
Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2005 ACM 1-59593-015-9/05/0006 $5.00

Clustering Method for Fast Deformation with Constraints

Jin Huang∗

State Key Lab of CAD&CG

Zhejiang University

Xinguo Liu

Microsoft Research Asia

Hujun Bao

State Key Lab of CAD&CG

Zhejiang Universit

Baining Guo

Microsoft Research Asia

Heung-Yeung Shum

Microsoft Research Asia

Abstract

We present a fast deformation method for flexible objects. The de-
formation of the object is physically modeled using a linear elas-
ticity model with a displacement based finite elements method,
yielding a linear system at each time step of simulation. We solve
this linear system using a precomputed force-displacement matrix,
which describes the object response in terms of displacement accel-
erations to the forces acting on each vertex. We exploit the spatial
coherence to effectively compress the force-displacement matrix to
make this method practical and efficient by applying the clustered
principal component analysis method. And we developed a method
to efficiently handle the additional constraints for interactive user
manipulation. At last large deformations are addressed based upon
the compressed force-displacement matrix by combining a domain
decomposition method and tracking the rotational motions. The ex-
perimental results demonstrate fast performances on complex large
scale objects under interactive user manipulations.

CR Categories: I.3.5 [COMPUTER GRAPHIC]: Computa-
tional Geometry and Object Modeling —Physically based model-
ing; I.3.7 [COMPUTER GRAPHIC]: Three-Dimensional Graphics
and Realism—Animation

Keywords: Deformation, Finite Element Method, Clustered Prin-
cipal Component Analysis, Domain Decomposition Method

1 Introduction

Deforming and animating soft objects have a wide range of appli-
cations in geometric modeling, computer animation, video games
and surgery simulation, since many real world objects are soft and
deformable. Physically based modeling has become an important
approach to graphics modeling and animation. One of the simplest
physically based models is the mass-spring system [Chadwick et al.
1989; Tu and Terzopoulos 1994], which has been successfully used
to simulate clothes [Baraff and Witkin 1998; Choi and Ko 2002;
Bridson et al. 2003]. Recent research work showed a trend away
from the simple mass-spring systems toward the more sophisticated
finite element method (FEM) [Cook et al. 1989], since it is physi-
cally more accurate. Using FEM, an object’s deformation behavior
can be easily specified by a few material properties (which have
physical meaning) instead of by adjusting a large number of spring
constants as in a mass-spring system.

∗e-mail: hj@cad.zju.edu.cn

Figure 1: Simulation result using our clustering method with DDM.
Model before deformation (left). Model after deformation by drag-
ging the point in red (right), and the model is colored according to
DDM region.

In FEM based deformation approaches, there are two models to
measure the strain with respect to deformation in terms of displace-
ment. One is the linear elasticity model that approximates the elas-
tic forces as the product of a constant stiffness matrix and the dis-
placement vector, yielding a numerically fast and stable simulation
system. However, it can only model small deformations accurately.
The other is the non-linear elasticity model that models large defor-
mations accurately with the cost of reevaluating the stiffness ma-
trix at every time step, yielding a slow simulation and introducing
numerical instabilities. By partitioning complex non-rigid behav-
ior into global rotational motion and local deformations, a fast and
stable simulation for large deformations can be obtained using the
linear elasticity model [Müller et al. 2002; Müller and Gross 2004;
Capell et al. 2002a; James and Pai 2002b].

Finite element methods divide the object undergoing deformations
into a set of elements, and approximate the continuous dynamic
equations over the elements. It is easy to get thousands of elements
for objects of modest scale in graphics applications (e.g. the Stan-
ford Bunny model). Therefore the straightforward FEMs are not
fast enough for interactive simulation tasks commonly required in
graphics applications.

In this paper, we present an efficient acceleration method for simu-
lating dynamic deformations of flexible objects. We take the lin-
ear elasticity model and the finite element method for dynamic
deformation modeling, and solve the deformation using the im-
plicit Euler method. The efficiency is achieved by precomputing
a force-displacement matrix in a preprocessing step, such that the
next frame deformation could be obtained by a matrix and vector
multiplication.

