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Abstract— Peer-to-peer (P2P) worms exploit common vul-
nerabilities in member hosts of a P2P network and spread
topologically in the P2P network, a potentially more effective
strategy than random scanning for locating victims. This
paper describes the danger posed by P2P worms and initiates
the study of possible mitigation mechanisms. In particular, the
paper explores the feasibility of a self-defense infrastructure
inside a P2P network, outlines the challenges, evaluates how
well this defense mechanism contains P2P worms, and reveals
correlations between containment and the overlay topology of
a P2P network. Our experiments suggest a number of design
directions to improve the resilience of P2P networks to worm
attacks.

I. INTRODUCTION

Peer-to-peer (P2P) overlay networks enjoy enormous and
ever increasing popularity both in real-life deployment (e.g.,
Gnutella and KaZaA) and in the research community (e.g.,
Chord [18], CAN [13], Pastry [14], and Tapestry [24]).
While security issues for P2P networks have received
attention, the main focus remains on ensuring correct
operations within a P2P network in the face of failures
and malicious participants. Examples include maintaining
the internal structure of a P2P network (e.g., [2]) and fair
sharing of resources (e.g., [5]). The threats that a large-
scale P2P network deployment poses to Internet security
have largely been ignored.

In this paper, we argue that P2P networks provide an
ideal venue for new types of worms that prey on common
vulnerabilities on the hosts in a P2P network. These worms
identify new victims simply by following P2P neighbor
information on infected hosts. They are different from the
currently popular scanning worms, which probe addresses
randomly for new victims, in three important ways. First,
they spread much faster, since they do not waste time
probing unused IP addresses. Second, they do not generate
high rates of failed connections. Finally, they can blend
into the normal traffic patterns of the P2P network. The
lack of abnormal network behavior makes P2P worms
a potentially more deadly threat because most existing
defense mechanisms against scanning worms are no longer
effective. Because the number of subscribers to a P2P
network such as KaZaA is estimated to be in the millions,

P2P worms have the potential to compromise a significant
fraction of the Internet population. We therefore study
the feasibility of constructing a self-defense infrastructure
within a P2P network for containing P2P worms. The
infrastructure imposes new and challenging requirements
for worm-defense mechanisms, while the evaluation of
the proposed infrastructure, both analytically and through
simulation, reveals interesting correlations between worm
containment in a P2P network and the overlay topology
of the network. Furthermore, our experiments suggest a
number of design directions to improve the resilience of
P2P networks to worm attacks.

The rest of the paper is organized as follows. Section II
elaborates on the imminent threat of P2P worms and makes
a case for new defense mechanisms. Section III explores
possible countermeasures against P2P worms, outlines a
self-defense infrastructure, and presents a containment
model. The evaluation of the self-defense infrastructure
through both theoretical analysis and simulations appears
in Section IV. We conclude in Section V.

II. IMMINENT THREAT OF P2P WORMS

Popular P2P clients such as KaZaA already have a high
penetration into the Internet population. Any vulnerability
in such a P2P client can put all those hosts at risk. The
likelihood of having an exploitable vulnerability in these
pieces of software is alarmingly high. A buffer overflow
bug in the FastTrack network core, the underlying network
for KaZaA and several others, was discovered and disclosed
recently [12]. To make things worse, many P2P clients
are bundled with spyware, further increasing the chances
of introducing intentional or unintentional backdoors into
hosts in P2P networks. For example, Saroiu et al. [15]
found vulnerabilities in two wide-spread spyware programs
due to lack of authentication in their auto-update processes.

Proof-of-concept viruses, such as Gnuman,
VBS.Gnutella, and Fizzer [20], which propagate through
Gnutella or KaZaA were released in the wild as early
as 2000. The impact of these viruses was limited largely
because their propagation relied heavily on certain user
actions. In contrast, a P2P worm can infect vulnerable
hosts automatically by exploiting the same types of



vulnerabilities that led to notorious scanning worms
such as CodeRed and Slammer. Whereas these random-
scanning worms search for new vulnerable hosts by
probing “randomly” generated IP addresses, a P2P worm
can quickly identify new vulnerable hosts by following the
list of neighbors in the overlay topology.

