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ABSTRACT 
Image and video labeling is important for computers to 
understand images and videos and for image and video search.  
Manual labeling is tedious and costly. Automatically image and 
video labeling is yet a dream. In this paper, we adopt a Web 2.0 
approach to labeling images and videos efficiently: Internet users 
around the world are mobilized to apply their “common sense” to 
solve problems that are hard for today’s computers, such as 
labeling images and videos. We first propose a general human 
computation framework that binds problem providers, Web sites, 
and Internet users together to solve large-scale common sense 
problems efficiently and economically. The framework addresses 
the technical challenges such as preventing a malicious party from 
attacking others, removing answers from bots, and distilling 
human answers to produce high-quality solutions to the problems. 
The framework is then applied to labeling images. Three 
incremental refinement stages are applied. The first stage collects 
candidate labels of objects in an image. The second stage refines 
the candidate labels using multiple choices. Synonymic labels are 
also correlated in this stage. To prevent bots and lazy humans 
from selecting all the choices, trap labels are generated 
automatically and intermixed with the candidate labels. Semantic 
distance is used to ensure that the selected trap labels would be 
different enough from the candidate labels so that no human users 
would mistakenly select the trap labels. The last stage is to ask 
users to locate an object given a label from a segmented image. 
The experimental results are also reported in this paper. They 
indicate that our proposed schemes can successfully remove 
spurious answers from bots and distill human answers to produce 
high-quality image labels.1 

Categories and Subject Descriptors 
I.2.6 [Learning]: Knowledge Acquisition. H.3.3 [Information 
Search and Retrieval]: Retrieval models. H.5.3 [Group and 
Organization Interfaces]:  Collaborative computing. 

General Terms 
Design, Security, Human Factors 

Keywords 
Distributed knowledge acquisition, human computation, image 
labeling, common sense problems, HumanSense. 

1. INTRODUCTION 
Given an image or video, what does it contain? What does an 
object do in the video? How are objects related to each other? 
Such questions are hard to answer for even today’s most powerful 
computers, but can be easily answered by humans. There exist 
many similar tasks in our lives. For example, characters scanned 
from a book that cannot be recognized by Optical Character 
Recognition (OCR) can be easily recognized by humans. A person 
can be instantly identified from a group of people by humans, but 
the same task is hard for computers. This type of problem that 
requires only human’s common sense knowledge to solve is 
referred to as a common sense problem in this paper.  

As early as in the 1980s the importance of common sense 
knowledge for computers was recognized [1][2]. Labeling images 
or videos is a common sense problem. The labeling results are 
very useful in helping computers understand images or videos, 
and in improving their image or video search results. Humans are 
typically hired to label images or videos nowadays. It is a labor-
intensive work. It would be impractical or simply infeasible to 
hire enough number of dedicated people to label images or videos 
in a large scale, such as those crawled from the Internet. Labeling 
crawled images and videos would dramatically improve image 
and video search accuracy and relevancy. A new approach is 
needed to meet the demand of labeling large-scale images and 
videos. The Internet and Web 2.0 can be exploited to achieve the 
goal. There are hundreds of millions of Internet users, and 
hundreds of thousands of small Web sites. These Internet users 
and Web sites can be mobilized to help solve such common sense 
problems with an appropriate system, making the Internet very 
suitable for solving large-scale common sense problems.1 

There are several proposals that exploit the power of the Internet 
to solve common sense problems. Open Mind [3] is a world-wide 
collaborative effort initiated by the MIT Media Lab to collect 
common sense knowledge from people to develop intelligent 
                                                                 
1 This work was done when Yang Yang was an intern at Microsoft 
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software. Regular Internet users are recruited to answer simple 
questions on its Web sites, and the collected answers are 
processed by machine learning algorithms. Open Mind relies 
solely on contributions from online volunteers. It costs very little, 
mainly for the maintenance of the specific Web sites. But 
counting on online volunteers would make Open Mind unable to 
scale up to meet the demand of labeling crawled images and 
videos. Open Mind has no mechanism to prevent spurious 
answers from bots. The results may be tainted and become 
unreliable and inaccurate when bots are employed to answer 
questions in Open Mind. 

By exploiting the fact that many Internet users are willing to play 
entertaining online games, von Ahn et al. proposed to use human 
algorithm games to harness their time and energy to solve 
common sense problems [4][5][6][7][8][9]. The idea is to convert 
plain, tedious questions into vivid, intriguing online games. Web 
users, viewed as distributed processors connected by the Internet, 
are attracted to play these games, and valuable common sense 
knowledge comes as a by-product. For example, the ESP game [4] 
displays a same image to a pair of concurrent players randomly 
selected and asks them to guess what the partner would think 
about the image. Each player enters possible descriptions of the 
image as quickly as possible, and once both players give a same 
description, they “win” on this image and move on to play with 
the next image. This method is as cost efficient as Open Mind. In 
addition, it has a strong probabilistic guarantee that the data 
collected has a high-quality. The reason is twofold. First, people 
are driven by the desire to win the game, and the only way to win 
on an image is that both parties have to give a same description. 
Since the two players are selected randomly, it is hard to win the 
game unless both parties give a valid answer. This would 
effectively screen out incorrect answers or spurious answers by 
bots. Google brought online a commercialized version of the ESP 
game, the Google Image Labeler [10], in 2006.  