The force-displacement matrix is usually dense and huge, so the
computational cost is still too large to achieve fast simulation for
a large scale object. To deal this problem, we compress the ma-
trix using a clustering method, i.e. the clustered principal compo-

221

nent analysis (CPCA) method presented in [Sloan et al. 2003]. This
compression step not only dramatically reduces the storage of the
force-displacement matrix, but also accelerates the multiplication,
thus accelerating the simulation in turn. Another advantage of our
approach with the compressed force-displacement matrix is that it
allows for dynamically introducing constraints for user manipula-
tion.

In addition, we handle large rotational deformations by tracking
a global rotation matrix and modeling the deformation in the ob-
ject’s reference coordinate frame. For complex objects with many
soft and long components, we combine our method with the Do-
main Decomposition Method (DDM) [Quarteroni and Valli 1999]
to simulate large deformations, as shown in Figure 1. And DDM
improves the result compared with the linear blend described in
[Hauser et al. 2003].

1.1 Related Work

In the last two decades, many ingenious physically based tech-
niques for modeling deformable objects have been proposed, which
can be found in geometrical modeling, surgical simulation and
computer animations. We will only review some work related to
the finite element method and the linear elasticity model for solid
shapes. See [Gibson and Mirtich 1997] for a general survey.

Finite element solvers are computationally expensive. There are
many approaches for quickly solving the discretized equations us-
ing adaptive methods to avoid wasting time on minor details. Some
recently proposed representative work are [Capell et al. 2002b;
Grinspun et al. 2002; Wu et al. 2001; Debunne et al. 2001]. Capell
et al. proposed a multiresolution framework for dynamic simulation
using volumetric subdivision [Capell et al. 2002b]. By adaptively
refining the basis functions, Grinspun et al. proposed another sim-
ple framework for adaptive simulation [Grinspun et al. 2002], called
CHARMS. Wu et al. [Wu et al. 2001] and Debunne et al. [Debunne
et al. 2001] developed other kinds of adaptive methods using pro-
gressive meshes and LOD tetrahedron meshes. Debunne et al. also
took adaptive time steps during simulation [Debunne et al. 2001] to
further avoid unnecessary computation.

Modal analysis with finite element methods, which decompose
non-rigid dynamics into a sum of independent vibration modes, has
been a well established mathematical tool in mechanical engineer-
ing [Cook et al. 1989]. By discarding the small-amplitude, high-
frequency modes, an efficient and stable simulation with visually
acceptable accuracy can be obtained [Pentland and Williams 1989;
Stam 1997; James and Pai 2002a; Hauser et al. 2003].

Our clustering method is basically equivalent to the modal analysis
based method [Hauser et al. 2003] when there is only one cluster.
We argue that we can achieve more accuracy with the same number
of modes by dividing a dynamic deformation into several clusters.

Recently, James et al. [James and Pai 1999; James and Pai 2002b;
James and Fatahalian 2003] proposed several data driven ap-
proaches to interactive dynamic simulation. These approaches basi-
cally precompute the Green’s function, and model the deformation
as a boundary value problem in terms of the precomputed Green
functions. And it has been shown that the discrete Green functions
of real world objects can be computed from some measured quan-
tities [Pai et al. 2001].

Our approach also derives a deformation model using a precom-
puted matrix, called a force-displacement matrix. Our method mod-
els the interior of the solid objects as well as the boundary, which
differentiates our work from those of James et al [James and Pai

1999; James and Pai 2002b; James and Fatahalian 2003]. And
we compress the huge force-displacement matrix using the CPCA
method, while James et al. [James and Fatahalian 2003] deal with
it using wavelet decomposition based on a multiresolution repre-
sentation of the object’s boundary surface. The advantage of the
CPCA based compression method is that it does not require any
special (multiresolution) structure on the mesh of the object under-
going deformation.

