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ABSTRACT

Fundamental to data cleaning is the need to account for
multiple data representations. We propose a formal frame-
work that can be used to reason about and manipulate data
representations. The framework is declarative and combines
elements of a generative grammar with database querying.
It also incorporates actions in the spirit of programming lan-
guage compilers. This framework has multiple applications
such as parsing and data normalization. Data normalization
is interesting in its own right in preparing data for analysis
as well as in pre-processing data for further cleansing. We
empirically study the utility of the framework over several
real-world data cleaning scenarios and find that with the
right normalization, often the need for further cleansing is
minimized.
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1. INTRODUCTION

It is well-understood that the primary source of poor data
quality is the fact that real world entities lack a unique repre-
sentation. For example, the US state of California could be
represented using three different strings: California, Calif,
CA; other representations (e.g., Callifornia, Calfornia) can
occur unintentionally due to typographic errors. The repre-
sentation of an entity could be a string as in the examples
above, but more generally, it could be a structured record.
Figure 1 shows five example author records derived from a
publication database, where each author record contains a
name and an affiliation. These five records, although textu-
ally different, correspond to just two well-known authors.
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Author
1 Jeffrey D. Ullman

Affiliation

Department of Computer Sci-
ence, Stanford University, Stan-

ford, CA, USA
2 | Jeff Ullman Stanford University, Stanford CA
94305
3 | J D Ullman Stanford Univ., Stanford, Calif.
4 | M. Stonebraker M.IT.

5 | Michael Stonebraker | Department of EECS and Lab-
oratory of Computer Science,
M.I.T., MA 02139, Cambridge,

USA

Figure 1: Sample Author Records

Id | ProductName
1 ThinkPad T43 Centrino PM 750
1.8GHz/512MB/40GB/14.1"TFT
2 | ThinkPad T43 Centrino PM 740

1.7GHz/512MB/40GB/14.1"TFT

3 | Lenovo ThinkPad T43 Notebook (1.7GHz Pentium M
Centrino 740, 512MB, 40 GB, 14.1TFT)

Figure 2: Sample Product Records

A fundamental problem in data cleaning is that of deter-
mining whether or not two representations are duplicates,
i.e., correspond to the same real-world entity. This prob-
lem forms the core of well-known data cleaning primitives
such as record matching and deduplication. Most of the cur-
rent approaches [3, 6, 7, 8] use textual similarity, typically
quantified using a similarity function such as edit distance
and cosine similarity, to determine if two representations
are duplicates. The basic premise behind these approaches
is that duplicate representations are textually similar, and
this approach is indeed useful for catching most kinds of ty-
pographic errors. However, textual similarity can often be
misleading: two representations of the same entity could be
highly dissimilar textually (e.g., the author records 4 and
5 of Figure 1) and, conversely, two representations that are
textually very similar could correspond to different entities.
The latter point is illustrated in example (laptop) product
records shown in Figure 2. The records with ids 1 and 2
are textually similar—they differ in just two characters—
but correspond to different laptops with different processors.
On the other hand, the records with ids 2 and 3 correspond
to laptops with the same configuration and can therefore be
considered duplicates.

The motivation for our work comes from the observation



that variations in representations of entities arise in complex
ways that are hard to capture using a black-box similar-
ity function, motivating the need for a more sophisticated
approach. For illustration, consider an affiliation such as
those in the Affiliation column of Figure 1. Variations in
the representation of an affiliation can arise at several lev-
els: First, variations arise from the presence or absence of
details such as department information, university informa-
tion, and location information that comprise an affiliation.
Second, variations arise from the different possible orders in
which these details are specified. Third, each detail itself
can be considered as a sub-entity and, recursively, varia-
tions in the representations of these sub-entities contribute
to overall variations. At the “leaf-level” entities, variations
arise due to abbreviations and other kinds of aliasing, e.g.,
MIT and Massachusetts Institute of Technology. Such alias-
ing also occur at the word level: for example, & and and,
and Techn. and Technology. Typographic errors can also
be considered as variations at the word or multi-word level.
Finally, there are variations at the character level due to
accented characters.

Some limitations of black-box similarity functions are ad-
dressed by recent prior work [2], which proposes a program-
matic approach where string transformations that specify,
for example, that Bob and Robert are synonymous can be
provided as explicit input. Two string representations are
considered similar (and therefore potential duplicates) if
they can be made textually similar by applying some trans-
formations. There are two limitations of this approach:
First, it does not understand the internal “structure” of the
representation of an entity, thereby missing out on rich con-
textual information necessary to determine if an alias or syn-
onym is meaningful. For example, it is meaningful to abbre-
viate University to U when dealing with university names
(e.g., U of Calif Berkeley) but not within street names
(e.g., U Ave for University Ave). The second limitation
of this approach arises from the fact that similarity of two
strings can only increase by adding transformations. This
approach is therefore not useful in handling the scenario of
Figure 2 where two strings that are textually similar should
not be matched.

Closely related to our problem of dealing with represen-
tational variations is the well-studied problem of segmenta-
tion [4, 20, 24]. Segmentation is the problem of partition-
ing a string into its constituent components: for example,
given an affiliation string, segmentation techniques can iden-
tify substrings corresponding to the department, university
name, and location. However, segmentation by itself does
not deal with representational variations: segmentation can
be used to recognize that MIT and Massachusetts Insti-
tute of Technology are both university names, but cannot
be used to reason that they refer to the same university.
Also, segmentation techniques often rely on external tables
such as a list of known university names for the affiliation
example above. We run into the same problem of multiple
representations when using external tables since, for exam-
ple, the representation of a university name in the external
table could be different from its representation in an affilia-
tion being segmented. Again, similarity functions have been
used to address this problem in this setting [9], and we face
the same kinds of problems we illustrated earlier.
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| Id | FName | LName Univ

1 | Jeffrey Ullman Stanford University

2 | Jeffrey Ullman Stanford University

31 J Ullman Stanford University

4 | M Stonebraker | Massachusetts Institute of
Technology

5 | Michael | Stonebraker | Massachusetts Institute of
Technology

Figure 3: Transformed output records for input

records of Figure 1

Our Contribution

We propose a rich, declarative framework for reasoning with
and manipulating representations of entities. In terms of
overall functionality, our framework is a programmable mod-
ule that can be programmed to transform “dirty” input
records to one or more “clean” output records with consistent
representation of entities and subentities. For example, we
can program the framework to transform the input records
of Figure 1 to records such as those shown in Figure 3. (The
records of Figure 3 represent idealized, hand generated out-
put with the sole purpose of illustrating the overall func-
tionality of our framework.) Note that the output records
are not simple segmentations of the input records: the first
name Jeff has been normalized to Jeffrey in record id 2
and all non-university information has been stripped out of
the affiliation, and university names have been normalized.

