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ABSTRACT
We consider the problem of learning a record matching package
(classifier) in an active learning setting. In active learning, the
learning algorithm picks the set of examples to be labeled, unlike
more traditional passive learning setting where a user selects the
labeled examples. Active learning is important for record match-
ing since manually identifying a suitable set of labeled examples
is difficult. Previous algorithms that use active learning for record
matching have serious limitations: The packages that they learn
lack quality guarantees and the algorithms do not scale to large
input sizes. We present new algorithms for this problem that over-
come these limitations. Our algorithms are fundamentally differ-
ent from traditional active learning approaches, and are designed
ground up to exploit problem characteristics specific to record
matching. We include a detailed experimental evaluation on real-
world data demonstrating the effectiveness of our algorithms.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Algorithms, Performance

Keywords
Data Cleaning, Record Matching, Active Learning

1. INTRODUCTION
Record Matching is the problem of identifying matching or du-

plicate records, records that correspond to the same real-world en-
tity. An example record matching task is to identify bibliographic
records in Citeseer [13] and DBLP [18] that correspond to the
same publication. Figure 1 shows a toy example with two tables
R (records R1-R3) and S (records S1-S3) containing organization
names and addresses, and the goal is to find pairs of records that
represent the same organization; these are likely to be the pairs (R1,
S3) and (R2, S2). Record matching is a well-studied problem and
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ID Name Street City Phone

R1 SWI Alloys Inc 456 Medical
Dr

Albany 5181234567

R2 ABC Rural
Telephone

1234 Market
St

Fremont 3179876543

R3 Bank of New
York

1 E 31st St New
York

2120001111

S1 First Tech 156th Ave Boise

S2 ABC Cellular PO Box 9862 Fremont 3179876543

S3 SWI Alloys 456 Medical
Dr

Albany

Figure 1: An example record matching task

has applications in information integration [5, 22], data warehous-
ing [1], census data [42] and health-care records management [35].

The standard approach to record matching is to use textual simi-
larity between the records to determine whether or not two records
are matches [20]. Informally, in Figure 1, the matching pair (R1,
S3) is textually similar, while the non-matching pair (R1, S1) is not.
Current approaches typically compute a variety of similarity scores
for a candidate pair of records and these scores are combined using
some logic to determine if the pair is a match or not. A similar-
ity score quantifies textual similarity between the two records on
some subset of attributes, and is computed using a string similarity
function such as edit distance, jaccard, and cosine similarity [20].

Since manually coming up with a logic for combining similar-
ity scores is difficult, the current state-of-art uses a learning based
approach: In this approach, record matching is viewed as a classifi-
cation problem where each pair has to be classified as a match or a
non-match, and a suitable classifier is learned using labeled exam-
ples of matching and non-matching pairs. The pair-wise similarity
scores serve as features for the classification. Prior work has con-
sidered a variety of classifiers such as SVMs [7], decision trees [11,
37], and naive Bayes [42].

However, there is a crucial difference between record matching
and standard classification problems: In a typical record match-
ing task, the number of non-matches far exceeds the number of
matches. For concreteness, consider a record matching task involv-
ing two tables with a million records each, and assume that each
record matches with 10 records of the other table on average. The
number of matches for this task is ≈ 107, while the number of
non-matches is ≈ 1012. This imbalance makes it very difficult to
identify a suitable set of labeled examples so that a learned clas-
sifier has high quality [37]. Standard techniques such as picking
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pairs of records at random or using some other distribution do not
work very well. Prior work [8, 11] has proposed using a filter based
on textual similarity to eliminate a large number of non-matches
followed by sampling to pick examples. As we show using our
experiments, while this approach mitigates the problem described
above, it does not eliminate it. It introduces the additional problem
of picking a good filter.

Active Learning: Motivated by these considerations, we explore
the use of active learning for record matching. In active learning,
the learning algorithm itself picks the examples to be labeled. The
hope is that the algorithm can exploit this additional flexibility to
pick examples that are most informative for the learning task. This
eliminates the user’s burden of picking suitable examples or a good
filter.

While active learning has been previously studied for record
matching [37, 40], the proposed algorithms have two limitations:
First, these algorithms do not provide a principled interface using
which a user can control the quality of a learned classifier. (Infor-
mally, in record matching, the quality of a classifier is measured
using its precision and recall; the recall of a classifier is the num-
ber of pairs that it classifies as a match and the precision is the
fraction of these pairs that are true matches.) For example, we
do not know of a systematic way of using the algorithms of [37,
40] to ensure that the learned classifier has precision above some
threshold. Further, we observed in our experiments that the behav-
ior of these algorithms can be unpredictable and precision and/or
recall of the learned classifier can decrease when more labeled ex-
amples are provided. This unpredictability makes it difficult to use
these algorithms in record matching settings with specific quality
requirements. A second limitation of these algorithms is that they
do not scale to large inputs. For each requested label, these algo-
rithms iterate over all record pairs, and the number of such pairs is
quadratic in the input size. However, we can address this limitation
using blocking techniques as we discuss subsequently.

We propose new algorithms for active learning of record match-
ing classifiers. Our algorithms cover decision trees and linear clas-
sifiers (which include SVMs), and do not have the limitations of
previous algorithms: In particular, our algorithms allow a user to
specify a precision threshold as input. The learned classifier is
guaranteed to have a precision greater than this threshold and (un-
der certain reasonable assumptions) recall close to the best possible
given the precision constraint. Our algorithms also differ from pre-
vious algorithms in that they are designed from scratch for record
matching, and do not just invoke a known learning algorithm as a
black-box. This enables our algorithms to exploit problem features
that are specific to record matching. Our active learning algorithms
can also be easily adapted to yield new learning algorithms in the
traditional passive learning setting.

Efficiency considerations: For large record matching instances,
it is inefficient to consider all pairs of candidate records, classify
them as a match or non-match, and output those classified as a
match. The traditional approach to handling this problem is to use
blocking [6, 32]. Blocking is a heuristic filtering step that selects a
subset of candidate pairs of records, and only the selected pairs are
considered for subsequent classification. A good blocking scheme
has an efficient implementation and eliminates few true matches.
An example blocking scheme for the instances like Figure 1 is to
select pairs of records that agree on the first letter of the Name col-
umn for subsequent classification. A more sophisticated blocking
scheme is to select pairs that have jaccard similarity at least 0.8

on the Name column; such string-similarity joins can be efficiently
evaluated using techniques proposed in [2, 25, 38].

We develop a simple integration of blocking into the learning
problem that enables our algorithms to handle large inputs. Given
a blocking scheme, our algorithms learn a classifier that when used
in conjunction with the blocking scheme, has maximum recall and
precision above a specified threshold. This integration of block-
ing and active learning reduces the number of labeling requests.
For example, assume that the first letter blocking scheme described
above is used for record matching. An active learning algorithm
without a knowledge of this blocking scheme might request a la-
bel for a pair that does not agree on the first letter, and the labeling
effort on that pair is wasted since such pairs would never be con-
sidered for classification. We argue that previous algorithms [37,
40] can also be modified to similarly exploit blocking functions. In
our experiments, we use these algorithms with this modification for
comparison purposes (and demonstrate that our algorithms perform
better).