As a form of topological worm [21], P2P worms do not
exhibit easily detectable anomalies in network traffic as
scanning worms do. A scanning worm has no information
on the locations of vulnerable hosts and thus is error-prone
in choosing targets; it has to rely on both a reasonable
density of vulnerable hosts in the entire IP address space
and on the ability to probe different hosts at a high rate. It
is these characteristics that lead to schemes for containing
scanning worms (e.g., [23], [26], [7], [22]) by detecting and
reacting to various network anomalies.

Although these proposed mechanisms show promise
for fast detection and successful containment of scanning
worms, they have limited power against P2P worms. The
P2P topology provides an accurate way for worms to find
more vulnerable hosts without probing random ones; the
vastly improved accuracy in identifying vulnerable hosts
also eliminates the need to communicate with a large
number of different hosts at a high rate. The attack traffic
can thus easily blend into normal P2P traffic. Therefore,
new defense mechanisms are needed.

III. MITIGATING THREATS OF P2P WORMS

P2P worms would not exist if we could eliminate vul-
nerabilities on P2P hosts or cut off a worm’s propagation
between neighboring P2P hosts. But neither is achievable in
practice. To eliminate vulnerabilities, P2P client programs
should be written in a type-safe language (e.g., Java or
C#), so that it is free of buffer-overflow vulnerabilities.
Unfortunately, this is not the case for most existing client
programs. Furthermore, common vulnerabilities could exist
on co-located software or even the underlying platform. In-
creased diversity in a P2P network reduces the likelihood of
common vulnerabilities and makes it harder for a P2P worm
to propagate through P2P neighbors. Further measures can
be taken to protect the neighbor list from access by worms.
But it is usually hard to distinguish valid accesses from
invalid ones.

Given that P2P clients will unlikely be free of common
exploitable vulnerabilities in the foreseeable future, an in-
teresting research question is the feasibility of incorporating
a self-defense infrastructure into a P2P network for the
network itself to detect outbreaks of any unknown worm
and contain its spread.

A. Automatic Detection of Worms

Automatic detection of P2P worms is a prerequisite to
any worm containment infrastructure—human responses
are simply too slow. Because P2P worms target only hosts

in a P2P network, referred to as nodes, automatic detection
mechanisms must be deployed within the P2P network.
We call nodes with automatic worm detection capabilities
guardian nodes.

Because P2P worms do not exhibit easily detectable
anomalies in network behavior, guardian nodes must in-
stead detect worms by identifying the infection process
inside running applications. Such detectors can detect broad
classes of vulnerabilities. One promising approach, pio-
neered by several independent research projects [19], [4],
[6], [11], is based on the observation that a majority of
worms work by hijacking the control flow of a vulnera-
ble program to execute malicious code injected from the
network or to force a different execution of code that
was already loaded by the program. By tracking how
information from untrusted sources propagates its influ-
ence in memory during code execution, a worm can be
detected when the control flow of the program is arbi-
trarily controlled by information from untrusted sources.
However, the proposed detection mechanisms either require
hardware modifications [19], [6] or demand expensive bi-
nary rewriting/interpretation with significant performance
degradation [4], [11]. It is therefore reasonable to assume
that such general guardian nodes constitute only a small
fraction of a P2P population. Since the detection mechanism
contains the vulnerable code in a sandboxed enviroment, we
can assume the guardian nodes are invulnerable to worm
attacks.

B. Alert Generation, Propagation, and Processing

With a small fraction of guardian nodes, it is crucial that,
once a guardian node detects a worm, it promptly generates
a message about the ongoing attack and informs other nodes
in the P2P network. We refer to these messages as alerts.
The purpose of alerts is for a recipient to learn enough
information about the attack in order to take appropriate
action to become immune to the attack.