The transformed output records can then be used for a
variety of data cleaning tasks:

1. They can be used as input for other data cleaning op-
erations such as record matching. We believe that in many
record matching settings, we can use the framework to sig-
nificantly simplify subsequent record matching and reduce
its reliance on complex similarity functions. In our running
example, once we have transformed the input records of Fig-
ure 1 to those in Figure 3, we can identify potential duplicate
authors using a combination of simple string functions (to
handle name initials) and equi-joins.

2. They can be used for rich querying: For example, we
can pose simple group-by aggregation queries over the trans-
formed author table of Figure 3 to compute the number of
publications affiliated with each university, to determine the
most prolific author, and so on.

Our framework is purely programmatic, meaning that it
has no built-in data cleaning knowledge. At a high level, a
program for our framework consists of a generative grammar,
described using context-free grammar rules, that specifies
how input records are “generated.” Given an input record,
the framework parses the record using the grammar. Each
rule of the grammar has an associated execution logic called
action, which is evaluated whenever the rule participates in
parsing. The actions associated with the rules that partic-
ipate in parsing a record do the actual work of transform-
ing an input record to its corresponding output record(s).
The combination of generative grammar and actions pro-
vides the programmer a powerful ability to access and ma-
nipulate parts of an input record.

An important feature of our framework is the ability to
implicitly specify a large number of grammar rules using dat-
alog style queries. This feature allows us to easily exploit
large amounts of domain knowledge within our framework.



As other authors have observed earlier [21], we can com-
pile large amounts of relatively clean, structured data from
online resources such as Wikipedia, Wiktionary, and DBLP
(for publication domain). In fact, there already exists col-
lections with millions of clean records and facts [14, 21]. We
will illustrate using detailed case studies how we can leverage
such data for reasoning about entity representations within
our framework.

Outline

The rest of the paper is organized as follows: Section 2 mo-
tivates the high-level design of our framework using a simple
illustrative example. The framework itself is formally speci-
fied in Section 3. Section 4 describes implementation aspects
of the framework. Section 5 presents detailed case studies
of our framework for two data cleaning tasks. Section 6 dis-
cusses various aspects of our framework. We cover related
work in Section 7 before concluding.

2. OVERVIEW

As mentioned in Section 1, our framework provides a
declarative method for reasoning with and manipulating en-
tity representations. We now use a simple example to illus-
trate the kinds of variations that can occur in entity repre-
sentations, and use this to motivate the basic design aspects
of our framework. Consider the following affiliation string
from Figure 1:

Department of computer science, Stanford Uni-
versity, Stanford, CA

Even without introducing any typographical errors, there
are a number of ways of representing the same affiliation.
There are several ways of specifying the department infor-
mation. For example, we can shorten the string department
to dept. We can shorten computer science to CS, comp. sci.,
or computer sci. We can represent the department informa-
tion using a different order as computer science department.
Similarly, we can represent Stanford University using a sev-
eral variations. For example, we can shorten university to
univ or even drop it altogether. Finally, the state of Califor-
nia can be represented in different ways such as CA, Califor-
nia, and Calif. We make the following observations about
these variations:

1. Most of these variations are orthogonal to each other. We
can combine any variation of the department, any variation
of the university, and any variation of the state to represent
the same affiliation.

2. Some of these variations have a fairly general structure
that is not specific to the above affiliation. For example, we
can derive the variations for a different university such as
Ozford University by replacing Stanford with Ozford. Simi-
larly, we can derive variations for a different department, for
example, by replacing Computer Science by FElectrical Engi-
neering, and using corresponding abbreviations for Electrical
and Engineering.

3. In contrast to Observation 2, some variations are specific
to a particular entity. These include, for example, varia-
tions in representations of California and word level varia-
tions (e.g., tech and technology). We need external domain
knowledge to know about these variations.

The first observation above suggests that a generative
grammar is a natural and concise way of representing all
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the variations. Figure 4 illustrates this for the above affil-
iation. The second observation suggests the possibility of
using a single generative grammar to represent the varia-
tions for a large number of different affiliations. The third
observation suggests that any framework for capturing varia-
tions should provide a flexible way of incorporating external
domain knowledge.

The design of our framework is based on the above obser-
vations. Informally, our framework allows a programmer to
declaratively specify using an “augmented” generative gram-
mar how variations in entity representations arise. The aug-
mented generative grammar has aspects of database query-
ing which can be used to easily incorporate domain knowl-
edge. As we will see shortly, a knowledge of how variations
in entity representations arise can be used to normalize the
variations to simplify subsequent data cleaning.

3. FRAMEWORK

Functionality

The framework takes a record as input and outputs one
or more records. The output records can be complexr with
nested attributes. This feature is useful, for example, to ex-
tract a set of authors from a citation string. The framework
associates a positive real number weight with each output
record. A natural interpretation of the functionality of the
framework is to view the input record as a “dirty” record
and the set of output records as possible “clean” records
with weights capturing the confidence in a clean record. By
design, smaller weights reflect greater confidence.

Program

Our framework is programmatic, meaning how an input
record is transformed to output records is specified using
a declarative program. A program is an augmented context
free grammar (CFG). It is a collection of triples of the form
(R, P, A), where R is a grammar rule, P a predicate, and
A an action. We define these terms shortly. We call the
triple (R, P, A) an augmented rule or simply a rule when
unambiguous.

A grammar rule is similar to a standard CFG rule: It
has a head and a body. The head is a single nonterminal.
The body is a sequence of nonterminals, terminals, and a
third kind of symbol called wvariables. Terminals are basic
components of text such as words and punctuation. We rep-
resent nonterminals using angular brackets (e.g., (name)),
terminals using single-quoted strings (e.g., ‘Jeff’), and vari-
ables using uppercase letters (e.g., X). As we describe
shortly, grammar rules are used to parse an input record.
For purposes of parsing, we assume that each attribute in
the schema of input records is associated with a unique non-
terminal that serves as the start symbol for parsing.

