
Evaluation of Edge Caching/Offloading for Dynamic
Content Delivery

Chun Yuan
Microsoft Research Asia

3F Sigma Center, #49 Zhichun Road
Beijing 100080, China

86-10-62617711

t-cyuan@microsoft.com

Yu Chen
Microsoft Research Asia

3F Sigma Center, #49 Zhichun Road
Beijing 100080, China

86-10-62617711

i-yuchen@microsoft.com

Zheng Zhang
Microsoft Research Asia

3F Sigma Center, #49 Zhichun Road
Beijing 100080, China

86-10-62617711

zzhang@microsoft.com

ABSTRACT
As dynamic content becomes increasingly dominant, it becomes
an important research topic as how the edge resources such as
client-side proxies, which are otherwise underutilized for such
content, can be put into use. However, it is unclear what will be
the best strategy and the design/deployment tradeoffs lie therein.
In this paper, using one representative e-commerce benchmark,
we report our experience of an extensive investigation of different
offloading and caching options. Our results point out that, while
great benefits can be reached in general, advanced offloading
strategies can be overly complex and even counter-productive. In
contrast, simple augmentation at proxies to enable fragment
caching and page composition achieves most of the benefit
without compromising important considerations such as security.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval] Systems and
Software – distributed systems, performance evaluation
(efficiency and effectiveness); H.3.5 [Information Storage and
Retrieval] Online Information Services – Web-based services

General Terms
Measurement, Performance

Keywords
Edge caching, offloading, dynamic content

1. INTRODUCTION
Dynamic pages will dominate the Web of tomorrow. Indeed, one
should stop talking about dynamic pages but, instead, dynamic
content. This necessitates architectural change in tandem. In
particular, resources that are already deployed near the client such
as the proxies that are otherwise underutilized for such content
should be employed.

Legitimate strategies include offloading some of the processing to
the proxy, or simply enhancing its cache abilities to cache
fragments of the dynamic pages and perform page composition.
While performance benefits including latency and server load
reduction are important factors to consider, issues such as
engineering complexity as well as security implication are of even
higher priority. Although there have been extensive researches on
the subject of optimizations for dynamic content processing and

caching, we still lack the insight on what will be the best
offloading and caching strategies and their design/deployment
tradeoffs.

In this paper, using a representative e-commerce benchmark, we
have extensively studied many partitioning strategies. We found
that offloading and caching at edge proxy servers achieves
significant advantages without pulling database out near the client.
Our results show that, under typical user browsing patterns and
network conditions, 2~3 folds of latency reduction can be
achieved. Furthermore, over 70% server requests are filtered at
the proxies, resulting significant server load reduction.
Interestingly, this benefit can be achieved largely by simply
caching dynamic page fragments and composing the page at the
proxy. In fact, advanced offloading strategies can be overly
complex and even counter-productive performance-wise if not
done carefully. Our investigation essentially boils down to one
simple recommendation: if end-to-end security is in place for a
particular application, then offload all the way up to the database;
otherwise augment the proxy with page fragmentation caching and
page composition. While our results are obtained under the .NET
framework, we believe they are generic enough to be applicable to
other platforms.

The rest of the paper is organized as follows. Section 2 covers
related work. Various offloading and caching options are
introduced in Section 3, which also discusses important design
metrics. Section 4 examines the benchmark used and also some of
the most important .NET features employed. Detailed
implementations of the offloading/caching options are discussed
in Section 5. Section 6 describes the experiment environment.
Results and analysis are offered in Section 7. Finally, we
summarize and conclude in Section 8.

2. RELATED WORK
Optimizing dynamic content generation and delivery has been
widely studied. The main objectives are to reduce client response
time, network traffic and server load caused by surges of high
volume of requests over wide-area links. Most works focus on
how to support dynamic content caching on server side [8] [9] [17].
Some others also extend their cache to the network edge and show
better performance result [10]. Fragment caching [3] [4] is an
effective technique to accelerate current Web applications which
usually generate heterogeneous contents with complex layout. It is
provided by today’s common application server product like
Microsoft ASP.NET [13] and IBM WebSphere Application
Server [6]. ESI [5] proposes to cache fragments at the CDN
stations to further reduce network traffic and response time.

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

Application offloading is another way to improve performance. In
Active Cache [2], it is proposed that a piece of code be associated
with a resource and be able to be cached too. The cache will
execute the code over the cached object on behalf of the server
and return the result to the client directly when the object is
requested at a later time. With the blurring of application and data
on current Web, this scheme becomes less effective. To do more
aggressive application offloading, WebSphere Edge Services
Architecture [7] suggests that portions of the application such as
presentation tier and business logic tier be pushed to the edge
server and communicate with the remaining application at the
origin server when necessary via the application offload runtime
engine. An extreme case of offloading is given by [1]. The full
application is replicated on the edge server and database accesses
are handled by a data cache which can cache query results and
fulfill subsequent queries by means of query containment analysis
without going to the back-end.

We focus on the proxies that are already installed near clients. We
also examine exclusively on offloading and caching of anything
other than the database content, as we believe mature technologies
to manage hard states in a scalable fashion across wide-area are
yet to be developed. To the best of our knowledge, we are the first
to report design and implementation tradeoffs involved in
devising partitioning and offloading strategies, along with detailed
evaluations. There also has been no work evaluating offloading
versus advanced caching mechanisms. Finally, this is the first
work we know of that experiments with the .NET framework in
this aspect.

3. OFFLOADING AND CACHING
OPTIONS ENUMERATED
There are a number of issues to be considered for distributing,
offloading and caching dynamic content processing and delivery,
they are: 1) available resources and their characteristics, 2) the
nature of these applications and 3) a set of design criteria and
guidelines. In this section, we discuss these issues in turn.

3.1 Resources Where Offload can be Done
Figure 1 shows graphically various resources involved.

Figure 1. Resources available for offloading and caching

Client. As a user-side agent, client – typically a browser – is
responsible for some of the presentation tasks, it can also cache
some static contents such as images, logos etc. The number of
clients is potentially many; however they usually have limited
capacities and are (generally speaking) not trusted.

