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ABSTRACT 
As dynamic content becomes increasingly dominant, it becomes 
an important research topic as how the edge resources such as 
client-side proxies, which are otherwise underutilized for such 
content, can be put into use. However, it is unclear what will be 
the best strategy and the design/deployment tradeoffs lie therein. 
In this paper, using one representative e-commerce benchmark, 
we report our experience of an extensive investigation of different 
offloading and caching options. Our results point out that, while 
great benefits can be reached in general, advanced offloading 
strategies can be overly complex and even counter-productive. In 
contrast, simple augmentation at proxies to enable fragment 
caching and page composition achieves most of the benefit 
without compromising important considerations such as security. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval] Systems and 
Software – distributed systems, performance evaluation 
(efficiency and effectiveness); H.3.5 [Information Storage and 
Retrieval] Online Information Services – Web-based services 

General Terms 
Measurement, Performance 

Keywords 
Edge caching, offloading, dynamic content 

1. INTRODUCTION 
Dynamic pages will dominate the Web of tomorrow. Indeed, one 
should stop talking about dynamic pages but, instead, dynamic 
content. This necessitates architectural change in tandem. In 
particular, resources that are already deployed near the client such 
as the proxies that are otherwise underutilized for such content 
should be employed. 

Legitimate strategies include offloading some of the processing to 
the proxy, or simply enhancing its cache abilities to cache 
fragments of the dynamic pages and perform page composition. 
While performance benefits including latency and server load 
reduction are important factors to consider, issues such as 
engineering complexity as well as security implication are of even 
higher priority. Although there have been extensive researches on 
the subject of optimizations for dynamic content processing and 

caching, we still lack the insight on what will be the best 
offloading and caching strategies and their design/deployment 
tradeoffs. 

In this paper, using a representative e-commerce benchmark, we 
have extensively studied many partitioning strategies. We found 
that offloading and caching at edge proxy servers achieves 
significant advantages without pulling database out near the client. 
Our results show that, under typical user browsing patterns and 
network conditions, 2~3 folds of latency reduction can be 
achieved. Furthermore, over 70% server requests are filtered at 
the proxies, resulting significant server load reduction. 
Interestingly, this benefit can be achieved largely by simply 
caching dynamic page fragments and composing the page at the 
proxy. In fact, advanced offloading strategies can be overly 
complex and even counter-productive performance-wise if not 
done carefully. Our investigation essentially boils down to one 
simple recommendation: if end-to-end security is in place for a 
particular application, then offload all the way up to the database; 
otherwise augment the proxy with page fragmentation caching and 
page composition. While our results are obtained under the .NET 
framework, we believe they are generic enough to be applicable to 
other platforms. 

The rest of the paper is organized as follows. Section  2 covers 
related work. Various offloading and caching options are 
introduced in Section  3, which also discusses important design 
metrics. Section  4 examines the benchmark used and also some of 
the most important .NET features employed. Detailed 
implementations of the offloading/caching options are discussed 
in Section  5. Section  6 describes the experiment environment. 
Results and analysis are offered in Section  7. Finally, we 
summarize and conclude in Section  8. 

2. RELATED WORK 
Optimizing dynamic content generation and delivery has been 
widely studied. The main objectives are to reduce client response 
time, network traffic and server load caused by surges of high 
volume of requests over wide-area links. Most works focus on 
how to support dynamic content caching on server side  [8] [9] [17]. 
Some others also extend their cache to the network edge and show 
better performance result  [10]. Fragment caching  [3] [4] is an 
effective technique to accelerate current Web applications which 
usually generate heterogeneous contents with complex layout. It is 
provided by today’s common application server product like 
Microsoft ASP.NET  [13] and IBM WebSphere Application 
Server  [6]. ESI  [5] proposes to cache fragments at the CDN 
stations to further reduce network traffic and response time. 

 

Copyright is held by the author/owner(s). 
WWW 2003, May 20-24, 2003, Budapest, Hungary. 
ACM 1-58113-680-3/03/0005. 
 



Application offloading is another way to improve performance. In 
Active Cache  [2], it is proposed that a piece of code be associated 
with a resource and be able to be cached too. The cache will 
execute the code over the cached object on behalf of the server 
and return the result to the client directly when the object is 
requested at a later time. With the blurring of application and data 
on current Web, this scheme becomes less effective. To do more 
aggressive application offloading, WebSphere Edge Services 
Architecture  [7] suggests that portions of the application such as 
presentation tier and business logic tier be pushed to the edge 
server and communicate with the remaining application at the 
origin server when necessary via the application offload runtime 
engine. An extreme case of offloading is given by  [1]. The full 
application is replicated on the edge server and database accesses 
are handled by a data cache which can cache query results and 
fulfill subsequent queries by means of query containment analysis 
without going to the back-end. 

We focus on the proxies that are already installed near clients. We 
also examine exclusively on offloading and caching of anything 
other than the database content, as we believe mature technologies 
to manage hard states in a scalable fashion across wide-area are 
yet to be developed. To the best of our knowledge, we are the first 
to report design and implementation tradeoffs involved in 
devising partitioning and offloading strategies, along with detailed 
evaluations. There also has been no work evaluating offloading 
versus advanced caching mechanisms. Finally, this is the first 
work we know of that experiments with the .NET framework in 
this aspect. 

3. OFFLOADING AND CACHING 
OPTIONS ENUMERATED 
There are a number of issues to be considered for distributing, 
offloading and caching dynamic content processing and delivery, 
they are: 1) available resources and their characteristics, 2) the 
nature of these applications and 3) a set of design criteria and 
guidelines. In this section, we discuss these issues in turn.  