A predicate is the body of a datalog rule. It is a conjunc-
tion of (nonnegated) atomic predicates. An atomic predicate
is either an extensional database (EDB) [22] predicate (input
relation) or a built-in predicate. Every variable in an aug-
mented rule (R, P, A) is constrained to occur at least once
in an EDB predicate of P. The last constraint is analo-
gous to the limited variable constraint to make datalog rules
safe [22].

An action is a function that takes zero or more records as
input and produces a record as output. The arity of action
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Figure 4: A generative grammar to capture variations

A in an augmented rule (R, P, A) is the number of nonter-
minals in the body of R. To consistently specify actions
we assume that each nonterminal is associated with a fixed
schema. The output schema of action A is the schema corre-
sponding to the nonterminal that forms the head of grammar
rule R, and the schema of the input records of A correspond
to the schemas of the nonterminals in the body of R. We
deal mostly with actions that are projection functions. In
a projection function, the output record is a projection of
the attributes of the input records. We represent projection
functions as a sequence of assignment operations, where each
operation has an attribute of the output record for its lhs
and an attribute of an input record or a constant/variable
for its rhs. The definition of an action can involve variables;
we define the meaning of variables shortly.

Ezample 1. Figure 5 shows a sample program for process-
ing names. The program has 9 augmented rules. The gram-
mar rules, predicates, and actions of each augmented rule
are shown in separate columns. All the predicates contain
a single EDB predicate. The tables for the referenced EDB
predicates are shown in Figure 6. To illustrate our notation
for actions, consider the action associated with rule 1. This
action takes 4 records as input and produces a record with
two attributes, fname and Iname, as output. The value of
the fname attribute comes from the value attribute of the
second input record (2.value) and the value of the Iname
attribute comes from the value attribute of the fourth input
record (4.value). ]

Semantics

Informally, given a program G and an input record r, the
framework parses the attributes of r using grammar rules in
G. Actions are then evaluated along the nodes of the parse
tree to construct an output record. There could be multi-
ple ways of parsing r leading to multiple output records. It
is useful to view the grammar rules as specifying how in-
put records are “generated,” as illustrated by the following
example.

Ezample 2. The program in Figure 5 specifies a grammar
for generating people names. (This grammar is for illus-
trative purposes only and is not comprehensive.) Rule 1
specifies that a name can be generated by concatenating a
prefix, firstname, middlename, and lastname. Rule 2 gives
an alternate way of generating names, by concatenating last-
name, firstname, and middlename, with a comma between
the lastname and firstname. Rules 3-5 describe how a first-
name can be generated. Rule 3 handles the case where the
firstname is an initial. Rule 4 illustrates the use of a vari-
able. It indicates that the firstname can be any value in the
second column of the FNames table. Rule 4 is a shorthand
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Id | Sourceld | Rule Action

1 4 (fname) —  Andrew | value = Andrew
2 4 (fname) — John value = John

3 5 (fname) —  Andy value = Anderson
4 5 (fname) —  Andy value = Andrew
5 8 (Iname) —  Smith value = Smith

6 9 (prefix) — Dr

Figure 7: Expanded Program for Program in Fig-
ure 5

for a large number of rules of the form: (fname) — Andrew,
(fname) — John, and (fname) — Mary. More generally,
variables and predicates represent a shorthand notation for
specifying a large number of rules and actions. Similarly,
Rules 6-9 specify how middlenames and lastnames are gen-
erated. a

To present the formal semantics of our framework, we
first define an expanded program G’ for a given program
G. This definition formalizes the meaning of variables and
predicates. We then define how input records are parsed us-
ing the expanded program G, and finally define how actions
are evaluated to produce the output records.

The expanded program G’, like G, is a collection of aug-
mented rules. However, it does not contain variables and its
predicates are empty (trivially true). To construct G’, we
consider each augmented rule R = (R, P, A) in G and enu-
merate all possible assignments of constant values to vari-
ables in R so that the predicate P evaluates to true. For each
assignment, we include as part of G’ the rule (R', true, A")
obtained by substituting variables in R with the correspond-
ing constant values.

Ezample 3. Figure 7 shows part of the expanded program
(without the predicates) for the program in Figure 5. For
each augmented rule in Figure 7, the Source Id column con-
tains the Id of the rule in Figure 5 from which the rule was
generated. For example, the first rule in Figure 7 is gener-
ated by the substitutions: I = 1, F = Andrew, G = M.
Note that two augmented rules can have the same grammar
rule and differ only in their actions (e.g., rules with Ids 3
and 4 in Figure 7). a

Given a program (G, we associate zero or more parses with
each input record r. A parse of r is defined as a derivation
for each attribute of r using grammar rules in the expanded
program G’ of G. The derivation for an attribute starts
with the start symbol for the attribute, defined earlier. Note



Id | Rule Predicate Action
1 | (name) —  (prefix); (fname)s (mname)s (Iname)s fname = 2.value; lname = 4 .value
2 | (name) —  (Iname); ¢, (fname)s (mname)s fname = 2.value; Iname = 1.value
3 | (fname) —  (letter); value = 1.value
4 | (fname) — F FNames (I, F, G) value = F
5 | (fname) — N NickNames (I, N, F, G) | value = F
6 | (mname) — M LNames (I, M)
7 | (mname) —  (letter) ‘.
8 | (lname) — L LNames (I, L) value = L
9 | (prefix) — S Prefix (I, S)
Figure 5: A Program in our framework for processing names

1 | Andrew | M 1| Alex Alexander | M 1 | Smith 1| Mr

2 | John M 2 | Andy | Anderson | M 2 | Johnson 2 | Ms

3 | Mary F 3 | Andy | Andrew M 3 | Williams 3 | Dr

4 4 | Becky | Rebecca F 4 4] ..