Because alerts trigger actions by receiving nodes, an
adversary could attack by disseminating bogus alerts. If
the receiver of an alert responded by shutting down the
vulnerable application, this would turn a worm attack into
a denial-of-service attack. To avoid this problem, guardians
can generate self-certifying alerts, as described in [4]. Self-
certifying alerts are machine-verifiable proofs of vulnerabil-
ity; they contain a description of the events that lead to a
vulnerable behavior—for instance a sequence of network
messages—and they can be independently and inexpen-
sively verified by any host. Use of self-certifying alerts also
implies that any host can independently decide to become
a guardian, since guardians do not have to be trusted.
This setting makes it difficult to mount targeted attacks on
the guardians. Alternatively, alerts can be submitted to a
trusted authority, who verifies the authenticity of the alert



and signs the alert using the private key corresponding
to a well-known public key. Such an infrastructure for
distributing and verifying signed updates already exists in
many pieces of software for securing automatic software
updates. The trusted authority could be implemented using
multiple servers [25] to withstand attacks to a fraction of
the servers.

Upon verifying the authenticity of an alert, a host can
take several actions to protect itself. For instance, it can
stop the vulnerable application or install a new local firewall
rule to block a worm “signature”1; this could be a simple
byte pattern on network messages or a more elaborate
signature that accesses network messages and application
state. Ideally, a host should identify the vulnerability
exploited by the detected attack and patch it automatically.
Such patches can be generated locally by the hosts receiving
an alert, avoiding the need to trust patches produced by
the host that generated the alert. We are currently working
towards this goal.

We assume alerts are propagated in the same P2P net-
work as P2P worms. After all, any existing link used by
alerts requires that the destination address be recorded on
the source; such information is also available to attackers
when the source is compromised. This assumption distin-
guishes our model from that in [4], which also explored the
concept of alerts for containment of Internet worms; there,
a special P2P network is used for fast and reliable alert
dissemination.

C. A Basic Worm Containment Model

The previous discussions on a self-defense infrastructure
yield the following basic model for the containment study.
Variations of the basic model are investigated in Section IV.

Consider a P2P network and a worm that exploits a
vulnerability in the nodes of the network. We consider node
A a neighbor of node B if the address of A appears in node
B’s state as a P2P client. The topology of a P2P network
can be modeled as a directed graph in which each vertex
in the graph corresponds to a node in the P2P network and
each edge is weighted by the latency of the corresponding
link from a node to its neighbor.

Each node in the P2P network has an independent
probability p of being a guardian node; otherwise, the node
is vulnerable. A vulnerable node becomes infected when
the worm probes this node. A worm starts at a uniformly
random node and in each step probes all the neighbors of
newly infected nodes. If a worm probes a guardian node,
the guardian node will detect the worm, generate an alert,
and immediately propagate the alert to its neighbors. A

1While several schemes ([16], [9], [8]) have been proposed for auto-
matic detection of worms and automatic generation of worm signatures,
the detection mechanisms rely heavily on the network anomalies that
scanning worms exhibit.

vulnerable node becomes immune upon receiving the alert
and propagates the alert further to its neighbors. An infected
node ignores the alert; it does not propagate it further.
Immune nodes do not become infected even upon worm
probing. For simplicity, we assume that the worm and the
alert incur the same latency on each link, although different
links may have different latencies. Furthermore, we ignore
the dynamic changes in the P2P network and assume a static
topology.

IV. ANALYSIS AND EVALUATION

The basic worm containment model characterizes a battle
between worm propagation and alert propagation within the
same P2P network. The following questions naturally arise.

• With only a small number of guardian nodes, can the
self-defense infrastructure contain a P2P worm?

• With a P2P network serving as the battlefield, how
can we design and deploy a P2P network to offer an
advantage over P2P worms? What strategies can a P2P
worm employ to gain advantage?

This section documents our initial efforts to answer these
questions. In particular, we evaluate containment of worms
as measured by the percentage of vulnerable nodes that are
infected when the network reaches a stable state, where
neither alerts nor the worm can propagate further. Note
that the containment problem is entirely different from the
seminal containment study by Moore et al. [10] because that
study focused on random probing worms in the Internet.

A. P2P Network Topology and Worm Containment

1) Theoretical analysis: The topology of a P2P network
dictates propagation of a P2P worm and its containment
in our basic model. In the absence of guardian nodes, the
diameter of the graph, defined to be the longest among the
shortest distances between any pair of nodes in the graph,
is the upper bound on the amount of time it takes for a
worm to compromise the entire P2P network. Here, we
show a simple theoretical analysis of worm containment
in our basic model.