3.1 Resources Where Offload can be Done 
Figure 1 shows graphically various resources involved. 

 

Figure 1. Resources available for offloading and caching 

Client. As a user-side agent, client – typically a browser – is 
responsible for some of the presentation tasks, it can also cache 
some static contents such as images, logos etc. The number of 
clients is potentially many; however they usually have limited 
capacities and are (generally speaking) not trusted. 

Proxies. In terms of scale, proxies come second. Proxies are 
placed near the clients and are thus far from the server end. The 
typical functionalities of proxies include firewall, and caching of 
static contents. They are usually shared by many clients and are 
reasonably powerful and stable. However, except the case of 
intranet applications, content providers do not have much control 
over them.  

Reverse Proxies. Reverse proxies are placed near the back end 
server farm and act as an agent of the application provider. They 
serve the Web request on behalf of the back end servers. Content 
providers can fully control their behaviors. However, the scale of 
reverse proxies only goes as far as a content provider’s network 
bandwidth allows. In this paper, we consider them as part of the 
server farm. 

Server. Servers are where the content provider has the full control. 
In the context of this section, we speak of “server” as one logical 
entity. However, as it shall be clear later, “server” itself is a tiered 
architecture comprised of many machines and hosting the various 
tiers of the Web application. 

As far as dynamic content is concerned, typically only the servers 
and clients are involved. Proxies, as of today, are incapable of 
caching and processing dynamic contents. In this discussion, we 
have also omitted CDN stations as we believe they can be 
logically considered as an extension of either proxies or reverse 
proxies. Some of the more recent progresses have been discussed 
in the Section  2. 

3.2 Application Architecture and Offloading 
Options 
Logically, most of the Web applications can be roughly 
partitioned into three tiers: presentation, business logic, and back 
end database. The presentation tier collects users’ input and 
generates Web pages to display results. The business logic tier is 
in charge of performing the business procedure to complete users’ 
requests. The database tier usually manages the application data in 
a relational database. 

Based on the 3-tier architecture, N-tier architecture is also 
possible. The most complex tier in a Web application is the 
business logic tier. This tier performs application-specific 
processing and enforces business rules and policies. Because of its 
complexity, the business tier logic tier itself may be partitioned 
into smaller tiers, evolving into the N-tier architecture. 

 

Figure 2. The 3-tier architecture and partition places 

Application partitioning and offloading can be applied based on 
the tier structure of the Web application. Without loss of 
generality, we only consider Web browser as the application client 
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here. From the back end database to browsers, we can find several 
candidate partition places as shown in Figure 2. 

The first partition place is the database access interface. The 
ODBC, JDBC, ADO etc. are this kind of interfaces. Current 
applications use connection strings to specify the database server 
to be accessed. It is possible to point to a specific remote machine 
in the connection string. 

The second partition place is at the data access layer inside the 
business logic tier. Because of the complexity of the business 
logic, it is a common practice to develop a set of database access 
objects to shield the detail inside the database. Other business 
logic objects can access data through these objects using simple 
function calls. The clear-cut boundary at this layer makes it a 
good candidate of partition point for offloading. 

The third partition place is between the presentation tier and the 
business logic tier. The presentation tier gathers the user input and 
translates the user request into a processing action at the business 
layer. The business tier usually provides a single-call interface for 
each type of requests. The clearly defined interface here provides 
strong clues for partition. 

The fourth partition place is inside the presentation tier. The Web 
pages generated by the application are structuralized and split into 
fragments each of which has consistent semantic meaning and life 
time. The back end servers provide page fragments and 
composition frameworks. The entire Web page is assembled at the 
offloading destination. ESI  [5] is a good example of this strategy.  

Of course, what we have enumerated here is only a starting point. 
Specifically, within the business logic tier there can be multiple 
logically legitimate offloading points. However, as we should 
discuss later, advanced offloading strategies often risk high 
complexity without clear benefit in return. 

3.3 Important Factors to be Considered When 
Offloading 
Having discussed various resources upon which offloading and 
caching can be performed, and various partitioning strategies, the 
actual implementation and deployment must consider a number of 
important factors. In our opinion, the following three are the most 
important ones: security, complexity and performance. 

Security. Sensitivity of data as well as processing that are to be 
offloaded may vary. A given piece of data and processing can be 
distributed as far as its security perimeter permits. This is one 
reason we are concerned with who controls what in the resource 
distribution earlier. Enforcing security end-to-end only applies to 
certain Web applications (e.g. intranet) and pays a cost (e.g. VPN 
overhead) in return. 

Complexity. Another factor that should be considered is the 
engineering cost. Although Web applications are developed 
according to 3-tier or N-tier architecture, the tier boundaries are 
usually not clear. This problem is obvious for the tiers that are 
part of the business logic in an N-tier application.  

Even if the tier boundaries are clear, the implementation still 
cannot be fully automated. For example, application partitioning 
usually requires transforming some of the LPCs (local procedure 
call) into RPCs (remote procedure call). Because most of the 
runtime systems do not support migrating LPC to RPC 
transparently, source code modification, recompilation and 
subsequent testing are necessary. If synchronous procedures calls 

are to be changed to asynchronous calls, the implementation 
efforts would be even greater.  

Performance. Even when resources such as proxies are freely 
available, distributing the processing and caching must bring 
significant benefits to justify the additional complexity involved. 
End user’s latency as well as improvement of scalability are the 
primary metrics. On this, the network condition is the first critical 
factor to be considered. Generally speaking, the communication 
quantity across the partition should be minimized on low 
bandwidth networks. Likewise, for high latency networks, the 
frequency of synchronous communication should be reduced. In 
general, a useful guideline to start with is that communication 
channel over wide area network should be light weight and 
stateless.  

