output covering.

4.4.2 Implication for Prefix Filtering
We can show that in the absence of transformations and when

we only have token-inverted lists, Algorithm 4.3 reduces to pre-
fix filtering. Thus, Algorithm 4.3 yields a generalization of prefix
filtering to handle transformations. This is how we implement pre-
fix filtering in our experiments. We also observe that the problem
of finding the hitting set of a collection of singleton signatures is
trivial — there is only one hitting set, namely the union of the sin-
gletons. Thus, the complexity of Algorithm 4.3 is polynomial in
the number of elements in all sets in q̄. In contrast, Algorithm 4.2
requires enumeration of all sets in Variantsθ(q).

4.5 Computing Similarity Score
We now discuss Step 4 in Algorithm 4.1 that checks whether

JaccContT (q, r) ≥ θ. So far in this section, we have considered
applying transformations only on the query. Under this assumption,
checking whether JaccContT (q, r) ≥ θ is trivial. All techniques
presented so far can be extended in a straightforward manner to also
handle transformations applied on the reference relation. However,
checking whether JaccContT (q, r) ≥ θ becomes challenging —
the definition of JaccContT requires us to consider all sets in q̄
and r̄. Just as in solving the covering optimization problem above,
our goal is to avoid enumerating the variants in q̄ and r̄.

We show here how we can reduce our problem of checking if
JaccContT (q, r) ≥ θ by reducing it to the problem of finding the
maximum matching in a weighted bipartite graph. We know that
for two tokensets s1 and s2, JaccCont(s1, s2) ≥ θ ⇔ wt(s1 ∩
s2)(1− θ) + wt(s1− s2)(−θ) ≥ 0. Based on this observation, we
construct a bipartite graph with nodes corresponding to tokens of q
on one side, nodes corresponding to the tokens of r on the other and
add an edge between a node corresponding to tokens e1 ∈ q and
e2 ∈ r if either (1) e1 = e2, with corresponding weight wt(e1) or
(2) e1 → e2 with weight wt(e2) or vice versa, or (3) there is some
e3 with e1 → e3 and e2 → e3; the edge weight here is wt(e3).
In general we could add an edge between two nodes through more
than one of the above ways. In this case, we assign the maximum
weight to the edge.

We add a new set of “mirror” nodes to the side corresponding
to r. This is to account for nodes in q that are unmatched. Hence,
there is one mirror node for each node in q. For token e1 ∈ q let
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Figure 4: Reduction to Weighted Bipartite Matching.

minwt denote the minimum weight among all tokens derived by
e1. We add an edge that connects e1 ∈ q to its mirror node with
weight minwt × (−θ). Since the algorithm for weighted bipar-
tite matching assumes that weights are positive, we make all edge
weights positive by adding a suitably large number M . Figure 4
shows an instance of the bipartite graph as constructed for the pair
q = Olive Grdn and r = Olive Garden. The token weights
and relevant transformations are shown in the figure. The shaded
nodes indicate the mirror nodes. We show the following result:

LEMMA 4. The weight of the maximum matching in the
(weighted) bipartite graph constructed above is at least M |q| if
and only if JaccContT (q, r) ≥ θ.

5. OTHER INDEX PROPERTIES
We now discuss the properties of the index we proposed such as

its size and incremental maintenance.

5.1 Index Size
One of the main questions around the index we described above

relates to its size. In the worst case, the number of minimal-
infrequent sets is exponential in the record size. We now discuss
why we expect the index size to be much smaller in practice.

First, we note that the notion of minimal infrequent sets is closely
related to the data mining notion of maximal frequent item sets [2].
Extensive prior work [18, 27] has shown both analytically and
empirically that the number of maximal frequent item sets in a
database is unlikely to be exponential in the record size. Indeed,
based on this intuition, there are previously proposed algorithms to
compute the set of maximal frequent item sets that are widely ac-
cepted as practical [16]. We argue that a similar intuition applies to
minimal infrequent sets. Along the lines of prior work on frequent
item set mining [27], we characterize the index size by using the
concept of the Vapnik Chervonenkis (VC) dimension.