Roadmap: In Section 2, we introduce definitions and notation and
formalize the active learning problem. In Section 3, we introduce
and discuss an interesting monotonicity property in record match-
ing, which is exploited in the design of our algorithms. We present
our algorithms in Sections 4 and 5, and evaluate their performance
empirically in Section 6. We cover related work in Section 7.

2. PRELIMINARIES
The record matching problem is the problem of identifying all

pairs of matching records (r, s) ∈ R × S, given two sets of input
records, R and S. Two records match if they represent the same
real-world entity. This notion of a match lacks a precise character-
ization; a human judge would typically use a variety of semantic
cues to determine if two records match or not.

Our overall goal is to learn a record matching package for inputs
R and S. A record matching package for R and S is a program
that performs record matching over them, i.e., its desired output is
the set of all matching pairs (r, s) ∈ R × S. Since record match-
ing is an informally stated task, it is difficult to learn a “perfect”
record matching package that produces exactly the desired output,
so our goal is to learn a package that closely approximates the ideal
output.

The degree of approximation is typically measured using two
well-known statistics: precision and recall [7, 37]. The precision
of a package is the fraction of predicted matches (pairs in its out-
put) that are true matches. The recall of a package is the number of
predicted matches, i.e., its output size. Our definition differs from
the classical definition from information retrieval [4]: the fraction
of true matches that are also predicted as matches by a package.
Our definition is simpler to calculate, while retaining the utility of
the classical definition for purposes of comparing different pack-
ages. Given a record matching package, we can easily compute its
precision and recall. The recall of the package is simply its output
size. The precision of the package can be estimated by labeling a
random sample of output records.

We seek record matching packages with high precision and re-
call. However, maximizing precision and maximizing recall are
conflicting goals: we can increase precision at the cost of recall and
vice-versa. For example, the record matching package that outputs
the entire (R × S) has high recall but is likely to have low preci-
sion. Similarly, the package that outputs only identical records as
matches is likely to have high precision, but low recall. The above
discussion raises the question of how we define the “best” package.
In this paper, we seek a record matching package that maximizes
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recall while ensuring that the precision is at least τ for some input
threshold τ ∈ [0, 1]. Prior work [7, 37] has considered other def-
initions for the best package, such as the one that maximizes the
F-measure.

An alternative quality measure would be the misclassification
rate, defined as the fraction of record pairs that are incorrectly clas-
sified by the package. This quality metric is standard for many
classification problems but unsuitable for record matching, since,
typically, the number of non-matches far exceeds the number of
matches [37]. Therefore, a package that outputs an empty set im-
plicitly classifying all pairs as non-matches has very low misclas-
sification rate, but is not very useful.

Similarity Space
As mentioned in Section 1, record matching packages use textual
similarity between two records to decide if they are matches or not.
Formally, we assume there exist d predefined similarity dimensions
for a given record matching task: F̄ = F1, . . . , Fd. A similarity
dimension measures the similarity between an attribute ofR and an
attribute of S using a similarity function. Without loss of general-
ity, we assume that all similarity functions return values in the range
[0, 1]. We can map every pair (r, s) ∈ R × S to a d-dimensional
similarity vector 〈f1, . . . , fd〉 ∈ [0, 1]d, which we denote F̄ (r, s);
fi is the similarity between r and s on dimension Fi. (In machine
learning terminology, F̄ (r, s) is the feature vector which forms the
basis for classifying the pair as a match or non-match.) We call the
space of vectors in [0, 1]d the similarity space.

Example 1. Consider a hypothetical record matching task in-
volving tables ORG-R and ORG-S. Both tables have the same
schema: (Name, Street, City, Phone), and contain organization
records. An example similarity dimension is Jaccard (Name),
which represents jaccard similarity on the Name attribute. The
same attribute can be used with more than one similarity function:
e.g., we can have Edit(Name) and Jaccard (Name) as two dimen-
sions. 2

Record Matching Package Classes
A record matching package M is conceptually a classifier that
classifies a record pair as a match or a non-match based on their
similarity vector. Formally,M is a binary function with signature
[0, 1]d → {true, false}. A pair (r, s) ∈ R × S is classified as a
match ifM(F̄ (r, s)) = true and a non-match ifM(F̄ (r, s)) =
false . In the following, we shortenM(F̄ (r, s)) toM(r, s).

Two popular and well-studied classifiers for record matching are
SVMs [9] and decision trees [36]. Prior work [37] has shown
that other common classifiers such as naive Bayes [33] are less
suited for record matching compared to SVMs and decision trees.
We now define two classes of binary functions, threshold-based
boolean function and linear classifiers that subsume decision trees
and SVMs. In particular, threshold-based boolean functions are
generalizations of decision trees, while SVMs (without the kernel
trick [9]) are instances of linear classifiers.

Definition 1. A threshold-based boolean function (hereafter, a
threshold function) is a boolean formula whose basic propositions
are of the form (Fi ≥ θ). For a similarity vector f = 〈f1, . . . , fd〉,
the predicate (Fi ≥ θ) evaluates to true iff fi ≥ θ.

Definition 2. A linear classifier L is of the form
∑

i wiFi ≥ 1,
where wi, i ∈ [1, d] are real numbers. L evaluates a similarity
vector f = 〈f1, . . . , fd〉 to true iff

∑
i wifi ≥ 1.

Example 2. For the record matching task of Example 1, an ex-
ample threshold function is (Jaccard (Name) ≥ 0.7) ∧ (Jaccard

(Street)≥ 0.6)∨(Equality(Phone) = 1.0). An example of a linear
classifier is (0.5 · Jaccard (Name) +0.7 · Jaccard (Street) ≥ 1.0).
2

Basic Problem Formulation
We can now state the problem of learning a record matching pack-
age as follows: Given two sets of input records R and S, a set of
predefined similarity dimensions F̄ = F1, . . . , Fd over schema of
R and S, and a precision threshold τ , learn a record matching pack-
age (belonging to one of the two classes above) with precision at
least τ that maximizes recall. The learning algorithm has access to
a human labeler, who can label selected pairs (r, s) ∈ R × S as a
match or a non-match.

An algorithm for the learning problem has two associated costs—
labeling cost and computational cost—that we seek to minimize.
The labeling cost is the number of examples for which it requests
labels and the computational cost is the time it takes to produce its
output. We believe that labeling is a more expensive resource, so
(informally) we seek to minimize labeling cost, while keeping the
computational cost within reasonable limits.

Efficiency Considerations
For large inputs R and S, it is impractical to enumerate all pairs
(r, s) ∈ R × S, classify them using a learned classifier M, and
output the matches. As mentioned in Section 1, the traditional
approach to scaling record matching to large inputs involves the
use of blocking [6, 32] as a pre-filtering step. A blocking scheme
quickly identifies a relatively small subset of record pairs, and only
these pairs are considered for subsequent classification. Formally,
we define a blocking scheme as a binary function B: R × S →
{true, false} with the property that the set of all (r, s) ∈ R × S
such that B(r, s) = true can be efficiently computed. We note
that our definition of a blocking function is fairly general. In par-
ticular, a blocking function can be a string similarity predicate such
as (Jaccard ≥ θ) and, more generally, a disjunction of a small
number of such predicates. When a blocking function B is used
in conjunction with classifierM, the end-to-end record matching
package corresponds to the binary function (B ∧M).