CAPTCHA [11] is a computer generated challenge-response test 
to distinguish humans from computers using a common sense 
problem. reCAPTCHA [12] is a novel CAPTCHA that produces 
valuable common sense knowledge to improve the OCR quality in 
digitizing books for the Internet Archive [13]. It works by 
combining two words that OCR cannot read into a challenge. One 
word is already identified and serves as a conventional 
CAPTCHA, while the other word is not identified yet. If a user 
recognizes the identified word, the answer to the unidentified 
word is assumed to be correct, and is collected to identify the 
unidentified word. The OCR result is therefore improved. 

 Using games or CAPTCHA to collect common sense knowledge, 
as described above, are innovative ideas. They are very suitable 
for large scale applications such as labeling images for a portal of 
user-uploaded images and the Internet Archive project [13]. It’s 
estimated that “5,000 people playing the ESP game 24 hours a day 
would label all images on Google (425,000,000 images) in 31 
days” [4]. Although very useful, they are restricted to collecting 
certain types of common knowledge. As admitted by the author of 
human algorithm games, turning a common sense problem into a 
human algorithm game is “nontrivial” [9] because games are 
required to be enjoyable. It is also a challenge to preserve user’s 
enthusiasm in playing a human algorithm game either. Like 
human algorithm games, converting a common sense problem 
into a CAPTCHA is not trivial, either. In addition, a human 
algorithm game typically requires two Internet users to play live 

against each other2. This would raise the bar for the game hosting 
Web sites, requiring them to have enough number of concurrent 
online users. The manpower of smaller Web sites is thus wasted.  

A computational process that involves humans in performing 
certain steps is called human-based computation [14], or simply 
human computation3. It leverages differences in abilities and costs 
between humans and computers to achieve symbiotic human-
computer interaction. In this paper, we propose a framework that 
employs human computation to solve general common sense 
problems efficiently. The framework supports a range of viable 
business models, and can scale up to meet the demand of a large 
amount of common sense problems. A hosting Web site can be 
either large with heavy traffic or small with limited visitors so that 
every Internet user can contribute. Our system can be deployed at 
the entrance to Web-based services such as Web email services, 
software downloading services, etc. It also supports a profit 
sharing ecosystem similar to Google’s AdSense [15] that 
motivates Internet users to offer their solutions to our problems in 
exchange for shared profit.  

The framework proposed in this paper aims to address the 
problems associated with the existing approaches mentioned 
above. With our framework, there is no need to convert a common 
sense problem into a CAPTCHA or an entertaining game. Such a 
conversion is nontrivial and challenging, and needs to be designed 
case by case. Many human computation examples may not be able 
to convert to human algorithm games or CAPTCHA but can 
easily fit into our framework. These examples include human-
based genetic algorithm [16] which utilizes humans for evaluation 
and three types of innovation (contributing new content, mutation, 
and recombination), and interactive evolutionary computation that 
uses humans for evaluation of computer graphics [17] or of video 
labeling by active-learning engines [18]. Therefore a much 
broader spectrum of common sense problems can be solved with 
our framework. Attracting enough human contributors is a key 
factor in using human computation to solve large scale common 
sense problems. As we have mentioned, preserving user’s 
enthusiasm is a great challenge for a human algorithm game. With 
the application scenarios to be described in Section 2.3, our 
framework can maintain a constant or even increasing number of 
human contributors. Like Google’s AdSense, Web sites with 
small traffic can be employed in our framework to reach more 
human contributors.  

The framework brings several technical challenges not seen in the 
aforementioned human computation schemes, including:  

1. How to design the system to support solving general common 
sense problems without knowing what questions are asked? 
In other words, the system should be problem-agnostic.  

                                                                 
2 In [9] single player games are also described. They are variations 

of the two-player games by using a bot to emulate a human  
player. They are irrelevant to the problems addressed in this 
paper since we have assumed that the problems cannot be 
solved by computers. If a server-side bot can emulate a human 
player, there is no need to collect more answers from humans 
since the collected information is enough.  

3  Human computation amusingly brings computing back to its 
original meaning. In 1940s, a computer, i.e., a person, used a 
calculator to contribute to a larger problem such as computing 
missile trajectories.   
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2. How to screen out answers from bots? In order to support 
solving general common sense problems and to enable a 
single Internet user to contribute (i.e., any Web sites, large 
or small, can solicit their users to help solve common sense 
problems), our system may not be able to tie a question to a 
CAPTCHA or to use other means such as two users playing 
against each other to tell whether an answer is from a bot or 
human. This requires that our system should have a 
mechanism to screen out spurious answers from bots.  