FNames NickNames LNames Prefi
Figure 6: Example Tables used in Sample Program
<name> the records produced by evaluating actions at the nonter-
minal child nodes of N. Recall that the arity of A is the

fname = Andrew . . . .

e S number of nonterminals in the body of R, which is exactly
the number of nonterminal child nodes of N. The overall
output record for the parse tree is the record produced by
evaluating the action corresponding to the root node of the

<prefix> <fname> ‘ <mname> ‘ <Iname> parse tree. We note that actions are similar to semantic

value = Andrew value = Smith

Figure 8: Parse Tree for “Dr Andrew J. Smith”

that, by definition, the grammar rules in G’ do not contain
variables, and we use standard CFG semantics to define a
derivation. There could exist more than one parse for an
input record, and we consider all such parses. Following
standard convention, we represent a parse of r as a parse
tree.

Ezample 4. The program in Figure 5 is designed to pro-
cess input records with a single attribute (plain strings), and
parsing of the strings starts with the nonterminal (name).
Figure 8 shows the parse tree for the string Dr Andrew J.
Smith. The nonterminals in the parse tree are shown using
unshaded rectangular boxes and the terminals (leaf nodes)
are shown using ovals. m|

For each parse tree of r, the framework produces one out-
put record. To construct the output record, we evaluate
actions along the nodes of the parse tree in a bottom-up
fashion. Each non-leaf node N in the parse tree is asso-
ciated with an augmented rule (R, true, A) of G', and we
evaluate action A at node N. The input records for A are
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items of compiler grammars [1].

Ezample 5. Continuing Example 4, Figure 8 shows us-
ing shaded rectangles the records produced by evaluating
actions along the nodes of the parse tree. (Nodes without
shaded rectangles produce empty records.) For example,
the derivation of (fname) uses the rule (fname) — Andrew
with action value = Andrew (rule 1 in Figure 7). Evaluating
this action produces the record (value : Andrew). We can
verify that evaluating the action at the root node similarly
produces the record (fname : Andrew, Iname : Smith). O

To see the utility of our framework for managing entity
representations, we note that the sample program of Fig-
ure 5 standardizes simple variations in the representation of
people names. First, it handles variations in the order in
which the first name and last name appear: For example,
we can verify that the program produces the same (single)
output record (fname : Andrew, Iname : Smith) for both Dr
Andrew J. Smith (see Example 5) and Smith, Andrew J..
Second, the program handles variations resulting from the
use of a nickname for the first name: The program produces
two output records for the string Smith, Andy J.. The first
is (fname : Andrew,Iname : Smith) (same as above), and
the second, (fname : Anderson,Iname : Smith). The parse
tree for the first is shown in Figure 9. Both output records
can be valid standardizations of the given name and our
framework exposes this uncertainty by producing both in
the output.

Weights: The framework associates a non-negative real
number weight with every output record. To define weights,



<name>

fname = Andrew
Iname = Smith

<Ilname> <fname>

<mname>

value = Smith value = Andrew

Figure 9: Parse Tree for “Smith, Andy J.”

we assume as input a weighting scheme that assigns a non-
negative real number weight to each augmented rule in the
expanded program G’. The weight of an output record is de-
fined as the sum of weights of augmented rules involved in
the parse that produces the output record. Weights capture
the confidence in a particular parsing of the input record,
and, by design, lower weights indicate a higher confidence.

Weights allow a programmer to use “loose” rules, rules
that the programmer is not very confident about. The pro-
grammer can assign a higher weight to such rules, and any
parse involving these rules would get a higher weight. As we
illustrate in Section 5, such loose rules are useful to handle
incomplete domain knowledge.

In all of our experiments, we use the following simple
weighting scheme called the uniform weighting scheme: Con-
sider an augmented rule R’ in the expanded program G’ and
let R denote the rule in G' that was used to generate R’'.
The weight of R’ is defined as the log of number of rules in
G’ that were generated from rule R in G. Intuitively, the
weighting scheme prefers parses involving more specific rules
compared to more general rules. We illustrate the intuition
behind the uniform weighting scheme using our case studies
in Section 5.

4. IMPLEMENTATION

We now briefly describe a simple implementation of our
framework. Our implementation uses a combination of
string matching using the Aho-Corasick algorithm [10] and
grammar parsing. Our study of the implementation tech-
niques for the framework is fairly preliminary, and a more
comprehensive exploration of the space of implementation
techniques is future work. We note however that even the
simple techniques of this paper achieve a data processing
rate of a few thousand records per second for the programs
and dataset we use in our case studies.

We first outline how our implementation proceeds in the
absence of any actions. At first glance, it appears that tradi-
tional parsing methods would suffice since the variables act
simply as a shorthand. Specifically, given a program G, we
can construct the expanded program G’ in a preprocessing
step; given an input record r, we can use traditional pars-
ing techniques to parse r using the grammar rules of G’.
The main problem with this approach is that the scale of
the expanded grammar G’ can be very large, of the order of
the database size. Our implementation technique, instead
of constructing the full expanded program G’, constructs at
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query time a partially expanded program G, that contains
a subset of the rules in G’ that are relevant to r, and uses
G’ to parse the record 7.

To construct G, we consider each augmented rule R =
(R, P, A) in G, and enumerate as before all possible assign-
ments of constants to variables in R such that predicate P
evaluates to true; we now enforce the additional constraint
that if a variable X occurs in the body of R, then the con-
stant ¢ assigned to variable X should be a substring of the
record r. As before, for each assignment, we add one aug-
mented rule to G obtained by substituting variables in R
with the corresponding constant values. If ¢ is not a sub-
string of r, we can show that any rule obtained by substitut-
ing ¢ for X cannot participate in parsing r, therefore both
G’ and G have the same set of parses for the record 7.

We use the Aho-Corasick algorithm [10] to efficiently con-
struct G at query time. Consider an augmented rule R =
(R, P, A) and let X be a variable in the body of R, i.e., R
is of the form (N) — aX 3. We compute in a preprocessing
step a set of possible assignments to variable X by evaluat-
ing the query:

Dictionary(X):-P(X,...)

Recall from Section 3 that the variable X is guaranteed to
occur in an EDB predicate of P. We build an Aho-Corasick
index over the set of possible values returned by the above
query. At query time, given an input record r, we use the
Aho-Corasick indexes over variables in R to efficiently iden-
tify all assignments of constant values to variables in R such
that the predicate P evaluates to true and which satisfy the
constraint that constants assigned to variables such as X are
substrings of r.

