
Wireless Networks 7, 601–607, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Multi-Fidelity Algorithms for Interactive Mobile Applications ∗

M. SATYANARAYANAN and DUSHYANTH NARAYANAN
School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract. We introduce the concept of multi-fidelity algorithms, which revises the classical notion of an algorithm. Instead of having a
fixed output criterion and allowing the resource consumption to vary, we bound the resource consumption and allow the fidelity or output
criterion to vary. We discuss how multi-fidelity algorithms can improve the latency and battery life of interactive mobile applications.
An extension of this idea allows the system to automatically discover sweet spots: sharp discontinuities in the fidelity-resource tradeoff
space.

Keywords: multi-fidelity algorithms, mobile computing, augmented reality, adaptation, sweet spot, search, Odyssey, Aura

1. Introduction

The concept of an algorithm has proved robust over half a
century of advances in the speed and versatility of comput-
ing hardware and software. In this paper, we show why in-
teractive mobile applications require us to rethink this con-
cept from first principles. Such applications are difficult to
support because they place heavy resource demands on hard-
ware that is typically optimized for weight, size and battery
life rather than compute power. We show how the notion of
an algorithm can be extended to help alleviate this problem,
and examine the implications of this shift in viewpoint. The
paper is organized in three parts: rationale, research agenda,
and related work.

2. Rationale

2.1. Classical view of an algorithm

Informally, an algorithm is a sequence of steps to accom-
plish some computing task. This task has a precisely-defined
output specification. A sequence whose execution does not
always meet this specification is not considered to be an al-
gorithm for that task. For example, a sorting algorithm must
preserve all its input elements but reorder them according
to some precisely-defined sort criterion. No deviation from
this specification is allowed in a candidate that claims to be
a sorting algorithm.

Resources such as time, space or energy needed to ac-
complish a task are dependent variables. As much of each
resource is consumed as necessary to meet the output speci-
fication. The figure of merit of an algorithm is how sparingly
it uses one or more of these resources while meeting the out-
put specification.

∗ An earlier version of this paper appeared in Proceedings of the 3rd Inter-
national Workshop on Discrete Algorithms and Methods in Mobile Com-
puting and Communications, Seattle, WA (August 1999).

2.2. Why a shift in viewpoint is needed

A simple example will help illustrate why mobile computing
requires us to revise the classical notion of an algorithm. For
brevity, this example is contrived – more realistic examples
follow later in the paper.

Imagine a police officer on the beat responding to an
assault victim. Using a hand-held mobile computer with
a wireless link, the officer helps the victim identify the as-
sailant from a list of wanted suspects. The victim says that
the only memorable feature about the assailant was that he
had a hairy face. The officer pulls up photographs of sus-
pects, in order of facial hairiness. After a few suspects with
full beards, and then a few with mustaches, the remaining
suspects are all clean-shaven. Disappointed that the trail is
cold, the officer goes with the victim to the precinct office to
give a full crime report.

In this scenario, how does the program on the hand-held
mobile computer yield images in order of facial hairiness?
The instinctive answer for most computer scientists would
be to simply sort the array of suspects using “facial hairi-
ness” as the comparison function and then walk down the
list. This would directly lead to the use of QuickSort, which
is known to have good average case performance.

What this fails to recognize, however, is that only a small
part of the sorted output is viewed by the victim. Because the
victim gives up long before all the images are seen, most of
the work done in the sort is wasted. Perhaps a better ap-
proach would have been to just find the hairiest face and
present it, then the next, and so on until the victim termi-
nates the process. That way, no work is wasted. Unfortu-
nately, if the victim is stubborn and insists on viewing all
the suspects’ images, the system would effectively be per-
forming a full sort using SelectionSort! In that case, using
QuickSort may indeed have been the right strategy.

The important point is that it is not known a priori how
many images the victim will want to see. In other words,
the output specification is not precise. Not surprisingly, the
choice of the best algorithm for this task is unclear.



602 SATYANARAYANAN AND NARAYANAN

So far, little in this example is specific to mobile comput-
ing. However, suppose another victim had reported a similar
attack to this officer earlier in the day, and that facial hairi-
ness was also the most prominent feature of that assailant.
In that case, the chances are good that images of the hairiest
faces are still cached on the officer’s hand-held computer.
On a mobile computer, restricting our search to the local
cache would save us significant time and energy, since we
avoid using the wireless network. On the other hand, search-
ing the entire database would give a slightly better result at
a much higher cost. The best approach might be to present
the search results from the cached data, with an indication
that they are incomplete. Only if the victim wishes to search
further need missing images be fetched.