3. How to distill the answers collected from individual human 
users to ensure the quality of the solutions our system 
produces? 

4. How to prevent malicious players of the system from 
attacking others or contaminating the solutions produced by 
the system? How to prevent users from making money 
without contributing any answers? 

These technical challenges are addressed in the system we 
propose in this paper. Our system uses <iframe>’s isolation 
guaranteed by the Same Original Policy (SOP) [19] to prevent a 
malicious problem provider from attacking participating Web 
sites, and uses fragment identifiers for secure client-side cross-
domain communications. Random problem ID is used to prevent 
attacks launched by colluding participating Web sites and users. 
We propose a statistical method to effectively remove spurious 
answers from bots, and a majority voting scheme to combining 
individual human answers to produce high-quality solutions to 
common sense problems.  

After presenting our general human computation framework, we 
apply it to image labeling, which is a typical common sense 
problem. We propose three incremental refinement stages to 
produce high-quality image labels. The first stage collects 
candidate labels from users. The second stage refines the 
candidate labels and identifies synonymic labels. Experimental 
results will also be reported. They will show the effectiveness of 
our schemes in removing spurious answers from bots and 
distilling individual human answers to achieve high-quality 
solutions.    

The remaining of the paper is organized as follows. The threat 
model and an ecosystem based on our proposed system are 
presented in Section 2. Our human computation framework is 
described in detail in Section 3. The framework applied to image 
labeling is described in Section 4. Experimental results are 
reported in Section 5. The paper concludes in Section 6.   

2. THREAT MODEL AND ECOSYSTEM 

2.1 Players 
Our human computation system is called HumanSense. There are 
four players connected by the Internet in it, as shown in Figure 1: 
problem providers, HumanSense server, participating Web sites, 
and Internet users. The role of each player is explained as follows: 

• Problem providers. A problem provider provides common 
sense problems that need to be solved with HumanSense. 
Resulting answers from the HumanSense server are also 
sent back to the problem provider. Therefore a problem 
provider is also called a solution seeker. A problem 
provider typically offers money, souvenirs, free services, or 
anything else valuable to compensate the other parties of 
the system for their contribution to solving the problems. 

• HumanSense server. It selects problems and sends to 
participating Web sites, fetches Internet users’ answers, 
analyzes them to produce solutions to the problems, and 
sends these answers to the problem provider. It is the major 
player of HumanSense, and will be described in detail in the 
subsequent sections. 

• Participating Web sites. A participating Web site receives a 
problem each time from the HumanSense server, and 
presents it to Internet users for their answers. It may offer 
certain services such as Web email or software 
downloading service to Internet users in exchange for their 
answers to the problem.  

• Internet users. They contribute their answers to the problem 
in exchange for money, rewards, services, or simply fun. 
An Internet user might be a bot. 

 

 
Figure 1: Four players in HumanSense. 

 

2.2 Threat Model and Assumptions 
In HumanSense, we assume that only the HumanSense server is 
trusted. A problem provider may be anyone who seeks solutions to 
her common sense problems through HumanSense. A problem 
provider may be malicious, targeting at attacking participating Web 
sites or tricking Internet users into clicking a malicious link to go to 
a malicious Web site or download a malicious file. An Internet user 
is untrusted too. It may be a bot that provides arbitrary answers to 
the problems it encounters, or a malicious human who want to gain 
disproportionate compensation. A participating Web site may also 
be malicious. It may collude with other participating Web sites or 
Internet users to make more money disproportional to their 
contributions to the problem solutions.    