We integrate blocking into the learning problem by providing
the learning algorithm knowledge of the blocking function B. For-
mally, the modified learning problem is the following: Given R, S,
F̄ , and τ as before, and a blocking function B, identify a binary
functionM such that the precision of (B∧M) is at least τ and the
recall of (B ∧M) is maximized.

There are two advantages to integrating blocking with learn-
ing. First, it allows the learning algorithm to scale to large inputs;
in fact, previous active learning algorithms [37, 40] can also be
modified to exploit blocking and scale to larger inputs. Second,
the integration eliminates inefficiencies in learning since the learn-
ing algorithm can avoid seeking labels for pairs (r, s) such that
B(r, s) = false .

3. MONOTONICITY OF PRECISION
Informally, we expect a pair of records that is textually similar to

be more likely a match than a pair that is not. As we will see, this
simple observation can be exploited while learning record match-
ing packages. We formalize this observation, which we call the
monotonicity of precision, next.

We define a partial ordering (�) on points in similarity space.
Let f = 〈f1, . . . fd〉 and g = 〈g1, . . . , gd〉 be two points in [0, 1]d.
We say that g dominates f , denoted g � f (equivalently, f � g)
if fi ≤ gi for all 1 ≤ i ≤ d. If f � g and fi 6= gi for some
1 ≤ i ≤ d, we denote f ≺ g (equivalently, g � f ).
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A closed region C in similarity space is a set of points with the
property that any two points in C can be connected by a curve that
lies wholly within C. We say that a closed region C1 dominates a
closed region C2, denoted C1 � C2, if every point in C1 dominates
every point in C2. Figure 2(a) shows two closed regions C1 � C2
in a two-dimensional similarity space. Given input tables R and S,
we define the precision of a closed region C, denoted Prec(C) to
be the fraction of matches among pairs (r, s) ∈ R× S that belong
to C, i.e., F̄ (r, s) ∈ C. Similarly, we define recall of C, denoted
Recall(C) to be the number of pairs (r, s) ∈ R × S that belong to
C.

Definition 3. Given input tables R and S, a set of similarity di-
mensions F̄ = F1, . . . , Fd, we say that precision is monotonic
with respect to similarity if for any two closed regions C1 � C2 in
[0, 1]d, Prec(C1) ≥ Prec(C2). If precision is monotonic with re-
spect to similarity, we say that the monotonicity assumption holds.

If the monotonicity assumption is valid, then the precision of region
C1 is higher than the precision of region C2 in Figure 2(a).

This monotonicity assumption while intuitive is not universally
valid. We can easily construct a set of meaningless similarity di-
mensions for which the precision is not monotonic. Even for stan-
dard similarity functions and real-world record matching tasks, the
monotonicity assumption is not valid at the record level, since we
can usually find a non-matching record pair whose similarity vector
dominates that of a matching record pair.

However, in practice, the monotonicity assumption generally
holds when the recall of C1 and C2 is high. In other words, the
monotonicity assumption holds in “aggregation” when both C1 and
C2 contain a large number of record pairs (r, s) ∈ R × S. Fig-
ures 2(b) and 2(c) illustrate the monotonicity assumption for two
real-world datasets . The details of the datasets are provided in
Section 6. Figure 2(b) uses the publication domain. It plots the pre-
cision of five non-overlapping regions, where each region contains
points with jaccard similarity (over citation strings) in some range.
For example, the region corresponding to the range [0.38, 0.40]
dominates the region corresponding to the range [0.36, 0.38], and
we see a decrease in precision. Figure 2(c) uses the organization
domain, and the regions are now defined by considering the aver-
age of jaccard over name and jaccard over address strings. Again,
we can verify that the monotonicity assumption holds for these re-
gions. We have empirically verified the monotonicity assumption
for a variety of other datasets; some of these results are included in
the full version of the paper.

Implications for Learning Record Matching Packages
When precision is monotonic with respect to similarity, we can re-
strict ourselves to a simpler class of binary functions called mono-
tonic binary functions (formalized in Theorem 1). A binary func-
tion M is monotonic if for any two similarity vectors f � g,
M(g) = true ⇒ M(f) = true . A threshold function is mono-
tonic if it does not involve any negations and a linear classifier∑

i wiFi ≥ 1 is monotonic if each wi ≥ 0.

THEOREM 1. For any record matching task for which mono-
tonicity assumption holds, if there exists a binary functionM with
precision ≥ τ and recall r, then there exists a monotonic binary
functionM′ with precision ≥ τ and recall ≥ r.

The above statement holds even if we consider exclusively thresh-
old functions or linear classifiers. In the full version of the paper,
we formally show that even when monotonicity of precision holds
only approximately, we can restrict ourselves to monotonic func-
tions, without sacrificing much quality.

In the following, we use the above observations to restrict our-
selves to monotonic binary functions. Further, our learning algo-
rithms are designed assuming precision is monotonic. Designing
algorithms assuming monotonicity might seem ad hoc given that
monotonicity is not universally valid (although as we discussed ear-
lier it is generally valid in an aggregate sense in practice). We ar-
gue that whether or not monotonicity is completely valid, we can
view it as a useful trade-off between learning efficiency and quality.
We might possibly miss the best package by (incorrectly) assum-
ing monotonicity, but the assumption makes the learning problem
more tractable. The monotonicity assumption is similar in spirit
to the independence assumption in naive Bayes classifier [33]: in
practice words in documents are strongly correlated, but we can
learn a useful classifier by assuming words to be independent. In
Section 6, we also provide empirical justification for designing our
algorithms around monotonicity, demonstrating that our algorithms
perform significantly better than state-of-art algorithms which do
not assume monotonicity.

4. ALGORITHMS
We now present our algorithms for learning record matching

packages. For simplicity of exposition, we present our algorithms
for the basic learning problem without a blocking function. Ex-
ploiting blocking functions is discussed in Section 5.

4.1 Conjunction of Similarity Thresholds
We now consider a simple class of threshold functions obtained

by conjunction of threshold predicates. Without loss of generality, a
functionM belonging to this class is of the form (F1 ≥ θ1)∧· · ·∧
(Fd ≥ θd). There exists a one-one correspondence between func-
tions belonging to this class and points in the similarity space. The
functionM above corresponds to the point p = 〈θ1, . . . , θd〉, and
note that for any f ∈ [0, 1]d,M(f) = true iff p � f . We define
precision and recall of a point p (denoted Prec(p) and Recall(p))
to be the precision and recall of its corresponding function. The
problem of finding a function M with maximum recall such that
Prec(M) ≥ τ is therefore equivalent to the problem of finding a
point p ∈ [0, 1]d with maximum recall and precision ≥ τ .

The naive algorithm enumerates all points p ∈ [0, 1]d and calcu-
lates their precision and recall. Among all points p with Prec(p) ≥
τ , it picks as its output the point with maximum recall.