Proxies. In terms of scale, proxies come second. Proxies are
placed near the clients and are thus far from the server end. The
typical functionalities of proxies include firewall, and caching of
static contents. They are usually shared by many clients and are
reasonably powerful and stable. However, except the case of
intranet applications, content providers do not have much control
over them.

Reverse Proxies. Reverse proxies are placed near the back end
server farm and act as an agent of the application provider. They
serve the Web request on behalf of the back end servers. Content
providers can fully control their behaviors. However, the scale of
reverse proxies only goes as far as a content provider’s network
bandwidth allows. In this paper, we consider them as part of the
server farm.

Server. Servers are where the content provider has the full control.
In the context of this section, we speak of “server” as one logical
entity. However, as it shall be clear later, “server” itself is a tiered
architecture comprised of many machines and hosting the various
tiers of the Web application.

As far as dynamic content is concerned, typically only the servers
and clients are involved. Proxies, as of today, are incapable of
caching and processing dynamic contents. In this discussion, we
have also omitted CDN stations as we believe they can be
logically considered as an extension of either proxies or reverse
proxies. Some of the more recent progresses have been discussed
in the Section 2.

3.2 Application Architecture and Offloading
Options
Logically, most of the Web applications can be roughly
partitioned into three tiers: presentation, business logic, and back
end database. The presentation tier collects users’ input and
generates Web pages to display results. The business logic tier is
in charge of performing the business procedure to complete users’
requests. The database tier usually manages the application data in
a relational database.

Based on the 3-tier architecture, N-tier architecture is also
possible. The most complex tier in a Web application is the
business logic tier. This tier performs application-specific
processing and enforces business rules and policies. Because of its
complexity, the business tier logic tier itself may be partitioned
into smaller tiers, evolving into the N-tier architecture.

Figure 2. The 3-tier architecture and partition places

Application partitioning and offloading can be applied based on
the tier structure of the Web application. Without loss of
generality, we only consider Web browser as the application client

RDBMS

Data Access Layer

Other Logic

Fragment Generation

Page Composition
4

3

2

1

Partition Place

Database Tier

Business Logic Tier

Presentation Tier

Client

Server Farm

Reverse Proxy Reverse Proxy

Wide Area Network

Proxy Proxy Proxy

Client Client Client Client Client

here. From the back end database to browsers, we can find several
candidate partition places as shown in Figure 2.

The first partition place is the database access interface. The
ODBC, JDBC, ADO etc. are this kind of interfaces. Current
applications use connection strings to specify the database server
to be accessed. It is possible to point to a specific remote machine
in the connection string.

The second partition place is at the data access layer inside the
business logic tier. Because of the complexity of the business
logic, it is a common practice to develop a set of database access
objects to shield the detail inside the database. Other business
logic objects can access data through these objects using simple
function calls. The clear-cut boundary at this layer makes it a
good candidate of partition point for offloading.

The third partition place is between the presentation tier and the
business logic tier. The presentation tier gathers the user input and
translates the user request into a processing action at the business
layer. The business tier usually provides a single-call interface for
each type of requests. The clearly defined interface here provides
strong clues for partition.

The fourth partition place is inside the presentation tier. The Web
pages generated by the application are structuralized and split into
fragments each of which has consistent semantic meaning and life
time. The back end servers provide page fragments and
composition frameworks. The entire Web page is assembled at the
offloading destination. ESI [5] is a good example of this strategy.

Of course, what we have enumerated here is only a starting point.
Specifically, within the business logic tier there can be multiple
logically legitimate offloading points. However, as we should
discuss later, advanced offloading strategies often risk high
complexity without clear benefit in return.

3.3 Important Factors to be Considered When
Offloading
Having discussed various resources upon which offloading and
caching can be performed, and various partitioning strategies, the
actual implementation and deployment must consider a number of
important factors. In our opinion, the following three are the most
important ones: security, complexity and performance.

Security. Sensitivity of data as well as processing that are to be
offloaded may vary. A given piece of data and processing can be
distributed as far as its security perimeter permits. This is one
reason we are concerned with who controls what in the resource
distribution earlier. Enforcing security end-to-end only applies to
certain Web applications (e.g. intranet) and pays a cost (e.g. VPN
overhead) in return.

Complexity. Another factor that should be considered is the
engineering cost. Although Web applications are developed
according to 3-tier or N-tier architecture, the tier boundaries are
usually not clear. This problem is obvious for the tiers that are
part of the business logic in an N-tier application.

Even if the tier boundaries are clear, the implementation still
cannot be fully automated. For example, application partitioning
usually requires transforming some of the LPCs (local procedure
call) into RPCs (remote procedure call). Because most of the
runtime systems do not support migrating LPC to RPC
transparently, source code modification, recompilation and
subsequent testing are necessary. If synchronous procedures calls

are to be changed to asynchronous calls, the implementation
efforts would be even greater.

Performance. Even when resources such as proxies are freely
available, distributing the processing and caching must bring
significant benefits to justify the additional complexity involved.
End user’s latency as well as improvement of scalability are the
primary metrics. On this, the network condition is the first critical
factor to be considered. Generally speaking, the communication
quantity across the partition should be minimized on low
bandwidth networks. Likewise, for high latency networks, the
frequency of synchronous communication should be reduced. In
general, a useful guideline to start with is that communication
channel over wide area network should be light weight and
stateless.

4. THE PET SHOP BENCHMARK
In order to evaluate different offloading options, we use
Microsoft .NET Pet Shop as our benchmark. It comes from Sun’s
primary J2EE blueprint application, the Sun Java Pet Store [16]
and models a typical e-commerce application, an online pet store.
E-commerce sites like this are among the most common Web
applications.

Pet Shop is implemented using ASP.NET, and the source code is
freely available at [11]. ASP.NET brings several important
optimizations and the two of them, stored procedure and output
caching will be discussed in the following sections.

4.1 Pet Shop Architecture
The complete 3-tier architecture of Pet Shop is described in the
whitepaper at [11]. To illustrate the design, we will look at an
example of the interaction between the three tiers as shown in
Figure 3.