The rest of this paper is organized as follows. After introducing
the formulations for the displacement based FEM with the linear
elasticity model in Section 2, we propose our force-displacement
matrix based simulation method in Section 3. Then we address
large deformations using DDM in Section 4. At last, we show some
results and conclude this paper in the last two sections.

2 Formulation

Let Ω ⊂ R3 be a solid shape to be deformed, and p(x, t) : Ω×R →
R3 be the time dependent motion function of the shape. The motion
function p(x, t) can be represented as the sum of the rest state and
a displacement q(x, t):

p(x, t) = x+q(x, t).

In the finite element method, the shape domain Ω is divided into
elements of finite size. And the continuous displacement field in
each element is interpolated using the displacement qi(t) on the

nodal points and a set of piecewise smooth basis functions {φ i(x) :
i = 1,2, . . . ,n} on Ω.

q(x, t) = qi(t))φ
i(x).

Let q(t) = [q1(t), . . . ,qn(t)]
T be the time dependent displacement

vector. Then the Euler-Lagrange equation of dynamic deformations
becomes:

Mq̈+Dq̇+Kq = fext + fψ .

where M,D,K are the mass, damping, and stiffness matrices of the
simulation system, fext is the external force added to the deformable
object, and fψ is the constraint force added on the constrained node
set ψ . In our system, the constrained nodes set ψ is dynamically
determined during the simulation according to user manipulation.
Since only relatively small local deformations are considered, the
linear elasticity model is adopted in our approach, i.e. the stiffness
matrix K is also a constant matrix. Therefore, M, D and K are all
constant matrices.

Let h be the time step for simulation, and ∆q̇ = q̇(t +h)− q̇(t). We
use the implicit Euler method to solve the above dynamic equation,
yielding the following linear system:

(M+hD+h2K)∆q̇ = h(fext −Dq̇−K(q+hq̇)+ fψ). (1)

After solving the above linear system, the displacement vector at
next the time stamp can be easily obtained by:

q(t +h) = q(t)+h(q̇+∆q̇).

For simplicity, we rewrite (1) as following:

A∆q̇ = f. (2)

where A = M+hD+h2K, and f = h(fext −Dq̇−K(q+hq̇)+ fψ).
Note that A is also a constant matrix when we fix the time step h
during simulation.

222

3 Force-Displacement Matrix

There are many methods for solving the linear system in (2). Since
the simulation matrices M, D, K are usually very sparse and large,
some iterative algorithms, such as conjugate gradient algorithm,
have usually been used in previous work[Hauth and Etzmuss 2001].
However, those iterative algorithms would become extremely slow
when a deformed object consists of up to thousands of finite ele-
ments, yielding a slow simulation. In this section, we will present a
novel approach to efficiently solve it.

Our approach is based on the observation that if A−1 is available
(for convenience, we denote G = A−1 from now), the solution of
(2) can also be obtained simply by matrix and vector multiplication:

∆q̇ = A−1f = Gf (3)

Note that each 3 × 3 block element (gi j)3×3 of G gives the i-th
vertex’s response in terms of displacement acceleration to the force
acting on the j-th vertex for a time period of h. Therefore, we
call G the force-displacement matrix of the deformation system. In
paper [Bro-Nielsen and Cotin 1996; J. Lang and Seidel 2003], same
concept is used. [Bro-Nielsen and Cotin 1996] condenses the linear
system by assuming that no forces are applied to internal nodes,
then inverts it as the force-displacement matrix. While [J. Lang and
Seidel 2003] uses discrete Green’s functions matrix of BVP as the
force-displacement matrix.

However, it is not practical to accomplish the simulation by
straightforwardly applying (3), since the inverse matrix G is usually
dense, which may require a huge amount of memory and flops do-
ing the matrix-vector multiplication in (3) at each time step, yield-
ing a even slower simulation for large scale models. Therefore it is
necessary to first compress the force-displacement matrix. We note
that there has been considerable efforts in directly approximating an
inverse matrix using a sparse matrix [Benzi and Tuma 1999; Benzi
et al. 2000; Bridson and Tang 2001]. However they are developed
to obtain a better preconditioner for fast convergence.