We further assume that most Internet users are well-behaved 
humans who want to contribute in exchange for compensation or 
free services. A human may sometimes be careless enough to 
provide incorrect answers. Therefore human users collectively 
provide correct solutions to common sense problems. This is the 
foundation of our framework to be used to solve common sense 
problems.  
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2.3 Ecosystem 
As we have mentioned previously, HumanSense supports a range 
of viable business models. We are particularly interested in two 
application sceneries. Both would be able to attract a large 
number of human contributors to solve common sense problems, 
an essential factor to make an application of HumanSense 
successful. The first scenario is to place our human computation 
at an entrance to free services provided by a large Web site with a 
steady flow of visitors, such as Windows Live Hotmail which 
provides free Web email services, or www.download.com which 
provides free software to download. These Web sites are 
compensated with the fees paid by problem providers for hosting 
common sense problems. Just like online advertisement, our 
system would encourage a Web site to improve its services to 
attract more users since the more the Internet users, the more the 
Web site can make from HumanSense. When a user wants to enter 
her Hotmail account or download free software, she is asked to 
provide answers to a common sense problem before receiving the 
service she asks for. Scores or awards may be used to encourage 
people to provide high-quality answers. 
It is also possible to combine a common sense problem with a 
CAPTCHA challenge for certain types of common sense 
problems, e.g., reCAPTCHA. In this case, a user answers the 
CAPTCHA and contributes an answer to the common sense 
problem. If the answer to the CAPTCHA is correct, the user is 
assumed to be human, and is allowed to receive the desired 
service, and the answer to the common sense problem is recorded 
by the HumanSense server. Since the CAPTCHA has already 
screened out bots from entering answers to our problems, all the 
collected answers are from humans. There is no further need to try 
to apply any mechanism to remove answers from bots in this case. 
Another application scenario is distributed human computation 
in which HumanSense pushes common sense problems to the 
Web pages of participating Web sites, large or small. Like 
AdSense [15], HumanSense collects common sense problems 
from problem providers who seek solutions through HumanSense, 
and pushes them to participating Web pages. Relevancy or other 
criteria can be used to select a common sense problem to be 
presented to Internet users in a certain Web page. HumanSense 
would charge the problem providers for the solutions 
HumanSense provides. The profit would be divided among the 
participating Web sites and the Internet users who provide correct 
answers. All the answers provided by a user are recorded by 
HumanSense, but only the answers contributing to the final 
solution generated by HumanSense would be credited for 
compensation of contributing answers. HumanSense brings 
benefits to all the parties involved. Participating Web sites makes 
money by hosting common sense problems to reach their visitors. 
They help HumanSense reach a huge number of Internet users, 
visitors of both large and small Web sites, in a short time. Internet 
users make money by contributing correct answers in an easy and 
convenient manner. This is a key difference between HumanSense 
and the human algorithm games mentioned previously. We don’t 
rely on Internet user’s enthusiasm in playing games – they may 
get bored after playing for a while, and it is a nontrivial task to 
convert a common sense problem into a game. Instead, 
HumanSense presents a common sense problem as it is to users 
and allures them to contribute by compensating their correct 
answers with money. Solution seekers also benefit from 
HumanSense since they find a cheap and quick method to solve 
large-scale common sense problems such as labeling images and 

videos crawled from the Internet for search. HumanSense makes 
money by operating the system. 

3. OUR HUMAN COMPUTATION 
FRAMEWORK 

3.1 Problem Representation  
In HumanSense, a problem is represented by the problem resource 
files (such as images, videos, etc.) plus a manifest file which 
contains the following information about the problem: 

• problem: Required. This is the root element, indicating the 
file is a problem-describing manifest. 

• id: Required. Unique global ID of the problem. 

• resources: Required. This part indicates resource files 
associated with the problem. Each resource file is 
represented as a nested element, such as image, video, etc. 

• priority: Optional. An integer value indicating how often 
the problem shall be presented to the users. The default 
value is 1. 

• value: Optional. An integer value indicating how much 
value the problem is worth. Combined with other factors, 
this value is used to calculate a “score” or monetary award 
for a correct answer to the current problem. The default 
value is 1. 

• type: Required. The type of the problem. This part 
indicates to the HumanSense server how to process the 
answers to the problem. The proposed framework allows a 
plug-in to support a new method associated with a new type 
to process the collected answers.  

 
Figure 2: An example of manifest file for an image in the 

second stage of image labeling. 
The manifest file may also contain problem-type specific elements. 
An example of manifest file is shown in Figure 2. It is a manifest 
file for an image in the second stage for image labeling described in 
Section 4. Three labels, tiger, claw, and tail, are contained in the 
manifest. They are displayed as multiple choices for users to select 
appropriate ones from in the second stage of image labeling. They 
are problem-type specific elements. A manifest file is expressed in 

<problem> 

  <id>13089</id> 

  <resources> 

    <image>13089.jpg</image> 

  </resources> 

  <priority>3</priority> 

  <value>2</value> 

  <type>ImageLabeling</type> 

  <stage>MultipleChoices</stage> 

  <labels> 

    <label>tiger</label> 

    <label>claw</label> 

    <label>tail</label> 

  </labels> 

</problem> 
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XML for easy extension. Note that some items such as priority 
in a manifest file may be mutable during the computation. 

3.2 Constituent Modules and Interactions 
Figure 3 shows major constituent modules of HumanSense. The 
whole process consists of the following steps: 
1. An Internet user visits a participating Web site for a service 

such as accessing Web emails. The Web site requests a 
common sense problem from the HumanSense server. The 
HumanSense server selects an appropriate problem from the 
problem database. To prevent malicious Web site from 
tracking or logging the (problem, answer) pair, the 
HumanSense server generates a random ID unique to the 
current session, maps it to the ID of the selected problem, 
and sends it to the Web site. The HumanSense server 
maintains the association of the random ID and the real 
problem ID for the current session. 

 

 
Figure 3: Constituent modules. 