Figure 3. The Pet Shop architecture (portion)

The presentation tier communicates with browsers directly. It
contains Web Forms pages (aspx files), Web Forms user controls
(ascx files) and their code-behind classes (in namespace
PetShop.Web). Similar to the ASP and JSP page, Web Forms
pages represent dynamic pages. The Web Forms user controls
represent portions of Web Forms pages and thus can not be
requested independently. While the aspx and ascx files contain the
visual representation, the code-behind classes contain processing
logics. When a request arrives, the specified Web Forms page and
Web Forms user controls are loaded. The corresponding code-
behind objects responsible for generating responses will initiate
calls to the business logic tier for request processing (arrows in
Figure 3).

Item.cs

Shopping
Cart.cs

Basket
Item.cs

upItem
GetList

upItem
GetDetails

upInventory
GetList

Item

Cart.aspx

Product

Inventory

Web

ASP.NET

Components Stored Procedure Table

SQL Server

Presentation Business
Logic

Database

Control
Cart.ascx

The objects in the business logic tier (in namespace
PetShop.Components) accept invocations from the presentation
tier. If the processing does not require database interaction, for
instance displaying shopping cart content, results are returned
right away. Otherwise, the business logic objects will generate
database queries through a specific database access class
(PetShop.Components.Database). Instances of this class set
up database connections, pass database queries through
ADO.NET interfaces and return query results to upstream.

The database tier consists of application data and stored
procedures. A stored procedure is used to encapsulate a sequence
of SQL queries which complete a single task. Using stored
procedures, interactions between the business logic tier and the
database tier can be reduced, thus increasing performance. For
instance, placing an order normally requires several calls between
the business tier and the back end database. With stored procedure,
an order can be encoded into a string and transferred to the
database, where the string is decoded and multiple SQL
statements are issued to complete the order. From this perspective,
most of the Pet Shop stored procedures are essentially part of the
business logic tier. They are included in the database tier simply
because they are stored and are executed in the SQL server. This
is one example where the boundaries of tiers get blurred.

4.2 ASP.NET Output Caching
The.NET Pet Shop leverages ASP.NET output caching to increase
throughput and reduce server load [12]. Similar function is also
provided by other products such as IBM WebSphere’s response
cache [6] [7]. When a page is requested repeatedly, the output
caching allows subsequent requests to be satisfied from the cache
so the code that initially creates the page does not have to be run
again. Besides caching the entire page, ASP.NET allows Web
Forms user controls to be cached separately. As we will explain in
detail in Section 5.3, this feature of fragment caching is what we
employ to enhance caching capability at the proxy side.

ASP.NET provides duration and versioning control for each
cached entities (Web Form and Web Form user control). Duration
specifies the life time of a cached page. Versioning allows caching
multiple result pages or page fragments for a single form or
control. For example, Product.aspx produces different result
pages for different products. Storing a single result page in output
cache can hardly gain any benefit since users tend to browse
different products. By keeping multiple result pages, the most
frequently accessed pages will be cached eventually, saving large
amounts of processing time.

5. EXPERIMENT PREPARATION
In this section, we discuss in detail how different offloading and
caching strategies are implemented in Pet Shop.

According to the partition points in section 3.3, the following
offloading options are investigated: F0, Fdb, Fremoting and Fproxy.
They are shown in Figure 4; the legends are:

• B: Browser
• A: Page Assembling and Fragment Caching
• G: Fragment Generation
• P: Presentation
• L’: Business Logic except Data Access Layer
• DA: Data Access Layer
• L: Business Logic
• DB: Database

• Cloud: Wide Area Network

Figure 4. Implementation of offloading options in Pet Shop

The base line is F0 which leverages neither processing nor caching
abilities of proxies. By pushing fragment caching and page
assembly to the proxy, we get Fproxy which corresponds to
partition place 4. By offloading the presentation tier to proxies,
Fremoting2 implements partition point 3. Fremoting1 and Fdb are
similar except that Fremoting1 leaves the data access layer at back
end servers while Fdb offloads the complete business logic tier.
Therefore, they correspond to partition point 2 and 1, respectively.

We use proxy and front end, server and back end interchangeably
in this paper for all configurations other than F0.

5.1 Implementing Fdb
The implementation of Fdb is trivial: all we need to do is modify
the connection string of the database access interface. The
connection string is changed from the default value
“server=localhost;…” to “server=some other
machine; …” so that the front end is forced to access the remote
machine hosting the SQL server.

5.2 Implementing Fremoting
The Fremoting option investigates different ways of offloading
inside the business logic tier, in particular the partition point 2
and 3 (see Figure 2). We employ the .NET Remoting feature to
accomplish this task, which we will discuss first.

5.2.1 .NET Remoting
Microsoft .NET Remoting provides a rich and extensible
framework for objects living in different application domains, in
different processes, and in different machines to communicate
with each other seamlessly. The framework considers a number of
matters, including object passing, remote object hosting strategy,
communication channel and data encoding.

Figure 5. RPC using .NET Remoting machanism

Objects can be passed either by reference or by value:

B

Client Proxy Server

P L DB

B P L DB

B DA DB

B G L DB A

B P L DB

F0

Fdb

Fproxy

Fremoting2

Fremoting1 P L’

c calls a.foo(b)

Client.exe Server.exe

a

b b

Serializable
MarshalByRefObject

Communication Channel

Encode Decode

b

c

Encoded b

• By value. Objects that would cross application domain
boundary, such as the object b in Figure 5, can be passed by
value. In .NET Remoting, pass-by-value objects are all marked
with Serializable attribute.

• By reference. Objects that reside in only one application
domain and provide interfaces to other applications are passed
by reference (such as the object a in Figure 5). In .NET
Remoting, pass-by-reference objects should be derived from a
system class MarshalByRefObject.

For a pass-by-reference object, .NET Remoting provides three
hosting strategies to support object activation and lifetime
management.

• SingleCall objects’ activation and lifetime are determined by
server. They service one and only one request coming in, i.e.
different client requests are services by different objects.