DEFINITION 6. Fix a collection of sets R drawn from domain
D. A set s ⊆ D is said to be shattered by R if the collection
{s ∩ r : r ∈ R} is the power-set of s. The VC-Dimension of R is
the size of the largest set that can be shattered.

Example 11. Consider the collection R = {r1 =Pizza Hut,
r2 =Madison Olive, r3 =Bamboo Garden, r4 = Olive
Garden Italian American Restaurant}. The set
s = Olive Garden is shattered by R since it is contained in r4,
and we can obtain Olive by intersecting s with r2, Garden by
intersection s with r3 and φ by intersecting s with r1. No set of
size 3 can be shattered by R. Thus, its VC-dimension is 2. 2

Intuitively, a larger VC-dimension indicates a larger degree of cor-
relation among the tokens. We obtain the following result:

LEMMA 5. For reference relation R, consider the collection
Ca(R) consisting of all a-minimal infrequent sets and all a-
frequent sets. Both the index construction time as well as the index
size are worst-case exponential in the VC-Dimension of Ca(R).

This result means that the index size is correlated with the degree
of inter-token correlation. Prior empirical work [27] has shown that
the VC-dimension of various real life data sets is small.

While Lemma 5 provides an upper bound on the worst case of
the index size, the index size could potentially be impractical even
when the VC-dimension is small. For instance, suppose that for
a database with average set size 10, the VC-dimension is 7. It is
possible that a large fraction of size 7 sets get indexed. The number
of such sets could be as large as

(
10
7

)
= 120 times the cardinality

of the relation.
We thus need to understand how many minimal infrequent sets

there could be among all token sets of size d. We now provide
analytical insight into how this number behaves. We show that for
data that is generated independently and uniformly at random, the
expected number of minimal-infrequent sets that are added to the
index decreases sharply as the set size increases.

LEMMA 6. Consider a relation R consisting of N sets each of
size l, generated independently and uniformly at random from a
domain of size D. The expected number of a-minimal infrequent
sets of size d + 1 is at most D × (Nld)a

D(a−1)d ( e
a

)a. (Here, e refers to
the base of the natural logarithm.)

Suppose that N = 107 and l = 10 with D = 106. These
numbers are drawn from the real-life data set Places consist-
ing of addresses and landmarks which we empirically study (see
Section 6). Then, by Lemma 6, the expected number of sets
of size 3 that are minimal infrequent for a = 100 is at most
106 × 101100

1099∗12 ( e
100

)100 << 1.
Of course, the result in Lemma 6 assumes uniformity and inde-

pendence both of which are unlikely to hold in real-life data. How-
ever, the above analysis does hold out the hope that the worst case
behavior of the index size is unlikely to arise in practice. Finally,
we note that the index is parameterized and the parameter can be
used to control its size. As a special case, when a = N , we reduce
to token-lists.

5.2 Generalization
Despite the analysis presented above, we need additional meth-

ods to control the index size should any of the above assumptions
get violated. For example, even though our index is not designed
for large document corpora, it would be useful to have methods that
can help us realize our index for such a scenario. We now discuss
some such methods.

The idea of minimal infrequent sets can be generalized as fol-
lows. Define a property P over sets to be monotonic if: whenever
set s satisfies P , every subset of s also satisfies P . The predicate
freq(s) > a is an example of a monotonic predicate. For a re-
lation R, a tokenset s belongs to the negative border with respect
to a monotonic predicate P if s fails to satisfy P but every proper
subset of s does. We note that the negative border with respect to
the predicate freq(s) > a is exactly the collection of a-minimal
infrequent sets.

