
Structurally Heterogeneous Source Code
Examples from Unstructured Knowledge Sources

Venkatesh Vinayakarao Rahul Purandare
Indraprastha Institute of Information Technology, Delhi

{venkateshv,purandare}@iiitd.ac.in

Aditya V. Nori
Microsoft Research

adityan@microsoft.com

Abstract
Software developers rarely write code from scratch. With the ex-
istence of Wikipedia, discussion forums, books and blogs, it is
hard to imagine a software developer not looking up these sites
for sample code while building any non-trivial software system.
While researchers have proposed approaches to retrieve relevant
posts and code snippets, the need for finding variant implementa-
tions of functionally similar code snippets has been ignored. In this
work, we propose an approach to automatically create a repository
of structurally heterogeneous but functionally similar source code
examples from unstructured sources. We evaluate the approach on
stackoverflow1, a discussion forum that has approximately 19 mil-
lion posts. The results of our evaluation indicates that the approach
extracts structurally different snippets with a precision of 83%. A
repository of such heterogeneous source code examples will be use-
ful to programmers in learning different implementation strategies
and for researchers working on problems such as program compre-
hension, semantic clones and code search.

Categories and Subject Descriptors H.3.3 [Information Search
and Retrieval]: Retrieval models; D.3.3 [Language Constructs
and Features]: Control structures

General Terms Code Search, Programs, Examples, Mining,
Knowledge Representation, Similarity

Keywords Example Retrieval

1. Introduction
Structural heterogeneity is very commonly observed in function-
ally similar source code written in high level programming lan-
guages such as Java. For example, factorial can be implemented
either using recursion or loops or programming constructs such as
BigInteger. Listings 1, 2 and 3 show examples for different imple-
mentations of a simple factorial program.

Unstructured sources such as discussion forums contain sev-
eral examples in the form of partial program snippets that imple-
ment functionality relevant to the topic discussed. We propose an

1 http://stackoverflow.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEPM ’15, January 13–14, 2015, Mumbai, India.
Copyright c© 2015 ACM 978-1-4503-3297-2/15/01. . . $15.00.
http://dx.doi.org/10.1145/2678015.2682537

public static int factorial(int n) {
int fact = 1;
for (int i = 1; i <= n; i++) {

fact *= i;
}
return fact;

}

Listing 1: Factorial using loop

public static long calc(long n){
if (n <= 1)

return 1;
else

return n * calc(n-1);
}

Listing 2: Factorial using recursion

public static void main(string[] args) {
BigInteger fact = BigInteger.valueof(1);
for (int i = 1; i <= 8785856; i++)

fact = fact.multiply(BigInteger.valueof(i));
system.out.println(fact);

}

Listing 3: Factorial using BigInteger

approach to extract such code examples. Henceforth, we refer to
such examples that are well discussed as familiar code. We refer
to a short text that describes the familiar code as a topic. Listing 3
shows a familiar code for the topic, “factorial”. Knowledge of vari-
ant implementations plays a significant role in several research ar-
eas such as program comprehension, semantic clone detection and
code search.

Familiar code snippets frequently occur in massive code repos-
itories. For example, Apache commons’ BrentOptimizer.java2

uses Brent’s algorithm. As Sridhara et al. [17] claim, spotting such
familiar code in massive code bases reduces the amount of code
to read, and thus supports program comprehension. Knowing just
one implementation or a few structurally similar implementations
limits the amount of familiar code that we can spot. Therefore, we
believe, an approach to mine structurally heterogeneous code ex-
amples will help program comprehension.

Structurally different code examples that exhibit same or similar
behavior are candidates for semantic clones. For a given topic, we
find structurally different and functionally relevant source code.
Thus, our approach directly supports semantic clone detection. The

2 https://commons.apache.org/proper/commons-
math/apidocs/org/apache/commons/math3/optimization/univariate/
BrentOptimizer.html

21

Table 1: Comparison of Discussion Forum characteristics with
Code Repository.

Discussion Forum Code Repository
1 Coding concerns common to

several projects.
Project specific concerns.

2 Language How-tos. Domain How-tos.
3 Partial Code. Compilable Code.
4 Discussions on snippets. Code & few comments.
5 Alternate approaches dis-

cussed.
Single approach & mostly
missing reasoning.