Suppose a P2P network contains n nodes in a graph of
maximum degree d, where each node is a guardian node
with independent probability p. Then for a uniformly ran-
dom starting infection point, the expected fraction of nodes
that become infected is bounded above by O(n logd(1−p)).

To see this, let x be the starting point of the infection,
and consider the shortest path tree from x in the network
topology. The key observation is that another node y will
become infected if and only if there is no guardian node on
the shortest path from x to y. Thus the expected number of
infected nodes is

∑�
i=1 ni(1− p)i, where ni is the number

of nodes at depth i in the shortest path tree from x. Since
the topology has maximum degree d, we have that n i < di;
in fact, it is not hard to see that the worst case occurs when



the inequality is tight. A straightforward calculation then
yields that the expected fraction of infected nodes in this
case is O(nlogd(1−p)).

Although the theoretical analysis offers only a loose
upper bound for worm containment in our basic model,
it does indicate that the number of nodes in the network,
the maximum degree of the graph, and the percentage
of guardian nodes are likely the factors influencing the
containment result. We use simulations to validate the
trends predicated by the theoretical results.

2) Simulation setup: Our experiments were performed
on P2P graphs generated using a P2P simulator. Among
others, the simulator implements the protocols described in
Gnutella 0.4, Gia [3], and Pastry. Nodes in those topologies
are randomly placed in a 5050-router Internet topology
generated using Georgia Tech’s Transit-Stub Internet Topol-
ogy generator [1] with distance between a pair of nodes
computed accordingly.

We further developed an epidemic simulator. This sim-
ulator takes as input the P2P topology graph and the
probability of a node being a guardian node. For each
run, the simulator randomly selects a node in the graph
as the initial entry point for the worm and picks a set
of guardian nodes according to the specified probability. It
then simulates the process of worm propagation and alert
propagation (after guardian nodes are triggered.) Each of
our experiments takes 500 runs, with different randomly
chosen initial infection points and different randomly cho-
sen sets of guardian nodes. We report the mean (over
the 500 runs) of the infected fraction, measured as the
percentage of infected nodes over the entire vulnerable
population. (Note that guardian nodes are excluded from
the vulnerable population.)

3) Simulation results: In this set of experiments, we look
at Gnutella 0.4 graphs. A Gnutella topology can be modeled
as an undirected graph because the neighbor relation is
symmetric. (We assume that the weights on links are also
symmetric.) When a node joins, it selects a seed node
already in the P2P network and performs a random walk
to find more nodes as potential neighbors. A node A might
refuse to be the neighbor for the joining node if the resulting
number of allowed connections for A exceeds the maximum
degree allowed. The generated graph is the result of running
the P2P simulator for n consecutive joins, where n is
the specified number of nodes. No node failures or node
leavings are modeled.

We generated a set of Gnutella 0.4 graphs with dif-
ferent settings for minimum/maximum node degrees and
total number of nodes. The generated graphs have average
degrees that are close to the maximum degrees, indicating
that nodes tend to have the same degree. Figure 1 clearly
indicates that the infected fraction increases when min/max
degrees increase, but decreases when the number of nodes
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Fig. 2. Gnutella 0.4 vs. Gia, 40,000 nodes. Infected fraction as a
function of probability of guardian nodes.

increases, confirming the trends in the theoretical analysis.
We want to point out that due to resource limitations,
we can only simulate relatively small P2P networks. For
real P2P networks with millions of nodes the infection
fraction may be significantly lower than the simulation
results suggest.

B. The Effects of Super Nodes

The notion of super nodes has been introduced to P2P
networks for better scalability. Super nodes are nodes with
sufficient resources and high-quality links to accommodate
a large number of neighbors. Gia [3] is a proposal to
introduce super nodes into Gnutella. In Gia, super nodes
emerge as a result of dynamic topology adaptation based on
the different capacities of the nodes. Adopting the setting
in [3], we set the percentages of nodes at capacity levels 1,
10, 100, 1000, and 10000 at 20%, 45%, 30%, 4.9%, and
0.1%, respectively. Figure 2 shows the infected fraction for
a Gia graph, with an average degree around 15 and min/max
degrees of 3/128, compared to Gnutella 0.4 graphs with
varying min/max degrees. We see a clear downtrend of the
infected fraction when the probability of guardian nodes
increases and that Gia exhibits the worst containment result.