• Singleton objects’ activation and lifetime are also determined
by server. Unlike the SingleCall objects, Singleton objects
service multiple clients and share data by storing state
information between client invocations. There is only one
singleton object instance of a given class at the server side.

• Client-activated objects’ (CAO) activation and lifetime are
determined by client. The server creates an object upon an
activation message from client. The object services for the
client until the client allows it to be released. If the
communication between server and client is stateful, CAO
should be used.

For a more in-depth treatment of these hosting strategies, please
refer to [14].

RPC requests and responses are encoded into formatted messages
and transferred over a communication channel. In Figure 5, when
object c makes a call to object a, the request (including object b
as the parameter) is encoded and transferred to the server side. At
the server side, the message is decoded and an actual call to object
a is made.

5.2.2 Detailed Implementation
As explained earlier, in Fremoting, we try to partition the application
in the logic tier. While there maybe many different options, as an
extensive exercise we investigate how to partition at point 2 which
separates the data access layer from other business logic layers,
and point 3 which is located between the presentation tier and the
business logic tier (see Figure 2 and Figure 4).

Regardless of the specific partition strategy, the task in this
configuration is always to replace LPC (Local Procedure Call)
with RPC (Remote Procedure Call). This entails a few steps. The
first is to determine the locations of classes to be run as mandated
by a given partitioning strategy (server or proxy) and from there
derive the RPC boundaries. The second step is to modify the
application source code so that RPC can take effect. Finally, the
hosting strategy for objects at server side and communication
channel between server and proxy are decided.

Partition place 2 requires the least amount of engineering efforts
in that there is only one class to be modified — Database in
namespace PetShop.Components. The Database objects run at
server side and provide interfaces for the other logical tier objects
to access information in the back end database. Thus, they are
pass-by-reference objects. For each user request, the responsible
logic tier object at proxy side needs to issue multiple procedure
calls to server (as shown in Figure 6(a)). Because these calls are
related to each other, the state information along the call sequence

should be maintained. On the other hand, different user requests
need exclusive objects to provide services. Therefore, the only
hosting strategy is CAO. This strategy turns out to have a dramatic
performance impact: our test runs reveal that the benchmark now
performs much worse than not offloading at all. The reason is that
multiple RPCs corresponding to a single user request results in
multiple round trips between proxy and server. Consequently,
partition point 2 is not a good offloading option for Pet Shop. The
lesson we learned here is that, under a given partition strategy, the
logical constraint and performance constraint may very much be
in conflict with each other. What makes this matter even more
complex is that this is also application dependent.

Figure 6. Flow examples of partition place 2 (a) and 3 (b)

Partition point 3 works but with a rather involved manual
examination of all candidates. Specifically, all classes in
namespace PetShop.Components except Error and Database
are affected1. Some of them will reside at server side only and act
as pass-by-reference remote objects, such as Item, Profile,
Order, Customer and Profile. The others are pass-by-value
objects that will travel between proxy and server, such as
ShoppingCart 2 , BasketItem, ItemResults, ProductRe-
sults and SearchResults (Actually they are all RPC
parameters or responses.). With this strategy, the proxy needs to
issue only one RPC for each user request in most cases and no
state information is going to be shared among different RPCs (as
shown in Figure 6(b)). Moreover, because the objects of Item,
Profile, Order, Customer and Profile do not store state

1 Error objects are responsible to report local errors. Although
Database objects reside at server side, they do not provide
interfaces for proxy any more in this option.

2 Actually ShoppingCart will access database in Cart.aspx
when updating the shopping cart information. To deal with it,
we modify Cart.aspx and Order to ensure that the update
would be executed on server.

Item Database SqlReader

MakeParam

upItemGetList

Read

Proxy Server

Product.aspx Database SqlReader

MakeParam

upItemGetList

Read

Proxy Server

Item

GetList

Param

SqlReader

Product.aspx

GetList

ItemList

Param

SqlReader

ItemList

(a) Fremoting1

(b) Fremoting2

data3, there is no difference whether distinct user requests are
processed by a shared object or exclusive and different ones.
Therefore, all the three hosting strategies are eligible. We
conducted an experiment to compare the performance of all of
them under the same test condition (as shown in Table 1) and
found that SingleCall and Singleton outperforms CAO
significantly. In the experiment, we notice that under the same
conditions the memory consumption and CPU load on server for
CAO is higher than that for SingleCall and Singleton. This may be
due to the fact that the server no longer can perform aggressive
garbage collection as it can in the other two options.

Table 1. Comparison of Singleton, SingleCall and CAO

 Requests/sec Response time (ms)

Singleton 649.07 24.66

SingleCall 649.17 24.46

CAO 552.31 43.75

In the following sections, Fremoting will refer to Fremoting2 using
Singleton only. While we did arrive at an adequate partition
strategy in the business logic tier for Pet Shop (see performance
results in Section 7), our experience pointed out that this is a
rather complex process and, even though it is possible to derive a
consistent set of guidelines, it will be quite a challenge to perform
automatic partitioning.

5.3 Implementing Fproxy
As we described earlier, the goal of Fproxy is much more modest:
augment the proxy cache so that it can cache fragments and
perform dynamic page assembly. Recall that the objects in the
presentation tier of the original Pet Shop are divided into two
parts: container pages (Web Forms) and fragments (Web From
user controls). Each container page includes placeholders of some
fragments. 4 Their contents, either obtained from the output cache
or generated afresh upon a miss, are to be inserted into the
container at runtime to compose a complete Web page.

Figure 7. Page fragment composition

The flow of Fproxy is shown in Figure 7. In order to accomplish
this task, we need to 1) replicate the tier responsible for output
caching and page assembly at the front-end and 2) make a back-
end version of Pet Shop which is the real generator of content.

The back-end version is implemented in two steps. First we make
each fragment be able to be separately retrieved with a URL like a

3 In the C# source code, these five classes have no member

variables.
4 The container object of a fragment can be a fragment too. In Pet

Shop, all fragments are contained in a page.

common Web page. Then in their container pages, we replace the
fragment’s placeholder with a special tag that will not be
interpreted by ASP.NET but indicate to the front-end that it is to
be expanded with the content of a fragment.