6 Captures popularity and cor-
rectness of discussions ex-
plicitly in the form of re-
sponses, comments and rat-
ings.

There is no way to know
how many people have read
or used a specific snippet
from a specific repository.

7 Multilingual Connections.
For example, gives Java
version of C code.

No connection or references
to other language implemen-
tations.

output of our approach is a set of semantic clones exemplifying the
given topic.

Code search tools need to deal with elimination of duplicate
or near-duplicate results. Those tools that search over unstructured
sources typically retrieve familiar code. They can improve their
results by leveraging techniques to identify structural heterogeneity
or just by using a repository of familiar code snippets.

In this work, we discuss the challenges and propose an approach
to extract structurally heterogeneous familiar code examples for a
given topic from an unstructured source. We implement a prototype
using data from a popular discussion forum for a list of 12 topics.
We use light-weight program analysis and information retrieval
techniques so that partial programs can be effectively retrieved
from large scale data sources. Finally, we evaluate the approach
and show that structural complexity of familiar code can be used to
further refine the results.

2. Mining Familiar Code Snippets
Many researchers have worked on code search over code reposito-
ries [2, 3, 10, 13]. Discussion forums have very different charac-
teristics when compared to code repositories. We highlight some
key observations that came out of our study in Table 1. Due to
these fundamental differences, the approaches used to search a code
repository cannot be used to search discussion forum. Also, we be-
lieve, due to these differences, use of discussion forum for extract-
ing sample code should not be overlooked.

We take stackoverflow posts that contain a Java code snippet.
We could have used any other high level programming language
since our methods can easily be modified to work with any lan-
guage. We extract code snippets and tokens (keywords from the
natural language discussion around the snippet) from such relevant
posts. We rank code snippets based on vocabulary similarity. Here,
we also include the vocabulary elements from code snippet such
as identifier and method names. We transform the snippet into a
form that captures the structural information. For each code snip-
pet, we check if a snippet’s structure differs from its predecessors
and thus remove snippets that are structurally duplicates. Further,
we use structural complexity to detect and remove outliers. Figure 1
outlines this approach to mine familiar code snippets. The result of
this approach is a set of structurally heterogeneous and functionally
similar source code samples.

Filter

Prepare

Dedup

Rank Extract

Posts

Topic
List

Inverted
Index

Snippets,
Metadata

Snippets,
Metadata

Snippets
Snippets

Figure 1: Steps showing the mining of sample code for a topic list
from stackoverflow.

2.1 Identifying Posts with Java Snippets
Posts in stackoverflow are typically short text with code embed-
ded in between. The convention in stackoverflow is to place code
snippets inside <code>... </code> xml blocks. We retrieve such
blocks that have at least one code element. Posts may contain par-
tial programs i.e., the code snippet may refer to anything between
uncompilable statements to fully compilable classes. Moreover, the
embedded code could be of any programming language and not
necessarily Java.

Research shows that method definitions play a major role in
code search [15]. In this work, we limit our analysis to Java meth-
ods. We look for public or private keywords in the code snippet to
identify methods. We wrap methods into a custom class template
so that we can use Eclipse JDT3 to parse them into an Abstract
Syntax Tree (AST). If Eclipse JDT is able to parse it, we consider
that the code snippet we have is indeed a Java code snippet. Sev-
eral code samples exist without these keywords and our approach
drops them. These may sound restrictive but we still ended up with
29,299 code snippets to analyze which is sufficient to pull distinct
examples.

Code snippets that are not method definitions could still be
useful and are acceptable as mined examples. Static analysis on
partial programs [6] could help us identify partial Java code that do
not have these modifiers (public or private) and thus enable us mine
more examples. This is left for future work.

2.2 Collecting Keywords
Firstly, we tokenize text in the post with the objective of extracting
representative terms. We use TF-IDF technique [1] to derive such
terms. For this, we had to compute a set of unique terms in the post
and the number of posts that they appeared in. In our case, since the
text is very short, term frequency (TF) does not have any impact.
Hence, it is reasonable to use the inverse document frequency (IDF)
value to find the representative terms for a post. For any term t in
the entire corpus of posts P, idf is given by the following formula
where N is the total number of posts.

idf (t, P) = log
N

|{p ∈ P : t ∈ p}| (1)

Secondly, we capture terms from the vocabulary used in the
code snippet. From the ASTs, we capture vocabulary in the form
of method name and variable names. There are variables that do
not carry much semantic value such as the loop index variables. In
this context, by semantic value, we refer to the natural language
expressiveness of the variable. We observe that these variables are
usually left as a single character such as i or j. There are cases
where variables of length less than three carry semantic value. For

3 http://www.eclipse.org/jdt/

22

Table 2: Precision before and after the use of sequence information.