2.3. What is a multi-fidelity algorithm?

How can we extend our notion of an algorithm to be a use-
ful concept in scenarios like this? Our approach is to relax
the requirement that there be a single output specification.
Instead, we allow a range of possible outcomes, where the
range can be a few discrete states or a continuum.1

Intuitively, the range corresponds to different output qual-
ity levels or fidelity levels. In the sorting example, for in-
stance, if there are M leading elements in sorted order in an
array of size N , we could treat the ratio M/N as the mea-
sure of fidelity of the result. Perfect fidelity would have M

equal to N – the full array is sorted; small values of M/N

correspond to low fidelity.
We can now define a multi-fidelity algorithm: it is a se-

quence of computing steps that terminates, yielding a re-
sult that falls within a range of acceptable output specifi-
cations, called fidelities. Upon termination, a multi-fidelity
algorithm indicates the fidelity of the result.

2.4. When is this concept useful?

Multi-fidelity algorithms allow us to formulate problems in
ways that were not possible before. Most importantly, the
roles of output specification and resource consumption can
be reversed. In other words, we can now say “Give me
the best result you can using no more than X units of re-
source R.” Or, we can let the system make the tradeoff be-
tween fidelity and resource consumption by saying “Give me
the best result you can cheaply.” Depending on the specific
state of the computing engine, the network and other envi-
ronmental attributes, the fidelity of the result may vary from
execution to execution.

Interactive applications are a natural application area for
multi-fidelity algorithms. To preserve usability, it is often
necessary to present a result to the user within a certain
period of time. In many cases, a user would rather see a
less-than-perfect result soon than suffer from long response
times. When such a low-fidelity result is being presented, the
user would like some indication of this fact. On occasion,

1 Of course, a continuum can only be approximated by a very large number
of discrete possibilities in a digital system.

he may repeat his request insisting on a high-fidelity result.
More commonly, the user may abort his task after the pre-
view provided by a low-fidelity result. The non-zero proba-
bility of task abortion, coupled with user tolerance for low-
fidelity results, makes multi-fidelity algorithms well suited
for interactive applications.

The intersection of mobile computing and human-com-
puter interaction is a particularly fertile application domain
for multi-fidelity algorithms. Augmented reality applica-
tions with wearable computers involve particularly stringent
constraints: response time is critical for user comfort, and
computing resources such as CPU, memory, battery power
and wireless bandwidth are at a premium. Multi-fidelity al-
gorithms allow the tradeoff between output quality and re-
source consumption to be deferred until runtime rather than
being wired in a priori.

2.5. Why not approximation algorithms?

It is useful to distinguish between multi-fidelity algorithms
and a related but distinct concept: approximation algo-
rithms. The latter are algorithms that produce results which
are provably within some bound of the true result. A subset
of this class of algorithms, called polynomial time approx-
imation schemes [11], have a tuning parameter analogous
to fidelity. Approximation algorithms are typically of inter-
est for intractable (NP-hard) problems, and concentrate on
reducing asymptotic complexity. A recent exception is the
work by Frieze et al. on approximate methods to do La-
tent Semantic Indexing [10], a problem for which polyno-
mial time solutions already existed.

In contrast, multi-fidelity algorithms are applicable in
many situations where low-order polynomial solutions are
available. Sorting, for instance, is O(N log N) in complex-
ity and yet the example given earlier showed why one might
use a multi-fidelity algorithm for this purpose. In the real
world, even a reduction of time by a constant factor is ex-
tremely valuable. Further, classical complexity measures do
not capture energy usage, which is a critical resource in mo-
bile computing.

A multi-fidelity algorithm may be composed of diverse,
unrelated algorithms, one of which is dynamically selected
based on runtime tradeoffs. Thus approximation algorithms
are properly viewed as a special case of multi-fidelity algo-
rithms.