We could therefore build inverted lists for tokensets that lie on
the negative border of alternate monotonic predicates. The index
construction algorithm as well as the lookup algorithm are applica-
ble for the negative border of any monotonic predicate. While the
predicate freq(s) > a is useful for indexing as we have discussed
earlier in the paper, we can control the index size using alternate
monotonic predicates. We outline two such possibilities.
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First, we can restrict the cardinality of sets being indexed via the
monotonic predicate freq(s) > a ∧ |s| ≤ l. This ensures that sets
above size l will not even be considered for indexing.

Second, the frequency freq(s) does not have to be measured
over the reference relation. We can for instance measure the fre-
quency of a set in a relation obtained by considering the q-grams
of the strings instead of the entire strings. This does not affect cor-
rectness since the predicate freq(s) > a is monotonic no matter
which relation the frequency is measured over. However, it signif-
icantly impacts the index size since the record sizes in the q-gram
relation are no larger than q. At the same time, we get the effect of
targeting performance benefits for queries that are contained within
a window of size q of the reference records.

The above methods are by no means exhaustive. As noted above,
so long as the predicate is monotonic, our lookup algorithms are
guaranteed to be correct. We use a combination of the above meth-
ods to control the index size in our implementation. Our exper-
iments over various real-life data sets show the success of using
these methods (Section 6). In the rest of the paper, we refer to our
index as the negative border index.

5.3 Index Updates
Now we discuss the problem of incrementally maintaining the

index we have proposed in this paper. When a new record r is
added to (or deleted from) the reference relation, we can sim-
ply add (respectively delete) its record identifier to all sets in
Signatures(r̄) (like a standard inverted index). This method of
maintaining the index does not modify the negative border but
still guarantees correctness of the maintained index structure: one
can think of the maintained index as being based on a monotonic
predicate freq ′(s) > a where the incrementally added records are
not considered in computing freq ′. Of course, this incrementally
maintained index may degrade in performance as lots of additional
records are added. To regain performance guarantees, we can peri-
odically refresh the frequency negative border by splitting sets that
go from infrequent to frequent due to the added records.

6. EXPERIMENTS
In this section, we describe our empirical evaluation of the tech-

niques presented in this paper. The goals of our experiments are to
study the following questions:

• To study the performance benefits of materializing lists in
addition to the basic token-level lists.
• To compare the set-cover based covering algorithm with the

hitting-set based algorithm.
• To study the lookup performance as a function of the query

threshold and the number of transformations matched per
query set.
• To study the index size as a function of parameter settings.

In order to undertake the above study, we compare the following
lookup algorithms — prefix-filtering (PF) which is the state of the
art method based on token-level inverted lists, and the negative-
border (NB) index based algorithms proposed in this paper, both
based on set cover (NB_SC) and hitting sets (NB_HS). We begin
our discussion by describing the implementation details.

6.1 Implementation
We have prototyped the algorithms described in this paper as a

part of our record matching system. This system is a stand-alone li-
brary that performs record matching in-memory. We argue that it is
reasonable to assume that the data and indexes fit in memory given

the increasing sizes of main memory and given that even search
engine indexes built over the entire web corpus are cached in their
entirety in memory [13].

We implement prefix filtering in the presence of transforma-
tions by adapting Algorithm 4.3 as described in Section 4.4.2. For
each of the algorithms, we use the bipartite matching algorithm de-
scribed in Section 4.5 to check if the similarity is indeed above the
input threshold. In the absence of these improvements, the perfor-
mance of prefix filtering suffers by orders of magnitude and hence
we do not report it. For matching transformations, we use the al-
gorithms proposed in prior work [4]. Even though our techniques
can be extended to handle multi-token transformations, our current
implementation only supports single-token transformations.

The transformations we use are generated in three ways. First,
we use a static table that is explicitly input. This table is manu-
ally curated depending on the data set. It is applied only on the
reference relation. On the query side, we programmatically gen-
erate transformations in two ways using a dictionary consisting of
all tokens in the reference relation — (1) for any query token, we
find all reference tokens that are within a given edit distance of the
query token; we refer to this as the edit transformation provider,
and (2) for any query token that is a single character, we find all its
expansions in the reference relation; we refer to this as the abbrevi-
ation provider. We have knobs to control the number of transforma-
tions generated by either of these providers. For the edit provider,
we use the edit distance. For the abbreviation provider, we sort
all expansions returned in increasing order of the weight of the re-
spective tokens to return the top-k; this ensures that more popular
tokens are given higher preference (our weights are determined by
using inverse document frequencies).