 
2. The Web site creates an <iframe> to aggregate the problem 

presentation into the participating Web page. The <iframe> will 
load the problem with pre-fetched randomId by using URL like 
the following: http://HumanSenseServer/problem?id=randomId. 
A malicious problem provider may launch phishing attacks 
against a user by tricking the user to believe that the problem 
frame is from the Web site, and inputs private data such as a 
password into the frame, resulting in the private data being 
secretly sent back to the malicious problem provider through 
embedded scripts. To prevent such phishing attacks, the Web 
site should wrap the problem frame in a different display 
style to differentiate the problem frame from the Web site’s 
content, and also add a clear note on top of the problem 
frame to warn users that the frame is used to answer common 
sense problems rather than input private data.  

3. The HumanSense server generates the problem page and 
sends to the problem frame.  

3.1 The problem manifest file is modified to remove the 
information that is not needed by Internet users, such 
as the problem ID, priority, value, etc. All the direct 
resource references (such as 13089.jpg in Figure 2) 
are replaced with some URL like http:// 
HumanSenseServer/resource?id=randomId&index=0, 
where the index parameter indicates the order of the 
resource in the problem manifest that the URL refers 
to. Since the HumanSense server maintains the 
association of the random ID with the actual problem 
ID, correct resources can be retrieved by the 
HumanSense server. Web sites or Internet users, on 
the other hand, cannot tell from the resources or the 
random ID if the problem has been answered or not. 
Therefore they cannot launch an attack to repeat an 
answer to the same problem in order to let the answer 
be in the solution produced by HumanSense. Note 
that users would be awarded for contributing correct 
answers.  

3.2 A problem provider is allowed to choose a 
presentation template for each problem it provides. 
The presentation template can be selected from a 
library of templates or created if no suitable template 
is available. A new template will be saved in the 
template library for future selection. A presentation 
template is defined in XSLT or CSS, and is applied to 
the modified problem manifest file to convert the 
modified manifest into a Web page containing normal 
HTML and JavaScript to provide UI for presenting 
the problem and inputting answers, as well as a 
special JavaScript function called “$collectAnswer” 
to designate how to collect answers from the 
generated UI. Since the problem is represented in an 
<iframe> whose domain is different from the Web 
site, the Same Origin Policy (SOP) [19] guarantees 
that the content in the problem frame would not 
introduce any cross-site scripting (XSS) attacks to the 
Web site. 

3.3 The modified problem representation page is sent 
back as the content of the problem <iframe> in the 
Web page. The page is modified for appending 
scripts to support cross-domain communication, 
which will be used to transmit a token from the 
problem frame to the Web page of the participating 
Web site. 

4. If a common sense problem is used as a CAPTCHA to 
tell humans from bots, the Web site needs to know 
whether the problem is answered by a human or by a 
bot in order to make a decision on navigating to the 
logic of the next step or not. In this case, a CAPTCHA 
is added to a common sense problem by the 
HumanSense server, such as the case of reCAPTCHA in 
which a CAPTCHA and a problem are displayed side 
by side. The HumanSense server should select a 
problem with known answers from a random problem 
provider as a CAPTCHA. This would prevent a problem 
provider from using the known answers to its problems 
to solve the CAPTCHA automatically. When a correct 
answer to the CAPTCHA is received, the HumanSense 
server would send a token to the problem frame. Cross-
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domain communications between the problem frame 
and the frame of the Web site are needed in generating 
the token and passing the CAPTCHA result included in 
the token to the Web site. The current Web standards 
don’t support cross-domain communications. The next 
Web standards, HTML 5 [20], as well as other 
proposals [21][22] would support secure client-side 
cross-domain communications. These proposals require 
modifications on a current browser. In order to allow 
client-side cross-domain communications without any 
modifications to the current browsers, the subspace 
scheme proposed in [23] is adopted in our system. To 
generate the token, a nonce is first generated by the 
server of the Web site, and passed to the problem frame 
via fragment identifiers for the current problem. The 
nonce is then passed to the HumanSense server with the 
answers to the CAPTCHA and the common sense 
problem. If the answer to the CAPTCHA is correct, the 
HumanSense server uses its private key to encrypt the 
nonce together with other information in the token. The 
token is passed to the problem frame, and then to the 
Web site’s page via fragment identifiers. The Web site’s 
page will then submit the token to its server. Upon 
receiving the token, the Web server uses the public key 
of the HumanSense server to decrypt the token and 
verifies the decrypted nonce matches the nonce it 
generates for the problem. If they match, it concludes 
that the token was indeed from the HumanSense server 
for the specific CAPTCHA and the user is human. The 
logic of the next step is then executed.  

The two modules of the HumanSense server, one that removes 
spurious answers by bots and the other that distills individual 
human answers, will be described in Sections 3.4 and 3.5, 
respectively.   