3. Research agenda

The shift in viewpoint described in this paper arose from our
struggle to understand how best to support a broad range of
interactive applications on resource-limited mobile comput-
ing hardware, especially wearable computers. Our earlier
work on the Odyssey platform for mobile computing had
shown us how lowering data fidelity could alleviate limita-
tions in critical resources such as network bandwidth [18] or
energy [7,8]. For example, when bandwidth is low, a video



MULTI-FIDELITY ALGORITHMS FOR INTERACTIVE MOBILE APPLICATIONS 603

can be transmitted in black-and-white rather than color, or
be sent after aggressive lossy compression. Similarly, mak-
ing the frame size smaller can reduce energy consumption
significantly.

This led us to ask whether a meaningful duality exists –
are there circumstances where degrading computation rather
than data proves useful? The counterpart to data fidelity
is computational fidelity, which lies at the heart of multi-
fidelity algorithms. We realized that we had already used this
concept without recognizing it: the Odyssey speech recog-
nition application uses a smaller vocabulary and a more re-
stricted acoustic model when memory or CPU cycles are
scarce. The user accepts the lower recognition quality in
return for improved recognition speed on limited hardware.

Now that we have a promising conceptual model, our goal
is to apply it to the family of problems that motivated this
work. Specifically, we plan to extend Odyssey to support
interactive applications using multi-fidelity algorithms. We
elaborate on this in the following sections, beginning with
examples of the kinds of applications we hope to support.

3.1. Examples

3.1.1. Rendering for augmented reality
An architect is designing the renovation of an old warehouse
for use as a museum. Using a wearable computer with a
head-mounted display, she walks through the warehouse try-
ing out many design alternatives pertaining to placement
of doors and windows, placement of interior walls, and so
on. For each alternative, the augmented reality software
on her wearable computer superimposes the proposed de-
sign change on the architect’s view of the surroundings. In
many cases, an aesthetic or functional limitation immedi-
ately becomes apparent and she rejects that alternative. In
the few cases that survive this stage of scrutiny, the architect
requests a more accurate visualization as well as standard-
ized tests to ensure that the design is structurally sound and
meets building codes.

In this application, rendering of 3-D objects is performed
frequently. Before an object can be rendered, it needs to
be appropriately colored or shaded according to the light
sources present as well as the shadowing and reflected light
from other objects. A well-known way to do this shading is
with a radiosity computation [2]. This is highly compute-
intensive, but our application requires low latency for good
interactive response. Our architect wishes to do “quick-and-
dirty” validations of her ideas, and is willing to sacrifice
some fidelity in order to be able to try out many ideas in-
teractively.

There are many ways in which the application can con-
trol the fidelity of rendering. It can choose between different
algorithms such as progressive radiosity and hierarchical ra-
diosity. It can also control the number of polygons used to
represent 3-D objects. A representation with fewer polygons
can be shaded faster, but will have a lower fidelity compared
to the original.

Using a multi-fidelity approach, the application collab-
orates with Odyssey to choose between these alternatives.
Odyssey’s guidance is based on the current CPU availabil-
ity, the latency constraints of the application, and knowledge
about the CPU consumption of the application at various fi-
delities. If the data for rendering the 3-D objects reside on a
remote server, then Odyssey must also decide on how much
computation to perform at the server and how much at the
client, based on CPU and network availability. The current
cache state of the wearable computer and the residual en-
ergy in its battery are likely to be important influences on
this decision.

3.1.2. On-site engineering calculations
An unexpected contingency has arisen at a bridge construc-
tion site: excavation for a pier has revealed a different soil
type than planned for in the design. A civil engineer is at
the site, exploring design modifications to the bridge to cope
with this problem. To assist him in his work, he uses a hand-
held computer running a spreadsheet-like software package.
He explores a number of alternatives, examining the im-
pact of each on the strength of the bridge, on the manpower
and material costs, and on the delays it will cause to the
schedule. During the initial part of his exploration, speed is
more important than accuracy of results – results are there-
fore displayed to him in a font and color indicating low fi-
delity. As he converges on a few promising alternatives, he
requests higher fidelity results: the computations now take
much longer, and the presentation of the results indicates the
higher fidelity. Once he has selected what appears to be the
best choice, this design modification is shipped over a wire-
less link to his company’s supercomputer for full structural
analysis and supervisory approval. Once he has received
this approval, the engineer gives the modified design to the
local personnel. Work can proceed without further delay.

In this example, the multi-fidelity algorithms are all nu-
merical in nature. Depending on the specific problem, there
are many ways in which different levels of fidelity can be
obtained. For example, a successive approximation algo-
rithm may terminate after just a few iterations to yield a low-
fidelity result. A simulated annealing algorithm may change
the coarseness of its mesh as well as the number of iterations
to yield different fidelities. The number of terms in a series
expansion can be varied to achieve a desired fidelity. Indeed,
the concept of fidelity is probably most easily applied to nu-
merical algorithms.