We use the apriori algorithm [3] to compute the signatures at
index build time. We adapt it in a straightforward manner to incor-
porate transformations. As noted in Section 3, the frequency oracle
is maintained by storing all a-frequent item sets (we use the apriori
algorithm to build the oracle). When we measure the index size, it
also includes the size of this frequency oracle. For some of the data
sets containing larger sized records, we use the q-gram approach
mentioned in Section 5.2 with q = 10 to build our index. Finally,
all experiments are conducted on a dual-core workstation with an
AMD Opteron processor and 8GB of main memory.

6.2 Data

Data Set Cardinality Average Record Length
(No. of characters)

Places 7 million 9
Citeseer 0.5 million 104
Computer 136,000 669
News 50,000 5759

Figure 6: Data Sets

We consider various real-life data sets of increasing record size
shown in Table 6. The table Places consists of names of vari-
ous landmarks and organizations used in an actual online matching
service. Citeseer refers to citations obtained from Citeseer [12]
— we concatenate the authors, title, journal and year fields to ob-
tain a single string field. The table Computer consists of real-life
product names and attribute values, all concatenated into one sin-
gle field, corresponding to computer products. Finally, even though
the focus of this paper is on record matching where record sizes are
typically not very large, we test our index structure on a News table
that consists of news articles. The data characteristics are shown in
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Table 6. While we report our experiments on index size over all
of the above data sets, we report our performance study over the
Places and Citeseer data sets.

6.3 Performance
We now discuss how the techniques presented in this paper help

improve the execution time of lookup queries. Owing to lack of
space, we report the results of this study over the Places and
Citeseer data sets. Queries are generated by taking a random
subset of the input data itself. Since our focus in this paper is on
asymmetric containment, we cut the query length down by choos-
ing tokens at random from within the query. We fix the query size
to be 5 tokens long in all of our experiments below. There are sev-
eral parameters of interest in this set of experiments — the value of
the index parameter, the query threshold and the number of trans-
formations matched per query. We study the effect of each of these
parameters on the query performance.

6.3.1 Overall Performance
Our first experiment compares the negative border index with

basic prefix filtering. As noted in Section 6.1 above, the implemen-
tation of prefix filtering in the presence of transformations itself
uses our techniques both for similarity computation as well as for
signature generation. Figure 5 shows the results of our experiment
on the Citeseer and Places data sets. We control the num-
ber of transformations per query record to allow a maximum of 10
transformations per record. The X-axis shows the lookup algo-
rithm clustered by data set and the Y-axis shows the execution time
for 10000 queries at a threshold of 0.8 in seconds. As we can see,
materializing lists in addition to the basic inverted lists yields a sig-
nificant benefit in execution time. We get a factor of 3 speed up in
the execution times for both the data sets. We note that this is an im-
plementation of prefix filtering that is enhanced with the techniques
presented in this paper to use bipartite matching for checking the
similarity threshold and the hitting set algorithm for incorporating
transformations. We note that the performance of prefix filtering
in the absence of these optimizations is orders of magnitude worse
and do not report these numbers. For each of the techniques, we
divide the execution times into three parts — (1) verification which
consists of the time to fetch the rid lists and process each of the rids
(either by running the similarity computation algorithm or detect-
ing that the rid had been fetched before), (2) signature generation

time, and (3) the rest which consists of tokenization, transformation
matching and iterating over the output. We first note that using our
index, we can perform lookups at the rate of over 400 per second
(yielding an average query time of under 3 ms) even over 7 million
rows when there are string transformations based on edit distance
and abbreviations in the picture; if we materialize these transfor-
mations, their number exceeds 20 million. Further, we can also see
that (1) the reference comparison time is the dominant factor in the
execution time, (2) the negative border index gains over prefix fil-
tering in reducing the number of rids processed at a relatively small
price of increased time in signature generation, (3) the set-cover
based covering algorithm takes longer to run than the hitting set
based covering algorithm; in the case of Citeseer data, it takes
significantly longer and so (4) the benefit yielded by set cover in
reduced verification time is overshadowed by the signature genera-
tion time.