4. THE PET SHOP BENCHMARK 
In order to evaluate different offloading options, we use 
Microsoft .NET Pet Shop as our benchmark. It comes from Sun’s 
primary J2EE blueprint application, the Sun Java Pet Store  [16] 
and models a typical e-commerce application, an online pet store. 
E-commerce sites like this are among the most common Web 
applications.  

Pet Shop is implemented using ASP.NET, and the source code is 
freely available at  [11]. ASP.NET brings several important 
optimizations and the two of them, stored procedure and output 
caching will be discussed in the following sections. 

4.1 Pet Shop Architecture 
The complete 3-tier architecture of Pet Shop is described in the 
whitepaper at  [11]. To illustrate the design, we will look at an 
example of the interaction between the three tiers as shown in 
Figure 3. 

 

Figure 3. The Pet Shop architecture (portion) 

The presentation tier communicates with browsers directly. It 
contains Web Forms pages (aspx files), Web Forms user controls 
(ascx files) and their code-behind classes (in namespace 
PetShop.Web). Similar to the ASP and JSP page, Web Forms 
pages represent dynamic pages. The Web Forms user controls 
represent portions of Web Forms pages and thus can not be 
requested independently. While the aspx and ascx files contain the 
visual representation, the code-behind classes contain processing 
logics. When a request arrives, the specified Web Forms page and 
Web Forms user controls are loaded. The corresponding code-
behind objects responsible for generating responses will initiate 
calls to the business logic tier for request processing (arrows in 
Figure 3). 
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The objects in the business logic tier (in namespace 
PetShop.Components) accept invocations from the presentation 
tier. If the processing does not require database interaction, for 
instance displaying shopping cart content, results are returned 
right away. Otherwise, the business logic objects will generate 
database queries through a specific database access class 
(PetShop.Components.Database). Instances of this class set 
up database connections, pass database queries through 
ADO.NET interfaces and return query results to upstream. 

The database tier consists of application data and stored 
procedures. A stored procedure is used to encapsulate a sequence 
of SQL queries which complete a single task. Using stored 
procedures, interactions between the business logic tier and the 
database tier can be reduced, thus increasing performance. For 
instance, placing an order normally requires several calls between 
the business tier and the back end database. With stored procedure, 
an order can be encoded into a string and transferred to the 
database, where the string is decoded and multiple SQL 
statements are issued to complete the order. From this perspective, 
most of the Pet Shop stored procedures are essentially part of the 
business logic tier. They are included in the database tier simply 
because they are stored and are executed in the SQL server. This 
is one example where the boundaries of tiers get blurred.  

4.2 ASP.NET Output Caching 
The.NET Pet Shop leverages ASP.NET output caching to increase 
throughput and reduce server load  [12]. Similar function is also 
provided by other products such as IBM WebSphere’s response 
cache  [6] [7]. When a page is requested repeatedly, the output 
caching allows subsequent requests to be satisfied from the cache 
so the code that initially creates the page does not have to be run 
again. Besides caching the entire page, ASP.NET allows Web 
Forms user controls to be cached separately. As we will explain in 
detail in Section  5.3, this feature of fragment caching is what we 
employ to enhance caching capability at the proxy side.  

ASP.NET provides duration and versioning control for each 
cached entities (Web Form and Web Form user control). Duration 
specifies the life time of a cached page. Versioning allows caching 
multiple result pages or page fragments for a single form or 
control. For example, Product.aspx produces different result 
pages for different products. Storing a single result page in output 
cache can hardly gain any benefit since users tend to browse 
different products. By keeping multiple result pages, the most 
frequently accessed pages will be cached eventually, saving large 
amounts of processing time.  

5. EXPERIMENT PREPARATION 
In this section, we discuss in detail how different offloading and 
caching strategies are implemented in Pet Shop. 

According to the partition points in section  3.3, the following 
offloading options are investigated: F0, Fdb, Fremoting and Fproxy. 
They are shown in Figure 4; the legends are: 

•  B: Browser 
•  A: Page Assembling and Fragment Caching 
•  G: Fragment Generation 
•  P: Presentation 
•  L’: Business Logic except Data Access Layer 
•  DA: Data Access Layer 
•  L: Business Logic 
•  DB: Database 

•  Cloud: Wide Area Network 

 

Figure 4. Implementation of offloading options in Pet Shop 

The base line is F0 which leverages neither processing nor caching 
abilities of proxies. By pushing fragment caching and page 
assembly to the proxy, we get Fproxy which corresponds to 
partition place 4. By offloading the presentation tier to proxies, 
Fremoting2 implements partition point 3. Fremoting1 and Fdb are 
similar except that Fremoting1 leaves the data access layer at back 
end servers while Fdb offloads the complete business logic tier. 
Therefore, they correspond to partition point 2 and 1, respectively. 

We use proxy and front end, server and back end interchangeably 
in this paper for all configurations other than F0. 

5.1 Implementing Fdb 
The implementation of Fdb is trivial: all we need to do is modify 
the connection string of the database access interface. The 
connection string is changed from the default value 
“server=localhost;…” to “server=some other 
machine; …” so that the front end is forced to access the remote 
machine hosting the SQL server. 

5.2 Implementing Fremoting 
The Fremoting option investigates different ways of offloading 
inside the business logic tier, in particular the partition point 2 
and 3 (see Figure 2). We employ the .NET Remoting feature to 
accomplish this task, which we will discuss first.  