The naive algorithm is infeasible since there are an infinite num-
ber of points in p ∈ [0, 1]d. We can use a simple approximation
trick to make the number of points finite1: We fix a integer value
k, called the granularity parameter. We define a special set of
(k + 1)d points, called points at granularity k, to be the set of all
points of the form p = 〈p1, . . . , pd〉, where each pi is of the form
j/k, j ∈ {0, 1, . . . , k}. If we partition the similarity space into kd

identical cells with sides (1/k), then the vertices of the cells cor-
respond to the points at granularity k. Figure 3(a) illustrates this
concept for k = 10 and d = 2. Instead of considering all points in
[0, 1]d, the modified naive algorithm only considers points at gran-
ularity k, and outputs the point with maximum recall subject to the
precision constraint. If M denotes the maximum number of pairs
in (R× S) that belong to any single cell, then this algorithm picks
a point whose recall is at most M away from the optimal recall.

To implement this algorithm, we need to compute precision and
recall of various points. In this section, we develop our algorithms
assuming two oracles that compute precision and recall of a binary

1The number of points can also be made finite by only considering
points F̄ (r, s), (r, s) ∈ R×S. However, enumerating these points
is expensive as well.

786



0.0 1.0

1.0

0.0

C2

C1

Similarity Dimension F1

Si
m

ila
ri

ty
 D

im
en

si
o

n
 F

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[0.30,0.32] [0.32,0.34] [0.34,0.36] [0.36,0.38] [0.38,0.40]

P
re

ci
si

o
n

Jaccard (Citation)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[0.50,0.55] [0.55,0.60] [0.60,0.65] [0.65,0.70]

P
re

ci
si

o
n

(Jaccard(Name) + Jaccard(Address))/2

(a) Closed regions in similarity space (b) Monotonicity for publication data (c) Monotonicity for organization data

Figure 2: Monotonicity Assumption

function (recall that a point is an instance of a binary function).
We analyze the cost of our algorithms using the number of calls to
these oracles that the algorithms make. In Section 5, we discuss
the implementation of these oracles. As we will see, computing
precision requires human labeling while computing recall does not.
We therefore primarily seek to minimize the number of calls to the
precision oracle.

4.1.1 Exploiting Monotonicity of Precision
We now improve upon the naive algorithm by exploiting mono-

tonicity of precision with similarity. Consider two points p1 � p2
such that Prec(p1) ≥ τ . If we assume monotonicity of preci-
sion, we can prove that Prec(p2) ≥ Prec(p1) ≥ τ . We also
observe that recall has an anti-monotonic property: if p1 � p2
then Recall(p1) ≥ Recall(p2). This property follows from the
definition of recall and, unlike monotonicity of precision, is uncon-
ditionally true. The above discussion suggests that we can remove
from consideration points such as p2 which dominate another high-
precision point. In other words, it is sufficient to consider points p
that are “minimally precise,” meaning any point p′ ≺ p does not
satisfy the precision constraint. We formalize this notion with re-
spect to an arbitrary monotonic binary predicate2 Pred .

Definition 4. Given a monotone binary predicate Pred defined
over points in [0, 1]d, we say a point p ∈ [0, 1]d is minimally true
(or MinTrue) if Pred(p) = true and ∀p′ ≺ p Pred(p′) = false .
We denote using MinTrue(Pred) the set of all minimally true
points for Pred .

The dual notion of maximally false is also useful:

Definition 5. Given a monotone binary predicate Pred defined
over points in [0, 1]d, we say a point p ∈ [0, 1]d is maximally false
(or MaxFalse) if Pred(p) = false and ∀p′ � p Pred(p′) = true .
We denote using MaxFalse(Pred) the set of all maximally false
points for Pred .

We call a point p a boundary point if it is either minimally true or
maximally false. When considering points at some granularity k,
the universal quantifier in the above definitions is with respect to
points at granularity k.

Example 3. Figure 3(a) illustrates these ideas for d = 2. The
dotted curved-line is the Prec() ≥ τ boundary; all points above
2A monotonic binary predicate is simply a monotonic binary
function:[0, 1]d → {true, false}

Algorithm 1 ALGP: Learning a conjunction of similarity thresh-
olds

Inputs: τ : precision threshold; k: granularity parameter
1: pbest ← null . current best point
2: rbest ← 0 . current best recall
3: for all p ∈ MinTrue(Prec(p) ≥ τ) do
4: if Recall(p) > rbest then
5: pbest ← p
6: rbest ← Recall(p)
7: end if
8: end for
9: output pbest

the line have precision ≥ τ and all points below, < τ . The set
of all MinTrue points (for Prec() ≥ τ ) at granularity k = 10 are
shown using green circles and the set of all MaxFalse points, using
red squares. 2

Algorithm ALGP (Algorithm 1) formalizes the discussion above: it
enumerates all MinTrue(Prec() ≥ τ) points at granularity k, and
outputs the one with best recall.

We next consider the problem of enumerating MinTrue(Prec()
≥ τ). This problem is related to the problem of identifying maxi-
mal frequent itemsets in data mining [24]. If we view itemsets as bi-
nary vectors in some high dimensional space, the maximal frequent
itemsets with frequency ≥ T are precisely the set of MaxFalse
points with respect to the predicate (Frequency < T ). (The enu-
meration of MinTrue and MaxFalse points are dual problems.)
Our problem is more general since we deal with non-binary vectors
and, accordingly, our algorithm for enumerating MinTrue points
is a generalization of the algorithm presented in [24].

Algorithm 2 presents ENUMERATEBOUNDARY, an algorithm for
enumerating boundary points (MinTrue and MaxFalse) for a gen-
eral monotonic binary predicate Pred . ALGP invokes ENUMER-
ATEBOUNDARY with the predicate Prec() ≥ τ . In Section 4.1.2
we present a more sophisticated algorithm for learning conjunction
of thresholds that uses ENUMERATEBOUNDARY with a different
predicate.

ENUMERATEBOUNDARY maintains the “current” set of mini-
mally true and maximally false points in the variables MinTrueSet
and MaxFalseSet , respectively. Each iteration of the algorithm
adds a new point to either MinTrueSet (Step 8) or MaxFalseSet
(Step 12). At all times, the algorithm maintains in variable
MaxCand (for maximal candidates), the set of all maximal points
p with the property ∀pmt ∈ MinTrueSet , pmt � p and ∀pmf ∈
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Figure 3: Running example for Section 4.1

MaxFalseSet , p � pmf . The points p in MaxCand are maximal
in the sense that no other point p′ � p has this property.

In each iteration, ENUMERATEBOUNDARY picks a point p from
MaxCand (Step 5). If Pred(p) = false , then we can prove that
p is a maximally false point, and p is added to MaxFalseSet (Step
12). If Pred(p) = true then, by definition, there exists some
minimally true point pmt � p, not in the current MinTrueSet .
ENUMERATEBOUNDARY uses subroutine FINDMINTRUE (Algo-
rithm 3) to find one such point, and adds it to MintrueSet (Step
8). When a new MinTrue point is found, MaxCand needs to
be updated to preserve the invariant stated earlier. Due to space
constraints we defer the details of procedure UPDATECANDIDATES
that updates MaxCand to the full version of the paper.