3.3 Selection of a Common Sense Problem 
A problem is selected to be presented at a participating Web page 
based on the following criteria:  problem’s type, value, and 
priority. By default, a participating Web page is assumed to be 
able to present any type of problems for users to answer. A 
participating Web site can optionally ask the HumanSense server 
to send a specific type of problems to present to its visitors. 
Problems of default value are typically presented on a 
participating Web page. Internet users can ask for problems of 
higher or lower values. Correct answers to problems of higher 
values would earn more money, higher scores, or better services. 
As a result, users may be motivated to choose problems of higher 
values to answer. We note here that a problem of higher value 
means that a user usually needs to spend more time or effort to 
answer. More compensation should be offered for correct answers 
to problems of higher values. Problems of higher priority are 
selected to be pushed to participating Web pages more frequently. 
Solutions to problems of higher values or priorities would cost 
more to the problem provider.  
In our system, only the solution provider and Internet users know 
if an answer is correct or not. Problems and answers are agnostic 
to both the HumanSense server and Web sites except the types of 
the problems and answers. The HumanSense server uses statistical 
methods to analyze the collected answers from users and produces 
problem solutions to send to the problem providers. To avoid 
producing incorrect answers due to corrupted data collected from 

users, problems should be selected randomly so that it would be 
unlikely for any fixed group of users to receive the same problem 
more than once. This mechanism targets mainly at collusion of 
bots, as we have assumed in Section 2.2 that human users are 
benign. This can be easily achieved with a large pool of common 
sense problems that our system is designed for.  
When the pool of problems is small, it is inevitable that some 
problems might be repeated despite the fact that a problem is 
randomly selected. HumanSense has built-in security mechanisms 
to protect against colluding attacks by bots and Web sites unless 
content of a displayed problem is analyzed to extract its features 
which are compared with those of previously displayed problems 
to detect if two problems are the same or not, as in the image 
labeling case described in Section 4. Note that from Section 3.2, 
the Web content sent to a participating Web site does not contain 
any information about the problem. Web sites or Internet users 
cannot tell if two problems they saw are the same or two from the 
Web content the problem <iframe> receives. In addition, multiple 
copies of a problem can be generated, with each copy being 
slightly different. For example, for an image to be labeled in the 
system described in Section 4, the content of each copy is slightly 
modified without changing its semantic meaning. Hence the hash 
values of these copies are different, and it is impossible to use 
hash values to identify if two problems are the same or not. The 
only way to find out if two images are the same or not is to use 
content analysis.   

3.4 Removing Spurious Answers from Bots 
When CAPTCHA is not used with common sense problems, the 
collected answers from users may contain spurious answers 
provided by bots. These spurious answers must be removed from 
the collected answers to ensure the quality of the solutions 
produced by HumanSense. Since the common sense problems 
cannot be answered by computers (otherwise there is no need to 
use human computation to find answers), and it is highly unlikely 
that a fixed group of users would be able to see a same problem 
appearing more than once, we can assume that an answer 
provided by a bot is random with uniform distribution, and each 
answer from bots is assumed to be independently and identically 
distributed (i.i.d.). Therefore the answers from bots can be 
modeled as an i.i.d. uniform distribution.  
Suppose the i-th answer to a problem P provided by users is ai. 
Let DA be the set of distinct answers collected for problem P, and 
the j-th member of DA is denoted as Aj. The frequency 

jAC that 

answer Aj appears in the collected answers for problem P is 
then ,jA i ji

C b= ∑ , where 

,

1,  if ;

0,  otherwise.
i j

i j

a A
b

=
=
⎧
⎨
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jAC consists of two parts: contribution from humans
j

h
AC and 

contribution from bots 
j

b
AC : 

j jj

h b
A AAC C C= + . Let’s consider 

the distribution of 
j

b
AC . Suppose that the total number of answers 

and the number of distinct answers are T and N, respectively. Note 

484



 

 

that T N≥ . It is easy to deduce the average and standard 

deviation of 
j

b
AC for i.i.d. uniform distribution:  

/ ,
j

b
AC T N< > =  (1) 

2b
A j

C

T T T

N N N
σ = − ≈

 
(2) 

The following recursive procedure is applied to remove spurious 
answers from bots when the HumanSense server has collected 
enough number of answers to problem P: 

1. If N is smaller than a threshold and T/N is larger than a 
threshold, terminates; otherwise initialize the set of 
answers from bots, Sbot, to be the set of all the answers 
collected for problem P.  

2. Calculate the average and standard deviation of the 
answers provided by users in Sbot by using Eqs. (1) and (2). 

3. Any frequency b
j A j

A C j

b
AC k Cσ> + < >

 
is considered as 

human contribution and removed from Sbot, where k is a 
threshold parameter. If there is no human contribution, this 
process is terminated. Otherwise go back to Step 2. 