Ezample 6. Consider the sample program shown in Fig-
ure 5 and the input record that consists of the single string
Smith, Andy J.. The table NickNames is likely to consist
of lots of nick names. The only ones relevant to this in-
put record are those that are its substrings, in this case the
string Andy. Before we begin parsing input records, we build
a dictionary of values for each variable in the grammar. The
dictionary for the variable N would contain the output of
the datalog query:

Dictionary(N):-NickNames(I, N, F, G)

This set of strings is indexed using an Aho-Corasick automa-
ton for substring matching. We note here that if we wish to
be error-tolerant in this step, we can use other techniques
proposed in prior work [5] instead of the Aho-Corasick algo-
rithm. O

S. CASE STUDIES

We now present case studies of using our framework on
different data sets. The purpose of these case studies is two
fold: First, we use the case studies to illustrate the utility of
our framework for data normalization, and for simplifying
and improving the quality of record matching. Second, we
use the case studies to illustrate the actual use of the frame-
work by describing the rules, actions, and external domain
knowledge that we use for each case study.



| Id | Name

1 | Professor Michael J. Bannon, Head of Department

2 | Bannon, Michael

3 | Dr. Carol Barrett (also Biotech. Office F.13, EXT.
2809)

4 | Ms. Orla Benson, Alumni and Special Events Manager
5 | O Ceallaigh, Sile

Figure 10: Example records in UCD data

5.1 UCD People Data

This is a publicly available dataset that is part of the Rid-
dle repository for record matching [18]. The dataset consists
of 5332 single attribute people records, where each record
contains a person name along with other optional details
such as the person’s affiliation and office address. Figure 10
shows five sample records from this dataset. The overall goal
is to match records based on people names, while ignoring
the optional details. Two names match if they agree on the
first and last names, or if they agree on the last name and
one of the first names is an initial of the other.

Program

In order to perform the above matching task, our goal is to
transform input record to normalized output records with
first- and last-name attributes. Figure 11 shows part of the
program that we use to accomplish this goal. The root non-
terminal for parsing the input records is (person). Rule 1
specifies that a person consists of a name ({name)) followed
by an optional description ({desc)).

The generative grammar for parsing names is the one
shown in Figure 5 with simple additions such as making the
middle name optional. In order to recognize names, we use
compiled tables of first and last names. Our first source of
names is the US Census website [23] which publishes lists of
first and lastnames (from Census 2000). These lists, while
very clean, are not comprehensive. Our second source of
names is the list of authors from DBLP [12]. DBLP has
more than 650,000 authors and has a much better coverage
of names than the US Census data in terms in distinct first
names and last names. However, DBLP only contains full
author names, not separate first and last names. In order
to compile first and last names, we simply run the same
program over the DBLP author data. To enable identifying
new names, we allow (fname) and (Iname) to be unknown
words (rules 5 and 8). This produces a relatively clean list
of 79000 first names and 183000 last names. This step illus-
trates how our framework itself can be used to collect useful
domain knowledge. We note that the UCD dataset does not
specifically contain authors and is unrelated to DBLP. We
used DBLP simply as a source of names: any other dataset
containing large number of clean names could have been
similarly used.

It is harder to precisely model the other details such as a
person’s affiliation and address. We notice that such details
are often plain English text—see, for example, records 1
and 4 in Figure 10. We therefore model the details as a
sequence of known English words (rule 9). We compiled a
list of English words from Wiktionary [25]. We finally use
a catch-all rule (rule 10) that models (desc) as an arbitrary
sequence of tokens that matches any text.

The generative grammar specified above is fairly “loose” in
how it models input records. Any word can qualify as a first
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Id | Rule Predicate

1 | (person) — (name) (desc)?

2 | (name) —

3 | (fname) — F USCensusFName(F)
4 | (fname) — F DBLPFName(F)

5 | (fname) — (Word)

6 | (Iname) — L USCensusLName(L)
7 | (lname) — L DBLPLName(L)

8 | (Iname) — (Word)

9 | (desc) — W+ Wiktionary (W)

10 | (desc) —  (token)+

Figure 11: (Part of) Program for UCD dataset

name or a last name, and any sequence of tokens qualifies as
a valid description associated with a name. The grammar
parses almost any piece of text, and many parses can be in-
correct. For example, record 1 in Figure 10 can be parsed
with Professor as first name and Michael as last name and
the rest as description. However, these generic rules do not
cause a serious drop in overall quality due to the use of
weights. All of our case studies use the uniform weighting
scheme described in Section 3. This weighting scheme as-
signs a much lower weight to the parse where Michael (rule
3) is parsed as first name and Bannon (rule 6) as last name,
compared to the incorrect parse above. Generic rules such
as rule 5 are still important to be able to handle unknown
first names. For example, if in a given input record, the last
name is known and the first name unknown, the generic rule
above will correctly identify the (unknown) first name.

Quality of Data Transformation

The overall data transformation quality of the above rules
is extremely high. We measure quality throughout by man-
ually evaluating a random sample of output records. For
input records that admit multiple parses and therefore pro-
duce multiple output records, we pick the output record with
the best parse, i.e., minimum weight. Also, we use through-
out the uniform weighting scheme, so no weights were pro-
vided as explicit input. For this particular dataset and the
above set of rules, a random sample of 100 output records
contained no incorrect incorrect ones, indicating a very high
quality of the output.

Figure 12 quantifies the utility of various rules and exter-
nal tables. We use coverage to denote the number of input
records that admit at least one parse and therefore produce
at least one output record. We report on the impact on cov-
erage of the rules 3-5 and 6-8, which are the main rules for
parsing first and last names, respectively. The rightmost bar
(All) in Figure 12 shows the coverage using all the rules, the
middle bar (DBLP+USCensus), the coverage after dropping
the generic rules 5 and 8, and the left bar (USCensus), the
coverage using rules 3 and 6 alone. We observe that the
overall coverage using all the rules is fairly high—over 99%.
Using just the US Census table for parsing brings down the
coverage to 64%. DBLP tables have a significant impact on
coverage; as noted earlier DBLP is a fairly comprehensive
source of names—even non-western names are well repre-
sented. Finally, about 700 records rely on generic rules 5
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and 8, and we note that the generic rules do not seriously
reduce quality.