Example 4. Figure 3(b) illustrates a possible state of ENUMER-
ATEBOUNDARY after four iterations over the running example in-
troduced in Example 3. At this point, MinTrueSet contains three
points shown as green circles and MaxFalseSet contains one point
shown as a red square. The points in MaxCand are shown as blue
stars. 2

We next discuss the procedure FINDMINTRUE (Algorithm 3) for
finding a minimally true point starting with a true point p. FIND-
MINTRUE starts with point p and navigates the similarity space to
a MinTrue point that p dominates. In particular, FINDMINTRUE
navigates through a sequence of points p = p0  p1  · · · pd,
and returns pd as its output. Point pi agrees with point pi−1 on
all dimensions except i. For dimension i, pi contains the smallest
value v/k such that Pred(pi) remains true; the smallest value is
found using binary search. We can prove that the final point pd is
minimally true and pd � p.

Example 5. Figure 3(c) illustrates FINDMINTRUE for our run-
ning example for the predicate Prec() ≥ τ . FINDMINTRUE nav-
igates through the points p  p1  p2, and returns p2 as a
MinTrue point. The points at which the algorithm evaluates pre-
cision to check if it is ≥ τ are also shown. 2

Analysis of AlgP
The following lemma characterizes the overall performance of
ALGP in terms of the number of calls to the precision and recall
oracles. These are roughly proportional to the number of boundary
points for the predicate Prec() ≥ τ .

LEMMA 1. The number of points p for which ALGP evaluates
precision Prec(p) is O(log k · d · |MinTrue|+ |MaxFalse|). The
number of points p for which it evaluates the recall Recall(p) is
O(|MinTrue|).

We can use Lemma 1 to illustrate the theoretical benefits of active
learning over passive learning. A passive learning algorithm can-
not request precision and recall values iteratively. Instead it has to
request them upfront before having seen the inputs R and S. Any
passive learning algorithm essentially has to know the precision
and recall of all (k + 1)d points since for any such point there is
an input R,S for which this point is the only correct answer. The
number of requests made by our active learning algorithm can be
much smaller. This illustrates the power of picking examples iter-
atively. A similar result was obtained for learning a homogeneous
linear separator of points uniformly distributed in the unit sphere in
which an active learning algorithm performs much better than any
passive learning algorithm [17]. The following lemma states that
ALGP is close to worst-case optimal, considering active learning
algorithms in the precision-recall oracle computation model:

LEMMA 2. Any algorithm for learning conjunction of similar-
ity thresholds requires Ω(|MinTrue|+|MaxFalse|) precision eval-
uations and Ω(|MinTrue|) recall evaluations in the worst-case.

While we cannot improve upon ALGP in the worst case, in practice,
we can exploit recall to significantly improve performance. We
discuss this algorithm next.

4.1.2 Exploiting Recall
Recall that ALGP examines all MinTrue points for the predicate

(Prec ≥ τ), and picks the one with maximum recall. In practice,
there is a large variation in the recall of MinTrue points: there
are typically a few points with high recall and a large number with
relatively low recall. This variation arises since the record pairs in
(R×S) are not uniformly distributed in the similarity space. ALGP
tends to waste a lot of human labeling effort estimating precision
of regions with low recall.

We now present an improved algorithm (ALGPR) for identify-
ing the best conjunction of similarity thresholds that exploits recall
information to reduce the labeling cost. ALGPR makes more calls
to the recall oracle but fewer to the precision oracle compared to
ALGP; note that recall can be computed without labeling.

We call a point a candidate if it is a MinTrue point for the
predicate (Prec ≥ τ). The basic idea of the algorithm is sim-
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Algorithm 2 Enumerate all MinTrue and MaxFalse points
Require: Pred is a monotone binary predicate
1: procedure ENUMERATEBOUNDARY(Pred)
2: MinTrueSet = MaxFalseSet = ∅
3: MaxCand = {〈1, . . . , 1〉}
4: while MaxCand is not empty do
5: p← some point in MaxCand
6: MaxCand ← MaxCand \ p
7: if Pred(p) = true then
8: pmin ← FINDMINTRUE(p, Pred)
9: MinTrue ← MinTrue ∪ {pmin}

10: MaxCand ← UPDATECANDIDATES(MaxCand , pmin,
MinTrue)

11: else
12: MaxFalse ← MaxFalse ∪ {p}
13: end if
14: end while
15: return 〈MinTrue,MaxFalse〉
16: end procedure

17: procedure UPDATECANDIDATES(C, pmin, MinTrue)
18: Cnew ← ∅
19: for all p ∈ C do
20: if pmin � p then
21: for i← 1, d do
22: p′ ← p; p′[i]← pmin[i]− 1/k
23: if ISMAXIMAL(p′, MinTrue) then
24: Cnew ← Cnew ∪ {p′}
25: end if
26: end for
27: else
28: Cnew ← Cnew ∪ {p}
29: end if
30: end for
31: end procedure

ple: once the algorithm finds a candidate with recall r, it focuses
on regions of the similarity space with recall > r and searches
for candidates. To efficiently search for such candidates, we use
the anti-monotonic property of recall stated earlier: for any two
points p1 � p2 implies Recall(p1) ≥ Recall(p2); equivalently,
the predicate Recall() ≤ r is monotonic. If pmt is a candidate
with Recall(pmt) > r, then there exists MaxFalse point p of the
predicate Recall() ≤ r such that pmt � p. Also, from monotonic-
ity assumption, Prec(p) ≥ τ .

Based on the above observation, the algorithm simply consid-
ers points p in MaxFalse(Recall() ≤ r). If there exists p such
that Prec(p) ≥ τ , it invokes FINDMINTRUE (p,Prec() ≥ τ)
to find a candidate with recall r′ > r; this sets off a new itera-
tion, and the algorithm searches for candidates with recall > r′.
Naively checking for every point p in MaxFalse(Recall() ≤ r)
if Prec(p) ≥ τ by invoking the precision oracle might actually
increase the number of precision oracle calls over ALGP. Algo-
rithm ALGPR has additional logic involving MaxFalse points of
the predicate Prec() ≥ τ to avoid this problem; we discuss these
details in the full version of the paper.

4.2 Linear Classifier
We now discuss algorithms for learning a monotonic linear clas-

sifier with precision at least τ that maximizes recall. Recall that a
monotonic linear classifier L is of the form

∑
i wiFi ≥ 1. The lin-

ear classifier classifies a point f = 〈f1, . . . , fd〉 as true if
∑

i wifi
≥ 1, and false , otherwise. For monotonic linear classifiers wi are
real non-negative numbers.

We show that the problem of learning the best monotonic lin-
ear classifier can be reduced to the problem of learning the best

Algorithm 3 Finding a MinTrue point
Require: Pred is a monotone binary predicate
Require: Pred(p) = true
1: procedure FINDMINTRUE(p, Pred)
2: for i← 1, d do
3: p← FINDMINTRUEINDIM(i, p, Pred)
4: end for
5: return p
6: end procedure

7: procedure FINDMINTRUEINDIM(i, p, Pred)
8: hi ← p[i] · k
9: p[i] = 0

10: if Pred(p) = true then
11: return p
12: end if
13: lo ← 0
14: while hi − lo ≥ 2 do . Binary search
15: mid ← (hi + lo)/2
16: p[i] = mid/k
17: if Pred(p) = true then
18: hi = mid
19: else
20: lo = mid
21: end if
22: end while
23: end procedure

conjunction of similarity thresholds, which we can solve using the
algorithms of previous section.