5.2.1 .NET Remoting 
Microsoft .NET Remoting provides a rich and extensible 
framework for objects living in different application domains, in 
different processes, and in different machines to communicate 
with each other seamlessly. The framework considers a number of 
matters, including object passing, remote object hosting strategy, 
communication channel and data encoding. 

 

Figure 5. RPC using .NET Remoting machanism 
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•  By value. Objects that would cross application domain 
boundary, such as the object b in Figure 5, can be passed by 
value. In .NET Remoting, pass-by-value objects are all marked 
with Serializable attribute. 

•  By reference. Objects that reside in only one application 
domain and provide interfaces to other applications are passed 
by reference (such as the object a in Figure 5). In .NET 
Remoting, pass-by-reference objects should be derived from a 
system class MarshalByRefObject. 

For a pass-by-reference object, .NET Remoting provides three 
hosting strategies to support object activation and lifetime 
management. 

•  SingleCall objects’ activation and lifetime are determined by 
server. They service one and only one request coming in, i.e. 
different client requests are services by different objects. 

•  Singleton objects’ activation and lifetime are also determined 
by server. Unlike the SingleCall objects, Singleton objects 
service multiple clients and share data by storing state 
information between client invocations. There is only one 
singleton object instance of a given class at the server side. 

•  Client-activated objects’ (CAO) activation and lifetime are 
determined by client. The server creates an object upon an 
activation message from client. The object services for the 
client until the client allows it to be released. If the 
communication between server and client is stateful, CAO 
should be used. 

For a more in-depth treatment of these hosting strategies, please 
refer to  [14]. 

RPC requests and responses are encoded into formatted messages 
and transferred over a communication channel. In Figure 5, when 
object c makes a call to object a, the request (including object b 
as the parameter) is encoded and transferred to the server side. At 
the server side, the message is decoded and an actual call to object 
a is made.  

5.2.2 Detailed Implementation 
As explained earlier, in Fremoting, we try to partition the application 
in the logic tier. While there maybe many different options, as an 
extensive exercise we investigate how to partition at point 2 which 
separates the data access layer from other business logic layers, 
and point 3 which is located between the presentation tier and the 
business logic tier (see Figure 2 and Figure 4).  

Regardless of the specific partition strategy, the task in this 
configuration is always to replace LPC (Local Procedure Call) 
with RPC (Remote Procedure Call). This entails a few steps. The 
first is to determine the locations of classes to be run as mandated 
by a given partitioning strategy (server or proxy) and from there 
derive the RPC boundaries. The second step is to modify the 
application source code so that RPC can take effect. Finally, the 
hosting strategy for objects at server side and communication 
channel between server and proxy are decided.  

Partition place 2 requires the least amount of engineering efforts 
in that there is only one class to be modified — Database in 
namespace PetShop.Components. The Database objects run at 
server side and provide interfaces for the other logical tier objects 
to access information in the back end database. Thus, they are 
pass-by-reference objects. For each user request, the responsible 
logic tier object at proxy side needs to issue multiple procedure 
calls to server (as shown in Figure 6(a)). Because these calls are 
related to each other, the state information along the call sequence 

should be maintained. On the other hand, different user requests 
need exclusive objects to provide services. Therefore, the only 
hosting strategy is CAO. This strategy turns out to have a dramatic 
performance impact: our test runs reveal that the benchmark now 
performs much worse than not offloading at all. The reason is that 
multiple RPCs corresponding to a single user request results in 
multiple round trips between proxy and server. Consequently, 
partition point 2 is not a good offloading option for Pet Shop. The 
lesson we learned here is that, under a given partition strategy, the 
logical constraint and performance constraint may very much be 
in conflict with each other. What makes this matter even more 
complex is that this is also application dependent. 

 

Figure 6. Flow examples of partition place 2 (a) and 3 (b) 

Partition point 3 works but with a rather involved manual 
examination of all candidates. Specifically, all classes in 
namespace PetShop.Components except Error and Database 
are affected1. Some of them will reside at server side only and act 
as pass-by-reference remote objects, such as Item, Profile, 
Order, Customer and Profile. The others are pass-by-value 
objects that will travel between proxy and server, such as 
ShoppingCart 2 , BasketItem, ItemResults, ProductRe-
sults and SearchResults (Actually they are all RPC 
parameters or responses.). With this strategy, the proxy needs to 
issue only one RPC for each user request in most cases and no 
state information is going to be shared among different RPCs (as 
shown in Figure 6(b)). Moreover, because the objects of Item, 
Profile, Order, Customer and Profile do not store state 
                                                                 
1 Error objects are responsible to report local errors. Although 
Database objects reside at server side, they do not provide 
interfaces for proxy any more in this option. 

2  Actually ShoppingCart will access database in Cart.aspx 
when updating the shopping cart information. To deal with it, 
we modify Cart.aspx and Order to ensure that the update 
would be executed on server.  
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data3, there is no difference whether distinct user requests are 
processed by a shared object or exclusive and different ones. 
Therefore, all the three hosting strategies are eligible. We 
conducted an experiment to compare the performance of all of 
them under the same test condition (as shown in Table 1) and 
found that SingleCall and Singleton outperforms CAO 
significantly. In the experiment, we notice that under the same 
conditions the memory consumption and CPU load on server for 
CAO is higher than that for SingleCall and Singleton. This may be 
due to the fact that the server no longer can perform aggressive 
garbage collection as it can in the other two options. 