Recall that the force-displacement matrix gives the object’s re-
sponse in terms of displacement acceleration to forces acting on
a vertex. Nearby vertices may have a similar response to the same
forces, i.e, spatial coherence among the row vectors of the force-
displacement matrix exists. Based on this observation, we propose
to compress the force-displacement matrix using clustered principal
component analysis [Sloan et al. 2003]. Using the original CPCA
method, the row vectors of G are grouped into several clusters. In
each cluster, the conventional principal component analysis are ap-
plied to approximate the cluster. Many iteration steps are usually
required until convergence is reached. The clustering results for the
Bunny and Torusknot model are shown in Figure 2. The Bunny has
878 vertices and 3 clusters, and the Torusknot has 517 vertices and
6 clusters. We take 8 eigen vectors in each cluster for both models.

Therefore, the approximation to the force-displacement matrix
takes the following form:

G ≈





U1σ1VT
1

. . .

UkσkVT
k



 ≡ Ḡ. (4)

where k is the cluster number, Vi/Ui and σi are the i-th cluster’s
left/right eigen vectors and eigen values.

One of the main advantages of the approximation in (4) is that it
provides a way to do fast matrix-vector multiplication in (3) for

Figure 2: Force-displacement matrix clusters (for one coordinate
component) of the Bunny (left) and Torusknot (right) models. In
each model, the vertices of the same cluster are drawn in the same
color.

simulation:

∆q̇ = Gf ≈





U1σ1VT
1

. . .

UkσkVT
k



 f =





U1σ1(V
T
1 f)

. . .

Ukσk(Vkf)



 (5)

Just like the classical Modal Analysis, at beginning of each simu-
lation frame, we must project node position x in cluster c into the
sub-space of linear combination of Vc.

In this scheme, if clusters have similar size, and choosing same
number of modes m for each cluster, the cost of matrix-vector mul-
tiplication is about O((1+ c)mN), where c is the number of clus-
ters, N is the DOF of the system. Compared with classical Modal
Analysis, which is similar to one cluster in our method, the accu-
racy is slightly better (see Table 1) when choosing proper number of
clusters. And our method extends Modal Analysis to give user the
ability of choosing different number of modes in different cluster
for speed-accuracy trade-off.

bunny 20N 60N 100N 140N

c=1 708.42 170.67 125.39 105.70
0.23636 0.14927 0.13114 0.12048

c=3 1616.9 154.77 113.38 95.364
0.24757 0.13998 0.12228 0.11144

c=6 2894.8 210.59 136.73 106.91
0.33766 0.14612 0.12703 0.11362

torus 20N 60N 100N 140N

c=1 1315.9 87.757 48.688 39.225
0.27955 0.08216 0.06588 0.05927

c=3 1252.7 84.452 43.710 35.658
0.22121 0.07579 0.06081 0.05461

c=6 1604.7 103.48 48.139 35.881
0.24724 0.07325 0.06104 0.05387

Table 1: Accuracy of matrix approximation.
The first row of the table is the number of needed flops for Ḡf
matrix-vector multiplication. In each cell, top value is ‖G− Ḡ‖F ,
bottom value is the sum of all eigen-values of G− Ḡ.

For an object with 10K vertices, G is a 30K×30K matrix, and
takes 3.6GB storage. It is obviously not practical to run the CPCA
method on such a huge matrix. So, it is necessary to reduce the
dimension of the row vectors before applying the CPCA method.
Recalling the physical meaning of the force-displacement matrix,
a vertex also should have similar responses to the forces acting on
nearby vertices. Therefore, we first do another vertex clustering us-
ing the vertices’ connectivity and coordinates to simplify the mesh
of the object down to a desired vertex number. Based on this vertex
clustering, we then sum up the corresponding columns in the force-

223

displacement matrix G, yielding some dimension reduced row vec-
tors. We then apply the CPCA method to group the dimension re-
duced vectors into some clusters. Note that the resulting clusters
are also applicable to the original vectors. So, we group the orig-
inal vectors into clusters accordingly, and perform a SVD step in
each cluster.