We can define a natural partial-ordering over monotonic linear
classifiers. Given two linear classifiers L1 and L2, we say that
L1 � L2 if ∀f ∈ [0, 1]d, (L2(f) = true) ⇒ (L1(f) = true).
Essentially, the set of points which L2 evaluates to true is a subset
of those which L1 evaluates to true . From monotonicity principle,
it follows that if L1 � L2 than Prec(L1) ≤ Prec(L2). Also, by
definition, Recall(L1) ≥ Recall(L2).

The following theorem states that there exists a mapping from
monotonic linear classifiers to points in k-granular points in d-
dimensional space that preserves the above partial order.

THEOREM 2. There exists a partial onto mapping function Q
from the class of monotonic linear classifiers to k-granularity points
in [0, 1]d such that:

1. For any two monotonic linear classifiers L1 � L2, if both
Q(L1) andQ(L2) are defined,Q(L1) � Q(L2); and

2. For any monotonic linear classifier L, there exists a mono-
tonic linear classifier L′ such that Q(L′) is defined, and the
volume of |L− L′| is ≤ d/k.

Briefly, we run ALGP/ALGPR with a minor modification: in order
to evaluate precision (resp. recall) of a point p, we first identify the
linear classifier L corresponding to the point p, i.e.,Q(L) = p, and
return the precision (resp. recall) ofL, respectively. If pbest denotes
the point returned by the algorithm, the output linear classifier is
Lbest , where Q(Lbest) = pbest . Details of the construction of Q
andQ−1 are presented in the full version of the paper.

4.3 s-term DNF
An s-term DNF is of the formM1 ∨ . . . ∨Ms where eachMi

is a conjunction of similarity thresholds. For example, (Jaccard
(Name)≥ 0.9)∨ ((Edit(Street) ≥ 0.7)∧ (Jaccard(City) ≥ 0.6))
is a 2-term DNF.

We now present a simple greedy algorithm for learning an s-term
DNF (M1 ∨ . . .∨Ms). The algorithm proceeds in s steps and the
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Algorithm 4 ALGPR: Algorithm that exploits recall
1: pbest ← null . current best point
2: rbest ← 0
3: MF ← ∅
4: foundNewPoint ← true
5: while foundNewPoint = true do
6: hiRecallPts ← ENUMERATEBOUNDARY(Recall ≤ rbest )
7: foundNewPoint = false
8: for all p ∈ hiRecallPts do
9: if (∃pmf ∈ MF , p � pmf ) then

10: continue
11: end if
12: if Prec(p) ≥ τ then
13: pbest ←FINDMINTRUE(p, Prec ≥ τ )
14: rbest ← Recall(pbest )
15: foundNewPoint ← true
16: break
17: else
18: pmf ←FINDMAXFALSE(p, Prec ≥ τ )
19: MF ← MF ∪ {pmf }
20: end if
21: end for
22: end while
23: output pbest

binary functionMi is learned in the ith step. Let p(1), . . . , p(i−1)

denote the points in [0, 1]d corresponding to the functionsM1, . . . ,
M(i−1), respectively, which were learned in the previous (i − 1)

steps. For any point p, let (p− p(1) − . . .− p(i−1)) denote the re-
gion of the similarity space containing all points p′ such that p′ � p
and ∀j(1 ≤ j < i) p′ 6� p(j). To learnMi, we run ALGPR of
Section 4.1.2 with the following modification: instead of comput-
ing precision (resp. recall) of a point p, we compute the precision
(resp. recall) of the region (p− p(1)− . . .− p(i−1)). We can show
that the resulting s-term DNF (M1∨ . . .∨Ms) has precision≥ τ .
The algorithm does not have recall guarantees, however.

5. COMPUTING PRECISION AND RECALL
We now discuss the implementation of precision and recall ora-

cles. The precision and recall oracles take as input a binary (classi-
fier) functionM and output the precision and recall of the function,
respectively. The techniques that we propose do not compute pre-
cision values exactly, rather they estimate these values using sam-
pling techniques. The estimated values are only probabilistically
approximate, but this suffices for record matching applications.

Estimating the precision and recall values for a binary function
M is generally hard for large input tables R and S, even for the
limited class of functions that we consider. We essentially run into
the same computational issues we face when trying to useM for
record matching, i.e., identify all pairs of records (r, s) ∈ R × S
such thatM(r, s) = true .

Our implementation of the precision and recall oracles exploits
the existence of the blocking function B (see Section 2) in our prob-
lem formulation, i.e., we only seek record matching packages of
the formM∧ B. When the precision oracle (resp. recall oracle)
gets a request for estimating the precision of a functionM, it sim-
ply returns an estimate for the precision (resp. recall) of the func-
tion (M∧ B). In other words, our algorithms of Section 4 do not
“know” about the blocking function B, but we can show that with
this modified implementation of the precision and recall oracles,
with high probability the functionM learned by our algorithms of
Section 4 will satisfy Prec(M∧B) ≥ τ ± ε (which approximates
the specified threshold τ by ε) and the recall of (M∧ B) will be
maximum modulo this approximation.

We next discuss how to estimate the precision and recall of (M∧
B) for an arbitrary binary functionM and a blocking function B.
In a preprocessing step, we evaluate the blocking function B over
R and S and materialize the set of all pairs (r, s) ∈ R × S such
that B(r, s) = true . By the definition of the blocking function, this
evaluation is efficient, which also implies that the number of such
pairs is relatively small. In the description below, we denote this
set using B(R,S).

We use standard Monte-Carlo estimation techniques [16] to esti-
mate the precision ofM∧ B. In particular, we identify a random
sample of pairs (r, s) ∈ R × S that satisfy the predicateM∧ B
and seek labels from the user for the pairs in the sample. The frac-
tion of pairs labeled as a match is an estimate for the precision of
B ∧M. To identify a random sample of pairs that satisfyM∧ B
we simply scan B(R,S), identify the subset of pairs that satisfyM
and sample from this subset. We can reduce the number of samples
required, and therefore the labeling effort by exploiting the fact,
that the algorithms of Section 4 require precision only to check if it
is above or below the threshold τ ; we can use the algorithms pro-
posed in [30] for this purpose. For computing recall of (M∧ B),
we simply scan B(R,S) and count the number of pairs that satisfy
M.

Reusing samples: We present a simple modification to the sam-
pling step above (for estimating precision) that significantly re-
duces the number of labeled pairs in practice. We fix a random
permutation π of all pairs in R × S; in practice, this can be done
using a random hash function over R × S and sorting the pairs
by their hash values. To sample k points that satisfy the predicate
M ∧ B, we pick from among all pairs (r, s) ∈ R × S that sat-
isfyM∧B, the k smallest ones according to π. This modification
preserves the probabilistic guarantees associated with precision es-
timation. Using a consistent ordering π of pairs in R×S increases
the likelihood of an overlap in samples required for different preci-
sion estimations, which translates to fewer distinct label requests.