Table 1. Comparison of Singleton, SingleCall and CAO 

 Requests/sec Response time (ms) 

Singleton 649.07 24.66 

SingleCall 649.17 24.46 

CAO 552.31 43.75 

In the following sections, Fremoting will refer to Fremoting2 using 
Singleton only. While we did arrive at an adequate partition 
strategy in the business logic tier for Pet Shop (see performance 
results in Section  7), our experience pointed out that this is a 
rather complex process and, even though it is possible to derive a 
consistent set of guidelines, it will be quite a challenge to perform 
automatic partitioning. 

5.3 Implementing Fproxy 
As we described earlier, the goal of Fproxy is much more modest: 
augment the proxy cache so that it can cache fragments and 
perform dynamic page assembly. Recall that the objects in the 
presentation tier of the original Pet Shop are divided into two 
parts: container pages (Web Forms) and fragments (Web From 
user controls). Each container page includes placeholders of some 
fragments. 4 Their contents, either obtained from the output cache 
or generated afresh upon a miss, are to be inserted into the 
container at runtime to compose a complete Web page. 

 

Figure 7. Page fragment composition 

The flow of Fproxy is shown in Figure 7. In order to accomplish 
this task, we need to 1) replicate the tier responsible for output 
caching and page assembly at the front-end and 2) make a back-
end version of Pet Shop which is the real generator of content. 

The back-end version is implemented in two steps. First we make 
each fragment be able to be separately retrieved with a URL like a 

                                                                 
3  In the C# source code, these five classes have no member 

variables. 
4 The container object of a fragment can be a fragment too. In Pet 

Shop, all fragments are contained in a page. 

common Web page. Then in their container pages, we replace the 
fragment’s placeholder with a special tag that will not be 
interpreted by ASP.NET but indicate to the front-end that it is to 
be expanded with the content of a fragment. 

We create another application to play the role of output caching 
and page assembly at the front-end. This application has the same 
set of pages and fragments as Pet Shop and their containment 
relationships are also maintained, but no actual content is 
included. When a page is loaded, the container page and the 
nested fragments will be loaded in turn. What they actually do is 
retrieving their corresponding “page” from the output cache in 
case of cache hits, or from the back-end application otherwise. 
After the real content has arrived, the page composition begins. 
The special tags in the fetched container page are replaced with 
the content of its subordinate fragments. The process will be 
recursively performed if there are nested containments, until the 
page is finally composed. 

In summary, here are the steps that will occur at runtime: 

1. client sends request to proxy 
2. proxy fetches container and fragments either from the 

output cache (now hosted at proxy) or request from backend 
3. proxy assemble the page and returns to the client 

We should point out that this version of implementation is for a 
quick evaluation of the Fproxy option and is much more like a hack: 
there are no modifications to either proxy or .NET framework 
anywhere, we simply replicate some of the .NET functionality at 
the proxy side. As a result, it incurs additional overhead that 
would otherwise absent in a more solid and application-
independent implementation, which is one of our ongoing works. 

6. EXPERIMENT SETUP 
6.1 The Test Bed 
There are totally five machines in our experiment: two servers and 
three clients (as shown in Figure 8). Both servers are powerful 
machines each with two Pentium4 2.2GHz CPUs, 2GB RAM and 
two 73GB SCSI disks. The clients are PCs with sufficient power 
so that they never become bottlenecks in test runs. The three 
clients are connected to the front end server through a 100Mbps 
Ethernet switch. In order to avoid contentions between front-end–
client communication and front-end–back-end communication, 
two network adapters are installed on the front end server. The 
two portions of traffic will go through different network adapters 
and switches. 

 

Figure 8. Network configuration in the experiment 

In the test runs, F0 uses Figure 8(a) while the other three 
configurations use Figure 8(b).  
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•  For F0, the front-end server runs the original Pet Shop 
application and the back-end server runs database. 

•  For Fremoting, the presentation tier is hosted at the front-end and 
all the rest, including the business logic tier and the database, 
are at the back-end. 

•  For Fdb, the original Pet Shop runs at the front-end which 
accesses the database at the back-end server. 

•  For Fproxy, the page assembly and fragment caching tier runs at 
the front-end and the modified Pet Shop runs at the back-end 
accessing a local database. 

The software environment of our test bed is shown in Table 2. 

Table 2. Software configuration in the experiment 

Web Server IIS 5.05 + ASP.NET6 

DBMS SQL Server 2000 

Operating System Windows 2000 Advance Server SP 3 

Network Emulator Shunra\Cloud 

The Shunra\Cloud (version 3.1)  [15] is used to emulate network 
latency in our experiment. It is attached to a network adapter and 
affects all the IP packets through it. In Figure 8(a), Cloud resides 
in the front-end server to emulate WAN conditions between 
clients and Web server. In (b), Cloud is associated with the back-
end server to emulate WAN conditions between proxies and 
content provider’s servers. Cloud only imposes minor additional 
loads on the server it attaches and its effect is negligible. 

6.2 Client Emulation 
We use Microsoft Application Center Test (ACT) to emulate 
surges of clients. For each test, ACT distributes test load to the 
client machines. Each client creates enough threads to simulate a 
number of concurrent Web browsers visiting the Web application 
under test. The actual behavior of the threads is controlled by a 
test script. In each test, a thread repeats the following steps until 
the test duration is over. It first opens a persistent HTTP 
connection to the Web server. Then it chooses a request, sends it 
to the Web server. After receiving the response, it waits for some 
thinking time (50 milliseconds in our tests) and chooses the next 
request and so forth. The selection of the request to send is 
determined by a state transition diagram, which defines the 
probability of going to the next request from the previous one. If 
the thread chooses to exit, it stops sending requests and closes the 
connection. 