Another issue that needs to be addressed is how to compute the
force-displacement matrix, i.e., the inverse matrix of A. It is still an
open mathematical problem to efficiently invert a huge matrix. We
use the conjugate gradient method to compute G’s i-th column gi

by solving Agi = ei, where ei is the i-th canonical basis. This may
take a long time for large scale model with thousands of vertices,
but it can be done as a preprocessing step.

3.1 Constrained Problem

It is desirable and necessary for a simulation system to allow user
manipulation, reaction to external forces, and motion restriction in
a particular way. In general, such tasks can be accomplished by
adding constraints into the simulation system. We first address the
basic point-to-nail constraint, which constrains a set of vertices to
some specific positions.

Adding point-to-nail constraints to the system is equivalent to spec-
ify some of ∆q̇ in (2) and (3). So, for a constrained vertex v, the
acceleration ∆q̇v is known while the constrained force fψv acting
on v is unknown, and the total force fv is unknown in turn. In the
following we will introduce a novel method to solve unknown po-
sition and unknown forces by utilizing both matrices A and G.

Without loss of generality, we assume that the constrained set is
the first m vertices. Let subscript 1 denote the constrained set of
vertices ψ , and subscript 2 denote the other free set. Then (2) and
(3) can be rewritten as

(

A11 A12

A21 A22

)(

∆q̇1

∆q̇2

)

=

(

f1
f2

)

(

∆q̇1

∆q̇2

)

=

(

G11 G12

G21 G22

)(

f1
f2

)

(6)

Note that ∆q̇1 and f2 are known quantities, and ∆q̇2 and f1 are
unknowns in the above formulas. By substituting ∆q̇1, we have

f1 = A11∆q̇1 +A12∆q̇2

= (A11∆q̇1 +A12G22 f2)+A12G21 f1.

So, the constrained f1 can be obtained by

f1 = (I −A12G21)
−1 (A11∆q̇1 +A12G22 f2) . (7)

And ∆q̇2 can be obtained by

∆q̇2 = G21 f1 +G22 f2. (8)

4 Handling Large Deformation Using DDM

Due to the use of the linear elasticity model, the above approach
is only applicable to small deformations near the rest state. Other-
wise, there will be noticeable deformation exaggeration, especially
when the object undergoes a global rotation. As long as the lo-
cal deformation is small, it has been shown that such error due to
the global rotation can be handled by tracking the global rotation

and formulating the deformation in the object’s local/reference co-
ordinate frame. Demetri Terzopoulos and Andrew Witkin proposed
such a method in [Terzopoulos and Witkin 1988] to fulfill the linear
elastic equation. If object is not rotating rapidly, ignoring the mo-
tion of rigid reference will not lead to large error. Let R3×3 be the
estimated global rotation matrix (see [Müller et al. 2002]) and

R =







R3×3 0 0

0
. . . 0

0 0 R3×3







3n×3n

.

Then, after transforming the force and displacement quantities into
the local coordinate frame and applying formula (3), the global
large deformation can be easily simulated using:

RART ∆q̇ = f, ∆q̇ = RGRT f. (9)

The above formulation is not suitable for a object with long and soft
components, since there does not exist such a global rotation ma-
trix. For such objects, we propose to partition the whole object into
simple sub-objects and solve the deformations using Domain De-
composition Methods (DDM). DDM has been extensively studied
in applied mathematics and mechanical engineering for partial dif-
ferential equations (PDEs) in the last two decades [Quarteroni and
Valli 1999], which is indeed a basic concept of numerical methods
for PDEs in general. The principle of DDM is to split the origi-
nal domain of computation in smaller simpler subdomains, com-
pute local simplified solutions, and use efficient algebraic solvers
to properly interface these solutions.