Case Method#1 Method#2
1 Convert int to String 50 75
2 Factorial 100 100

instance, n typically refers to “number of ...” or “count”, and sd
refers to “standard deviation”. For this work, we ignore such short
variables. Without loss of generality, we chose to drop all terms
that had any non-alphabetic character. This step of filtration does
not impact our approach or results. Leveraging state of the art
vocabulary manipulation techniques such as Normalize [21] can
help us improve our work.

2.3 Relevance and Ranking
Now that we have a collection of code snippets and associated
metadata in the form of keywords, our next task is to rank them
based on relevance to topic. We tokenize the stackoverflow post
title. We also grab the variable names and method name from the
code snippet. We compare the topic with these data (tokenized title
and elements from code snippet) and quantify the relevance.

Firstly, we study the snippets ranked based on term frequency
(TF) score. We observe three major issues:

1. Favoring long posts: Long posts tend to have more terms with
high frequency and hence such long posts are preferred over
shorter posts.

2. Sequence information is ignored: Sequence of terms in topic
is important for retrieving relevant results.

3. Specialization problem: There are terms such as Array and
Array List that require different results even though they contain
some terms in common.

Research on quality of example programs [4] shows that users
prefer shorter examples. Term Frequency has the disadvantage of
bias towards longer documents [20]. To address this concern, we
use augmented term frequency tf (t, p) computed as follows:

tf (t, p) =
f(t, p)

1 +max{f(t, p)} (2)

where f(t, p) represents the raw frequency of term t in post p.
Consider the topic convert int to string. This is not same as

convert string to int. If we go with just the term frequency, results
relevant to either of these queries will score the same. To avoid this,
we compute longest common subsequence metric for each result.
The intuition is that if the terms “convert”, “int” and “string” appear
in the same order in the result as well, the result scores higher.
Table 2 shows the precision for two topics before and after the
application of this method. Note that while this approach does not
impact factorial, it had a positive impact on convert int to string
topic.

Our ranking model is as follows. Let w1, w2..., wn denote any
vector of terms that represents a post p. Let t1, t2, ..., tk be the topic
vector representing a topic T . The distance function φ is defined as
follows:

φ(p, T) = λ

k−1∑
i=1

((loc(ti+1 , p)− loc(ti, p)) (3)

The function loc(t, p) refers to the location (or index) of term t
in post p. λ denotes heuristically derived weight. For a match in
title, we believe the post should be more relevant and hence have a
higher λ = 6 and for code snippet match, we keep λ as 3. We add
up the scores computed for title and code snippet to get the final

Table 3: Structural information extracted from source code.

Code Structure
public static int factorial(int n) {

int fact = 1;
for (int i=1; i<=n; i++) {

fact *= i;
}
return fact;

}

<algo>
<loop>
<=
*=
</loop>
</algo>

score for a post p as:

φ(p, T) = φtitle(p, T) + φsnippet(p, T) (4)

Binary Search is not the same as Binary Search Tree. Similarly,
Array is not same as Array List. We observe that TF based approach
is unable to differentiate these kinds of results. Judges did not like
the results of sort array since they saw results relevant to sort array
list. We refer to this non-trivial problem as a specialization problem
and leave this as future work.

2.4 De-duplication
Our assumption is that several short code snippets are heavily
reused. Thus, snippets of same structure are expected to show up
as the result. Current research [3] has used structural similarity to
predict functional similarity. We have the reverse objective. Out of
all the structurally similar examples, we wish to retain only one
result.