Record Matching

We now comment on the utility of our framework for record
matching, noting that the UCD People dataset was origi-
nally intended as a dataset to study record matching. Fig-
ure 13 shows the quality of record matching for a repre-
sentative similarity function, jaccard similarity. Informally,
for a given pair of records, jaccard similarity measures the
weighted overlap between the tokens of the pairs. Jaccard
similarity is known to be reasonably competitive with other
similarity measures [6], and this is especially so for our data-
set since there are few “pure” edit errors. For a given simi-
larity threshold, we considered all pairs of records with jac-
card similarity greater than the threshold as matches and
evaluated the quality of the match. We note that for our
single attribute dataset more sophisticated record matching
techniques that combine similarity scores across multiple at-
tributes do not apply.

Figure 13 shows, at various similarity thresholds, the esti-
mated number of correct matching pairs and the estimated
number of incorrect matching pairs: the dark region repre-
sents the correct matching pairs and the light region, the
incorrect ones. We estimated these numbers by manually
evaluating a random sample (of size 100) of pairs with simi-
larity greater than the given threshold. Using a jaccard sim-
ilarity threshold of around 0.5, we can identify about 2500
matching pairs at fairly high accuracy. Using a lower thresh-
old reduces the match quality significantly. (The slight dip
in the estimated number of correct pairs as we reduce simi-
larity is probably due to a sampling error.)

Using a simple equi-self join over the records output by
our framework, we can identify 3150 matches, indicated by
the dotted line in Figure 13, which includes about 600 pairs
not found by the similarity function approach. Presumably,
these 600 pairs have very low similarity due to the presence
of details not relevant to matching in one of the records.

Our overall point in this experiment is that we can lever-
age external domain knowledge, not accessible to a black-
box similarity function, to “peek” inside strings and perform
more sophisticated record matching.

5.2 Author Affiliations Dataset

This is a dataset (not publicly available) containing au-
thor affiliations from a well-known publications database.
The dataset consists of 107,000 single attribute records con-
taining affiliation strings. Our overall goal for this dataset
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| 1d | agu |
1 | Dalhousie University, School of human communication
disorders, 5599 Fenwick Street, Halifax, Nova Scotia,
Canada B3H 1R2

2 | Dalhousie Univ., Halifax

3 | Department of Informatics, Technische Universitat
Munchen, Boltzmannstr. 3, D-85748 Garching, Germany
4 | IIT Bombay

5 | Department of Mathematics, University of Wisconsin,
480 Lincoln Drive, Madison, WI 53706

Figure 14: Example records in Affiliations dataset

is to transform each affiliation string to its root organiza-
tion (e.g., university), ensuring that a given organization
has a unique representation. This is exactly the functional-
ity illustrated in Figure 3, but without the author names.
The related record matching task is to identify all pairs of
affiliations corresponding to the same organization. We re-
strict ourselves to academic affiliations from six represen-
tative countries: USA, Canada, UK, Germany, India, and
Taiwan.

Challenges

The above data cleaning and transformation task involves
several challenges: First, as in UCD data, there is a lot of
extraneous information that needs to be ignored. Second,
unlike people names, university names (names of academic
institutions) admit a greater degree of variations, includ-
ing abbreviations, when compared to people names. Of-
ten, what exactly constitutes the name of a university is
less clear: e.g., City University vs. City University of
London. Third, location information is sometimes impor-
tant in order to disambiguate a university name (e.g., the
location Madison in record 5). Finally, universities in non-
English speaking countries often use both a local name and
an English name: e.g., Technical University of Munich
and Technische Universitat Munchen.

Domain Knowledge

We use a large amount of domain knowledge obtained from
Wikipedia for this data cleaning task. The first type of do-
main knowledge that we use is location information, which
consists of lists of countries, states (or provinces), and cities,
and containment relationships between them. We obtain
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City (pageld, Title, State)

State (pageld, Title, Country)
Country (pageld, Title)

Univ (pageld, Title, City, RootName)
WRed (pageld, Title, RTitle)

(S0 =NY VR B \ON

Figure 15: Wikipedia Tables for Affiliations

Title City RootName

1 | University of  California, | Berkeley California
Berkeley

2 | University of California, San | San Diego | California
Diego

3 | Stanford University Stanford Stanford

Figure 16: Example entries for Univ(pageld, Title,
City, RootName)

city and state information only for the subset of countries
we are interested in. We can get this information relatively
easily from Wikipedia using one of two techniques: First, we
can use Wikipedia infobozes [26] which are structured infor-
mation embedded within Wikipedia pages. For example, we
can get a list of Indian cities and states by extracting all
Wikipedia infoboxes named “Indian Jurisdiction”. Second,
we can use special list pages on Wikipedia to compile such
information. For example, there exists a page on Wikipedia
that contains a link to every town and city in England.

The second type of domain knowledge that we use is a
compiled list of universities and other academic institutions.
Conveniently, there is a Wikipedia infobox “University” that
provides this information. The infobox for a university also
includes other relevant information such as the city in which
the university is present.

Figure 15 lists the main Wikipedia tables described above.
For each entity (location or university), we identify the main
Wikipedia page (which by design of Wikipedia exists and
is unique); the pageId attribute in Figure 15 is the iden-
tifier for this main page. By design of Wikipedia, the ti-
tle of a page is also a good representation for the entity
represented in the page. Therefore, the values of the at-
tribute Univ.Title contains the names of our compiled list
of universities. For each university record, we store another
attribute called RootName—this attribute is not obtained
from Wikipedia, but instead generated automatically using
our framework; we provide more details about this attribute
shortly.

Redirects and Disambiguation Pages: Wikipedia has
special redirection and disambiguation pages that contain
rich information about alternate representations for enti-
ties. For example, the Wikipedia page for Calif. automati-
cally redirects to the main page for the state of California.
Similarly, the Wikipedia page for CA is a disambiguation
page that contains a list of possible entities that CA can re-
fer to, which includes California. We use redirects for our
data cleaning tasks: the table WRed contains the redirec-
tion relationship (page with pageld redirects to page with
title RTitle).

We note that the lists that we compile are exhaustive and
not specific to the affiliation dataset, meaning that they can
be used without any additional effort for other data cleaning
tasks such as address cleaning. Also, there are initiatives
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Title
1 | UC Berkeley
Calif.
3 | Kéln

RTitle
University of California, Berkeley

California

Cologne

Figure 17: Example Wikipedia Redirects

such as Yago [21] and Freebase [14] aimed at compiling large
amounts of structured data, which can obviate the domain
knowledge compilation step.