3.1.3. Scientific visualization
A visualization program presents earthquake simulation
data as an animation. The transformation is highly compute
intensive and proceeds in three pipelined stages: sampling
the data onto a regular grid, computing isosurfaces, and ren-
dering a 2-D view of the 3-D grid. The user specifies a re-
gion of interest, and a desired frame rate. The application
then queries the system to find the appropriate configuration
and fidelity level. As the animation continues, conditions in
the system change; whenever the application needs to adapt



604 SATYANARAYANAN AND NARAYANAN

to the new state of the system, it receives a callback and is
supplied with new fidelity parameters.

In this application, fidelity can be reduced by downsam-
pling the input grid of data. In a distributed implementation
of the application, the split of functionality between client
and server is important. The optimal split depends on the
current availability of client and server CPU as well as net-
work bandwidth. Thus the system has to decide what the
best split is, and what fidelity is sustainable while maintain-
ing the desired frame rate.

Although scientific visualization is not closely related to
mobile computing, it is an important application domain that
can benefit from a multi-fidelity approach. Through visual-
ization, large data sets such as MRI scans and astronomical
measurements can be grasped more effectively by users. The
Quake visualizer [1] is an instance of this kind of applica-
tion.

3.2. Work in progress

We are in the early stages of designing extensions to
Odyssey on Linux to support multi-fidelity algorithms.
Odyssey is a component of Aura, an umbrella project of
broad scope in ubiquitous computing. We believe that the
ability to effectively run multiple concurrent applications is
key to a good mobile computing environment. Our previous
experience with Odyssey [18] has shown that to support con-
currency effectively, we need centralized system support for
resource monitoring and arbitration between applications.

Our goal is to support the kinds of applications described
in the previous section. We plan to implement these exten-
sions, gain hands-on usage experience, and then critically
evaluate and refine the design in the light of this feedback.
We see four major components to this work.

First, we need to develop an API that enables applica-
tions to communicate their constraints to Odyssey and to re-
ceive notifications to trigger fidelity changes. Odyssey al-
ready provides such an API to support data fidelity, but our
work so far indicates that a new set of system calls will be
needed to support computational fidelity.

Second, the code to support this API has to be designed
and implemented. This code will have two major responsi-
bilities: monitoring the availability of resources such as en-
ergy, bandwidth, cache space and CPU cycles; and allocat-
ing these resources to concurrent applications, one or more
of which may be executing multi-fidelity algorithms. We
expect that minor extensions to the existing resource mon-
itoring code in Odyssey will suffice, but that the code for
resource allocation will need to be completely redesigned.

Third, we will have to design and implement an interface
that allows a user to express his constraints and preferences
to Odyssey. Feedback about the fidelity of results can also
be given through this interface. It can also be the focal point
for collecting information to help predict likely user behav-
ior. For example, as we have seen in the sorting example of
section 2.2, it is valuable to have a good estimate of the like-
lihood of user abort for each application. It is not yet clear

to us whether this support should be integrated with each
application, or if there should be a single GUI for the whole
system.

Finally, we need to develop the multi-fidelity applications
that will enable us to evaluate our design. Our strategy is to
start from existing applications and to modify them. Since
their source code is most readily available to us, the initial
applications we explore will be augmented reality render-
ing, described in section 3.1.1, and visualization, described
in section 3.1.3.

Throughout this process, we also need to develop and re-
fine an evaluation methodology for multi-fidelity systems.
Since, to our knowledge, this is the first system of its kind,
we need to develop new ways of measuring and reporting the
performance of the system, and the effects of various design
decisions.

Currently, we have developed a multi-fidelity API and a
working prototype that implements this API. We have tested
the system with two applications: the radiosity application
described in section 3.1.1, and a web browser application
that fetches degraded (lossily compressed) images over the
web. We have also implemented predictors for CPU and
energy usage. In order to make good adaptation decisions,
we need to know an application’s resource consumption at
various fidelities, so that we can pick the most appropriate
fidelity. Our approach is to log the past behavior of the ap-
plication, and use the log history to make predictions about
future resource usage. Our initial results [17] are promis-
ing; they indicate that history-based prediction is a feasible
and simple way to learn the relationship between application
fidelity and resource usage.