To compute structural similarity, we flatten the structure into
term-like items. Sridhara et al. [17] group structural elements into
three significant categories: return, conditionals and loops. We use
conditionals and loops. We leave return for future work. Table 3
illustrates one sample run of structure generation. Each code snip-
pet Ci is transformed into a vector of structural terms cj . Structural
similarity similarity(C1, C2) between two code snippets C1 and
C2 is computed as follows:

similarity(C1, C2) =
|C1 ∩ C2|

max{|C1|, |C2|} (5)

Note that for any pair of identical factorial code snippets, we
arrive at the maximum possible similarity score (of one). A recur-
sive version of factorial when compared with the iterator based ver-
sion will have very few common structures, thereby resulting in a
smaller similarity score.

2.5 Structural Complexity
Our intuition is that the snippets that are functionally similar would
have programming constructs that are similar in terms of their
structural complexity even though they may differ considerably in
their structures.

We observe the structural elements in familiar code and learn
how they contribute to structural complexity. For instance, loops
do not change the structural complexity irrespective of which form
they take such as while or for. Our approach to approximate both
of them to a generic loop as shown in Table 3 helps us to take
advantage of this similarity. However, several such structural pat-
terns exist in source code that could be leveraged to compute struc-
tural complexity. For instance, loops can be flattened to switch or
if statements especially for small index values of loops. There are
many familiar code examples that have a recursive equivalent of
loop form.

We compute structural complexity in terms of Structural Lines
of Code (LOC ST). Here, we compute the number of statements
in the flattened version of the source code (referred as structure

23

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sn
ip
p
et

D
en

si
ty

Structural Complexity

Factorial

(a) Factorial: Most examples are of low structural complexity.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sn
ip

p
et

D
en

si
ty

Structural Complexity

Binary Search

(b) Binary Search: Widespread structural complexity values.

Figure 2: Structural complexity characterizes the topics. Note that, in general, Factorial is less complicated structurally than Binary Search.
Factorial code samples in the LOC ST buckets of 4 and above are most probably irrelevant and can be treated as outliers. For Binary Search,
the outliers are likely to be in the first LOC ST bucket since there are sufficiently large number of samples in high-complexity buckets.

in Table 3). We categorize statements as Loop(l), Assignment (a),
Declaration(d), Call(c), Recursive Call(rc), Return(r) and Expres-
sion(e) and assign a weight of l = 5, a = 2, d = 2, c = 3, rc = 4
and r = 0. These weights are manually derived by observing sev-
eral code examples. We observe that complexity of expressions is
directly proportional to the number of operators used in the ex-
pression. Hence we assign e to the number of operators. A sim-
ple coarse grained model with such weights works for us. For a
code snippet C that has statements < c1, c2, c3, ...cn > with cor-
responding type dependent weight< w1, w2, w3...wn >, LOC ST

is computed as follows:

LOC ST (C) =

n∑
i=1

wi (6)

We compute structural complexity as discussed above on all the
code snippets mined so far. Our intuition is that, in-spite of being
structurally heterogeneous, the structural complexity of the code
snippets (relevant to a specific topic) should not vary significantly.
So, irrespective of whether recursion or loops are used, factorial
code is simple by structural complexity when compared with im-
plementations of binary search. Figure 2a suggests that most of the
relevant code snippets for factorial have very low structural com-
plexity. We learn from Figure 2b that code snippets that implement
binary search tend to be more complex than those that implement
factorial. At the same time, we also see several very simple imple-
mentations grouped in the first bucket of structural complexity, for
binary search. These turned out to be simple snippets such as node
and tree definitions that are relevant to binary search tree discus-
sions. As we strengthen our methods to find more and more relevant
code snippets, we will see concentrated regions in the structural
complexity charts. We observe that the structural complexity gives
a reasonable metric to detect outliers. Outliers are typically code
samples that are either too simple such as empty methods, or ex-
tremely long and complicated methods. These become candidates
because of high vocabulary similarity. We treat examples that lie
in the sparse regions away from the skyscrapers as outliers. So, for
factorial, any example with LOC ST of 4 and above are considered
to be outliers.

3. Experimental Setup
We asked 13 graduate students working in the computer science
department with at least 6 years of exposure to programming, to
give us one query for a typically searched code snippet and one
recently searched query, thereby leaving us with 26 queries. We
dropped some of the responses which we believe would not have
Java implementations. For example, “sort a python dictionary by

value” was dropped. This resulted in 12 topics. We mine code ex-
amples for these from stackoverflow’s XML dump of all posts.
On this data dump, we apply the steps detailed in Section 2 i.e.,
preparation, keyword collection, ranking, de-duplication and struc-
tural complexity based filtering. We analyzed over 19 million posts,
found 29,299 code snippets that were Java methods. We mined 523
implementations in total for the 12 topics that we started with.