6.3.2 Space-Time Tradeoff
The speed up yielded by the negative border index comes at the

expense of an increase in index size. In order to study the space
time tradeoff, we vary the index parameter a and measure how both
the index size as well as the query performance vary. Figure 7(a)
shows the result of the plot. The X-axis shows the index parameter
and the Y-axes represent the size as a ratio over the size of standard
inverted lists as well as the query execution of 10000 lookups in
seconds when the number of transformations per query is bounded
at 10 and the lookup threshold is 0.8. This is shown for the Places
data but we note that similar results hold for the Citeseer data
set as well. We can see the expected tradeoff that as the value of
the parameter increases, the space consumed decreases whereas the
execution time increases (we have also shown the execution time
of prefix filtering for comparison). The results reported in Figure 5
are for the value of the parameter a = 200 for which the space
consumed by our index is about 15% more than that of standard
inverted lists.

6.3.3 Effect of Transformations
String transformations are a crucial design point in our tech-

niques. We thus study what effect they have on the query perfor-
mance. We fix the lookup threshold at 0.8 and vary the number of
transformations per query record starting with no transformations
at all up to a maximum of 50 transformations per record. As noted
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Figure 7: (a)Space-time Tradeoff (b)Varying Query Threshold (Places Data Set)

earlier, we do this by varying the knobs we have on the edit and ab-
breviation transformation providers. Figure 7(b) shows the result
of this study for the Places data set. Again, the X-axis shows
the lookup algorithm clustered by the number of transformations
applied and the Y-axis, the execution time for 10000 queries. We
can see that as expected, the execution time increases as the num-
ber of transformations increases. However, for the set cover based
covering algorithm, the signature generation time increases sharply
when the number of transformations per record is bounded at 50.
This becomes a significant portion of the overall execution time
making the set cover based algorithm substantially slower than the
hitting set algorithm. Even though the hitting set algorithm has
no approximation guarantees, it does only slightly worse than the
set cover algorithm in terms of reference comparisons while at the
same time performing signature generation efficiently.

6.3.4 Effect of Query Threshold
We also study the effect of the lookup threshold on the various

algorithms, fixing the transformations per query at 10. Figure 7(c)
reports the results of this study with the signature scheme on the
X-axis clustered by the value of the threshold and the execution
time on the Y-axis. As expected, the execution time increases as
the lookup threshold decreases. In fact, both signature generation
and reference comparisons become more expensive as the query
threshold decreases as can be seen from the Figure.

6.4 Index Size
We next report the results of our experiment which studies the

behavior of the index size as the index parameter a is varied. We
consider relatively small values of parameter a in order to under-
stand whether the worst case of the index size is realized in practice.
Intuitively, the index size is expected to grow with the record size.

Figure 8 shows the size of the index for each of the data sets
in Figure 6 for small values of the index parameter a. We report
the size as a ratio of the index size to the size of standard inverted
lists. This ratio is reported on the Y-axis and the X-axis shows the
value of parameter a. As we can see, even though the size is bigger
than that of inverted lists as expected, it is far from the worst case
even for data consisting of large bodies of text such as the News
data. This is consistent with our analysis in Section 5. We note
here that for the Computers and News data, we use the q-gram
frequency as discussed in Section 5.2 with q = 10 to cut down
the index construction time. With this additional optimization, the
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Figure 8: Index size (as a ratio of standard inverted lists).

index construction times for each of the data sets is less than half
an hour, including the time spent in building the frequency oracle.