Program

Figure 18 shows part of the rules that we use for this dataset.
Rule 1 specifies that an affiliation consists of an optional
department, a university name ((univ)), and a location in-
formation ((loc-info)). Both (univ) and (loc-info) contain
an attribute City, explained in detail later; the predicate of
Rule 1 checks if these attribute values are equal. The non-
terminal (univ) also contains an attribute Name which is the
normalized university name. The action for Rule 1 simply
copies the value of this attribute to the Name attribute for
(affil).

Rule 2 specifies that a string is a university name if it is
main Wiki page title of a university. This rule would, for
example, recognize University of California, Berkeley
as a university name. Rule 3 specifies that a string is a uni-
versity name if it is the title of a Wiki page that redirects to
a university page; the action for the rule sets the normalized
name of this university to be the title of redirected page.
This rule would recognize that UC Berkeley as a university,
and set the Name attribute to expanded form above. How-
ever, Wikipedia redirects are not comprehensive: we cannot
use these rules to recognize that Univ of Calif., Berke-
ley as a representation of the same university name.

To recognize variations of university names not covered by
Wikipedia redirects, we further parse university names (us-
ing rules 4-14) and identify a root-name (RootName) for a
university name. Informally, root-name represents the “core”
of a university name; see Table 16 for examples. Rule 5
specifies that a university name can be a word followed by
a University (or one of its variants, see Rule 14). This
would parse university names such as Brown University,
and identify Brown as the root-name. Rule 6 specifies that
a university name can be of the form University of fol-
lowed by a location (a city or a state). This would parse
University of California and identify California as the
root-name. Rule 7 and 8 are variants of Rule 6. Using these
rules, in a preprocessing step, we identify the root-name for
each university name in our compiled list and store it in the
attribute Univ. RootName.

At the time of actual processing, we recognize a string to
be a university name if it can be parsed using rules 4-14
and the root-name obtained from the parsing is equal to the
root-name of some university in the compiled list. The main
benefit of parsing a university name comes from the fact that
we can now leverage alternate representations for locations
and identify alternate representations for university names.
For example, using these rules, we can use the redirection
from Calif. to California, to correctly parse and normal-
ize Univ of Calif., Berkeley to its full form. (A differ-
ent parse would also normalize this string to University of
California, San Diego, which shares the same root-name;
we comment on location-based disambiguation which elimi-



Id | Rule Predicate Action

1 | (affil) —  (dept)? (univ); (loc-info)s 1.City = 2.City Name = 1.Name

2 | (univ) — U Univ(P,U,C,R) Name = U, City = C

3 | (univ) - WRed(P1,U°,U), Univ(P2,U,C,R) | Name =U, City =C

4 | (univ) —  (univ-base)1 (°, (loc))? Univ(P,U,C,R), R=1.RootName Name = U, City =C

5 | (univ-base) — (word); (univ-spec) RootName = 1. Value

6 | (univ-base) —  (univ-spec) 'OF’ (loc); RootName = 1.Name

7 | (univ-base) —  (univ-spec) (loc)1 RootName = 1.Name

8 | (univ-base) — (loc); (univ-spec) RootName = 1.Name

9 | (loc) —  (city) Name = 1.Name

10 | (loc) —  (state) Name = 1.Name

11 | (city) - C City(P,C,S) Name = C

12 | (state) — S State(P,S,C) Name = S

13 | (state) — S WRed(P1,S,S), State(P2,S,C) Name = S

14 | (univ-spec) — ’University’ | "Univ’ | ’Universitét’

15 | (loc-info) —  (token)+(city)1 (token)+(state)?(token)+ City = 1.Name
(country)?

Figure 18: (Part of) Program for

nates such parses below.) This kind of parsing is also very
useful for handling English and non-English names of uni-
versities. For example, the university name Universitat
Kd1n is correctly normalized to University of Cologne us-
ing the Wiki redirection from Kdln to Cologne.

We emphasize that the rules for parsing university names
need not be comprehensive. For university names that we
cannot parse using these rules, we simply rely on the basic
rules 2 and 3.

The non-terminal (loc-info) parses the location compo-
nent of an affiliation that follows a university name and ex-
tracts location-specific attributes. Figure 18 illustrates the
attribute City, but our full program also extracts attributes
such as State and Country if present. Rule 1 uses this infor-
mation to disambiguate universities based on location: The
predicate associated with Rule 1 checks that the City at-
tribute of (univ) (which comes from the Univ table) is iden-
tical to the City attribute of (loc-info). We note that this
location-based disambiguation works even if the city does
not immediately follow the university name (e.g., record 5
in Figure 14).

As in the case of UCD people data, the rules that we use
for processing affiliations are fairly generic, suggesting that
they can be generated fairly easily. For example, we parse a
department ({dept)) simply as a sequence of tokens and do
not attempt to model the exact structure of a department
string. The rules for (loc-info) do not understand addresses
in detail, just the fact that they possibly contain a city, state,
and country; all other details are modeled as simple token
sequences. As we will report shortly, we get output with
acceptable quality even with these generic rules, and this is
mainly due to large amounts of external domain knowledge
combined with weighting.
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Figure 19: Coverage and Quality for Affiliations
Quality of Data Transformation

We now comment on the quality of data transformation. Re-
call that the dataset consists of 107000 affiliations. Based
on a sample, we estimate that around 37000 of these records
correspond to academic affiliations in the six countries of
interest. For the purposes of evaluations we ran our frame-
work over all the records, but disregarded those that did not
belong to the subset of interest while manually evaluating
quality. Notice (Figure 18) that we normalize each univer-
sity to the title of the Wikipedia main page for the univer-
sity. Most universities have a unique Wikipedia main pages,
so this normalization is unambiguous. This also means that
universities that do not have a Wikipedia page cannot be
handled by the program of Figure 18, however such univer-
sities only comprise a small fraction.

Figure 19 shows the overall quality and coverage for dif-
ferent rule sets. The rightmost bar (Simple) presents results
for the case where only Rule 2 is used for parsing univer-
sities. The next bar (Redir) considers the case where only
Rules 2 and 3 are used for parsing. For these two rule sets
we do not use any location details. The next bar (Redir(L))



is identical to Redir except that it uses location information
to disambiguate universities using the predicate in Rule 1.
Finally, the leftmost bar (All) presents results for the case
where all rules described earlier are used.