Suppose that the object Ω is partitioned into p non-overlapping sub-
objects Ω = Ω1 ∪ . . .∪Ωp. The shared vertices between neighbor-
ing sub-objects are duplicated. Under the DDM framework, each
sub-object Ωi is modeled independently, yielding a system matrix
Ai, a force-displacement matrix Gi. According to (9), we have

RiAiR
T
i ∆q̇i = fi, ∆q̇i = RiGiR

T
i fi. (10)

where Ri is the global rotation matrix of sub-object Ωi being
tracked during simulation, and qi and fi are respectively the dis-
placement vector and force vector of Ωi. Denote Ai = RiAiR

T
i ,

Gi = RiGiR
T
i , q̆ =

(

qT
1 · · · qT

p

)T
, f̆ =

(

fT
1 · · · fT

p

)T
, and

A =







A1 0 0

0
. . . 0

0 0 Ap






, G =







G1 0 0

0
. . . 0

0 0 Gp






.

Then, we have

Gi = A
−1

i , G = A
−1

, A ∆ ˙̆q = f̆, and ∆ ˙̆q = G f̆.

Recall that there are some duplicate vertices between the neighbor-
ing sub-objects, which should have the same displacement quan-
tities to maintain the geometry continuity. This can be accom-
plished by introducing a vector of Lagrange multipliers λ to enforce
a group of point-to-point constraints:

B∆ ˙̆q =
(

B1 · · · Bp

)(

qT
1 · · · qT

p

)T
= c.

where c is a zero vector, and the matrix B =
(

B1 · · · Bp

)

is con-
structed such that each row, say the k-th row, of B corresponds to
a pair of duplicated vertices, say the i-th and the j-th vertex, and
Bki = −Bk j = I3×3. Other elements of B are 0. Therefore, B is a
highly sparse matrix, and we have:

(

A BT

B 0

)(

∆ ˙̆q
λ

)

=

(

f̆
c

)

. (11)

224

Note that other constraints for user manipulation can be easily for-
mulated by appending more rows to B, and some values to c. The
solution of (11) can be obtained by:

(∑i BiGiB
T
i)λ = ∑i BiGifi − c

∆q̇i = Gi(fi −BT
i λ)

(12)

Since all Bi are very sparse, ∑i BiGiB
T
i can be easily computed.

And we do SVD for this matrix to compute the solution of λ for
numerical stability.

5 Experimental Results

We have implemented our methods in C++. In this section we
present some experimental results

Figure 3 (a) and (b) show two simulation results using our cluster-
ing method without DDM. The simulation can runs at about 100 fps
on both the Bunny and the Torusknot models.

In Figure 4, we compare the simulation results of three methods:
straightforward FEM (a), modal analysis [Hauser et al. 2003] (b),
and our clustering method with DDM (c). This figure clearly shows
that the results of the first two methods suffer from serious simula-
tions error, especially in the part of bunny ears, while our method
with DDM can generate a good simulation result, which are visu-
ally error free. The straight forward FEM method can only run at
about 5 fps. The modal analysis method uses 30 modals, and can
run at about 45 fps. In our clustering method with DDM, the bunny
is partitioned into 3 parts as shown in Figure 1, each part has 2 clus-
ters, and each cluster keep 6 eigen vectors. Our method can run at
bout 18 fps. Note that performance of the clustering method with
DDM is much slower than that without DDM. This is caused by the
cost to compute the SVD for solving the Lagrange Multiplier vector
in (12). Optimizing this code should greatly increase our method’s
performance.

More simulation results by dragging different parts of the bunny
model in our system are shown in the accompanying video.

(a) (b) (c)

Figure 3: Two simulation results using our clustering method with-
out DDM. (a) Bunny, 6 clusters, 8 eigen vectors per cluster. (b)
Torusknot, 6 clusters, 8 eigen vectors per cluster. (c) is the original
Torusknot’s rest shape.