Passive Learning: The algorithms of Section 4 can also be used
in a passive learning setting by using a different implementation of
precision and recall oracles. In passive learning, the learning algo-
rithm is provided a list of labeled example record pairs as input (and
not tables R and S). The goal of the algorithm is to learn a record
matching package that has precision≥ τ and maximum recall over
the labeled examples. In this setting, the oracles evaluate the pre-
cision and recall of a functionM over the input labeled examples.
We do not require a blocking function for passive learning.

6. EXPERIMENTS
We now present our experimental results. We use our experi-

ments to (1) illustrate the performance characteristics of our algo-
rithms and highlight various design choices, (2) compare our al-
gorithms with previously proposed algorithms for learning record
matching packages using active learning [37, 40], and (3) illustrate
the advantages of active learning over passive learning.

Datasets
We use two large real world datasets in our experiments. Each
dataset contains two tables (R and S) over which record matching
is performed. The first dataset, called ORG, contains two tables
with a million organization records (e.g., see Figure 1) each. Fig-
ure 4 lists the columns of these records; for brevity, we abbreviate
column names by their first letters. For record matching, we use
8 similarity dimensions listed in Figure 4. In Figure 4, J , JC,
and EQ denote jaccard similarity, jaccard containment, and string
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Size: |R| = 106, |S| = 106 records

Columns: Name(N), Street(S), City(C), Zip(Z), Phone(P)

Similarity: J (N), J (S,C, Z), J (N,S,C, Z), EQ(P ),
EQ(C), EQ(Z), JC(N), JC(S,C, Z)

Blocking
Function:

J (N) ≥ 0.7, J (S,C, Z) ≥ 0.7,
J (N,S,C, Z) ≥ 0.7, EQ(P ) = 1. (Union
Size = 836815 record pairs)

Figure 4: Characteristics of ORG dataset

Size: |R| = 105, |S| = 106 records

Columns(R): Citation(C)

Columns(S): Title (T), Authors (A), Venue (V), Year (Y), Pages
(P)

Similarity: J (C ↔ T,A, V, Y, P ), JC(C ↔ T ),
JC(C ↔ A), JC(C ↔ V ), JC(C ↔ Y ),
JC(C ↔ P )

Blocking
Function:

J (C ↔ T,A, V, Y, P ) ≥ 0.35. (Size =
38216).

Figure 5: Characteristics of PUB dataset

equality, respectively; also, e.g., J (N) denotes jaccard over Name
column, and J (S,C, Z) denotes jaccard similarity over concate-
nation of Street, City, and Zip columns. Figure 4 also defines the
blocking function for this dataset: it is the disjunction of the four
listed predicates. All these predicates involve jaccard or equality,
which are known to be efficiently computable [20].

The second dataset, called PUB, is from publications domain.
It has two tables R and S; table R contains 100000 unsegmented
citation strings and S contains close to a million segmented pub-
lication records. Figure 5 lists columns, similarity dimensions,
and the blocking function for this dataset. In Figure 5, we use
J (C ↔ T,A, V, Y, P ) to denote jaccard similarity between Ci-
tation column of R and the concatenation of all columns of S.

Algorithms
In our experiments, we use an implementation of ALGPR that ex-
ploits both precision and recall. We estimate precision and recall
using sampling as described in Section 5. For estimating precision,
we do not use theoretical sampling bounds, but heuristically esti-
mate precision using a fixed number(= 20) of samples.

We also implemented two state-of-the-art prior algorithms [37,
40]. As originally proposed, these algorithms do not scale to large
input sizes, but as we observed in Section 1, we can easily ex-
tend these algorithms to exploit blocking. Both algorithms use a
committee-based approach, and they differ primarily in how they
form their committees: In [40], different classifiers learn from dif-
ferent subsets of data and in [37], randomness is introduced into
the classification learning process. We denote these algorithms
CMT-D and CMT-R, respectively. Both algorithms use decision
trees for their classifiers. Our implementation of these algorithms
uses the Weka machine learning library [26]. For our experiments,
we instantiated these algorithms with the best choice of parameters
suggested by the experiments in [37, 40]. For our experiments on
passive learning, we use the classifiers provided by Weka [26].

Recall: 29526

Precision: 97%

Number of Labels: 84.2

Avg time per label: 0.69 sec

Package Complexity: 2.6 terms

Representative
Package:

B ∧ (EQ(Z) = 1 ∧JC(N) ≥ 0.55∧
JC(S,C, Z) ≥ 0.05)

Figure 6: Performance of ALGPR for ORG

Methodology
To evaluate a candidate algorithm, we measure the quality of the
learned record matching package (precision and recall), the num-
ber of labels requested, and the time delay between two labeling
requests. For interactive labeling, it is desirable that the time de-
lay be small. We do not have golden truths for our datasets, so
we estimate precision manually by labeling a sample of the output;
throughout, we use a sample of size 40.

6.1 Performance of AlgPR
Figure 6 summarizes the performance of ALGPR for ORG

dataset; the results are for learning a 1-term DNF. In other words,
the the learned package is of the form B ∧ M, where B is the
blocking function (Figure 4), and M is a conjunction of similar-
ity thresholds. The statistics in Figure 6 are obtained by averaging
over 5 runs with different random seeds, and we used k = 20 for
granularity and τ = 0.95 as precision threshold.

ALGPR learns a package with recall close to 30000, precision
above 0.95 and requires about 84 labeled examples. The average
time delay for each label request is under a second, suggesting that
the algorithm is interactive. Figure 6 also shows a representative
learned package. Figure 7(a) presents the results for each run sepa-
rately. The number above each bar represents the number of labels
requested. We note that the learned packages all have high preci-
sion, but their recall numbers vary by about 10%. This difference
arises due to sampling estimation errors and should decrease if we
increase the number of samples. The learned packages also differ,
but their complexity is fairly small, typically 2-3 conjuncts. Al-
though we present AlgPR in Section 4 with a single stopping cri-
terion, we can easily modify it to stop at any point and output the
current best package. Figure 8(a) plots the recall of three runs of
ALGPR as a function of number of labeled examples. If we use
ALGPR to learn 2-term DNFs, the recall of the learned package
increases by about 2-5%, but the number of labeled examples re-
quired increases by about 50%. This suggests that the learning of
the first term represents a point of diminishing returns.

For the PUB dataset, ALGPR identifies a 1-term DNF with recall
about 25000, precision close to 0.95 using 114 labeled examples.
Most of the performance characteristics for PUB are similar to those
for ORG dataset.

6.2 Comparison with Previous Algorithms
We now report on experiments comparing ALGPR with CMT-D

and CMT-R. For the latter two algorithms, we started with a seed
set of 5 matching pairs and 5 non-matching pairs picked randomly
from a pool of labeled examples. Interestingly, both these algo-
rithms behaved somewhat differently when run over candidate pairs
picked using the blocking function, compared to running them over
entire input data (as reported in [37, 40]). For both algorithms, all
the classifiers in the committee reached consensus fairly quickly,
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Figure 7: Performance of the algorithms for ORG dataset for 5 runs with different random seeds

0

5000

10000

15000

20000

25000

30000

35000

40000

10 20 30 40 50 60 70 80 90 100

O
u

tp
u

t 
Si

ze

Number of Labeled Examples

Run 1 Run 2 Run 3

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 30 40 50 60 70 80 90 100

O
u

tp
u

t 
Si

ze

Number of Labeled Examples

Cmt-Rand-1 Cmt-Rand-2 Cmt-Data-2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

 

Number of Labeled Examples 

Cmt-Rand-1 Cmt-Data-1 Cmt-Data-2

(a) Recall of ALGPR (b) Recall of CMT-D and CMT-R (c) Precision of CMT-D and CMT-R

Figure 8: Evolution of learned package quality as a function of number of labeled examples

meaning that they classified all candidate pairs identically. We be-
lieve that the difference in behavior arises since the blocking func-
tion eliminates most of the “outliers” that cause disagreements be-
tween classifiers [37].