3.3. Open questions

The work described in the previous section merely scratches
the surface of the rich problem space defined by multi-
fidelity algorithms. We see many deeper issues, both the-
oretical and experimental, that will have to be explored to
gain a full understanding of this area. These issues are of
such diversity and breadth that only a community-wide ef-
fort is likely to address them successfully. We describe some
of these issues in the rest of this section. The list of ques-
tions posed below is not exhaustive, but gives a flavor of the
research problems in this area.

3.3.1. What is a good fidelity metric?
Choosing the right fidelity metric is important, but we cur-
rently have no systematic way to do this. Assigning fidelity
values in an ad hoc way makes it difficult to evaluate and
compare multi-fidelity algorithms. A more scientific ap-
proach would be valuable.

In some cases, such as numerical and sorting algorithms,
the deviation from the ideal result is easily quantified and
meaningful as a measure of fidelity. In other cases, such as
algorithms for querying databases of images [6] and finan-
cial time sequences [14], it is possible to define a Euclid-
ean distance measure that can serve as the metric of fidelity.



MULTI-FIDELITY ALGORITHMS FOR INTERACTIVE MOBILE APPLICATIONS 605

But there are cases, such as rendering or visualization algo-
rithms, where assigning fidelity is harder because it depends
on user perception. It would be helpful to have a clear tax-
onomy of algorithms based on fidelity metrics, together with
guidelines for defining the appropriate metric for each class
of algorithm.

3.3.2. How are multi-fidelity algorithms compared?
If we have two multi-fidelity algorithms, A and B, for the
same task, which one should we choose? With conventional
algorithms, we simply pick the one with lower algorithmic
complexity. With multi-fidelity algorithms, this is problem-
atic, since we lack a common basis for comparison.

If algorithm A always uses fewer resources for the same
fidelity than algorithm B, we know that A is better than B.
What if A is better at some fidelities, and B at others? What
if the fidelity levels of A and B do not correspond in a one-
to-one fashion? Overall, it would be of great value to find a
rigorous approach to comparing multi-fidelity algorithms.

3.3.3. Can multi-fidelity computations be composed?
So far we have considered the case of computations with a
variable output specification, but with a fixed, or immutable,
input. What if the input could have variable fidelity as well?
Imagine a cascaded computation, consisting of a pipeline
of several multi-fidelity computations. The fidelity of each
computational stage determines the input fidelity of the next.

The input fidelity might degrade the output fidelity much
as a noisy input signal creates a noisy output. In other cases,
the input fidelity might simply place a ceiling on the out-
put fidelity: a rendering algorithm cannot produce a high-
resolution 2-D image from a low-resolution 3-D model.

What is the right way to characterize the effect of input
fidelity on a computation? How can we express the overall
fidelity of cascaded computation in terms of the fidelities of
its various components?

3.3.4. Can the system find sweet spots?
We have already seen that multi-fidelity algorithms allow us
to fix resource consumption and allow the output specifica-
tion to vary. In fact, they let us go a step further: we can free
the system to make the tradeoff between the two, based on
its knowledge of the current state of the system and the en-
vironment. In effect, we let the system find the “sweet spot”
– the highest fidelity attainable with modest resource usage.

For example, section 2.2 has the example of a query on
a database of faces. By degrading the query to operate only
on the cached portion of the database, we sacrifice a small
amount of fidelity in exchange for a large savings in time and
energy. This degraded query corresponds to a knee, or sweet
spot, on the fidelity-performance curve. For interactive ap-
plications, having the system make the tradeoff is often the
right choice – the user does not have stringent requirements
on either performance or fidelity, but simply wants a good
compromise between the two. We need methods to automat-
ically identify these sweet spots.

4. Related work

The defining characteristic of a multi-fidelity algorithm is
the broadening of output specification from a single outcome
to a range of acceptable outcomes. A key consequence of
this relaxation is the possibility of role reversal – resource
consumption can now be the independent variable in a com-
putation, with fidelity being the dependent variable. To the
best of our knowledge, this is the first paper to advocate such
a broad change to the concept of an algorithm, and to iden-
tify its importance for interactive applications.

We are aware of three previous extensions to the concept
of an algorithm that are related to this work. The first, ap-
proximation algorithms, has already been discussed in sec-
tion 2.5. As explained there, approximation algorithms are
focused almost exclusively on intractable problems and can
be viewed as a subset of multi-fidelity algorithms.