6 Conclusion and Discussion

We have proposed a physically based deformation method using
the precomputed force-displacement matrix. The advantages of our
method are

• It is very fast. The fast performance is achieved by precom-
puting a factorized force-displacement matrix, and using a fast
matrix-vector multiplication algorithm in (5).

(a) (b) (c)

Figure 4: Simulation results comparison between (a) straightfor-
ward FEM, (b) modal analysis and (c) our clustering method with
DDM (the model is colored according to DDM region).

• It is stable, and allows for relatively large time step, since es-
sentially the implicit Euler method is used to solve the under-
lying differential equations.

• Large deformations are handled very well by tracking global
rotations and using domain decomposition methods. DDM
improves the result compared with the linear blend described
in [Hauser et al. 2003]. And compared with [Müller et al.
2002; Müller and Gross 2004], our algorithm can utilize more
precomputing information.

• It allows for dynamically introducing new constraints for user
manipulations.

Our method also has some limitations. First, inherent from the lin-
ear elasticity model, the large deformation inside a component/sub-
object cannot be handled. But it does not cause any problem for
the models in our experiments. Secondly, the simulation time step
is fixed, and cannot be changed dynamically. We choose the time
step as 0.05 second, such that the simulation looks natural at 20
fps. In addition, an extensive precomputation is needed to com-
pute the force-displacement matrix and factorize it using CPCA. At
last, the constraint number is limited, because we directly solve the
constrained quantities. If there are too many constraints, the per-
formance may be slowed. Our experiments showed that we can do
fast deformation with fewer than 300 constraints.

There are many topics for future work. An interesting one is to
develop a multiresolution representation for the force-displacement
matrix, as what James et al. did with the precomputed Green func-
tions [James and Pai 2003]. Another area for future work is to
handle collisions during simulation. And it is also worthwhile to
deal with more types of constraints. Currently, we can only han-
dle point-to-nail, point-to-point, and force constraints. And beside
of SVD decomposition on G, LU decomposition on A is worth to
trying.

7 Acknowledgments

This project is supported in partial by 973 Program of China under
Grant No.2002CB312102, and NSFC under Grant No.60021201
and No.60033010.

References

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simula-
tion. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, ACM Press, 43–54.

225

BENZI, M., AND TUMA, M. 1999. A comparative study of sparse
approximate inverse preconditioners. Applied Numerical Math-
ematics: Transactions of IMACS 30, 2–3, 305–340.

BENZI, M., CULLUM, J. K., AND TUMA, M. 2000. Robust
approximate inverse preconditioning for the conjugate gradient
method. SIAM Journal on Scientific Computing 22, 4, 1318–
1332.

BRIDSON, R., AND TANG, W.-P. 2001. Multiresolution approxi-
mate inverse preconditioners. SIAM Journal on Scientific Com-
puting 23, 2, 463–479.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simula-
tion of clothing with folds and wrinkles. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Eurographics Association, 28–36.

BRO-NIELSEN, M., AND COTIN, S. 1996. Real-time volumetric
deformable models for surgery simulation using finite elements
and condensation. Computer Graphics Forum 15, 3, 57–66.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND

POPOVIC, Z. 2002. Interactive skeleton-driven dynamic defor-
mations. In Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques, ACM Press, 586–593.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND

POPOVIC, Z. 2002. A multiresolution framework for
dynamic deformations. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM Press, 41–47.

CHADWICK, J. E., HAUMANN, D. R., AND PARENT, R. E. 1989.
Layered construction for deformable animated characters. In
Proceedings of the 16th annual conference on Computer graph-
ics and interactive techniques, ACM Press, 243–252.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth. In
Proceedings of the 29th annual conference on Computer graph-
ics and interactive techniques, ACM Press, 604–611.