We create another application to play the role of output caching
and page assembly at the front-end. This application has the same
set of pages and fragments as Pet Shop and their containment
relationships are also maintained, but no actual content is
included. When a page is loaded, the container page and the
nested fragments will be loaded in turn. What they actually do is
retrieving their corresponding “page” from the output cache in
case of cache hits, or from the back-end application otherwise.
After the real content has arrived, the page composition begins.
The special tags in the fetched container page are replaced with
the content of its subordinate fragments. The process will be
recursively performed if there are nested containments, until the
page is finally composed.

In summary, here are the steps that will occur at runtime:

1. client sends request to proxy
2. proxy fetches container and fragments either from the

output cache (now hosted at proxy) or request from backend
3. proxy assemble the page and returns to the client

We should point out that this version of implementation is for a
quick evaluation of the Fproxy option and is much more like a hack:
there are no modifications to either proxy or .NET framework
anywhere, we simply replicate some of the .NET functionality at
the proxy side. As a result, it incurs additional overhead that
would otherwise absent in a more solid and application-
independent implementation, which is one of our ongoing works.

6. EXPERIMENT SETUP
6.1 The Test Bed
There are totally five machines in our experiment: two servers and
three clients (as shown in Figure 8). Both servers are powerful
machines each with two Pentium4 2.2GHz CPUs, 2GB RAM and
two 73GB SCSI disks. The clients are PCs with sufficient power
so that they never become bottlenecks in test runs. The three
clients are connected to the front end server through a 100Mbps
Ethernet switch. In order to avoid contentions between front-end–
client communication and front-end–back-end communication,
two network adapters are installed on the front end server. The
two portions of traffic will go through different network adapters
and switches.

Figure 8. Network configuration in the experiment

In the test runs, F0 uses Figure 8(a) while the other three
configurations use Figure 8(b).

Back End

Ethernet Switch 1

Front End

Cloud

Ethernet Switch 2

Client1 Client2 Client3

Back End

Ethernet Switch 1

Front End

Cloud

Ethernet Switch 2

Client1 Client2 Client3

(a) (b)

frag2

frag1
…

<tag1/>
…

<tag2/>
…

…

…

frag1

frag2

Front-end Back-end
HTTP

• For F0, the front-end server runs the original Pet Shop
application and the back-end server runs database.

• For Fremoting, the presentation tier is hosted at the front-end and
all the rest, including the business logic tier and the database,
are at the back-end.

• For Fdb, the original Pet Shop runs at the front-end which
accesses the database at the back-end server.

• For Fproxy, the page assembly and fragment caching tier runs at
the front-end and the modified Pet Shop runs at the back-end
accessing a local database.

The software environment of our test bed is shown in Table 2.

Table 2. Software configuration in the experiment

Web Server IIS 5.05 + ASP.NET6

DBMS SQL Server 2000

Operating System Windows 2000 Advance Server SP 3

Network Emulator Shunra\Cloud

The Shunra\Cloud (version 3.1) [15] is used to emulate network
latency in our experiment. It is attached to a network adapter and
affects all the IP packets through it. In Figure 8(a), Cloud resides
in the front-end server to emulate WAN conditions between
clients and Web server. In (b), Cloud is associated with the back-
end server to emulate WAN conditions between proxies and
content provider’s servers. Cloud only imposes minor additional
loads on the server it attaches and its effect is negligible.

6.2 Client Emulation
We use Microsoft Application Center Test (ACT) to emulate
surges of clients. For each test, ACT distributes test load to the
client machines. Each client creates enough threads to simulate a
number of concurrent Web browsers visiting the Web application
under test. The actual behavior of the threads is controlled by a
test script. In each test, a thread repeats the following steps until
the test duration is over. It first opens a persistent HTTP
connection to the Web server. Then it chooses a request, sends it
to the Web server. After receiving the response, it waits for some
thinking time (50 milliseconds in our tests) and chooses the next
request and so forth. The selection of the request to send is
determined by a state transition diagram, which defines the
probability of going to the next request from the previous one. If
the thread chooses to exit, it stops sending requests and closes the
connection.

Table 3. Distribution of the test workload

Activity Percentage

Category Browsing 18%

Product Detail 16%

Search 18%

Home Page 18%

Shopping Cart 7%

Order 1%

Account/Authentication 22%

5 In order to obtain reasonable performance, the application

protection mode is set to medium.
6 Come with .NET Framework V. 1.0.3705

The workload generated by the test script roughly follows the
distribution shown in Table 3, which corresponds to typical user
browsing patterns for such Web site:

6.3 Tuning
Through our experiments, we found it is necessary to fine-tune the
configurations so as to eliminate as many side-effects as possible.
The major tunings are reported in this sub-section.

6.3.1 Queuing and Threading
ASP.NET assigns processing and I/O jobs (via .NET Common
Language Runtime (CLR)) to worker threads and I/O threads in a
thread pool with a specified maximum size to process the requests
from an incoming queue for the application requested. For some
configurations in our experiment, satisfying a request at the front-
end server may require accessing external resources (i.e. object,
database, page fragment) from the back-end server with a network
delay of hundreds of milliseconds. The worker thread has to be
blocked and wait for I/O to complete. Therefore a high number of
concurrent requests will lead to many blocked threads in the pool
as well as pending requests in the queue. To minimize this kind of
effect, we make the following adjustments:

1) We set every application’s request queue long enough to
guarantee that requests be normally served instead of being
rejected with an HTTP message indicating server error when
server-side congestion occurs. In reality Web servers limit the
length of request queues (for dynamic page) to prevent
lengthy response time that is not acceptable to users and
therefore save resources for incoming requests. In our
experiment we need to measure the normal response time for
each request, so we raise the default queue length limit from
100 to 1000.