Anytime algorithms [3] and their generalization, any-
dimension algorithms [16], represent a second important ex-
tension to the concept of an algorithm. An anytime algo-
rithm can be interrupted at any point during its execution to
yield a result – a longer period before interruption yields a
better result. Any-dimension algorithms are similar, except
that they allow more general termination criteria. Since a
range of outcomes is acceptable, these classes of algorithms
can be viewed as multi-fidelity algorithms. However, the re-
quirement that execution be interruptible at any point in time
is an added constraint that restricts their generality. Hence,
anytime and any-dimension algorithms are also subsets of
the more general class of multi-fidelity algorithms.

The third extension, imprecise computations [4,5,12],
support graceful degradation of real-time systems under
overload conditions. Each computation is modeled as a
mandatory part followed by an optional anytime part that
improves the precision of the result. The real-time sched-
uler ensures that the mandatory portion of every task meets
its deadline, and that the overall error is minimized. Since
they allow multiple outcomes, imprecise computations are
clearly instances of multi-fidelity algorithms. However, their
restricted structure and real-time focus makes them a subset
of the latter class.

From a broader perspective, the concept of Quality of Ser-
vice (QoS) in networking and real-time systems bears some
resemblance to the notion of fidelity. There are two main
differences. First, QoS is typically viewed as a property of
the environment, not the application. Second, fidelity is a
broader concept of quality than QoS, which is typically used
to indicate parameters such as bandwidth, jitter, and so on.

Finally, randomized algorithms [15] such as the Miller–
Rabin primality test possess a property akin to fidelity. When
such an algorithm terminates, there is a non-zero probabil-
ity that the answer is incorrect. However, by repeating the
algorithm many times, one can increase the probability of
discovering the correct result. Thus, increasing the number
of trials can be viewed as increasing the fidelity of the result.



606 SATYANARAYANAN AND NARAYANAN

5. Conclusion

The importance of adaptation in mobile computing systems
is now widely recognized [9,13,19]. Only through effective
adaptation can applications on a mobile computer overcome
challenges such as unpredictable variation in network qual-
ity, wide disparity in the availability of remote services, lim-
itations on local resources imposed by weight and size con-
straints, and concern for battery power consumption. Multi-
fidelity algorithms are a natural fit for adaptive systems be-
cause they tolerate a range of outcomes, thereby offering
many new degrees of freedom for adaptation.

In this context, interactive mobile systems pose special
challenges as well as opportunities. On the one hand, meet-
ing usability requirements is made more difficult by the re-
source constraints of mobile computing. On the other hand,
the fact that a human user is generating requests and receiv-
ing output allows flexibility that would not otherwise be pos-
sible. Humans tend to be noisy sources of input and tolerant
sinks of output. They trigger computations, then abort them
at whim; they formulate a query, then realize that they meant
something different after seeing some of the results; they are
annoyed by slow response, but are often happy with a less
than perfect result. By freeing the system to be more flexible
in its responses, multi-fidelity algorithms are a good match
for the idiosyncrasies of human users.

The change in viewpoint represented by multi-fidelity al-
gorithms is simple, yet surprisingly powerful. While the full
consequences of this shift remain to be worked out, we are
convinced that multi-fidelity algorithms will play a key role
in the future of interactive mobile computing systems.

Acknowledgements

Avrim Blum, Christos Faloutsos, Mor Harchol-Balter, David
Petrou, Dan Siewiorek, and Andrew Willmott gave us valu-
able comments on an earlier version of this paper. Their
input substantially improved its content and presentation.

This research was supported by the Air Force Ma-
teriel Command (AFMC) under DARPA contract number
F19628-96-C-0061. Additional support was provided by In-
tel and IBM. The views and conclusions contained here are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either express or implied, of AFMC, DARPA, Intel, IBM,
Carnegie Mellon University, or the US Government.

References

[1] M. Aeschlimann, P. Dinda, L. Kallivokas, J. López, B. Lowekamp and
D. O’Hallaron, Preliminary report on the design of a framework for
distributed visualization, in: Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applica-
tions (PDPTA’99), Las Vegas, NV (June 1999).

[2] M.F. Cohen and J.R. Wallace, Radiosity and Realistic Image Synthesis
(Academic Press Professional, Boston, MA, 1993).