COOK, R. D., MALKUS, D. S., AND PLESHA, M. E. 1989.
Concepts and Applications of Finite Element Analysis, 3rd edi-
tion ed. John Wiley & Sons.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic real-time deformations using space & time adap-
tive sampling. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, ACM Press, 31–
36.

GIBSON, S. F. F., AND MIRTICH, B. 1997. A survey of de-
formable modeling in computer graphics. Tech. Rep. TR-97-19,
Mitsubish Electric Research Lab., Cambridge, November.

GRINSPUN, E., KRYSL, P., AND SCHRÖDER, P. 2002. Charms: a
simple framework for adaptive simulation. In Proceedings of the
29th annual conference on Computer graphics and interactive
techniques, ACM Press, 281–290.

HAUSER, K., SHEN, C., AND O’BRIEN, J. F. 2003. Interactive
deformations using modal analysis with constraints. In Proceed-
ings of Graphics Interface 2003, 247—256.

HAUTH, M., AND ETZMUSS, O. 2001. A high performance solver
for the animation of deformable objects using advanced numeri-
cal methods. In Proceedings of Eurograhics, 137–151.

J. LANG, D. K. P., AND SEIDEL, H.-P. 2003. Real-time vol-
umetric deformable models for surgery simulation using finite

elements and condensation. proceedings of Graphics Interface
(June).

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing inter-
active dynamic deformable scenes. ACM Trans. Graph. 22, 3,
879–887.

JAMES, D. L., AND PAI, D. K. 1999. Artdefo: accurate real
time deformable objects. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 65–72.

JAMES, D. L., AND PAI, D. K. 2002. Dyrt: dynamic response
textures for real time deformation simulation with graphics hard-
ware. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, 582–585.

JAMES, D. L., AND PAI, D. K. 2002. Real time simulation of
multizone elastokinematic models. In Proceedings of the IEEE
International Conference on Robotics and Automation, 927–932.

JAMES, D. L., AND PAI, D. K. 2003. Multiresolution green’s func-
tion methods for interactive simulation of large-scale elastostatic
objects. ACM Trans. Graph. 22, 1, 47–82.

MÜLLER, M., AND GROSS, M. 2004. Interactive virtual materials.
In GI ’04: Proceedings of the 2004 conference on Graphics in-
terface, Canadian Human-Computer Communications Society,
239–246.

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND

CUTLER, B. 2002. Stable real-time deformations. In Proceed-
ings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, ACM Press, 49–54.

PAI, D. K., VAN DEN DOEL, K., JAMES, D. L., LANG, J.,
LLOYD, J. E., RICHMOND, J. L., AND YAU, S. H. 2001. Scan-
ning physical interaction behavior of 3d objects. In Proceedings
of the 28th annual conference on Computer graphics and inter-
active techniques, ACM Press, 87–96.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations:
model dynamics for graphics and animation. In Proceedings of
the 16th annual conference on Computer graphics and interac-
tive techniques, ACM Press, 215–222.

QUARTERONI, A., AND VALLI, A. 1999. Domain Decomposi-
tion Methods for Partial Differential Equations. Oxford Science
Publications, Clarendon Press, Oxford.

SLOAN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clus-
tered principal components for precomputed radiance transfer.
ACM Trans. Graph. 22, 3, 382–391.

STAM, J. 1997. Stochastic dynamics: Simulating the effects of
turbulence on flexible structures. Comput Graphics Forum 16, 3
(Sept.), 159–164.

TERZOPOULOS, D., AND WITKIN, A. 1988. Physically based
models with rigid and deformable components. IEEE Comput.
Graph. Appl. 8, 6, 41–51.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: physics,
locomotion, perception, behavior. In Proceedings of the 21st
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 43–50.

WU, X., DOWNES, M. S., GOKTEKIN, T., AND TENDICK, F.
2001. Adaptive nonlinear finite elements for deformable body
simulation using dynamic progressive meshes. Comput Graphics
Forum 20, 3 (Sept.), 349–358.

226