4. Evaluation
Our evaluation criteria consist of two parts. Firstly, we check the
relevance:

• The code snippet must show how to implement the given topic
in Java. Sometimes, an API call to existing library will also be
sufficient and hence it is considered as a good solution.

• A code snippet may not be implementing the given topic alone.
For a query like file reading, a code snippet that shows how to
print numbers from a file is considered as a good example.

• Example retrieved may partly implement the topic. For in-
stance, there are several options while opening a file in Java.
Example need not be exhaustive to be relevant. However, just
the first two lines of file reading is not considered to be a rele-
vant and good example.

• Code snippets that neither demonstrate the use nor exhibit an
implementation of given topic should be marked as irrelevant.

Next, we ensure that the results are structurally diverse.

• Example retrieved should not be similar to an already retrieved
example. Two examples should be marked as being structurally
similar using the following guidelines:

if we rename the variables and remove white spaces and
change the indentation, the examples become the same.

irrelevant code inserted or deleted in between is not consid-
ered as a variant example.

use of different api should be considered as a variant exam-
ple.

Three graduate students evaluated all the results and marked
them on a binary scale as relevant/irrelevant. We used this data to
compute precision. Firstly, we checked the precision we get if we
do not use any technique apart from string match of topic name
in stackoverflow post vocabulary. The precision varied from 17%
(convert integer to string) to 93% (for factorial) with a mean of
63% and standard deviation of 22%. Hence, the topic set has no
bias towards the potential for string match.

24

Table 4: We are able to extract variant implementations with a
precision of 83.3%. Count column shows the number of example
snippets retrieved. Precision demands both functional relevance
and structural heterogeneity.

Topic Count Precision
1 Binary Search 7 100
2 Check file exists 4 50
3 Compare objects 7 75
4 Convert integer to string 2 75
5 Deep copy 3 100
6 Factorial 5 100
7 File reading bufferedreader 2 50
8 Keyboard input 3 100
9 Merge sort 2 100
10 Palindrome 5 100
11 Reverse string 9 100
12 Sorting array 3 50

5. Results
We have extracted structurally heterogeneous and semantically
similar code snippets for 12 topics with a precision of 83.3% with
a mean and median of approximately four examples for each topic.
Table 4 shows the number of structurally diverse results obtained
from our approach and its corresponding precision, for each topic.
From these results, we are convinced that the availability of multi-
ple examples allows us to leverage dominant structures, variables
and words (from post body) and score each snippet. We find stack-
overflow to be a rich source for demonstrating an approach to mine
heterogeneous examples. We also observe that structural complex-
ity characterizes the topics and therefore can be used to filter out-
liers as shown in Figure 2 and discussed in Section 2.5.

Lexicons play a major role in identifying APIs that are fre-
quently used to do key functions. For example, BigInteger is typi-
cally used in factorial computation in Java. Our method found that
BigInteger is popular in the context of factorial and retrieved it
(shown in Listing 3) as an example. When multiple people refer
to a BigInteger based factorial implementation, an understanding
of technicalities behind BigInteger is not required to believe that
the API plays a role in factorial computation. This goes well with
the natural way humans comprehend software.

Lack of context is a key challenge. Our topic check file exists
has ambiguous context. It may refer to file on local disk or file on
remote server. Most of the judges felt that former was the need and
judged the latter implementations as irrelevant.

We also observe the issue of picking a heavily correlated wrong
example from the post. For instance, file reader and file writer are
discussed together and they end up getting similar score.

Threats to Validity Our current evaluation uses 12 topics. We
have showed that our topics have no bias from the context of
vocabulary matches. It is still possible that we get a lower precision
when we increase the number of topics. Moreover, the way the
topics are worded could impact the results. Topics need to support
search. We assume that users can try out a few queries to quickly
get to good results. We have used a single discussion forum as our
source to mine snippets. A different discussion forum might impact
results. As long as the forum is large and if it reflects the same
properties as listed in Table 1, we believe the results should not
be very different. Our assumption that the variables of length one
or two does not hold semantic value does not hold in all cases.
If the topics are such that the relevant code samples use several
abbreviations of length one or two, our approach may result in poor
precision.