Super nodes undoubtedly play a significant role in aiding
the propagation of the worm due to their high connectivity.
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It seems that the defense mechanism would be more effec-
tive if the choice of guardian nodes were biased towards
such high-degree nodes. This is confirmed by the result
shown in Figure 3, where, in the case of biased choices of
guardian nodes, the probability of a node being a guardian
node is proportional to its degree. Note that, even if a worm
knows about this strategy and tries to evade detection by
biasing against high-degree nodes, the worm propagation
will be at a significant disadvantage compared to alert
propagation, which is able to exploit the powerful super
nodes.

C. Hit List and Secret Network of Guardian Nodes

For bootstrapping, P2P networks such as Gnutella and
KaZaA offer an initial list of hosts in the network to serve
as seed nodes for new nodes to join. An attacker can also
collect a large number of addresses through crawling. A
P2P worm can use those addresses as an initial hit list [17]
instead of starting with a single node.

In response, guardian nodes could be made aware of
each other and form a secret network to tunnel alerts
through directly.2 For simplicity, we assume that this secret
network is fully connected with direct links between any
two guardian nodes with an average network delay.

Figure 4 shows how the infected fraction reacts to an
increasing number of nodes on the hit list, as well as
the effects of having a secret network of guardian nodes.
Using a hit list seems to be an effective strategy for worms
especially when the percentage of the nodes in the hit list
becomes significant. Connecting all guardian nodes has a
limited advantage in these cases. Define worm diameter
to be the amount of time for a worm to reach the entire
population of the network in the absence of guardian nodes.
The effect of connecting the guardian nodes seems to
diminish as the worm diameter decreases.

2It might seem that we are violating our assumption that the worm
and the alerts are propagating in the same topology. This is not the case.
In our model, links in the secret network cannot be exploited by worms
because guardian nodes are never compromised.
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D. The Effects of Diversity

We have been assuming that the entire population (except
for the guardian nodes) is vulnerable. This might not be
the case in practice. In particular, P2P clients might use
different implementations of the same protocol and run
on different hardware/software platforms. Vulnerabilities in
one particular implementation or on one particular platform
may not affect the entire population due to diversity. The
existence of the initially immune nodes works to our
advantage because these nodes block worm propagation but
pass alerts on to other nodes.

Figure 5 shows the impact of having initially immune
nodes in the network. We vary the percentage of the nodes
that are initially immune from 0% to 60%. These nodes
are chosen uniformly at random. Every node in the set of
the non-immune nodes becomes a guardian node with 0.05
probability. The infected fraction shows the percentage of
vulnerable nodes (i.e., excluding initially immune nodes
and guardian nodes) that are infected. The results show
a significant reduction in infected fraction as the immune
proportion grows and suggest that diversity is an effective
deterrence to P2P worms.



E. Design Implications for P2P Networks

In summary, our experiments suggest a number of design
directions over which P2P networks could evolve to in-
crease their resilience to worm attacks. First, P2P protocols
should bias their choice of neighbors to maximize diversity.
Second, mechanisms should be included to make crawling
the overlay more difficult or impossible. Otherwise, an
attacker can gain a substantial advantage by building a
large initial hit list to launch the worm. Finally, mechanisms
should exist to deploy guardian nodes at flexible locations
in the P2P network. As our preliminary results show, place-
ment of these nodes has an important effect on containment.

V. CONCLUDING REMARKS

P2P worms constitute a potentially deadly threat to
Internet security, a threat that we are not yet prepared
for. This paper outlines a self-defense infrastructure to
be built into a P2P network for containing P2P worms.
The proposed infrastructure not only poses new challenges
to worm-containment research, but also gives rise to an
interesting phenomenon of competing epidemics (worm vs.
worm-triggered alerts) in a P2P network.

The paper represents our initial study on containment
of P2P worms with debatable assumptions. We plan to
explore further the feasibility of the self-defense infras-
tructure, investigate more topologies and new strategies,
and work towards a unifying theory that identifies the
defining characteristics of the network topology on worm
containment. Such a theory would help predict worm con-
tainment for a given topology and help develop strategies
to improve defense against P2P worms, because applying
those strategies can always translate into some network
topology transformation.
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