Table 3. Distribution of the test workload 

Activity Percentage 

Category Browsing 18% 

Product Detail 16% 

Search 18% 

Home Page 18% 

Shopping Cart 7% 

Order 1% 

Account/Authentication 22% 

                                                                 
5  In order to obtain reasonable performance, the application 

protection mode is set to medium. 
6 Come with .NET Framework V. 1.0.3705 

The workload generated by the test script roughly follows the 
distribution shown in Table 3, which corresponds to typical user 
browsing patterns for such Web site: 

6.3 Tuning 
Through our experiments, we found it is necessary to fine-tune the 
configurations so as to eliminate as many side-effects as possible. 
The major tunings are reported in this sub-section. 

6.3.1 Queuing and Threading 
ASP.NET assigns processing and I/O jobs (via .NET Common 
Language Runtime (CLR)) to worker threads and I/O threads in a 
thread pool with a specified maximum size to process the requests 
from an incoming queue for the application requested. For some 
configurations in our experiment, satisfying a request at the front-
end server may require accessing external resources (i.e. object, 
database, page fragment) from the back-end server with a network 
delay of hundreds of milliseconds. The worker thread has to be 
blocked and wait for I/O to complete. Therefore a high number of 
concurrent requests will lead to many blocked threads in the pool 
as well as pending requests in the queue. To minimize this kind of 
effect, we make the following adjustments: 

1) We set every application’s request queue long enough to 
guarantee that requests be normally served instead of being 
rejected with an HTTP message indicating server error when 
server-side congestion occurs. In reality Web servers limit the 
length of request queues (for dynamic page) to prevent 
lengthy response time that is not acceptable to users and 
therefore save resources for incoming requests. In our 
experiment we need to measure the normal response time for 
each request, so we raise the default queue length limit from 
100 to 1000. 

2) Thread pool size affects performance significantly in a subtle 
way. Too few threads can render the system under-utilized 
because there may be many blocked threads. While increasing 
thread pool size might accelerate processing and improve 
utilization, it will cause more thread context switch overhead. 
In our experiment, we tune the thread pool size at the front-
end server for each configuration under each test condition 
(various network latencies and output cache hit ratio) to 
produce the optimal result (throughput and utilization). In 
general, a configuration with longer processing time caused 
by network latency needs a larger thread pool size. For 
example, when the network latency is 200ms and the output 
cache hit ratio is 71%, the optimal thread pool size of F0, Fdb, 
Fremoting and Fproxy is 25, 30, 30 and 50 respectively. 

6.3.2 Connection Pooling 
In the three configurations other than F0, the front-end server 
needs to make heavy communications with the back-end server 
via TCP. On a network with high latency, the connection 
overhead becomes prominent due to TCP handshake and slow 
start effect if no connection pooling is used. In order to prevent 
this kind of performance degradation, we set appropriate pooling 
parameters for each configuration according to the connection 
mechanisms used between the front-end and the back-end. 

In Fdb configuration, each time the front-end wants to create a 
connection to the back-end database, the underlying data access 
component (ADO.NET) will pick a usable matching connection 
from a pool of a certain size. If there is no usable connection and 
the size limit is not reached, a new connection will be created. 



Otherwise the request is queued before a timeout error occurs. 
When the network latency is high and the work load is heavy, the 
number of concurrent connections in use would constantly exceed 
the limit, i.e. the connection pool becomes the bottleneck. 
Therefore, we set the connection pool size large enough (300 
rather than the default 100). 

In Fremoting configuration, front-end objects invoke back-end 
objects through .NET Remoting TcpChannels, which will open 
connections as many as needed and cache them for later use 
before close them after 15-20 seconds of inactivity. Since each 
test run has a warm-up period, there is no negative impact on 
performance from this setting. 

In Fproxy configuration, the front-end needs to retrieve Web objects 
from the back-end. We set the maximum number of persistent 
connections high enough (1000) to avoid congestions. 

6.4 Measurement 
Our experiment consists of two parts. The first part measures the 
performance of the four configurations under three fixed network 
latencies (50ms, 200ms and 400ms). The second part measures 
the performance under several cache hit ratios. 

For each test configuration, we vary the number of concurrent 
connections and run ACT to stress the application and measure 
the throughput (in terms of requests per second, or RPS), response 
time (in terms of the time to the last byte of a response) and 
utilization of the servers (front-end and back-end). Each run starts 
with a warm-up period (3 minutes), after which ACT begins to 
collect data about the system status every one second by reading 
performance counters of processors, memory, network interfaces, 
ASP.NET, .NET CLR and SQL Server. Data collection traffic 
only consumes a slight portion of bandwidth compared to client 
requests and server responses so it interferes little with the 
network utilization of test load. The collection process will last for 
3 minutes and then ACT stops running. Before each test run, we 
reset the Web server (to flush the cache) and the database tables 
(to restore the data load) so that the results from different runs are 
independent. 

7. RESULTS AND EVALUATION 
In this section, we offer detailed experiment results and analysis. 
Due to the large number of configuration combinations, we can 
not present all the data. Thus, we report response time and 
resource utilization with one representative network latency in 
Section  7.1, and briefly go over more advanced variations in 
Section  7.2. 

7.1 Basic Results 
7.1.1 Response Time 
Figure 9 shows the average response time versus concurrent 
connections number of the four configurations. The cache hit ratio 
is 71%, and the network latency is 200ms. The loads on the front 
end server in the three offloading options are higher relative to 
that of F0, either due to more processing or higher overhead. This 
is the reason of the climbing of the latency curves corresponding 
to the three optimizations. This is an artifact of our test-bed where 
there is only one proxy and is generally not a concern because 
proxies are many in real deployment. 