6. Related Work
Prompter [12] and SeaHawk [11] use stackoverflow to help devel-
opers (through an IDE extension) with relevant posts using the cur-
rent code context. They construct queries based on terms in cur-
rent context. They use several attributes such as textual similarity,
code similarity and user reputation to suggest relevant post. How-
ever, their work stops at retrieving API names and code-like words.
Rigby et al. [14] extract elements of code from informal discus-
sions. Cordeiro et al. [5] extract relevant posts based on stack trace
of exceptions. Instead of posts and code-like elements, we extract
heterogeneous source code examples for given topics and thus our
problem, method and techniques are different.

Sourcerer [2] is a code search engine that collects open source
projects, and uses vocabulary and structural information to search
for code. Holmes et al. [9] extract examples from source code
repositories. Holmes and Murphy [8] use program context to find
relevant source code from existing repository using structural infor-
mation. They work with fully compilable code and use call hierar-
chy based API usage information. Their techniques cannot be used
on code fragments available on discussion forums. Discussion fo-
rums have partial yet re-usable code that is better for learning when
compared with examples extracted from source repositories since
they have discussions associated with them. We leverage these dis-
cussions to find source code examples for a given topic.

AlgorithmSeer’s [18] algorithm search works on the intuition
that the algorithms discussed in scholarly documents are related.
A similar idea has been applied on source code using Latent Se-
mantic Indexing and Structural Semantic Indexing [3]. Gulwani
et al.’s [7] Programming by Example (PBE) attempts algorithm
discovery for automating repetitive tasks. While this uses text as
input/output, they have also applied similar idea to automatically
suggest corrections to student assignments which are essentially
source code [16]. However, this approach works with a large exam-
ple set of submitted solutions and compares with other solutions.
Since the assignment is same, structural similarity serves as a good
measure to solve this problem. In contrast, we look at structural
dissimilarity to pull up distinct examples for the same topic. We
are particularly inspired by the Zhang et al.’s [19] idea of algorith-
mic comparison. In our work, missing call hierarchy information
makes construction of value dependency graphs, impossible. Fur-
ther, we do not use input/output values or even execute the code
samples. Our approach leverages light weight information retrieval
and program analysis techniques. Thus, we are able to process sev-
eral thousand code samples within a few seconds.

7. Conclusion and Future Work
Our initial contribution yields a reasonably accurate approach to
mine structurally heterogeneous and functionally similar code snip-
pets from heterogeneous sources. We exploit information retrieval
and partial program analysis techniques to arrive at a repository of
such code samples. We show that it is possible to retrieve such sam-
ples from unstructured sources and discuss the challenges. We have
used stackoverflow posts for our research. The same approach can
be applied on wikipedia, blogs and books as well.

Understanding the fundamental elements of programming from
the perspective of variants of implementations and the way they
show up in code opens up new ways to solve problems such as
semantic clones. The ability to spot familiar code in massive code
bases can not only add value directly to program comprehension
but also have several other useful applications. We find the resultant
code samples to demonstrate a very high educative and illustrative
value. This can be used in designing programming language course
texts.

25

We plan to conduct a study comparing our results against the
benchmarks for code retrieval tools such as ohloh4 and post re-
trieval tools such as Prompter [12]. We have left the following as
future work:
1. Application of information retrieval techniques to address is-

sues such as specialization problem and support non-alphabetic
terms in vocabulary. We will also benefit from a vocabulary nor-
malization algorithm such as Normalize [21].

2. Application of partial program analysis techniques towards de-
tecting code and better extraction of structural elements.

3. Structural complexity computation should support program
constructs beyond Java method definitions.

4. Examples lie in contexts. For instance, reading a file is not same
as reading an integer list from a file while the latter might still
be acceptable as an example of the former.

5. We use a static topic list. To increase the scale, we will need a
long list which could be a result of another automated approach.

6. Concepts such as greedy algorithm are context specific. For ex-
ample, the idea of greedy algorithm can be applied on Huffman
tree construction during Huffman coding. Retrieving samples
for such topics require domain knowledge.