2) Thread pool size affects performance significantly in a subtle
way. Too few threads can render the system under-utilized
because there may be many blocked threads. While increasing
thread pool size might accelerate processing and improve
utilization, it will cause more thread context switch overhead.
In our experiment, we tune the thread pool size at the front-
end server for each configuration under each test condition
(various network latencies and output cache hit ratio) to
produce the optimal result (throughput and utilization). In
general, a configuration with longer processing time caused
by network latency needs a larger thread pool size. For
example, when the network latency is 200ms and the output
cache hit ratio is 71%, the optimal thread pool size of F0, Fdb,
Fremoting and Fproxy is 25, 30, 30 and 50 respectively.

6.3.2 Connection Pooling
In the three configurations other than F0, the front-end server
needs to make heavy communications with the back-end server
via TCP. On a network with high latency, the connection
overhead becomes prominent due to TCP handshake and slow
start effect if no connection pooling is used. In order to prevent
this kind of performance degradation, we set appropriate pooling
parameters for each configuration according to the connection
mechanisms used between the front-end and the back-end.

In Fdb configuration, each time the front-end wants to create a
connection to the back-end database, the underlying data access
component (ADO.NET) will pick a usable matching connection
from a pool of a certain size. If there is no usable connection and
the size limit is not reached, a new connection will be created.

Otherwise the request is queued before a timeout error occurs.
When the network latency is high and the work load is heavy, the
number of concurrent connections in use would constantly exceed
the limit, i.e. the connection pool becomes the bottleneck.
Therefore, we set the connection pool size large enough (300
rather than the default 100).

In Fremoting configuration, front-end objects invoke back-end
objects through .NET Remoting TcpChannels, which will open
connections as many as needed and cache them for later use
before close them after 15-20 seconds of inactivity. Since each
test run has a warm-up period, there is no negative impact on
performance from this setting.

In Fproxy configuration, the front-end needs to retrieve Web objects
from the back-end. We set the maximum number of persistent
connections high enough (1000) to avoid congestions.

6.4 Measurement
Our experiment consists of two parts. The first part measures the
performance of the four configurations under three fixed network
latencies (50ms, 200ms and 400ms). The second part measures
the performance under several cache hit ratios.

For each test configuration, we vary the number of concurrent
connections and run ACT to stress the application and measure
the throughput (in terms of requests per second, or RPS), response
time (in terms of the time to the last byte of a response) and
utilization of the servers (front-end and back-end). Each run starts
with a warm-up period (3 minutes), after which ACT begins to
collect data about the system status every one second by reading
performance counters of processors, memory, network interfaces,
ASP.NET, .NET CLR and SQL Server. Data collection traffic
only consumes a slight portion of bandwidth compared to client
requests and server responses so it interferes little with the
network utilization of test load. The collection process will last for
3 minutes and then ACT stops running. Before each test run, we
reset the Web server (to flush the cache) and the database tables
(to restore the data load) so that the results from different runs are
independent.

7. RESULTS AND EVALUATION
In this section, we offer detailed experiment results and analysis.
Due to the large number of configuration combinations, we can
not present all the data. Thus, we report response time and
resource utilization with one representative network latency in
Section 7.1, and briefly go over more advanced variations in
Section 7.2.

7.1 Basic Results
7.1.1 Response Time
Figure 9 shows the average response time versus concurrent
connections number of the four configurations. The cache hit ratio
is 71%, and the network latency is 200ms. The loads on the front
end server in the three offloading options are higher relative to
that of F0, either due to more processing or higher overhead. This
is the reason of the climbing of the latency curves corresponding
to the three optimizations. This is an artifact of our test-bed where
there is only one proxy and is generally not a concern because
proxies are many in real deployment.

When there are less than 300 connections, Fdb, Fremoting and Fproxy
offer a response time better than F0. The reduction depends on the
network delay. When connection is 15, the reduction is 76%, 75%
and 64%, for Fdb, Fremoting and Fproxy respectively. In F0, every time

a request is issued from the client, it travels through the delayed
link and so does its response. Therefore the response time is
always above the network roundtrip time (400ms). In the other
three configurations, many requests can be satisfied at the front-
end right away. Fdb and Fremoting achieve this by replicating the
application logic fully or partially from the back-end. Fproxy caches
dynamically generated output such as pages and fragments and
serves subsequent matching requests from the cache directly or by
composing fragments in the cache, thus reducing the frequency of
accessing the back-end significantly.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300

Connections
R

es
po

ns
e

T
im

e
(m

s)

F0
Fremoting
Fdb
Fproxy

Figure 9. Response time versus number of connections

The response time of Fdb and Fremoting are very close under small
number of connections. This is because their partition points
afford them the same back-end access rate and the traffic incurred
by each access is enough to be transferred within one roundtrip
for both configurations.

Compared to Fproxy, Fdb and Fremoting do more than just caching:
they are capable of offloading some of logical processing as well.
For example, the responses of some requests, such as GET
CreateNewAccount.aspx and GET SignIn.aspx, are not
cacheable, so they will always go to the back-end in Fproxy. But
neither Fdb nor Fremoting requires backend access for these requests.

The fact that the cacheable pages occupy a large portion of the test
loads is one reason that Fproxy does not lag too far behind.
However, there is one more subtle and interesting case where
Fproxy actually wins out.

Fproxy is optimized for retrieving Web pages and fragments from
the back-end and performing page assembly. When it encounters a
request for a page containing fragments, all objects including the
container page and the fragments inside that are not cached will
be fetched from the back-end asynchronously, allowing them to
be downloaded in parallel. After all objects arrive (in any order),
they are composed together and a complete page will be returned.
While in Fdb or Fremoting, due to the fact that the partition points are
inside the application logic, all accesses to the back-end such as
database query and remote object invocation are blocking. For
example in Fremoting, if completing a request needs to call the back-
end twice for generating two fragments in the page, the two
invocations must be performed sequentially even though the two
fragments are independent of each other. The asynchronous
retrieving nature of Fproxy saves significant time for processing
such pages compared to Fdb and Fremoting. For instance, the page
Cart.aspx (uncacheable, used for adding, updating and
removing items in a shopping cart) contains one cacheable

fragment and two uncacheable ones which show a favorite list and
a banner respectively. The favorite list and the banner need to
query the back-end database and the container page needs too in
case of adding an item to the shopping cart. When the network
latency is 200ms and the work load is light, it takes Fdb and
Fremoting 1245ms and 1285ms respectively (both over three
roundtrips) but takes Fproxy 784ms to generate the page.