In Step 1, the procedure checks how likely the collected answers 
contain ones from bots by checking both the number of distinct 
answers and the ratio of the total answers to the number of distinct 
answers. The remaining steps are applied only if it finds out that it 
is likely that the collected answers contain ones from bots. All the 
answers in the resulting Sbot of the above procedure are considered 
as answers from bots and are therefore removed from the 
collected answers.  

3.5 Evaluation of Human Answers 
Recall that we have assumed that human users are benign but may 
sometimes be careless enough to provide erroneous answers. This 
module is applied to human answers, i.e., the collected answers if 
CAPTCHA is used with common sense problems or the surviving 
answers after the procedure described in Section 3.4 is applied to 
remove spurious answers from bots, to deduce a final answer, 
considered as the solution, to the problem. Like the procedure 
described in Section 3.4 to remove answers from bots, this 
procedure is applied only when the number of human answers to a 
problem is larger than a threshold. 
Simple majority voting is used to combine individual human 
answers since according to Gentry et al. [24], majority voting is 
better than other methods such as Bayesian inference. Human 
answers to a problem are listed from high to low according to 
their frequencies. The slope, i.e., the relative difference of the 
neighboring frequencies is calculated. The slope at each answer is 
compared with the slope of the neighboring answer, starting with 
the answer of the highest frequency. If there is a substantial 
increase in slope at an answer, that answer is the separation point. 
All the answers with frequencies higher than the separation point 
are considered as the final answer, while the remaining answers 
are discarded. 

4. EXAMPLE: IMAGE LABELING 
In this section we use image labeling as a concrete common sense 
problem to demonstrate how HumanSense works. Assume that it 
is used with an email login page. Our image labeling task is 

divided into three incremental refinement stages. The first stage is 
to ask users to describe the objects in an image. The candidate 
labels from the first stage are then refined with multiple choices at 
the second stage. Synonymic labels are also identified at this stage. 
In the third stage, users are asked to locate the object 
corresponding to a given label in a segmented image. We assume 
that at the start of the first stage, there is no prior knowledge of 
the images. We also assume that CAPTCHA is not needed for the 
email service that hosts the image labeling. 
The first stage is to collect raw descriptions of objects in an image 
and turn them into candidate labels for the 2nd stage. At the start, 
all the images are put into this stage’s pool of images. There is no 
prior knowledge of the objects in an image. Users are required to 
give some descriptions of objects in the images they see. Figure 4 
shows an image labeling task in the 1st stage. As more data are 
collected, the scheme described in Section 3.4 is applied to 
remove spurious answers from bots, and the scheme described in 
Section 3.5 is applied to distill human answers to produce 
candidate labels. When candidate labels emerge, entering more of 
these candidate labels would not gain any further knowledge 
about the image. To prevent users from entering these candidate 
labels, the candidate labels are put into a “taboo phrase list”. The 
“taboo phrase list” is inserted in the problem manifest file of the 
image to be displayed with the image. Users are forbidden from 
entering labels in the “taboo phrase list”. The labels in the “taboo 
phrase list” are displayed as red words in Figure 4. The reload 
button on the right of the “OK” button allows a user to skip to the 
next image if the current one is too hard to describe. With more 
labels put into the “taboo phrase list”, the value of the problem is 
also increased, and correct answers would be awarded more. The 
score of a correct label of the image as well as the total score of 
the current user are also shown in the problem frame in Figure 4. 
When the HumanSense server finds that there is an enough 
number of labels in the “taboo phrase list” or users would skip 
labeling an image which has labels in its “taboo phrase list”, the 
HumanSense server concludes that it has collected enough 
answers for the image. The image is then removed from the pool 
of the first stage images and put into the pool of the second 
stage images.  

 
Figure 4: First stage of the image labeling: 

Collecting raw descriptions of objects in an image. 
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The second stage targets at refining the candidate labels acquired 
in the first stage. The candidate labels are displayed as multiple 
choices with the image. Users are asked to choose the ones that 
are relevant to the images, as shown in Figure 5. The purpose is to 
further improve the quality of the labels to achieve high-quality 
labels for the images. It is possible that labels collected from the 
first stage contain synonyms. Users are also asked to correlate the 
synonyms in this stage.  
Like in the first stage, correct answers would be scored or 
awarded. Bots and lazy human users would simply choose all the 
labels displayed, which guarantees that correct answers would be 
selected, resulting in no further knowledge gained about the image 
in this stage despite paying certain scores, awards, or money to 
these users. To deal with this problem, Random “trap labels” are 
intermixed with the candidate labels obtained from the first stage 
and listed with the image. These trap labels are fake labels that 
would not appear in the image. Selection of any trap label by a 
user would result in rejection of the answer.     
Trap labels should be selected by a computer automatically and 
should not be semantically close to any candidate labels obtained 
from the first stage. HumanSense meets the desired requirements 
by utilizing the WordNet project [25][26], which offers a large 
lexical database for English with distance between two words to 
indicate how semantically close they are. To get a proper trap label, 
the HumanSense server picks a word randomly from the WordNet 
database, and then calculates its distances to all the displayed 
labels consisting of the candidate labels as well as selected trap 
labels for a specific instance of the image displayed for a user to 
answer. If all distances are greater than a preset threshold, this 
word is considered to be different enough from all the displayed 
labels, and is selected as a trap label. Otherwise a new word is 
picked and tested. This process is applied repetitively until an 
enough number of trap labels are selected. For each instance of a 
displayed image, a fresh set of trap labels are selected. They are 
randomly intermixed with the candidate labels for a user to choose 
from. 