[3] T. Dean and M. Boddy, An analysis of time-dependent planning, in:
Proceedings of the Seventh National Conference on Artificial Intel-

ligence (AAAI-88), Saint Paul, MN (AAAI Press/MIT Press, August
1988) pp. 49–54.

[4] W. Feng and J.W.S. Liu, An extended imprecise computation model
for time-constrained speech processing and generation, in: Proceed-
ings of the IEEE Workshop on Real-Time Applications, New York,
NY (May 1993) pp. 76–80.

[5] W. Feng and J.W.S. Liu, Algorithms for scheduling tasks with in-
put error and end-to-end deadlines, Technical report UIUCDCS-R-
94-1888, University of Illinois at Urbana-Champaign (September
1994).

[6] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele and P. Yanker,
Query by image and video content: The QBIC system, Computer
28(9) (September 1995) 23–32.

[7] J. Flinn and M. Satyanarayanan, PowerScope: A tool for profiling
the energy usage of mobile applications, in: Proceedings of the Sec-
ond IEEE Workshop on Mobile Computing Systems and Applications,
New Orleans, LA (February 1999).

[8] J. Flinn and M. Satyanarayanan, Energy-aware adaptation for mobile
application, in: Seventeenth ACM Symposium on Operating Systems
Principles (SOSP’99), Kiawah Island, SC (December 1999) pp. 48–
63.

[9] G.H. Forman and J. Zahorjan, The challenges of mobile computing,
IEEE Computer 27(4) (April 1994).

[10] A. Frieze, R. Kannan and S. Vempala, Fast Monte-Carlo algorithms
for finding low-rank approximations, in: IEEE Symposium on Foun-
dations of Computer Science (FOCS), Palo Alto, CA (1998).

[11] M.R. Garey and D.S. Johnson, Computers and Intractability (Free-
man and Co., New York, 1979).

[12] D. Hull, W. Feng and J.W.S. Liu, Operating system support for im-
precise computation, in: Flexible Computation in Intelligent Sys-
tems: Results, Issues, and Opportunities, Cambridge, MA (November
1996).

[13] R.H. Katz, Adaptation and mobility in wireless information systems,
IEEE Personal Communications 1(1) (1996).

[14] F. Korn, H.V. Jagadish and C. Faloutsos, Efficiently supporting ad
hoc queries in large datasets of time sequences, in: Proceedings of
the 1997 ACM SIGMOD International Conference on Management
of Data, Tucson, AZ (May 1997).

[15] R. Motwani and P. Raghavan, Randomized Algorithms (Cambridge
University Press, Cambridge, UK, 1995).

[16] D.J. Musliner, E.H. Durfee and K.G. Shin, Any-dimension algo-
rithms, in: Proc. Workshop on Real-Time Operating Systems and Soft-
ware (May 1992) pp. 78–81.

[17] D. Narayanan, J. Flinn and M. Satyanarayanan, Using history to im-
prove mobile application adaptation, in: Proceedings of the Third
IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA 2000), Monterey, CA (December 2000).

[18] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn
and K.R. Walker, Agile application-aware adaptation for mobility, in:
Proceedings of the 16th ACM Symposium on Operating Systems and
Principles, Saint-Malo, France (October 1997).

[19] M. Satyanarayanan, Mobile information access, IEEE Personal Com-
munications 3(1) (February 1996).

Mahadev Satyanarayanan is the Carnegie Group
Professor of Computer Science at Carnegie Mellon
University. The Coda and Odyssey systems for mo-
bile information access have been developed over
the last decade under his leadership. Earlier, he was
a principal architect and implementor of the An-
drew File System. He received the Ph.D. in Com-
puter Science from Carnegie Mellon in 1983, af-
ter Bachelor’s and Master’s degrees from the Indian
Institute of Technology, Madras.

E-mail: satya@cs.cmu.edu



MULTI-FIDELITY ALGORITHMS FOR INTERACTIVE MOBILE APPLICATIONS 607

Dushyanth Narayanan is a Ph.D. candidate at
the School of Computer Science, Carnegie Mel-
lon University. He works on the Odyssey project
headed by M. Satyanarayanan. His thesis work
deals with system support for mobile, interactive
applications. He received his Bachelor’s degree
in 1995 from the Indian Institute of Technology,
Madras.
E-mail: bumba@cs.cmu.edu