6.5 Summary
In summary, we make the following observations from our ex-

periments.

1. The benefit of the extra space consumed by the index is in
improving the performance of error-tolerant set containment
lookups significantly. We can perform over 400 lookups per
second over a reference relation of 7 million rows in the pres-
ence of transformations programmatically generated from to-
ken edits and abbreviations (when materialized, the number
of transformations exceeds 20 million). In contrast, if we do
not enhance prefix filtering with the algorithms presented in
this paper, the performance is orders of magnitude worse.

2. While the set cover lookup algorithm often yields significant
improvements in running time, it has the potential to take
huge amounts of time in signature generation for reasons
discussed in Section 4. This can over-shadow the benefits
yielded in reducing the verification time.

3. We find that the worst case of the negative border index pro-
posed by us is not realized over various real life data sets of
increasing complexity. This is the case even for small values
of the input parameter a.

7. RELATED WORK
Recognizing set based similarity as a useful primitive for error-

tolerant string matching, efficient similarity search techniques have
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been proposed [1, 6, 10, 15, 29, 31]. All of these methods work
with symmetric similarity functions, most notably Jaccard simi-
larity. In this paper, we study Jaccard containment which is an
asymmetric similarity function that is an error-tolerant version of
set containment. We also handle string transformations. To the
best of our knowledge, this specific combination of Jaccard con-
tainment coupled with transformations has not been addressed in
prior work.

A closely related area is that of exact set containment index-
ing [11, 9, 24, 25, 28]. The value of constructing inverted lists
corresponding to sets of keywords rather than individual keywords
has been recognized earlier [9, 11] in this context. Some of this
work has exploited the benefits of a power law [9] that real data
sets often satisfy. Recent work [11] has used set frequencies as a
basis for indexing. The main distinction from our approach is that
instead of indexing minimal-infrequent token sets, any token set
which can be obtained from a frequent set by adding one element
is indexed. The number of such token sets is strictly larger than
the number of minimal-infrequent sets. While this additional space
consumption is beneficial for exact set containment, this is not the
case under our covering based lookup framework.

Besides record matching, error-tolerant set containment is of rel-
evance also in keyword search. For instance, it can be used to de-
fine an error-tolerant semantics for keyword search over databases.
It is also applicable in performing fuzzy autocompletion [21, 23]
where we have to identify matches from the underlying reference
relation early on as the query string is being typed. For example,
the TASTIER system [23] supports type ahead search by exploiting
a trie in conjunction with inverted lists. Our work is complimen-
tary to theirs: it will be interesting to investigate ways to use the
techniques proposed in our paper as part of autocompletion.

The concept of minimal infrequent sets relates closely to fre-
quent item sets in data mining [2]. There is a large body of work
on computing frequent item sets in data mining (See [16] for a sur-
vey). Any of these algorithms can be adapted for index construc-
tion. Our query time algorithms also draw upon ideas from work
done in mining frequent item sets [18, 30].

Finally, previous work [4] has reduced the problem of computing
the Jaccard similarity under transformations to the problem of find-
ing the maximum matching in a bipartite graph. But this previous
reduction was for the special case of unweighted Jaccard similarity.
In contrast, our technique presented in Section 4.5 is for weighted
Jaccard containment.

8. CONCLUSIONS
In this paper, we studied the indexing problem for the Jaccard

containment similarity function enhanced with string transforma-
tions. To the best of our knowledge, indexing this specific form
of error-tolerant set containment has not been studied in prior
work. We proposed a parameterized index structure that creates
inverted lists for token-sets that are minimal-infrequent. We also
proposed lookup algorithms that used our index structure to pro-
vide an output-sensitive guarantee for error-tolerant set contain-
ment. Our experiments over real-life data showed the benefit of
our techniques. Finally, our experiments on the index size showed
that across a wide variety of data sets, the size of the index remains
far from its worst case, which is consistent with our analysis.
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