 
Figure 5: Second stage of the image labeling: Multiple choices 

of candidate and trap labels. 
 
The last stage is to locate the object corresponding to a given label 
refined at the second stage in a segmented image. The segmentation 
algorithm we used in our experiments was the open source software 

EDISON [27]. An image overlaid with its segmentation result is 
displayed for a user to use the mouse to click all the segments 
belonging to the object represented by the given label, as shown in 
Figure 6. A user can turn on or off the segmentation result to view 
the original image or the image overlaid with segmentation result. A 
left-click of the mouse selects a segment and a right-click deselects 
it. The segmentation boundary of selected segments would no 
longer show to allow a better view of the selected segments for the 
specific object, as shown in Figure 7.  

5. EXPERIMENTAL RESULTS 
We have implemented the proposed framework with ASP.NET on 
Microsoft’s Internet Information Services (IIS). The implementation 
was geared to support the image labeling described in Section 4 but 
many components were generic to support other common sense 
problems. The system has been tested internally within our lab. The 
labels on five images were collected from about 200 people. 
Although the experiment scale is still small, the results we obtained 
are very encouraging. We are working towards testing at a much 
larger scale, but it would take a substantial time and effort to 
achieve that goal.  

 
Figure 6: Final stage of the image labeling: Locating an object 

given a segmented image and a label. 

 
Figure 7: Boundaries among selected segments are removed to 
have a better view of the object corresponding to “building”. 

 
In addition to human inputs, our experiments also used bots to 
generate random labels to input into the system. Figure 8 shows 
the collected labels from both humans and bots for the image 
shown in Figure 9. Since a bot would unlikely label an image 
correctly, there is no difference for a bot’s label to be a 
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meaningful word or not. In order to differentiate the labels from 
humans and those from bots, all the labels generated by bots were 
meaningless words in our experiments. All the labels we collected 
from humans were meaningful words. Therefore we can easily 
check if there is any label from bots that has survived our 
procedure described in Section 3.4 to remove spurious labels from 
bots.  Figure 10 shows the surviving labels after applying our 
procedure to the collected answers shown in Figure 8 to remove 
spurious answers from bots, with the parameter k set to 1. As we 
can see from the figure, all the surviving labels are real words. 
This means that all the spurious labels from bots are removed 
successfully by our scheme.  

 
Figure 8: Collected labels from both humans and bots in the 

first stage for the image shown in Figure 9.   

 
Figure 9: A test image for image labeling. 

 
Figure 10: The labels in Figure 8 that survive our procedure 

to remove spurious labels from bots, with k=1 (see Section 3.4 
for the meaning of k. 

 

Our distilling procedure described in Section 3.5 is then applied to 
the surviving labels shown in Figure 10. These labels are 
considered as answers from humans. The result is shown in Figure 
11. By comparing the labels in Figure 11 and the objects in Figure 
9, we can conclude that all the major objects in the image have 
been labeled by our system. Therefore, our system can produce 
high-quality labels for images. 
 

 
Figure 11: The resulting labels from the 1st stage for the image 

shown in Figure 9.  

6. CONCLUSION 
We have presented in this paper a human computation framework 
to mobilize Internet users to solve large-scale common sense 
problems efficiently and economically. An ecosystem based on 
the system is described in which all the parties would get benefits 
from the system. Internet users are motivated to offer correct 
answers to common sense problems in exchange for free services 
such as free Web emails, software or music downloading, or for 
monetary award. We described a system that can effectively 
prevent malicious players in the system to launch attacks against 
others or gain money or awards without contribution. We 
proposed a scheme to effectively remove answers from bots, and a 
majority voting scheme to distill human answers to achieve high-
quality solutions to common sense problems. We then applied the 
general human computation framework to image labeling. Three 
incremental refinement stages are used to produce high-quality 
image labels. The first stage asks users to describe objects in an 
image. The candidate labels obtained from the first stage are then 
listed together with trap labels to ask users to refine in the 2nd 
stage. Synonymic labels are also correlated by users in this stage. 
The last stage is to ask users to locate an object corresponding to a 
given label in a segmented image. A user can simply use the 
mouse to click segments to locate an object. Experimental results 
were also reported. They have shown that our scheme removes 
spurious answers from bots effectively. That scheme together with 
the majority voting scheme to distill human answers can produce 
high-quality image labels.  
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