Classic program analysis approaches fail to capture semantics
at scale and thus makes a good case to apply information retrieval
techniques. Our approach should scale very well to extract code ex-
amples in a language independent fashion. While precision seems
to be good, recall is still an issue. State of the art program analy-
sis and information retrieval techniques can further help to improve
recall. We will need to show that ideas from information retrieval
around context extraction can be extended to source code.

Acknowledgments
This work is supported by Confederation of Indian Industries (CII)
and Microsoft Research. We thank Dr. Matthew Dwyer and Dr.
Sebastian Elbaum for their suggestions to improve this work.

References
[1] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[2] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul
Rigor, Pierre Baldi, and Cristina Lopes. Sourcerer: A search engine for
open source code supporting structure-based search. In Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 681–682,
New York, NY, USA, 2006. ACM.

[3] S. K. Bajracharya, J. Ossher, and C. V. Lopes. Leveraging usage
similarity for effective retrieval of examples in code repositories. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10, pages 157–166, New
York, NY, USA, 2010. ACM.

[4] J. Börstler, M. S. Hall, M. Nordström, J. H. Paterson, K. Sanders,
C. Schulte, and L. Thomas. An evaluation of object oriented example
programs in introductory programming textbooks. SIGCSE Bull.,
41(4):126–143, Jan. 2010.

[5] J. Cordeiro, B. Antunes, and P. Gomes. Context-based recommendation
to support problem solving in software development. In Recommenda-
tion Systems for Software Engineering (RSSE), 2012 Third International
Workshop on, pages 85–89, June 2012.

[6] B. Dagenais and L. Hendren. Enabling static analysis for partial java
programs. In Proceedings of the 23rd ACM SIGPLAN Conference on

4 https://code.ohloh.net/

Object-oriented Programming Systems Languages and Applications,
OOPSLA ’08, pages 313–328, New York, NY, USA, 2008. ACM.

[7] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’11, pages 317–330, New York, NY, USA, 2011. ACM.

[8] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 117–125, New
York, NY, USA, 2005. ACM.

[9] R. Holmes, R. J. Walker, and G. C. Murphy. Strathcona example
recommendation tool. In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 237–240, New York, NY, USA, 2005. ACM.

[10] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu.
Portfolio: Finding relevant functions and their usage. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE ’11,
pages 111–120, New York, NY, USA, 2011. ACM.

[11] L. Ponzanelli, A. Bacchelli, and M. Lanza. Leveraging crowd knowl-
edge for software comprehension and development. In Software Mainte-
nance and Reengineering (CSMR), 2013 17th European Conference on,
pages 57–66, March 2013.

[12] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza.
Mining stackoverflow to turn the IDE into a self-confident programming
prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 102–111, New York, NY, USA,
2014. ACM.

[13] S. P. Reiss. Semantics-based code search. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages
243–253, Washington, DC, USA, 2009. IEEE Computer Society.

[14] P. C. Rigby and M. P. Robillard. Discovering essential code elements
in informal documentation. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 832–841,
Piscataway, NJ, USA, 2013. IEEE Press.

[15] S. Sim, C. Clarke, and R. Holt. Archetypal source code searches:
a survey of software developers and maintainers. In Program
Comprehension, 1998. IWPC ’98. Proceedings., 6th International
Workshop on, pages 180–187, Jun 1998.

[16] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback
generation for introductory programming assignments. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 15–26, New York, NY,
USA, 2013. ACM.

[17] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Automatically detect-
ing and describing high level actions within methods. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE ’11,
pages 101–110, New York, NY, USA, 2011. ACM.

[18] S. Tuarob, P. Mitra, and C. L. Giles. “Building a Search Engine for
Algorithms” by Suppawong Tuarob, Prasenjit Mitra, and C. Lee Giles
with Martin Vesely As Coordinator SIGWEB Newsl., (Winter):5:1–5:9,
Jan. 2014.

[19] F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu. A first step towards
algorithm plagiarism detection. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA 2012, pages 111–
121, New York, NY, USA, 2012. ACM.

[20] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length
normalization. In Proceedings of the 19th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’96, pages 21–29, New York, NY, USA, 1996. ACM.

[21] D. Lawrie, D. Binkley, and C. Morrell. Normalizing source code
vocabulary. In Reverse Engineering (WCRE), 2010 17th Working
Conference on, pages 3–12, Oct 2010.

26