Using all the rules, we get a coverage of about 31000
records, which is about 84% of the estimated number of rel-
evant records. The estimated accuracy of the output records
is fairly high, around 97%. On the other hand, using just
rule 2 that uses exact match on Univ. Title to identify a
university name brings down the coverage to around 24000
records. Using Wikipedia redirects significantly improves
coverage, however the quality drops significantly to about
84%. Most of the errors are due to location based ambi-
guity, which happens due to records such as 5 in Figure 14
where the university name is far from the city name. By
extracting location details and using it for disambiguation
improves the quality to 97%, with the coverage of about
28000 records.

This result indicates that Wikipedia redirects are a good
source of alternate representations for university names. We
observed that they are not a clean source of representations,
however: For example, there exists a inexplicable redirec-
tion from Cambridge tool and die to the MIT main page.
However, these do not seem to affect quality significantly
since, for example, irrelevant strings such as the one above
are unlikely to occur within affiliations.

Finally, by using more sophisticated rules that parse a
university name, we improve the coverage by almost 10%
to around 31000 records, while still maintaining high data
transformation quality.

Record Matching

Figure 20 shows the quality of record matching using the
same jaccard similarity function we used for the UCD data-
set. Again, for various similarity thresholds, we compute all
pairs of records that have similarity greater than the thresh-
old and estimate the correct matches by manually evaluating
a random sample. We evaluated the result over all 107000
records not just the 37000 university affiliations in the six
countries. The number of matching pairs over the entire
subset is an upperbound on the number of matching pairs
within just the subset of interest. Figure 20 plots the esti-
mated number of correct and incorrect matches at various
thresholds. Even at a very low jaccard similarity threshold,
the number of correct matching pairs identified by the sim-
ilarity function approach is less than 1M. In contrast, the
number of matches on the output records, obtained by a
simple equi-self-join is over 2M (shown by the dotted line
in Figure 20. This is more than double the number of pairs
obtained using the similarity function method, although the
program that we use with the framework works with just
37000 of the 107000 records.

6. DISCUSSION

We now discuss the relationship of our framework to some
of the important threads of prior work in data cleaning and
information extraction, while deferring a more detailed dis-
cussion of specific related work to Section 7.

Record Matching

As noted in Section 1, prior work on record matching has
largely focused on similarity function design. Our case stud-
ies indicate that with the right pre-processing, the need for
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Figure 20: Affiliations: Record Matching Quality

approximate equality when performing record matching is
minimized and indeed, often eliminated. However, we do
recognize that in general, there will be a need for string sim-
ilarity joins to capture specific variations such as typos and
misspellings. Our framework is not intended to replace this
body of work. Rather, it can be used as a pre-processing
step before performing vanilla record matching.

Pay-As-You-Go

There has been substantial amount of recent work on the
area of pay-as-you-go data quality management and infor-
mation extraction [17, 15]. The key observation here is that
our goal must not necessarily be to clean an entire data set
since doing so is difficult. Rather, we “pay as we go” where
we use for example reference tables that cover only a part of
the data to clean a subset of the data and gradually expand
our coverage as we get more reference data.

We note that our framework is designed to accommodate
this viewpoint — we have fallback options such as using X*
for various non-terminals as illustrated in our case studies.
These fallback options are useful primarily when our refer-
ence data is not comprehensive. As and when we can write
more precise rules to capture the data representation, the
need for such fallback options decreases.

Lineage

Our parse trees constitute a natural notion of lineage that
can be used to program on top of our module. For instance,
a data cleaning developer using our framework can choose to
not use the rule weighting options, instead writing if-then-
else logic on top to capture her parse tree preferences.

Another application of this lineage is to use it for down-
stream data cleaning tasks such as record matching where
we can condition the matches not only on the schema of the
records output by our framework, but also on the parse tree
that produced them.

Uncertainty

It is widely recognized that there is a need to manage un-
certainty in tasks such as data cleaning and information ex-
traction. While there are several sources of such uncertainty,
one important source is the differences in representation. We
can thus view our framework as providing a tool to manage
the uncertainty in the data.

Further, our framework incorporates the idea of “possible
worlds”. Thus, our notion of variation allows for multiple
possible variations for the same entity. We also return mul-
tiple parse trees for the same input record with an accom-



panying score. This is consistent with the vast body of work
on probabilistic databases. Indeed, the weights we return
lend themselves to be interpreted as probabilities that can
be used by a probabilistic database management system.

7. RELATED WORK

The huge body of work on data cleaning and record match-
ing is closely related to this paper [13, 16]. As mentioned
earlier, much of the work on record matching has focused
on developing and using sophisticated similarity functions
such as Cosine [8], FMS [7], HMM (6], Jaccard, and others.
Our framework is related to the class of techniques that fall
under the ETL process [19], but none of these techniques
support sophisticated reasoning with entity representations
like our framework.

The well-known problem of data segmentation is closely
related to our work. The goal of segmentation is to par-
tition a string into its basic components or attributes, and
previous work has proposed a variety of techniques and al-
gorithms [4, 20]. This includes work that exploits external
dictionaries for more effective segmentation [9]. The seg-
mentation technique proposed in [24] is particularly related
to our work since it uses a generative grammar-based ap-
proach for segmentation. Almost all techniques for segmen-
tation are learning-based. In contrast, we have explored
our framework mostly using manually programmable rules.
Exploring learning alternatives is an interesting avenue for
future work.

There has been lot of recent work on exploiting Wikipedia
as a source of clean domain knowledge. Yago [21] is a system
for automatically extracting structured facts and relations
from Wikipedia using Wordnet, and it currently consists of
over 5 million clean facts. [11] exploits Wikipedia for the
problem of named entity disambiguation.

8. CONCLUSIONS

This paper presented a declarative, programmatic frame-
work for reasoning with and manipulating entity represen-
tations. The framework is programmed using context free
grammar rules; the framework combines elements of
database style querying to enable a programmer to easily
exploit large amounts of external domain knowledge. The
framework has a variety of applications in data normaliza-
tion, parsing, and record matching. In particular, the frame-
work can be used to preprocess records to simplify subse-
quent record matching logic.
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