Figures 7(b) and 7(c) show the performance of CMT-R and CMT-
D, respectively, on ORG dataset when we stop the algorithms when
the committee reaches a consensus. Again, the numbers above the
bars indicate the number of labeled examples used by the algo-
rithms. We note that CMT-R and CMT-D sometimes reach consen-
sus right at the beginning and therefore do not exploit active learn-
ing. Also, the performance of the algorithms varies widely from
one run to another: the precision values of the learned packages
range from 0.9 to less than 0.5 (run 5 in Figures 7(b) and 7(c)).

We also studied the alternative where we continue running the
algorithms after the committee reaches a consensus, by labeling a
randomly selected candidate pair, and adding it to set of labeled
examples. We observed that, occasionally, the new example takes
the committee out of consensus. Figures 8(b) and 8(c) present the
recall and precision values (for ORG dataset) of two runs of CMT-R
and one run of CMT-D as a function of number of labeled exam-
ples, using the above approach. The results of Figures 8(b) and
8(c) illustrate that the performance of two algorithms can be unpre-
dictable and the quality of the learned classifier does not necessarily
converge as the algorithms consume more examples. For example,
in the run CMT-R-1, a high precision package is learned after 10
labeled examples; however, the precision drops to around 0.5 after
50 labeled examples. We also observed that the complexity of the
learned package increases if it is not produced by an early consen-
sus. For example, the decision tree learned by the run CMT-R-1
after 100 labeled examples contains 25 nodes.

Overall, these experiments highlight the difficulty of using CMT-

ALGPR C4.5

PRED1 (29311, 0.85) (41767, 0.75)

PRED2 (36196, 0.85) (43606, 0.60)

Figure 9: Precision recall values for passive learning

R and CMT-D to learn a record matching package with high preci-
sion.

6.3 Passive Learning
Our final set of experiments highlight the advantages active learn-

ing over passive learning. As suggested by [8, 11], we study the
approach of applying some (computable) predicate over the two in-
put tables to identify a relatively small set of candidate record pairs.
We then pick a sample from the candidate set, label the pairs in the
sample, and use them as input to a learning algorithm.

For our experiments, we use two representative predicates over
ORG dataset that roughly contain the same number of matches and
non-matches (estimated). The first predicate (PRED1) is EQ(P ) =
1 (equal phone numbers), and the second (PRED2), (J (N)+
J (S,C, Z))/2 ∈ [0.48, 0.52). We picked the second predicate as
Figure 2(c) suggests that the region of the similarity space where
this predicate evaluates to true represents a transition from mostly
matches to mostly non-matches. We labeled a random sample of
size 100 from among the pairs that satisfy each of these predicates
and use them as input to the C4.5 decision tree learning algorithm
and ALGPR (with k = 20 and τ = 0.95). Recall that ALGPR can
be used in the passive learning setting by suitably modifying the
precision and recall oracles.
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Figure 9 summarizes the quality of the record matching package
learned by the two algorithms, where the quality is measured over
the entire ORG dataset. We note that the precision values of both
algorithms are low. In particular, the precision value of the package
learned by ALGPR (for either predicate) is only 0.85, although its
precision over just the input labeled examples is close to 0.95.

7. RELATED WORK
Record matching is a well-studied problem and we refer the

reader to [20] for a comprehensive survey of the topic. Previous
work on record matching can be broadly divided into three buckets
depending on how they relate to this paper: (1) identifying useful
similarity functions (2) learning a record matching package, and
(3) designing efficient string similarity join and lookup algorithms.

A variety of similarity (and distance) functions have been pro-
posed for record matching [20]. These include domain independent
functions such as edit distance, jaccard measure, and cosine simi-
larity [14] and domain specific ones such as Jaro distance [29] for
people names. Recall that similarity functions applied to attributes
of input tables serve as similarity dimensions for our active learn-
ing problem. Chandel et al [10] present a comparison of different
similarity functions for record matching.

A second line of work in record matching concerns with the
learning of a matching package. Some of the earliest work in this
area uses an unsupervised approach based on the expectation max-
imization algorithm [43]. Most of the recent work has focused on
supervised approaches where a matching package is learned from
labeled example record pairs. The supervised approaches can be
passive, where the learning algorithm has no control over the la-
beled examples, or active, where the algorithm picks the examples
to be labeled from among a large pool of unlabeled data. Section 1
presents a discussion of previously proposed supervised learning
algorithms for record matching and how they relate to this paper.

A third line of work concerns with efficiency issues in record
matching, and includes work on string similarity joins and lookups.
Here the goal is to design efficient algorithms that identify pairs of
records that have high similarity on some attribute. These algo-
rithms are usually specific to a similarity function such as edit dis-
tance [23, 31] or jaccard [2, 25, 38]; Chaudhuri et al [12] propose
a primitive based on set-similarity joins that can be used to im-
plement string similarity joins for several different similarity func-
tions. Many authors distinguish between simple equality based
blocking (e.g., first letter scheme of Section 1) and more sophis-
ticated schemes such as sorted neighborhood approach [28] and
canopies [34]. Our definition is fairly general and subsumes the
latter two. Bilenko et al [6] study the problem of learning a block-
ing function using labeled examples. Recent work [19, 39] has
explored a “collective” approach to record matching that goes be-
yond pairwise similarity. A complete understanding of how this
approach combines with traditional approaches is an interesting av-
enue of future work.

Active learning approaches are fairly well-studied in machine
learning [15, 21] and have been applied to a variety of domains such
as text classification [41] and information extraction [3]. As men-
tioned earlier, previous work on using active learning for record
matching uses a classifier independent, committee-based approach
[3]; classifier specific approaches have been proposed for SVMs
[41] and decision trees [44]. There is also a large body of work in
learning theory that explores the power of active learning compared
to passive learning [17, 27]. Most of this work is in the PAC model
(based on the misclassification rate quality measure; see Section 2)
and not directly applicable to record matching for reasons men-
tioned in Section 2.

8. CONCLUSION
We presented new active learning algorithms for the record match-

ing problem. Generalizing the techniques for finding maximal fre-
quent itemsets, our algorithms cleverly navigate through the simi-
larity space to find a conjunction of similarity thresholds. We are
able to give probabilistic guarantees on the quality of the result
while requiring fewer samples than passive learning algorithms. In
an extensive experimental study we demonstrate the scalability of
our approach to 106 × 106 record pairs with interactive response
time. Compared to previous work on active learning our algorithms
produce high-quality results more predictably using only around
100 labeled examples.
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