Therefore, we can classify requests into three distinctive classes
(with their ratios):

• Class A (71%): cacheable response
• Class B (14%): uncacheable response and may need to access

database
• Class C (15%): also uncacheable response but there is no need

to access database

Figure 10 compares the average response time of the requests in
each class for Fremoting, Fdb and Fproxy. All of them return responses
for requests of class A in negligible time. Fproxy wins in class B
due to its asynchronous optimization mentioned above. Fremoting
responds slower than Fdb because it introduces overhead when
doing remote object invocations. In class C, both Fdb and Fremoting
can return responses immediately, while Fproxy has to fetch content
from the back-end with significant delay.

0

100

200

300

400

500

600

700

800

900

Class A Class B Class C

R
es

po
ns

e
T

im
e

(m
s)

Fremoting

Fdb

Fproxy

Figure 10. Average response time of each class of pages

7.1.2 Scalability and Server Load Reduction
The other functionality of offloading and caching at proxies is
reducing server load so as to achieve better scalability. Since our
test-bed consists of only one proxy and one database server, we
can only infer from the load distribution among resources.
However, all offloading configurations filter at least 70% server
requests through proxy for this test script due to the output cache
hits.

Figure 11 plots the aggregated server loads for all four
configurations. Theses are loads that will still remain at the server
side regardless in real deployment. The curve of F0 adds up loads
of both the front end (which runs the application) and the backend
(the database). Curves of all three offload configurations are the
loads on the backend server only and they are:

• Fdb: the database
• Fremoting: the remaining of application logic and the database
• Fproxy: modified Pet Shop application and the database

As we explained earlier, the front end server in these
configurations all have higher loads than in F0, either because of
more processing or higher overhead. Consequently, the three
curves of the offload configurations do not extend to as high

throughput as in F0 because our front end proxy becomes
bottleneck.

0

20

40

60

80

100

0 200 400 600 800

Throughput (RPS)

U
til

iz
at

io
n

(%
)

F0

Fremoting

Fdb

Fproxy

Figure 11. CPU utilization in server of all configurations

Note: The three curves of the offload configurations stop at
throughput points beyond which our front end proxy becomes
saturated.

As can be seen, in our test environment, the backend database is
not the bottleneck. The largest load reduction is achieved with Fdb
where the functions of application server are taken entirely by the
proxies distributed near the client. Because there is still some
processing remaining at the back-end in Fremoting, it can not
achieve the same level of server load reduction as Fdb. As
expected, Fproxy is the third and achieves reasonable load
reduction comparing to F0.

In reality, a server complex is made up of a tier of machines
running application servers backed by the database machines. The
differences between the load curves of F0, Fremoting, Fproxy and Fdb
are what will be run on the machines hosting the application
servers. It is evident that to achieve identical throughput, Fdb will
require the least resources inside server complex, followed by
Fremoting and Fproxy.

7.2 Advanced Evaluation
7.2.1 Vary Network Latency
We repeat the experiment under two other network latencies:
50ms and 400ms with light server load. The results are shown in
the following figure.

0

100

200

300

400

500

600

700

800

900

1000

50ms 200ms 400ms

Latency

R
es

po
ns

e
T

im
e

(m
s)

F0

Fremoting

Fdb

Fproxy

Figure 12. Response time with different network latencies

There is no major surprise: the response time of F0 is always over
one roundtrip time. Both Fdb and Fremoting offer comparable

response time and Fproxy is slower but still competitive. As
expected, the benefit of offloading/caching at proxy increases with
network latency.

7.2.2 Vary Cache Hit Ratio
We repeat the experiment under two other output cache hit ratios:
52% and 30%. The network latency is fixed at 200ms. The
response time of the configurations under different hit ratios is
shown in Figure 13.

This result is also straightforward: increased cache hit ratio
benefits offloading/caching at proxy. We note again that the
caching is a more significant factor, though this is specific to this
application and the test scripts we used for the experiments.

0

50

100

150

200

250

300

350

400

450

500

30% 52% 71%

Hit Ratio

R
es

po
ns

e
T

im
e

(m
s)

F0 Fremoting Fdb Fproxy

Figure 13. Response time with different cache hit ratios

8. SUMMARY AND CONCLUSION
We believe that Web page as a unit will disappear over time and
be replaced by dynamic content that is deeply personalized.
Utilizing the proxy servers located near the client to distribute and
offload the processing and caching of dynamic content is entirely
reasonable. This is all the more so because these edge devices are
already deployed and at the same time underutilized as far as
dynamic contents are concerned. However, such deployment
requires not only the re-engineering of applications themselves,
but also the considerations of security issues and careful
evaluation of performance benefits.

In this paper, using a representative e-commerce benchmark, we
have enumerated extensively many partitioning strategies.
Without going into specifics, the following conclusions can be
drawn: 1) offloading and caching at edge proxy servers achieves
significant advantages without pulling database out near the client.
Our results show that, under typical user browsing patterns and
network conditions, 2~3 folds of latency reduction can be
achieved. Furthermore, over 70% server requests are filtered at
the proxies, resulting significant server load reduction. 2) This
benefit can be achieved largely by simply caching dynamic page
fragments and composing the page at the proxy, whereas
advanced offload options are often overly complex and can be
counter-productive if not done carefully. 3) Many progresses in
the most recent Web programming platform play important roles
for this to happen. In the .NET framework, the output caching
capability, stored procedures and, to a less extent, the Remoting
mechanisms all made significant contributions. 4) The 3-tier Web
architecture gives a general guideline but is not as helpful when
actual partitioning strategy is devised.