When there are less than 300 connections, Fdb, Fremoting and Fproxy 
offer a response time better than F0. The reduction depends on the 
network delay. When connection is 15, the reduction is 76%, 75% 
and 64%, for Fdb, Fremoting and Fproxy respectively. In F0, every time 

a request is issued from the client, it travels through the delayed 
link and so does its response. Therefore the response time is 
always above the network roundtrip time (400ms). In the other 
three configurations, many requests can be satisfied at the front-
end right away. Fdb and Fremoting achieve this by replicating the 
application logic fully or partially from the back-end. Fproxy caches 
dynamically generated output such as pages and fragments and 
serves subsequent matching requests from the cache directly or by 
composing fragments in the cache, thus reducing the frequency of 
accessing the back-end significantly. 

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300

Connections
R

es
po

ns
e 

T
im

e 
(m

s)

F0
Fremoting
Fdb
Fproxy

 

Figure 9. Response time versus number of connections 

The response time of Fdb and Fremoting are very close under small 
number of connections. This is because their partition points 
afford them the same back-end access rate and the traffic incurred 
by each access is enough to be transferred within one roundtrip 
for both configurations. 

Compared to Fproxy, Fdb and Fremoting do more than just caching: 
they are capable of offloading some of logical processing as well. 
For example, the responses of some requests, such as GET 
CreateNewAccount.aspx and GET SignIn.aspx, are not 
cacheable, so they will always go to the back-end in Fproxy. But 
neither Fdb nor Fremoting requires backend access for these requests. 

The fact that the cacheable pages occupy a large portion of the test 
loads is one reason that Fproxy does not lag too far behind. 
However, there is one more subtle and interesting case where 
Fproxy actually wins out.  

Fproxy is optimized for retrieving Web pages and fragments from 
the back-end and performing page assembly. When it encounters a 
request for a page containing fragments, all objects including the 
container page and the fragments inside that are not cached will 
be fetched from the back-end asynchronously, allowing them to 
be downloaded in parallel. After all objects arrive (in any order), 
they are composed together and a complete page will be returned. 
While in Fdb or Fremoting, due to the fact that the partition points are 
inside the application logic, all accesses to the back-end such as 
database query and remote object invocation are blocking. For 
example in Fremoting, if completing a request needs to call the back-
end twice for generating two fragments in the page, the two 
invocations must be performed sequentially even though the two 
fragments are independent of each other. The asynchronous 
retrieving nature of Fproxy saves significant time for processing 
such pages compared to Fdb and Fremoting. For instance, the page 
Cart.aspx (uncacheable, used for adding, updating and 
removing items in a shopping cart) contains one cacheable 



fragment and two uncacheable ones which show a favorite list and 
a banner respectively. The favorite list and the banner need to 
query the back-end database and the container page needs too in 
case of adding an item to the shopping cart. When the network 
latency is 200ms and the work load is light, it takes Fdb and 
Fremoting 1245ms and 1285ms respectively (both over three 
roundtrips) but takes Fproxy 784ms to generate the page.  

Therefore, we can classify requests into three distinctive classes 
(with their ratios): 

•  Class A (71%): cacheable response 
•  Class B (14%): uncacheable response and may need to access 

database 
•  Class C (15%): also uncacheable response but there is no need 

to access database  

Figure 10 compares the average response time of the requests in 
each class for Fremoting, Fdb and Fproxy. All of them return responses 
for requests of class A in negligible time. Fproxy wins in class B 
due to its asynchronous optimization mentioned above. Fremoting 
responds slower than Fdb because it introduces overhead when 
doing remote object invocations. In class C, both Fdb and Fremoting 
can return responses immediately, while Fproxy has to fetch content 
from the back-end with significant delay.  
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Figure 10. Average response time of each class of pages 

7.1.2 Scalability and Server Load Reduction 
The other functionality of offloading and caching at proxies is 
reducing server load so as to achieve better scalability. Since our 
test-bed consists of only one proxy and one database server, we 
can only infer from the load distribution among resources. 
However, all offloading configurations filter at least 70% server 
requests through proxy for this test script due to the output cache 
hits. 

Figure 11 plots the aggregated server loads for all four 
configurations. Theses are loads that will still remain at the server 
side regardless in real deployment. The curve of F0 adds up loads 
of both the front end (which runs the application) and the backend 
(the database). Curves of all three offload configurations are the 
loads on the backend server only and they are:  

•  Fdb: the database 
•  Fremoting: the remaining of application logic and the database 
•  Fproxy: modified Pet Shop application and the database 

As we explained earlier, the front end server in these 
configurations all have higher loads than in F0, either because of 
more processing or higher overhead. Consequently, the three 
curves of the offload configurations do not extend to as high 

throughput as in F0 because our front end proxy becomes 
bottleneck.  
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Figure 11. CPU utilization in server of all configurations 

Note: The three curves of the offload configurations stop at 
throughput points beyond which our front end proxy becomes 
saturated. 

As can be seen, in our test environment, the backend database is 
not the bottleneck. The largest load reduction is achieved with Fdb 
where the functions of application server are taken entirely by the 
proxies distributed near the client. Because there is still some 
processing remaining at the back-end in Fremoting, it can not 
achieve the same level of server load reduction as Fdb. As 
expected, Fproxy is the third and achieves reasonable load 
reduction comparing to F0. 

In reality, a server complex is made up of a tier of machines 
running application servers backed by the database machines. The 
differences between the load curves of F0, Fremoting, Fproxy and Fdb 
are what will be run on the machines hosting the application 
servers. It is evident that to achieve identical throughput, Fdb will 
require the least resources inside server complex, followed by 
Fremoting and Fproxy.  