Specifically, we have evaluated the following three partitioning
strategies and our findings and recommendations are as follows:

! Replicating all application components except database to the
edge provides the best average response time and the highest
reduction of back-end server load. It is also the easiest to
implement. However, this would be otherwise impossible if
not for a highly efficient implementation of database
interaction. That is to say, this option will give only
disappointing offloading performance if not for the fact that
database stored procedure has encapsulated multiple SQL
queries within one request. The restriction is that since the
complete business logic is pushed to the proxy, this option is
suitable only for intranet applications or other situations
where end-to-end security is already in place.

! Partitioning the application components and moving some of
them on the edge offer similar response time as well as server
load reduction. The prerequisites are that the application is
carefully partitioned and appropriate RPC mechanism is used.
However, it would require considerable engineering cost for a
complex Web application that was not designed to be run in a
distributed fashion to begin with. Furthermore, if it is
impossible to determine the sensitivity of the processing
offloaded to the proxy, then this option will require end-to-
end security as well. Thus, in view of the simplicity of the
database offloading strategy, this option, while theoretically
interesting, is unlikely to be justified.

! We find that simply augmenting the capability of proxy today
to cache dynamic fragment and compose the complete page is
also very effective in terms of latency and server load
reduction. The security requirement is minimal because what
get cached at proxy are contents, not logics. This option
requires change to the original application, but the process can
be reasonably automated or comes for free if standard
guidelines such as ESI are followed.

Our investigation thus essentially boils down to one simple
recommendation: if end-to-end security is in place for a particular
application, then offload all the way up to the database; otherwise
augment the proxy with page fragment caching and page
composition.

Although our experiment was carried out within the .NET
framework, the conclusion should be general enough to be valid
on other platforms, especially for e-commerce type of applications.
Many of the .NET framework and ASP.NET features are shared
by other competing platforms. Furthermore, we found that
network latencies dominate the performance anyway, and
the .NET framework itself contributes negligible overhead in
comparison.

The TTL-bound consistency enforcement as is used in this
benchmark prevails in today’s Web deployment, largely due to its
simplicity. If more advanced, server-driven consistency
maintenances are to be taken in the future, we still believe our
observation to hold true in general because cache hit ratio will
remain the same for all these options. What makes the difference
is mainly the amount of processing being offloaded, which is
orthogonal to consistency mechanism.

Our future works include a number of directions. We believe
while e-commerce application is interesting, they will represent
only a small portion in the future given that Web services will
grow to cover more Web usage scenarios. Thus, we are actively
seeking new applications and repeat our investigations. We are

also working on a more robust implementation of caching
fragments and page assembly on top of the proxy architecture.
Last, but not least, we believe it is important to extend this work
to include underprivileged users with slow and narrow
connections to the proxies. In such cases, caching at proxy is no
longer sufficient: we need such functionality to move to the client
side. Our preliminary experiments have indicated that this can
bring about significant benefits, even though one no longer enjoys
the high caching hit ratio at proxies because of sharing among
different users.

9. ACKNOWLEDGMENTS
We thank members of the Media Management Group for their
feedback and support. Wei-Ying Ma has been instrumental for
this work to get started. We also thank the anonymous reviewers
for their helpful comments.

10. REFERENCES
[1] Amiri, K., Park, S., Tewari, R. and Padmanabhan, S.

DBProxy: A Self-Managing Edge-of-Network Data Cache.
IBM Research Report, RC 22419, April, 2002.

[2] Cao, P., Zhang, J. and Beach, K. Active Cache: Caching
Dynamic Contents on the Web. In: Proc. of IFIP Intl. Conf.
on Distributed Systems Platforms and Open Distributed
Processing (Middleware’98), pp. 373-388.

[3] Challenger, J., Dantzig, P. and Iyengar, A. A Scalable and
Highly Available System for Serving Dynamic Data at
Frequently Accessed Web Sites. In: Proc. of ACM/IEEE
Supercomputing’98 (SC98), Orlando, Florida, November,
1998.

[4] Datta, A., Dutta, K., Thomas, H., VanderMeer, D., Suresha
and Ramamritham, K. Proxy-Based Acceleration of
Dynamically Generated Content on the World Wide Web:
An Approach and Implementation. In: Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, Madison,
Wisconsin, USA, June, 2002, pp. 97-108.

[5] Edge Side Includes. http://www.esi.org

[6] IBM WebSphere Application Server. http://www-
3.ibm.com/software/webservers/appserv/

[7] IBM WebSphere Edge Server. http://www-
3.ibm.com/software/webservers/edgeserver/

[8] Iyengar, A. and Challenger, J. Improving Web Server
Performance by Caching Dynamic Data. In: Proc. of the
USENIX 1997 Symposium on Internet Technologies and
Systems (USTIS’97), Monterey, CA, December 1997.

[9] Labrinidis, A. and Roussopoulos, N. WebView
Materialization. In: Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data, Dallas, Texas, USA, May 2000, pp.
367-378.

[10] Li, W.S., Hsuing, W.P., Kalashnikov, D.V., Sion, R., Po, O.,
Agrawal, D. and Candan, K.S. Issues and Evaluations of
Caching Solutions for Web Application Acceleration. In:
The 28th Int. Conf. on Very Large Data Bases (VLDB 2002),
Hong Kong, China, 20-23 August, 2002.

[11] Microsoft .NET Pet Shop.
http://www.gotdotnet.com/team/compare/petshop.aspx.

[12] Microsoft ASP.NET Caching Features.
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/cpguide/html/cpconaspcachingfeatures.asp

[13] Microsoft ASP.NET Site. http://www.asp.net/

[14] MSDN: An Introduction to Microsoft .NET Remoting.
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dndotnet/html/introremoting.asp

[15] Shunra\Cloud. http://www.shunra.com/cloud.htm

[16] Sun Java Pet Store.
http://java.sun.com/blueprints/guidelines/designing_enterpris
e_applications/sample_application/functionality/index.html

[17] Yagoub, K., Florescu, D., Valduriez, P. and Issarny, V.
Caching Strategies for Data-Intensive Web Sites. In: Proc. of
the Int. Conf. on Very Large Data Bases (VLDB), Cairo,
Egypt, 10-14 September, 2000.