7.2 Advanced Evaluation 
7.2.1 Vary Network Latency 
We repeat the experiment under two other network latencies: 
50ms and 400ms with light server load. The results are shown in 
the following figure. 
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Figure 12. Response time with different network latencies 

There is no major surprise: the response time of F0 is always over 
one roundtrip time. Both Fdb and Fremoting offer comparable 



response time and Fproxy is slower but still competitive. As 
expected, the benefit of offloading/caching at proxy increases with 
network latency. 

7.2.2 Vary Cache Hit Ratio 
We repeat the experiment under two other output cache hit ratios: 
52% and 30%. The network latency is fixed at 200ms. The 
response time of the configurations under different hit ratios is 
shown in Figure 13. 

This result is also straightforward: increased cache hit ratio 
benefits offloading/caching at proxy. We note again that the 
caching is a more significant factor, though this is specific to this 
application and the test scripts we used for the experiments. 
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Figure 13. Response time with different cache hit ratios 

8. SUMMARY AND CONCLUSION 
We believe that Web page as a unit will disappear over time and 
be replaced by dynamic content that is deeply personalized. 
Utilizing the proxy servers located near the client to distribute and 
offload the processing and caching of dynamic content is entirely 
reasonable. This is all the more so because these edge devices are 
already deployed and at the same time underutilized as far as 
dynamic contents are concerned. However, such deployment 
requires not only the re-engineering of applications themselves, 
but also the considerations of security issues and careful 
evaluation of performance benefits. 

In this paper, using a representative e-commerce benchmark, we 
have enumerated extensively many partitioning strategies. 
Without going into specifics, the following conclusions can be 
drawn: 1) offloading and caching at edge proxy servers achieves 
significant advantages without pulling database out near the client. 
Our results show that, under typical user browsing patterns and 
network conditions, 2~3 folds of latency reduction can be 
achieved. Furthermore, over 70% server requests are filtered at 
the proxies, resulting significant server load reduction. 2) This 
benefit can be achieved largely by simply caching dynamic page 
fragments and composing the page at the proxy, whereas 
advanced offload options are often overly complex and can be 
counter-productive if not done carefully. 3) Many progresses in 
the most recent Web programming platform play important roles 
for this to happen. In the .NET framework, the output caching 
capability, stored procedures and, to a less extent, the Remoting 
mechanisms all made significant contributions. 4) The 3-tier Web 
architecture gives a general guideline but is not as helpful when 
actual partitioning strategy is devised.  

Specifically, we have evaluated the following three partitioning 
strategies and our findings and recommendations are as follows: 

! Replicating all application components except database to the 
edge provides the best average response time and the highest 
reduction of back-end server load. It is also the easiest to 
implement. However, this would be otherwise impossible if 
not for a highly efficient implementation of database 
interaction. That is to say, this option will give only 
disappointing offloading performance if not for the fact that 
database stored procedure has encapsulated multiple SQL 
queries within one request. The restriction is that since the 
complete business logic is pushed to the proxy, this option is 
suitable only for intranet applications or other situations 
where end-to-end security is already in place. 

! Partitioning the application components and moving some of 
them on the edge offer similar response time as well as server 
load reduction. The prerequisites are that the application is 
carefully partitioned and appropriate RPC mechanism is used. 
However, it would require considerable engineering cost for a 
complex Web application that was not designed to be run in a 
distributed fashion to begin with. Furthermore, if it is 
impossible to determine the sensitivity of the processing 
offloaded to the proxy, then this option will require end-to-
end security as well. Thus, in view of the simplicity of the 
database offloading strategy, this option, while theoretically 
interesting, is unlikely to be justified.  

! We find that simply augmenting the capability of proxy today 
to cache dynamic fragment and compose the complete page is 
also very effective in terms of latency and server load 
reduction. The security requirement is minimal because what 
get cached at proxy are contents, not logics. This option 
requires change to the original application, but the process can 
be reasonably automated or comes for free if standard 
guidelines such as ESI are followed. 

Our investigation thus essentially boils down to one simple 
recommendation: if end-to-end security is in place for a particular 
application, then offload all the way up to the database; otherwise 
augment the proxy with page fragment caching and page 
composition. 

Although our experiment was carried out within the .NET 
framework, the conclusion should be general enough to be valid 
on other platforms, especially for e-commerce type of applications. 
Many of the .NET framework and ASP.NET features are shared 
by other competing platforms. Furthermore, we found that 
network latencies dominate the performance anyway, and 
the .NET framework itself contributes negligible overhead in 
comparison.  

The TTL-bound consistency enforcement as is used in this 
benchmark prevails in today’s Web deployment, largely due to its 
simplicity. If more advanced, server-driven consistency 
maintenances are to be taken in the future, we still believe our 
observation to hold true in general because cache hit ratio will 
remain the same for all these options. What makes the difference 
is mainly the amount of processing being offloaded, which is 
orthogonal to consistency mechanism.  

Our future works include a number of directions. We believe 
while e-commerce application is interesting, they will represent 
only a small portion in the future given that Web services will 
grow to cover more Web usage scenarios. Thus, we are actively 
seeking new applications and repeat our investigations. We are 



also working on a more robust implementation of caching 
fragments and page assembly on top of the proxy architecture. 
Last, but not least, we believe it is important to extend this work 
to include underprivileged users with slow and narrow 
connections to the proxies. In such cases, caching at proxy is no 
longer sufficient: we need such functionality to move to the client 
side. Our preliminary experiments have indicated that this can 
bring about significant benefits, even though one no longer enjoys 
the high caching hit ratio at proxies because of sharing among 
different users. 
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